101
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
102
|
Oksuzoglu E, Dursun B. Patterns of the Expression of Cyclin Genes in Bortezomib-Sensitive and Resistant Cells of Multiple Myeloma. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
103
|
Hong GL, Lee HJ, Kim YJ, Kim KH, Jung JY. Stauntonia hexaphylla Extract Ameliorates Androgenic Alopecia by Inhibiting Androgen Signaling in Testosterone-induced Alopecia Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133333. [PMID: 36896319 PMCID: PMC9990510 DOI: 10.5812/ijpr-133333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Background Stauntonia hexaphylla has been a traditional folk remedy for alleviating fever and providing anti-inflammatory properties. Androgenetic alopecia (AGA) is the most common form mediated by the presence of the dihydrotestosterone (DHT). Objectives In this study, we evaluated the effects of an extract of S. hexaphylla on AGA models and its mechanisms of action. Methods We studied S. hexaphylla extract to evaluate 5α-reductase and androgen receptor (AR) levels, apoptosis, and cell proliferation in vitro and in vivo. In addition, paracrine factors for androgenic alopecia, such as transforming growth factor beta-1 (TGF-β1) and dickkopf-a (DKK-1), were examined. Apoptosis was investigated, and the evaluation of proliferation was examined with cytokeratin 14 (CK-14) and proliferating cell nuclear antigen (PCNA). Results In human follicular dermal papilla cells, the 5α-reductase and AR were decreased following S. hexaphylla treatment, which reduced the Bax/Bcl-2 ratio. Histologically, the dermal thickness and follicle number were higher in the S. hexaphylla groups compared with the AGA group. In addition, the DHT concentration, 5α-reductase, and AR were decreased, thereby downregulating TGF-β1 and DKK-1 expression and upregulating cyclin D in S. hexaphylla groups. The numbers of keratinocyte-positive and PCNA-positive cells were increased compared to those in the AGA group. Conclusions The present study demonstrated that the S. hexaphylla extract ameliorated AGA by inhibiting 5α-reductase and androgen signaling, reducing AGA paracrine factors that induce keratinocyte (KC) proliferation, and inhibition apoptosis and catagen prematuration.
Collapse
Affiliation(s)
- Geum-Lan Hong
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hui-Ju Lee
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yae-Ji Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Hyun Kim
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ju-Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, Republic of Korea
- Corresponding Author: Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, 220 Gung-dong, Yusung-gu, P. O. Box: 34134, Daejeon, Republic of Korea.
| |
Collapse
|
104
|
Chen YR, Wang SC, Huang SP, Su CC, Liu PL, Cheng WC, Chuu CP, Chen JK, Bao BY, Lee CH, Ke CC, Wu HE, Chang HH, Yeh HC, Li CY. Protodioscin inhibits bladder cancer cell migration and growth, and promotes apoptosis through activating JNK and p38 signaling pathways. Biomed Pharmacother 2022; 156:113929. [DOI: 10.1016/j.biopha.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022] Open
|
105
|
Eickenscheidt A, Lavaux V, Paschke S, Martínez AG, Schönemann E, Laschewsky A, Lienkamp K, Staszewski O. Effect of Poly(Oxanorbonene)- and Poly(Methacrylate)-Based Polyzwitterionic Surface Coatings on Cell Adhesion and Gene Expression of Human Keratinocytes. Macromol Biosci 2022; 22:e2200225. [PMID: 36200655 DOI: 10.1002/mabi.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Indexed: 12/25/2022]
Abstract
Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences. Cell adhesion is focused on, which is the basic requirement for cell viability, proliferation, and growth. With the here presented polyzwitterion panel, three different types of cell-surface interactions are observed: adhesion, slight attachment, and cell repellency. Using immunofluorescence methods, it is found that human keratinocytes (HaCaT) form focal adhesions on the cell-adhesive polyzwitterions, but not on the sample that has only slight cell attachment. Gene expression analysis indicates that HaCaT cells cultivated in the presence of a non-adhesive polyzwitterion have up-regulated inflammatory and apoptosis-related cell signaling pathways, while the gene expression of HaCaT cells grown on a cell-adhesive polyzwitterion does not differ from the gene expression of the growth control, and thus can be defined as fully cell-compatible.
Collapse
Affiliation(s)
- Alice Eickenscheidt
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Valentine Lavaux
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Stefan Paschke
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | | | - Eric Schönemann
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany.,Fraunhofer Institut für Angewandte Polymerforschung, 14476, Potsdam-Golm, Germany
| | - Karen Lienkamp
- Department of Materials Science, Saarland University, Campus, 66123, Saarbrücken, Germany
| | - Ori Staszewski
- Institute for Neuropathology, Medical Center of the University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
106
|
Okem A, Henstra C, Lambert M, Hayeshi R. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
107
|
Mandal D, Patel P, Verma SK, Sahu BR, Parija T. Proximal discrepancy in intrinsic atomic interaction arrests G2/M phase by inhibiting Cyclin B1/CDK1 to infer molecular and cellular biocompatibility of D-limonene. Sci Rep 2022; 12:18184. [PMID: 36307489 PMCID: PMC9616896 DOI: 10.1038/s41598-022-21364-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/26/2022] [Indexed: 12/31/2022] Open
Abstract
The quest for different natural compounds for different biomedical applications especially in the treatment of cancer is at a high pace with increasing incidence of severity. D-limonene has been portrayed as one of the effective potential candidate centered to the context of breast cancer. The anticipation of its count as an effective biomedical agent required a detailed understanding of their molecular mechanism of biocompatibility. This study elucidates the mechanistic action of D-limonene channelized by the induction of apoptosis for controlling proliferation in breast cancer cells. The possible mechanism was explored through an experimental and computational approach to estimate cell proliferation inhibition, cell cycle phase distribution, apoptosis analysis using a flow cytometry, western blotting and molecular docking. The results showed reduced dose and time-dependent viability of MCF7 cells. The study suggested the arrest of the cell cycle at G2/M phase leading to apoptosis and other discrepancies of molecular activity mediated via significant alteration in protein expression pattern of anti-apoptotic proteins like Cyclin B1 and CDK1. Computational analysis showed firm interaction of D-limonene with Cyclin B1 and CDK1 proteins influencing their structural and functional integrity indicating the mediation of mechanism. This study concluded that D-limonene suppresses the proliferation of breast cancer cells by inducing G2/M phase arrest via deregulation of Cyclin B1/CDK1.
Collapse
Affiliation(s)
- Deepa Mandal
- grid.412122.60000 0004 1808 2016School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Paritosh Patel
- grid.412122.60000 0004 1808 2016School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Suresh K. Verma
- grid.412122.60000 0004 1808 2016School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Bikash Ranjan Sahu
- grid.412122.60000 0004 1808 2016School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Tithi Parija
- grid.412122.60000 0004 1808 2016School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
108
|
Tan C, Shi C, Li Y, Teng W, Li Y, Fu H, Ren L, Yu H, Li Q, Liu S. Comparative Methylome Analysis Reveals Epigenetic Signatures Associated with Growth and Shell Color in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:911-926. [PMID: 36087152 DOI: 10.1007/s10126-022-10154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fast growth is one of the most important breeding goals for all economic species such as the Pacific oyster (Crassostrea gigas), an aquaculture mollusk with top global production. Although the genetic basis and molecular mechanisms of growth-related traits have been widely investigated in the oyster, the role of DNA methylation involved in growth regulation remains largely unexplored. In this study, we performed a comparative DNA methylome analysis of two selectively bred C. gigas strains with contrasted phenotypes in growth and shell color based on whole-genome bisulfite sequencing (WGBS). Genome-wide profiling of DNA methylation at the single-base resolution revealed that DNA methylations were widely spread across the genome with obvious hotspots, coinciding with the distribution of genes and repetitive elements. Higher methylation levels were observed within genic regions compared with intergenic and promoter regions. Comparative analysis of DNA methylation allowed the identification of 339,604 differentially methylated CpG sites (DMCs) clustering in 27,600 differentially methylated regions (DMRs). Functional annotation analysis identified 11,033 genes from DMRs which were enriched in biological processes including cytoskeleton system, cell cycle, signal transduction, and protein biosynthesis. Integrative analysis of methylome and transcriptome profiles revealed a positive correlation between gene expression and DNA methylation within gene-body regions. Protein-protein interaction (PPI) analysis of differentially expressed and methylated genes allowed for the identification of integrin beta-6 (homolog of human ITGB3) as a hub modulator of the PI3K/Akt signaling pathway that was involved in various growth-related processes. This work provided insights into epigenetic regulation of growth in oysters and will be valuable resources for studying DNA methylation in invertebrates.
Collapse
Affiliation(s)
- Chao Tan
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Wen Teng
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
109
|
Kim G, Jang G, Song J, Kim D, Lee S, Joo JWJ, Jang W. A transcriptome-wide association study of uterine fibroids to identify potential genetic markers and toxic chemicals. PLoS One 2022; 17:e0274879. [PMID: 36174000 PMCID: PMC9521910 DOI: 10.1371/journal.pone.0274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical–gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Gyuyeon Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jong Wha J. Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
110
|
Effects of Combined Pentadecanoic Acid and Tamoxifen Treatment on Tamoxifen Resistance in MCF−7/SC Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911340. [PMID: 36232636 PMCID: PMC9570034 DOI: 10.3390/ijms231911340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogen receptors are indicators of breast cancer adaptability to endocrine therapies, such as tamoxifen. Deficiency or absence of estrogen receptor α (ER−α) in breast cancer cells results in reduced efficacy of endocrine therapy. Here, we investigated the effect of combined tamoxifen and pentadecanoic acid therapy on ER−α−under−expressing breast cancer cells. Drug resistance gene expression patterns were determined by RNA sequencing analysis and in vitro experiments. For the first time, we demonstrate that the combined treatment of pentadecanoic acid, an odd−chain fatty acid, and tamoxifen synergistically suppresses the growth of human breast carcinoma MCF−7 stem cells (MCF−7/SCs), which were found to be tamoxifen−resistant and showed reduced ER−α expression compared with the parental MCF−7 cells. In addition, the combined treatment synergistically induced apoptosis and accumulation of sub−G1 cells and suppressed epithelial−to−mesenchymal transition (EMT). Exposure to this combination induces re−expression of ER−α at the transcriptional and protein levels, along with suppression of critical survival signal pathways, such as ERK1/2, MAPK, EGFR, and mTOR. Collectively, decreased ER−α expression was restored by pentadecanoic acid treatment, resulting in reversal of tamoxifen resistance. Overall, pentadecanoic acid exhibits the potential to enhance the efficacy of endocrine therapy in the treatment of ER−α−under−expressing breast cancer cells.
Collapse
|
111
|
Frendo-Cumbo S, Li T, Ammendolia DA, Coyaud E, Laurent EM, Liu Y, Bilan PJ, Polevoy G, Raught B, Brill JA, Klip A, Brumell JH. DCAF7 regulates cell proliferation through IRS1-FOXO1 signaling. iScience 2022; 25:105188. [PMID: 36248734 PMCID: PMC9556925 DOI: 10.1016/j.isci.2022.105188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cell proliferation is dependent on growth factors insulin and IGF1. We sought to identify interactors of IRS1, the most proximal mediator of insulin/IGF1 signaling, that regulate cell proliferation. Using proximity-dependent biotin identification (BioID), we detected 40 proteins displaying proximal interactions with IRS1, including DCAF7 and its interacting partners DYRK1A and DYRK1B. In HepG2 cells, DCAF7 knockdown attenuated cell proliferation by inducing cell cycle arrest at G2. DCAF7 expression was required for insulin-stimulated AKT phosphorylation, and its absence promoted nuclear localization of the transcription factor FOXO1. DCAF7 knockdown induced expression of FOXO1-target genes implicated in G2 cell cycle inhibition, correlating with G2 cell cycle arrest. In Drosophila melanogaster, wing-specific knockdown of DCAF7/wap caused smaller wing size and lower wing cell number; the latter recovered upon double knockdown of wap and dfoxo. We propose that DCAF7 regulates cell proliferation and cell cycle via IRS1-FOXO1 signaling, of relevance to whole organism growth.
Collapse
Affiliation(s)
- Scott Frendo-Cumbo
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Taoyingnan Li
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Dustin A. Ammendolia
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Estelle M.N. Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Yuan Liu
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip J. Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gordon Polevoy
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Julie A. Brill
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada,Department of Biochemistry, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John H. Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada,Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada,Corresponding author
| |
Collapse
|
112
|
Suppressive Effect of Fraxetin on Adipogenesis and Reactive Oxygen Species Production in 3T3-L1 Cells by Regulating MAPK Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11101893. [PMID: 36290616 PMCID: PMC9598290 DOI: 10.3390/antiox11101893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified obesity as one of the world’s most serious chronic disorders. Adipogenesis, in which preadipocytes are differentiated into mature adipocytes, has a decisive role in establishing the number of adipocytes and determining the lipid storage capacity of adipose tissue and fat mass in adults. Fat accumulation in obesity is implicated with elevated oxidative stress in adipocytes induced by reactive oxygen species (ROS). Adipogenesis regulation by inhibiting adipogenic differentiation and ROS production has been selected as the strategy to treat obesity. The conventional anti-obesity drugs allowed by the U.S. Food and Drug Administration have severe adverse effects. Therefore, various natural products have been developed as a solution for obesity, suppressing adipogenic differentiation. Fraxetin is a major component extracted from the stem barks of Fraxinus rhynchophylla, with various bioactivities, including anti-inflammatory, anticancer, antioxidant, and antibacterial functions. However, the effect of fraxetin on adipogenesis is still not clearly understood. We studied the pharmacological functions of fraxetin in suppressing lipid accumulation and its underlying molecular mechanisms involving 3T3-L1 preadipocytes. Moreover, increased ROS production induced by a mixture of insulin, dexamethasone, and 3-isobutylmethylxanthine (MDI) in 3T3-L1 was attenuated by fraxetin during adipogenesis. These effects were regulated by mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our findings imply that fraxetin possesses inhibitory roles in adipogenesis and can be a potential anti-obesity drug.
Collapse
|
113
|
In Silico Pharmacokinetic Profiling of the Identified Bioactive Metabolites of Pergularia tomentosa L. Latex Extract and In Vitro Cytotoxic Activity via the Induction of Caspase-Dependent Apoptosis with S-Phase Arrest. Pharmaceuticals (Basel) 2022; 15:ph15091132. [PMID: 36145353 PMCID: PMC9501251 DOI: 10.3390/ph15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The in vitro cytotoxic efficacy of plant latex from Pergularia tomentosa L. was studied using five human cancer cell lines: HeLa cells (cervical carcinoma cells), A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma cells), MDA-MB-231 (metastatic mammary adenocarcinoma), and MRC-5 (lung fibroblast cell line) cells. The phytonutrient content of plant latex was identified using the liquid chromatography/mass spectra-quadrupole time of flight (LC/MS-QTOF) technique. In silico studies of polyphenols were carried out to clarify the potential mode of action of the plant latex’s constituents. The treatment of different tumor cell lines with different concentrations of plant latex revealed a potent efficacy on the human lung carcinoma cell line (A-549) (IC50 = 3.89 µg/mL) compared with that with vinblastine as a positive control (IC50 = 7.12 µg/mL). The effect of the potent concentration of plant latex on the A-549 cell line induced cell arrest, upregulated the expression of pre-apoptotic markers, and downregulated the expression of antiapoptotic markers. Seven identified polyphenols were selected for the in silico study. A docking assessment using the epidermal growth factor receptor kinase (EGFRk) and eltronib as a positive control showed a higher affinity for the enzyme receptor of the selected polyphenols, except for methyl orsellinate and ginkgotoxin. The ADMET assessment demonstrated the inhibitory effect of the polyphenols on CYP450, except for ouabagenin and xanthyletine. The selected polyphenols obey Lipinski’s drug-likeness with no significant toxicity effect. In conclusion, the plant latex of P. tomentosa L. showed cytotoxic activity on the A-549 cell line, and the selected polyphenols showed a promising prodrug agent with a low profile of toxicity in the study.
Collapse
|
114
|
The Identification of APOBEC3G as a Potential Prognostic Biomarker in Acute Myeloid Leukemia and a Possible Drug Target for Crotonoside. Molecules 2022; 27:molecules27185804. [PMID: 36144542 PMCID: PMC9503540 DOI: 10.3390/molecules27185804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G) converts cytosine to uracil in DNA/RNA. Its role in resisting viral invasion has been well documented. However, its expression pattern and potential function in AML remain unclear. In this study, we carried out a bioinformatics analysis and revealed that the expression of APOBEC3G was significantly upregulated in AML, and high expression of APOBEC3G was significantly associated with short overall survival (OS). APOBEC3G expression was especially increased in non-M3AML, and correlated with the unfavorable cytogenetic risks. Additionally, Cox regression analyses indicated APOBEC3G is a hazard factor that cannot be ignored for OS of AML patients. In molecular docking simulations, the natural product crotonoside was found to interact well with APOBEC3G. The expression of APOBEC3G is the highest in KG-1 cells, and the treatment with crotonoside can reduce the expression of APOBEC3G. Crotonoside can inhibit the viability of different AML cells in vitro, arrest KG-1 and MV-4-11 cells in the S phase of the cell cycle and affect the expression of cycle-related proteins, and induce cell apoptosis. Therefore, APOBEC3G could be a potential drug target of crotonoside, and crotonoside can be considered as a lead compound for APOBEC3G inhibition in non-M3 AML.
Collapse
|
115
|
Xin Y, Zheng T, Zhang M, Zhang R, Zhu S, Li D, Zhao D, Ma Y, Ho CT, Huang Q. Demethylnobiletin and its major metabolites: Efficient preparation and mechanism of their anti-proliferation activity in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
116
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
117
|
Idris MKH, Hasham R, Ismail HF. Bioassay-Guided extraction of andrographis paniculata for intervention of in-vitro prostate cancer progression in metabolic syndrome environment. Daru 2022; 30:253-272. [PMID: 35922691 PMCID: PMC9715910 DOI: 10.1007/s40199-021-00414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a risk factor for prostate cancer (PCa) progression. Thus, this life-threatening disease demands a proactive treatment strategy. Andrographis paniculata (AP) is a promising candidate with various medicinal properties. However, the bioactivity of AP is influenced by its processing conditions especially the extraction solvent. OBJECTIVE In the present study, bioassay-guided screening technique was employed to identify the best AP extract in the management of MetS, PCa, and MetS-PCa co-disease in vitro. METHODS Five AP extracts by different solvent systems; APE1 (aqueous), APE2 (absolute methanol), APE3 (absolute ethanol), APE4 (40% methanol), and APE5 (60% ethanol) were screened through their phytochemical profile, in-vitro anti-cancer, anti-obese, and anti-hyperglycemic properties. The best extract was further tested for its potential in MetS-induced PCa progression. RESULTS APE2 contained the highest andrographolide (1.34 ± 0.05 mg/mL) and total phenolic content (8.85 ± 0.63 GAE/gDW). However, APE3 has the highest flavonoid content (11.52 ± 0.80 RE/gDW). APE2 was also a good scavenger of DPPH radicals (EC50 = 397.0 µg/mL). In cell-based assays, among all extracts, APE2 exhibited the highest antiproliferative activity (IC50 = 57.5 ± 11.8 µg/mL) on DU145 cancer cell line as well as on its migration activity. In in-vitro anti-obese study, all extracts significantly reduced lipid formation in 3T3-L1 cells. The highest insulin-sensitizing and -mimicking actions were exerted by both APE2 and APE3. Taken together, APE2 showed collectively good activity in the inhibition of PCa progression and MetS manifestation in vitro, compared to other extracts. Therefore, APE2 was further investigated for its potential to intervene DU145 progression induced with leptin (10-100 ng/mL) and adipocyte conditioned media (CM) (10% v/v). Interestingly, APE2 significantly diminished the progression of the cancer cell that has been pre-treated with leptin and CM through cell cycle arrest at S phase and induction of cell death. CONCLUSION In conclusion, AP extracts rich with andrographolide has the potential to be used as an alternative to ameliorate PCa progression induced by factors highly expressed in MetS.
Collapse
|
118
|
Xu G, Li Z, Ding Y, Shen Y. Discovery of 1,2-diphenylethene derivatives as human DNA topoisomerase II catalytic inhibitors and antitumor agents. Eur J Med Chem 2022; 243:114706. [DOI: 10.1016/j.ejmech.2022.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
119
|
Zhang P, Cao X, Guan M, Li D, Xiang H, Peng Q, Zhou Y, Weng C, Fang X, Liu X, Mao H, Li Q, Liu G, Lu L. CPNE8 Promotes Gastric Cancer Metastasis by Modulating Focal Adhesion Pathway and Tumor Microenvironment. Int J Biol Sci 2022; 18:4932-4949. [PMID: 35982908 PMCID: PMC9379401 DOI: 10.7150/ijbs.76425] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022] Open
Abstract
Little is known about the oncogenic role or biological function of copine Ⅷ (CPNE8) in gastric cancer (GC). Based on TCGA database, we screened for CPNE8 and analyzed the expression of CPNE8 in GC. The correlations between CPNE8 and clinical features were analyzed using TCGA and GEO databases. The prognostic value of CPNE8 was assessed using Cox analysis and Kaplan-Meier curves. The results showed that increased expression of CPNE8 was positively correlated with metastasis and can be considered an independent prognostic risk factor for poor survival. We found that CPNE8 can promote cell proliferation, migration, and invasiveness in GC using in vitro and in vivo experiments. Our study demonstrated that CPNE8 promotes tumor progression via regulation of focal adhesion, and these effects can be rescued by focal adhesion kinase (FAK) inhibitor GSK2256098 or knockdown of FAK. In addition, CPNE8 was correlated significantly with the infiltration of cancer-associated fibroblasts and immune cells, as demonstrated by various algorithms, and high CPNE8 expression predicted poor efficacy of immune checkpoint therapy. Our findings suggest that CPNE8 modulates focal adhesion and tumor microenvironment to promote GC progression and invasiveness and could serve as a novel prognostic biomarker in GC.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaofei Cao
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mingmei Guan
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dailing Li
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hong Xiang
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qian Peng
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yun Zhou
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chengyin Weng
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xisheng Fang
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xia Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Haibo Mao
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qiao Li
- Department of Surgery University of Michigan, Ann Arbor, Michigan, USA
| | - Guolong Liu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Lin Lu
- Department of Medical Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
120
|
Asadollahi L, Mahoutforoush A, Dorreyatim SS, Soltanfam T, Paiva-Santos AC, Peixoto D, Veiga F, Hamishehkar H, Zeinali M, Abbaspour-Ravasjani S. Co-Delivery of Erlotinib and Resveratrol via Nanostructured Lipid Carriers: A Synergistically Promising Approach for Cell Proliferation Prevention and ROS-Mediated Apoptosis Activation. Int J Pharm 2022; 624:122027. [PMID: 35850183 DOI: 10.1016/j.ijpharm.2022.122027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Cancer treatments are always associated with various challenges, and scientists are constantly trying to find new therapies and methods. Erlotinib (ELT) is a well-known medicine against non-small cell lung cancer (NSCLC). However, treatments by ELT disrupt therapy due to drug resistance and pose severe challenges to patients. To achieve high-performance treatment, we gained nanostructured lipid carriers (NLCs) to evaluate synergistic anticancer effects of co-delivery of ELT and resveratrol (RES), a natural herbal derived phenol against NSCLC. NLCs are prepared via the hot homogenization method and characterized. In vitro cytotoxicity of formulations were evaluated on adenocarcinoma human alveolar basal epithelial (A549) cells. Prepared NLCs showed a narrow particle size (97.52 ±17.14 nm), negative zeta potential (-7.67 ± 4.55 mV), and high encapsulation efficiency (EE%) was measured for the prepared co-delivery system (EE% 89.5 ± 5.16 % for ELT and 90.1 ± 6.61 % for RES). In vitro outcomes from cell viability study (12.63 % after 48 h of treatment), apoptosis assay (85.50%.), cell cycle (40.00% arrest in G2-M), and western blotting investigations (decreasing of protein expression levels of survivin, Bcl-2, P-Caspase 3 P-caspase 9, and P-ERK 1/2, and additionally, increasing protein levels of BAX, P53, C-Caspase 3 and 9), DAPI staining, and colony formation assays showed the augment cytotoxic performances for co-delivery of ELT and RES loaded NLCs. Our study introduced the co-delivery of ELT and RES by NLCs as a novel strategy to elevate the efficacy of chemotherapeutics for NSCLC.
Collapse
Affiliation(s)
- Leila Asadollahi
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mahoutforoush
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Sina Dorreyatim
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Soltanfam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran.
| | | |
Collapse
|
121
|
Monga J, Suthar SK, Rohila D, Joseph A, Chauhan CS, Sharma M. (+)-Cyanidan-3-ol inhibits epidermoid squamous cell carcinoma growth via inhibiting AKT/mTOR signaling through modulating CIP2A-PP2A axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154116. [PMID: 35525235 DOI: 10.1016/j.phymed.2022.154116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Despite recent advances in the treatment of squamous cell skin cancer (SCSC), the disease persists, and treatment resistance develops. Thus, identifying new targets and developing new therapeutic approaches showing low vulnerability to drug resistance is highly needed. PURPOSE This study aimed to reveal a novel targeted phytotherapeutic strategy for SCSC treatment alone or in combination with standard targeted anticancer molecules. STUDY DESIGN A library of natural products was utilized to identify molecules that inhibit the growth of skin cancer cells. The anticancer potential of the selected compound was evaluated in human skin squamous carcinoma models, in vitro and in vivo. A comprehensive ingenuity pathway analysis (IPA) strategy and molecular biology technology was adopted to investigate the therapeutic mechanisms in human SCSC. METHODS The Matrigel invasion chamber, foci formation and soft agar colony formation assays were employed to study the cells invasion and migration potential in vitro. In vivo antitumor effects were evaluated in DMBA/TPA-induced skin papilloma and A431 human skin squamous carcinoma xenograft tumor models. An integrative IPA was employed to identify mechanisms and protein targets in human SCSC.Compounds synergies were determined by the bliss model and evaluated using human SCSC cell lines and xenograft tumors. Histological staining, immunofluorescence imaging, real-time PCR, Western blots, and flow cytometric analyses were employed to analyze apoptosis and cell signaling mechanisms. RESULTS We identified (+)-cyanidan-3-ol (CD-3) as a selective compound for inhibiting the growth of SCSC cell lines. CD-3 inhibited tumor growth and burden without apparent toxicity and prolonged the survival of tumor-bearing mice. CD-3 inhibitory effects on SCSC growth are mediated via cell cycle arrest and caspase-dependent apoptosis induction. Mechanistic studies showed that CD-3 activates PP2A via inhibiting CIP2A and produces tumor growth inhibitory effects via promoting dephosphorylation of oncogenic AKT/mTOR signaling proteins in SCSC cells and xenograft tumors in a PP2A dependent manner. Furthermore, the combination of CD-3 and mTOR inhibitors (mTORi) synergistically reduced oncogenic phenotypes. CONCLUSIONS Our study suggests that PP2A activation is an effective strategy for SCSC treatment and the CD-3 and mTORi combination may serve as a promising treatment for SCSC.
Collapse
Affiliation(s)
- Jitender Monga
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Sharad Kumar Suthar
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| | - Deepak Rohila
- Department of Immunology, Zhejiang University, Hangzhou 310058, China
| | - Alex Joseph
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Chetan Singh Chauhan
- Bhupal Nobles' Institue of Pharmaceutical Sciences, Bhupal Nobles' University, Udaipur 313001, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India; College of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana 133203, India.
| |
Collapse
|
122
|
Yousef RG, Eldehna WM, Elwan A, Abdelaziz AS, Mehany ABM, Gobaara IMM, Alsfouk BA, Elkaeed EB, Metwaly AM, Eissa IH. Design, Synthesis, In Silico and In Vitro Studies of New Immunomodulatory Anticancer Nicotinamide Derivatives Targeting VEGFR-2. Molecules 2022; 27:molecules27134079. [PMID: 35807326 PMCID: PMC9268560 DOI: 10.3390/molecules27134079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.
Collapse
Affiliation(s)
- Reda G. Yousef
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Abdelaziz S. Abdelaziz
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Ibraheem M. M. Gobaara
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt; (A.B.M.M.); (I.M.M.G.)
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (A.M.M.); (I.H.E.)
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (R.G.Y.); (A.E.); (A.S.A.)
- Correspondence: (A.M.M.); (I.H.E.)
| |
Collapse
|
123
|
Kumari M, Kamat S, Jayabaskaran C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121098. [PMID: 35257985 DOI: 10.1016/j.saa.2022.121098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many natural products induce apoptotic cell death in cancer cells, though studies on their interactions with macromolecules are limited. For the first time, this study demonstrated the cytotoxic potential of usnic acid (UA) against squamous carcinoma (A-431) cells and the associated changes in cell surface proteins, lipids and DNA by attenuated total reflection- fourier transform infrared spectroscopy (ATR-FTIR) and dynamic light scattering (DLS) spectroscopic studies. The IC50 for UA was 98.9 µM after treatment of A-431 cells for 48 h, while the IC50 reduced to 39.2 µM after 72 h of incubation time. UA induced oxidative stress in treated cells as confirmed by DCFHDA flow cytometry assay, depletion in reduced glutathione and increase in lipid peroxidation. The oxidative stress resulted in conformation change in amide I, amide II protein bands and DNA as observed by ATR-FTIR in UA treated A-431 cells. Shift in secondary structures of proteins from α helix to β sheets and structural changes in DNA was observed in UA treated A-431 cells. An increase in the band intensity of phospholipids, increased distribution of lipid and change in membrane potential was noted in UA treated cells, which was confirmed by externalization of phosphatidylserine to the outer membrane by annexin V-FITC/PI assay. Increase in mitochondrial membrane potential, cell cycle arrest at G0/G1 phase by flow cytometry and activation of caspase-3/7 dependent proteins confirmed the UA induced apoptosis in treated A-431 cells. FTIR and DLS spectroscopy confirmed the changes in biomolecules after UA treatment, which were associated with apoptosis, as observed by flow cytometry.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
124
|
Structure Elucidation and Anti-Tumor Activities of Trichothecenes from Endophytic Fungus Fusariumsporotrichioides. Biomolecules 2022; 12:biom12060778. [PMID: 35740903 PMCID: PMC9220965 DOI: 10.3390/biom12060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The secondary metabolites of Fusarium sporotrichioides, an endophytic fungus with anti-tumor activity isolated from Rauvolfia yunnanensis Tsiang, were investigated. Five trichothecenes, including one previously undescribed metabolite, were isolated and identified. Their structures were elucidated by means of extensive spectroscopic methods; the absolute configuration of compound 1 was determined by the ECD method. Surprisingly, 8-n-butyrylneosolaniol (3) exhibited stronger anti-tumor activity than T-2 toxin against Huh-7 cell line, with an IC50 value of 265.9 nM. 8-n-butyrylneosolaniol (3) promoted apoptosis induction in Huh-7 cells. Moreover, cell cycle analysis showed that cell cycle arrest caused by 8-n-butyrylneosolaniol (3) at the G2/M phase resulted in cell proliferation inhibition and pro-apoptotic activity. Further studies showed a significant decrease in mitochondrial membrane permeabilization and a significant increase in ROS generation, which led to the activation of caspase cascades and subsequent cleavage of PARP fragments. In conclusion, 8-n-butyrylneosolaniol (3) induced cell apoptosis in Huh-7 cells via the mitochondria-mediated apoptotic signaling pathway, which could be a leading compound for anti-tumor agents.
Collapse
|
125
|
Ho HY, Chen PJ, Chuang YC, Lo YS, Lin CC, Hsieh MJ, Chen MK. Picrasidine I Triggers Heme Oxygenase-1-Induced Apoptosis in Nasopharyngeal Carcinoma Cells via ERK and Akt Signaling Pathways. Int J Mol Sci 2022; 23:ijms23116103. [PMID: 35682782 PMCID: PMC9181417 DOI: 10.3390/ijms23116103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ping-Ju Chen
- Department of Dentistry, Changhua Christian Hospital, Changhua 500, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (Y.-C.C.); (Y.-S.L.); (C.-C.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Correspondence: (M.-J.H.); (M.-K.C.); Tel.: +886-4-7238595 (M.-J.H. & M.-K.C.); Fax: +886-4-7232942 (M.-J.H. & M.-K.C.)
| |
Collapse
|
126
|
Zhong J, Tan L, Chen M, He C. Pharmacological activities and molecular mechanisms of Pulsatilla saponins. Chin Med 2022; 17:59. [PMID: 35606807 PMCID: PMC9125917 DOI: 10.1186/s13020-022-00613-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Saponins are found in a variety of higher plants and display a wide range of pharmacological activities, including expectorant, anti-inflammatory, vasoprotective and antimicrobial properties. Pulsatilla chinensis (P. chinensis, Bai Tou Weng, ) has been used medically in China for thousands of years for the treatment of diseases caused by bacteria, and it is rich in triterpenoid saponins. In recent decades, anemoside B4 (Pulchinenoside C) is well studied since it has been used as a quality control marker for P. chinensis. At the same time, more and more other active compounds were found in the genus of Pulsatilla. In this review, we summarize the pharmacological activities of Pulsatilla saponins (PS) and discuss the cellular or molecular mechanisms that mediate their multiple activities, such as inducing cancer cell apoptosis, inhibiting tumor angiogenesis, and protecting organs via anti-inflammatory and antioxidant measures. We aim to provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate further study and drug discovery of PS.
Collapse
Affiliation(s)
- Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China.,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao SAR, China. .,Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao SAR, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Taipa, 999078, Macao SAR, China.
| |
Collapse
|
127
|
Khan F, Jaoui M, Rudziński K, Kwapiszewska K, Martinez-Romero A, Gil-Casanova D, Lewandowski M, Kleindienst TE, Offenberg JH, Krug JD, Surratt JD, Szmigielski R. Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119010. [PMID: 35217136 PMCID: PMC9171836 DOI: 10.1016/j.envpol.2022.119010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 05/17/2023]
Abstract
Nitrophenols (NPs) are hazardous pollutants found in various environmental matrices, including ambient fine particulate matter (PM2.5), agricultural residues, rainwater, wildfires, and industrial wastes. This study showed for the first time the effect of three pure nitrophenols and their mixture on human lung cells to provide basic understanding of the NP influence on cell elements and processes. We identified NPs in ambient PM2.5 and secondary organic aerosol (SOA) particles generated from the photooxidation of monocyclic aromatic hydrocarbons in the U.S. EPA smog chamber. We assessed the toxicity of identified NPs and their equimolar mixture in normal bronchial epithelial (BEAS-2B) and alveolar epithelial cancer (A549) lung cell lines. The inhibitory concentration-50 (IC50) values were highest and lowest in BEAS-2B cells treated with 2-nitrophenol (2NP) and 4-nitrophenol (4NP), respectively, at 24 h of exposure. The lactate dehydrogenase (LDH) assay showed that 4NP, the most abundant NP we identified in PM2.5, was the most cytotoxic NP examined in both cell lines. The annexin-V/fluorescein isothiocyanate (FITC) analysis showed that the populations of late apoptotic/necrotic BEAS-2B and A549 cells exposed to 3NP, 4NP, and NP equimolar mixture increased between 24 and 48 h. Cellular reactive oxygen species (ROS) buildup led to cellular death post exposure to 3NP, 4NP and the NP mixtures, while 2NP induced the lowest ROS buildup. An increased mitochondrial ROS signal following NP exposure occurred only in BEAS-2B cells. The tetramethylrhodamine, methyl ester, perchlorate (TMRM) assay showed that exposed cells exhibited collapse of the mitochondrial membrane potential. TMRM signals decreased significantly only in BEAS-2B cells, and most strongly with 4NP exposures. Our results suggest that acute atmospheric exposures to NPs may be toxic at high concentrations, but not at ambient PM2.5 concentrations. Further chronic studies with NP and NP-containing PM2.5 are warranted to assess their contribution to lung pathologies.
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mohammed Jaoui
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Krzysztof Rudziński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Alicia Martinez-Romero
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Domingo Gil-Casanova
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Michael Lewandowski
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Tadeusz E Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - John H Offenberg
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Jonathan D Krug
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
128
|
Wang H, Liu H, Zhao X, Chen X. Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription. Bioengineered 2022; 13:11469-11486. [PMID: 35535400 PMCID: PMC9276035 DOI: 10.1080/21655979.2022.2066754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coronary artery disease (CAD) represents a fatal public threat. The involvement of extracellular vesicles (EVs) in CAD has been documented. This study explored the regulation of embryonic stem cells (ESCs)-derived EVs-hnRNPU-actin complex in human coronary artery endothelial cell (HCAEC) growth. Firstly, in vitro HCAEC hypoxia models were established. EVs were extracted from ESCs by ultracentrifugation. HCAECs were treated with EVs and si-VEGF for 24 h under hypoxia, followed by assessment of cell proliferation, apoptosis, migration, and tube formation. Uptake of EVs by HCAECs was testified. Additionally, hnRNPU, VEGF, and RNA Pol II levels were determined using Western blotting and CHIP assays. Interaction between hnRNPU and actin was evaluated by Co-immunoprecipitation assay. HCAEC viability and proliferation were lowered, apoptosis was enhanced, wound fusion was decreased, and the number of tubular capillary structures was reduced under hypoxia, whereas ESC-EVs treatment counteracted these effects. Moreover, EVs transferred hnRNPU into HCAECs. EVs-hnRNPU-actin complex increased RNA Pol II level on the VEGF gene promoter and promoted VEGF expression in HCAECs. Inhibition of hnRNPU or VEGF both annulled the promotion of EVs on HCAEC growth. Collectively, ESC-EVs-hnRNPU-actin increased RNA Pol II phosphorylation and VEGF expression, thus promoting HCAEC growth.
Collapse
Affiliation(s)
- Han Wang
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hengdao Liu
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xi Zhao
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaowei Chen
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
129
|
The Effect of Clomiphene Citrate and Letrozole in Apoptotic Pathways and Cell Cycle in Human Primary Cumulus Cells and the Protective Effect of Estradiol. Reprod Sci 2022; 29:2272-2281. [PMID: 35513593 DOI: 10.1007/s43032-022-00961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Clomiphene citrate (CC) and letrozole are ovulatory stimulants that, despite high ovulation rates, achieve low pregnancy rates. This study aimed to investigate the in vitro effects of CC and letrozole, alone or in combination with estradiol, on apoptosis in human cumulus cells. We performed a controlled prospective study using primary cumulus cell cultures from patients undergoing in vitro fertilization (n=22). Alpha-inhibin immunocytochemistry was used to assess cell culture purity and morphology. Cell viability was evaluated by MTT assay, cell cycle status by flow cytometry, and Caspase-3, Bax and SOD-2, and S26 gene expression by qPCR. Cells were treated for 24 hours in 5 conditioned media: CC, CC + estradiol, letrozole, letrozole + estradiol and control. None of the treatments affected cell viability, but letrozole reduced the mean percentage of cells in the S phase compared to control (24.79 versus 21.70, p=0.0014). Clomiphene treatment increased mRNA expression of Bax (4 fold) and SOD-2 (2 fold), which was reversed by co-treatment with estradiol. SOD-2 expression increased in cells treated with letrozole compared to control (4 fold), which was also reversed by estradiol. These findings suggest that clomiphene citrate and letrozole do not significantly affect the viability of human cumulus cells. Still, the expression of genes involved in apoptosis was modulated by these drugs alone and in association with estradiol, suggesting that CC and letrozole may have direct effects on cumulus cells beyond their known mechanisms of action.
Collapse
|
130
|
Kazybay B, Sun Q, Dukenbayev K, Nurkesh AA, Xu N, Kutzhanova A, Razbekova M, Kabylda A, Yang Q, Wang Q, Ma C, Xie Y. Network Pharmacology with Experimental Investigation of the Mechanisms of Rhizoma Polygonati against Prostate Cancer with Additional Herbzymatic Activity. ACS OMEGA 2022; 7:14465-14477. [PMID: 35531567 PMCID: PMC9069460 DOI: 10.1021/acsomega.1c03018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 05/12/2023]
Abstract
A combination therapy of Rhizoma Polygonati (RP) with goji (Lycium chinense) has earned a long history in the prescriptions to promote male health. However, the mechanisms at both molecular and nanoscale quantum levels are unclear. Here, we found that processed RP extract induces apoptosis and cell cycle arrest in cancer cells, thereby inhibiting prostate cancer cell proliferation enhanced by processed goji extract associated with an augment of the nanoscale herbzyme of phosphatase. For network pharmacology analysis, RP-induced PI3K-AKT pathways are essential for both benign prostatic hyperplasia and prostate cancer, and the RP/goji combination induces potent pathways which include androgen and estrogen response, kinase regulation, apoptosis, and prostate cancer singling. In addition, the experimental investigation showed that the prostate cancer cells are sensitive to RP extract for inhibiting colony formation. Finally, the natural compound baicalein found in RP ingredients showed a linked activity of top-ranked signaling targets of kinases including MAPK, AKT, and EGFR by the database of cMAP and HERB. Thus, both the nanozyme and ingredients might contribute to the RP in anti-prostate cancer which can be enhanced by goji extract. The proposed nanoscale RP extract might be of significance in developing novel anti-prostate cancer agents by combining goji compositions and targeted therapy compounds.
Collapse
Affiliation(s)
- Bexultan Kazybay
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qinglei Sun
- Key
Laboratory for Applied Technology of Sophisticated Analytical Instrument
of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| | - Kanat Dukenbayev
- School
of Engineering and Digital Science, Nazarbayev
University, Nur-Sultan 010000, Kazakhstan
| | - Ayan Amantaiuly Nurkesh
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Na Xu
- Key
Laboratory for Applied Technology of Sophisticated Analytical Instrument
of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, China
| | - Aidana Kutzhanova
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Madina Razbekova
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Anar Kabylda
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qing Yang
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| | - Qian Wang
- Shandong
Taishanghuangjing Biotechnology Co. Ltd., Taian 271000, China
| | - Cuiping Ma
- Shandong
Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic
Acid Rapid Detection Engineering Research Center, College of Marine
Science and Biological Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Yingqiu Xie
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Qabanbay Batyr Avenue 53, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
131
|
Almeida AA, Lima GDA, Eiterer M, Rodrigues LA, A do Vale JA, Zanatta AC, Bressan GC, de Oliveira LL, Leite JPV. A Withanolide-rich Fraction of Athenaea velutina Induces Apoptosis and Cell Cycle Arrest in Melanoma B16F10 Cells. PLANTA MEDICA 2022; 88:429-439. [PMID: 33853120 DOI: 10.1055/a-1395-9046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Athenaea velutina is a promising Brazilian shrub with cytotoxic and antimigratory properties against cancer cells. However, the mechanism of induction of cancer cell death and the compounds involved remain unknown. To ascertain these bioactive compounds, bioassay-guided fractionation was performed, alongside the appropriate in vitro tests. A withanolide-rich fraction (FAv_5) from the dichloromethane extract increased cytotoxic activity by 1.5-fold (IC50 = 2.1 µg/mL). Fourteen withanolide steroids were tentatively identified for the first time for this species by mass spectrometry coupled to liquid chromatography (LC MS/MS), including withanolide A, aurelianolide A, and aurelianolide B. FAv_5 significantly decreased cell proliferation, migration, and invasion with a selectivity index greater than 8 for B16F10 cells. Furthermore, flow cytometry with annexin V fluorescein isothiocyanate/propidium iodide (V-FITC/PI) staining showed FAv_5 to promote cell cycle arrest at the G0/G1-phase as well as apoptotic cell death. Overall, these findings highlight A. velutina as a source of withanolide-steroids that inhibit cancer cell proliferation through apoptosis and cell cycle blockade mechanisms. Details on the geographic distribution of A. velutina and species conservation strategies have also been highlighted.
Collapse
Affiliation(s)
- Alisson A Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Graziela D A Lima
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Laís A Rodrigues
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Juliana A A do Vale
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ana C Zanatta
- Universidade Estadual Paulista (Unesp), Instituto de Química, Araraquara, São Paulo, Brazil
| | - Gustavo C Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Leandro L de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João P V Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
132
|
Alves C, Silva J, Afonso MB, Guedes RA, Guedes RC, Alvariño R, Pinteus S, Gaspar H, Goettert MI, Alfonso A, Rodrigues CMP, Alpoím MC, Botana L, Pedrosa R. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomed Pharmacother 2022; 149:112886. [PMID: 35378501 DOI: 10.1016/j.biopha.2022.112886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Romina A Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rebeca Alvariño
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Márcia I Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS 95914-014, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria C Alpoím
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luis Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
133
|
Zhu Y, Chen Z, Kim SN, Gan C, Ryl T, Lesjak MS, Rodemerk J, Zhong RD, Wrede K, Dammann P, Sure U. Characterization of Temozolomide Resistance Using a Novel Acquired Resistance Model in Glioblastoma Cell Lines. Cancers (Basel) 2022; 14:cancers14092211. [PMID: 35565340 PMCID: PMC9101568 DOI: 10.3390/cancers14092211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Temozolomide (TMZ) is the first-line drug for chemotherapy of GBM, the most aggressive and incurable brain tumor. Acquired chemoresistance is a hallmark that causes the poor prognosis of GBM. Therefore, understanding the underlying mechanisms by using a proper model becomes emergent. Previous models usually take weeks/months and are often not fully representative of characteristics of TMZ resistance. We established an acute acquired TMZ resistance model using GBM cell lines with different genomic backgrounds. In response to TMZ, the resistant cells showed less susceptibility and sustained regrowth, high clonogenicity, reduced DNA damage accompanied by attenuated MMR, shortened G2/M arrest, uncontrolled DNA replication, and evasion of apoptosis. Moreover, these TMZ resistant cells presented stem cell properties that are critical for chemoresistance. Thus, our model recapitulates all key features of TMZ resistance and is believed to be a promising model to study the underlying mechanisms and define therapeutics for GBM in the future. Abstract Temozolomide (TMZ) is the first line of standard therapy in glioblastoma (GBM). However, relapse occurs due to TMZ resistance. We attempted to establish an acquired TMZ resistance model that recapitulates the TMZ resistance phenotype and the relevant gene signature. Two GBM cell lines received two cycles of TMZ (150 µM) treatment for 72 h each. Regrown cells (RG2) were defined as TMZ resistant cells. MTT assay revealed significantly less susceptibility and sustained growth of RG2 compared with parental cells after TMZ challenge. TMZ-induced DNA damage significantly decreased in 53BP1-foci reporter transduced-RG2 cells compared with parental cells, associated with downregulation of MSH2 and MSH6. Flow cytometry revealed reduced G2/M arrest, increased EdU incorporation and suppressed apoptosis in RG2 cells after TMZ treatment. Colony formation and neurosphere assay demonstrated enhanced clonogenicity and neurosphere formation capacity in RG2 cells, accompanied by upregulation of stem markers. Collectively, we established an acute TMZ resistance model that recapitulated key features of TMZ resistance involving impaired mismatch repair, redistribution of cell cycle phases, increased DNA replication, reduced apoptosis and enhanced self-renewal. Therefore, this model may serve as a promising research tool for studying mechanisms of TMZ resistance and for defining therapeutic approaches to GBM in the future.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +0049-201-723-1231
| | - Zhen Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Chao Gan
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Tatsiana Ryl
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Michaela Silvia Lesjak
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Rong De Zhong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
134
|
Oxidative Stress Pathways Linked to Apoptosis Induction by Low-Temperature Plasma Jet Activated Media in Bladder Cancer Cells: An In Vitro and In Vivo Study. PLASMA 2022. [DOI: 10.3390/plasma5020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current methods used to treat non-muscle invasive bladder cancer are inadequate due to a high recurrence rate after surgery and the occurrence of adverse events such as interstitial pneumonia following intravesical instillation therapy. Low-temperature plasma is a new form of physical therapy that provides a rich source of reactive oxygen species (ROS). Oxidative solutions, created by pre-treatment of aqueous media with plasma before application to target cells, lead to the destruction of cancer cells through oxidative stress pathways. This study focuses on the effects of plasma-activated media (PAM) in bladder cancer cells. PAM treatment increases oxidative stress that leads to cell cycle arrest and concomitantly depolarises the mitochondrial membrane leading to increased mitochondrial ROS production. Cell cycle arrest and increased mitochondrial ROS production led to an increase in caspase 3/cytochrome c activity, which might explain the induction of apoptosis in bladder cancer cells in vitro and in a bladder cancer tumour in vivo. These observations highlight the potential of plasma activated solutions as a new adjuvant therapy in the clinical treatment of bladder cancer.
Collapse
|
135
|
Loftus LV, Amend SR, Pienta KJ. Interplay between Cell Death and Cell Proliferation Reveals New Strategies for Cancer Therapy. Int J Mol Sci 2022; 23:4723. [PMID: 35563113 PMCID: PMC9105727 DOI: 10.3390/ijms23094723] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Cell division and cell death are fundamental processes governing growth and development across the tree of life. This relationship represents an evolutionary link between cell cycle and cell death programs that is present in all cells. Cancer is characterized by aberrant regulation of both, leading to unchecked proliferation and replicative immortality. Conventional anti-cancer therapeutic strategies take advantage of the proliferative dependency of cancer yet, in doing so, are triggering apoptosis, a death pathway to which cancer is inherently resistant. A thorough understanding of how therapeutics kill cancer cells is needed to develop novel, more durable treatment strategies. While cancer evolves cell-intrinsic resistance to physiological cell death pathways, there are opportunities for cell cycle agnostic forms of cell death, for example, necroptosis or ferroptosis. Furthermore, cell cycle independent death programs are immunogenic, potentially licensing host immunity for additional antitumor activity. Identifying cell cycle independent vulnerabilities of cancer is critical for developing alternative strategies that can overcome therapeutic resistance.
Collapse
Affiliation(s)
- Luke V. Loftus
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R. Amend
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J. Pienta
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (S.R.A.); (K.J.P.)
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
136
|
Nogueira-Pedro A, Segreto HRC, Held KD, Ferreira Junior AFG, Dias CC, Hastreiter AA, Makiyama EN, Paredes-Gamero EJ, Borelli P, Fock RA. Direct ionizing radiation and bystander effect in mouse mesenchymal stem cells. Int J Radiat Biol 2022; 98:1619-1629. [PMID: 35394402 DOI: 10.1080/09553002.2022.2063960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Purpose: This study aimed to evaluate the radiation-induced direct and bystander (BYS) responses of mesenchymal stem cells (MSCs) and to characterize these cells radiobiologically.Methods and materials: MSCs were irradiated (IR) and parameters related to DNA damage and cellular signaling were verified in a dose range from 0.5 to 15 Gy; also a transwell insert co-culture system was used to study medium-mediated BYS effects.Results: The main effects on directly IR cells were seen at doses higher than 6 Gy: induction of cell death, cell cycle arrest, upregulation of p21, and alteration of redox status. Irrespective of a specific dose, induction of micronuclei formation, H2AX phosphorylation, and decreased Akt expression also occurred. Thus, mTOR expression, cell senescence, nitric oxide generation, and calcium levels, in general were not significantly modulated by radiation. Data from the linear-quadratic model showed a high alpha/beta ratio, which is consistent with a more exponential survival curve. BYS effects from the unirradiated MSCs placed into companion wells with the directly IR cells, were not observed.Conclusions: The results can be interpreted as a positive outcome, meaning that the radiation damage is restricted to the directed IR MSCs not leading to off-target cell responses.
Collapse
Affiliation(s)
- Amanda Nogueira-Pedro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Helena Regina Comodo Segreto
- Department of Clinical and Experimental Oncology, Paulista School of Medicine, Federal University of São Paulo, Sao Paulo, Brazil
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | | | - Carolina Carvalho Dias
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Edgar Julian Paredes-Gamero
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
137
|
Tank A, Vergato C, Waxman DJ, Roblyer D. Spatial frequency domain imaging for monitoring immune-mediated chemotherapy treatment response and resistance in a murine breast cancer model. Sci Rep 2022; 12:5864. [PMID: 35393476 PMCID: PMC8989878 DOI: 10.1038/s41598-022-09671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label-free, and widefield hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown that the reduced scattering coefficient (μ's) at 800 nm, as well as the wavelength dependence of scattering, both have prognostic value in tracking apoptosis and proliferation during treatment with anti-cancer therapies. However, there is limited work in validating these optical biomarkers in clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide induces a strong anti-tumor immune response and tumor volume reduction in the E0771 murine breast cancer model. This immune activation mechanism can be blocked with an IFNAR-1 antibody, leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this paired responsive-resistant model for up to 30 days of drug treatment. Mice receiving the immune modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical scattering compared to mice receiving cyclophosphamide in combination with the IFNAR-1 antibody (9% increase vs 10% decrease on day 5 of treatment, p < 0.001). The magnitude of these differences increased throughout the duration of treatment. Additionally, scattering changes on day 4 of treatment could discriminate responsive versus resistant tumors with an accuracy of 78%, while tumor volume had an accuracy of only 52%. These results validate optical scattering as a promising prognostic biomarker that can discriminate between treatment responsive and resistant tumor models.
Collapse
Affiliation(s)
- Anup Tank
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cameron Vergato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
138
|
Deng Y, Li Y, Wu T, Chen X, Li X, Cai K, Wu X. RAD6 Positively Affects Tumorigenesis of Esophageal Squamous Cell Carcinoma by Regulating Histone Ubiquitination of CCNB1. Biol Proced Online 2022; 24:4. [PMID: 35321657 PMCID: PMC8943946 DOI: 10.1186/s12575-022-00165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Esophageal carcinoma (ESCA) is deadly cancer worldwide with unknown etiology. This study aimed to investigate the impact and mechanism of RAD6 on the development of Esophageal squamous cell carcinoma (ESCC). Expressions of RAD6A and RAD6B in ESCA were investigated from TCGA dataset and their expressions in tissue sample of ESCA patients and cells were determined. Functional experiments were conducted to explore the impact of RAD6A and RAD6B on malignant characteristics of several kinds of ESCC cells. Animal experiment was established and injected with RAD6A and RAD6B shRNA to evaluate the effect on tumor growth. RAD6A and RAD6B were up-regulated in ESCC cells and tissues. Overexpressed RAD6A and RAD6B similarly increased ESCC cell proliferation, invasion and migration and silencing of RAD6 exerted opposite effects. Knockdown of RAD6A suppressed tumor growth and decreased the level of H2B, as data demonstrated positive correlation between RAD6A and CCNB1 in ESCC tissues. Collectively, this study elucidates that RAD6 is up-regulated in ESCC and promotes the progression of ESCC through up-regulation of CCNB1 to enhance H2B ubiquitination. These evidence provide a novel insight into the pathogenesis of ESCC and might contribute to the development of targeted therapy.
Collapse
Affiliation(s)
- Yu Deng
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yujiang Li
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.,Department of Thoracic and Cardiovascular Surgery, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Tiantong Wu
- Department of General Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xuyuan Chen
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Li
- Department of Emergency Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
139
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
140
|
Mohammadhosseinpour S, Ho LC, Fang L, Xu J, Medina-Bolivar F. Arachidin-1, a Prenylated Stilbenoid from Peanut, Induces Apoptosis in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:1139. [PMID: 35163062 PMCID: PMC8835363 DOI: 10.3390/ijms23031139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is unresponsive to typical hormonal treatments, causing it to be one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. The goal of this study was to assess cytotoxicity and apoptosis mechanisms of prenylated stilbenoids in TNBC cells. The prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3) are analogs of resveratrol (RES) produced in peanut upon biotic stress. The anticancer activity of A-1 and A-3 isolated from peanut hairy root cultures was determined in TNBC cell lines MDA-MB-231 and MDA-MB-436. After 24 h of treatment, A-1 exhibited higher cytotoxicity than A-3 and RES with approximately 11-fold and six-fold lower IC50, respectively, in MDA-MB-231 cells, and nine-fold and eight-fold lower IC50, respectively, in MDA-MB-436 cells. A-1 did not show significant cytotoxicity in the non-cancerous cell line MCF-10A. While A-1 blocked cell division in G2-M phases in the TNBC cells, it did not affect cell division in MCF-10A cells. Furthermore, A-1 induced caspase-dependent apoptosis through the intrinsic pathway by activating caspase-9 and PARP cleavage, and inhibiting survivin. In conclusion, A-1 merits further research as a potential lead molecule for the treatment of TNBC.
Collapse
Affiliation(s)
- Sepideh Mohammadhosseinpour
- Molecular Biosciences Graduate Program, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Linh-Chi Ho
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Lingling Fang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
- College of Agriculture, Arkansas State University, Jonesboro, AR 72467, USA
| | - Fabricio Medina-Bolivar
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
141
|
Advances in Understanding the Role of Aloe Emodin and Targeted Drug Delivery Systems in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7928200. [PMID: 35087619 PMCID: PMC8789423 DOI: 10.1155/2022/7928200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022]
Abstract
Cancer is one of the important causes of death worldwide. Despite remarkable improvements in cancer research in the past few decades, several cancer patients still cannot be cured owing to the development of drug resistance. Natural sources might have prominence as potential drug candidates. Among the several chemical classes of natural products, anthraquinones are characterized by their large structural variety, noticeable biological activity, and low toxicity. Aloe emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. This compound has proven its antineoplastic, anti-inflammatory, antiangiogenic, and antiproliferative potential as well as ability to prevent cancer metastasis and potential in reversing multidrug resistance of cancer cells. The anticancer property of aloe emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of inhibition of cell growth and proliferation, cell cycle arrest deterioration, initiation of apoptosis, antimetastasis, and antiangiogenic effect. In accordance with the strategy of developing potential drug candidates from natural products, aloe emodin's low bioavailability has been tried to be overcome by structural modifications and nanocarrier systems. Consequently, this review summarizes the antiproliferative and anticarcinogenic properties of aloe emodin, as well as the enhanced activity of its derivatives and the advantages of drug delivery systems on bioavailability.
Collapse
|
142
|
Design and Characterization of Atorvastatin Dry Powder Formulation as a potential Lung Cancer Treatment. Saudi Pharm J 2022; 29:1449-1457. [PMID: 35002383 PMCID: PMC8720807 DOI: 10.1016/j.jsps.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer death. Many studies have shown the beneficial effects of Atorvastatin in decreasing the mortality risk and improving survival among patients with lung cancer. This research paper focuses on improving AVT cytotoxic activity and cellular uptake by developing mannitol microcarriers as a promising drug delivery system for lung cancer treatment and, studying the impact of improving inhalation deposition on the delivery and Dry Powder formulations efficiency. The AVT loaded mannitol (AM) microparticles (AVT-AM) formulation was prepared by spray drying and characterized for its physicochemical properties and aerodynamic deposition. The results revealed that the AVT-AM formulation has good flow properties and aerosol deposition with a particle size of 3418 nm ± 26.86. The formulation was also assessed in vitro for cytotoxicity effects (proliferation, apoptosis, and cell cycle progression) on A549 human lung adenocarcinoma. Compared with free AVT, the AVT-AM formulation has significantly higher cellular uptake and anti-cancer properties by disrupting cell cycle progression via either apoptosis or cell cycle arrest in the G2/M phase. This study shows that AVT loaded mannitol microcarriers may provide a potentially effective and sustained pulmonary drug delivery for lung cancer treatment.
Collapse
|
143
|
Lieu YK, Liu Z, Ali AM, Wei X, Penson A, Zhang J, An X, Rabadan R, Raza A, Manley JL, Mukherjee S. SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes. Proc Natl Acad Sci U S A 2022; 119:e2111703119. [PMID: 34930825 PMCID: PMC8740767 DOI: 10.1073/pnas.2111703119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.
Collapse
Affiliation(s)
- Yen K Lieu
- Department of Biological Sciences, Columbia University, New York, NY 10027;
- Irving Cancer Research Center, Columbia University, New York, NY 10032
| | - Zhaoqi Liu
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences 100101 Beijing, China
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
- Program for Mathematical Genomics, Columbia University, New York, NY 10032
| | - Abdullah M Ali
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY 10032
| | - Xin Wei
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Alex Penson
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Biomedical Informatics, Columbia University, New York, NY 10032
- Program for Mathematical Genomics, Columbia University, New York, NY 10032
| | - Azra Raza
- Irving Cancer Research Center, Columbia University, New York, NY 10032
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY 10032
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | | |
Collapse
|
144
|
Cruz-Santiago O, Castillo CG, Espinosa-Reyes G, Pérez-Maldonado IN, González-Mille DJ, Cuevas-Díaz MDC, Ilizaliturri-Hernández CA. Giant Toads (Rhinella marina) From the Industrial Zones of Low Basin of the Coatzacoalcos River (Veracruz, MX) Presents Genotoxicity in Erythrocytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:64-70. [PMID: 33723652 PMCID: PMC7958936 DOI: 10.1007/s00128-021-03162-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The lower basin of Coatzacoalcos River is one of the most polluted regions of the southern Gulf of Mexico. Organochlorine compounds, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and heavy metals have been registered in this region. In the present study, genotoxicity was evaluated in the blood of giant toads (Rhinella marina) from Coatzacoalcos' rural and industrial zones, and compared with laboratory toads. Determination of the frequency of micronucleus and erythrocyte nuclear abnormalities by the light microscope and cell cycle and apoptosis by flow cytometry were used as biomarkers of genotoxicity. We found more variability in micronucleus and more nuclear buds in toads from industrial zones. Also, cell cycle alterations and an increase of apoptosis in erythrocytes were found in toads from rural and industrial zones. Multivariate statistics show that the toads from the industrial zone were more affected than toads from laboratory and rural zones.
Collapse
Affiliation(s)
- Omar Cruz-Santiago
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210, San Luis Potosí, México
| | - Claudia G Castillo
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. Sección, 78210, San Luis Potosí, México
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. Sección, 78210, San Luis Potosí, México
| | - Iván N Pérez-Maldonado
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. Sección, 78210, San Luis Potosí, México
| | - Donaji J González-Mille
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. Sección, 78210, San Luis Potosí, México
| | - María Del Carmen Cuevas-Díaz
- Facultad de Química, Universidad Veracruzana Campus Coatzacoalcos, Av. Universidad Km 7.5, Santa Isabel, 96538, Veracruz, México
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. Sección, 78210, San Luis Potosí, México.
| |
Collapse
|
145
|
Gong RH, Yang DJ, Kwan HY, Lyu AP, Chen GQ, Bian ZX. Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells. Int J Med Sci 2022; 19:175-185. [PMID: 34975311 PMCID: PMC8692125 DOI: 10.7150/ijms.66737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. Furthermore, we found HF or HF-ATS induces autophagy; ATS can't induce autophagy until caspase-9 is blocked. Further analyzing the crosstalk between autophagic and caspase activation in CRC cells, we found autophagy is essential for activation of caspase-8, and ATS switches to activate capase-8 via induction of autophagy when caspase-9 is inhibited. When apoptosis is totally blocked, HF-ATS switches to induce autophagic cell death. This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.
Collapse
Affiliation(s)
- Rui-Hong Gong
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Ai-Ping Lyu
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Zhao-Xiang Bian
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
146
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
147
|
Kim IH, Eom T, Park JY, Kim HJ, Nam TJ. Dichloromethane fractions of Calystegia soldanella induce S‑phase arrest and apoptosis in HT‑29 human colorectal cancer cells. Mol Med Rep 2021; 25:60. [PMID: 34935054 PMCID: PMC8767546 DOI: 10.3892/mmr.2021.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Calystegia soldanella is a halophyte and a perennial herb that grows on coastal sand dunes worldwide. Extracts from this plant have been previously revealed to have a variety of bioactive properties in humans. However, their effects on colorectal cancer cells remain poorly understood. In the present study, the potential biological activity of C. soldanella extracts in the colorectal cancer cell line HT-29 was examined. First, five solvent fractions [n-hexane, dichloromethane (DCM), ethyl acetate, n-butanol and water] were obtained from the crude extracts of C. soldanella through an organic solvent extraction method. In particular, the DCM fraction was demonstrated to exert marked dose- and time-dependent inhibitory effects according to results from the cell viability assay. Data obtained from the apoptosis assay suggested that the inhibition of HT-29 cell viability induced by DCM treatment was attributed to increased apoptosis. The apoptotic rate was markedly increased in a dose-dependent manner, which was associated with the protein expression levels of apoptosis-related proteins, including increased Fas, Bad and Bax, and decreased pro-caspase-8, Bcl-2, Bcl-xL, pro-caspase-9, pro-caspase-7 and pro-caspase-3. A mitochondrial membrane potential assay demonstrated that more cells became depolarized and the extent of cytochrome c release was markedly increased in a dose-dependent manner in HT-29 cells treated with DCM. In addition, cell cycle analysis confirmed S-phase arrest following DCM fraction treatment, which was associated with decreased protein expression levels of cell cycle-related proteins, such as cyclin A, CDK2, cell division cycle 25 A and cyclin dependent kinase inhibitor 1. Based on these results, the present study suggested that the DCM fraction of the C. soldanella extract can inhibit HT-29 cell viability whilst inducing apoptosis through mitochondrial membrane potential regulation and S-phase arrest. These results also suggested that the DCM fraction has potential anticancer activity in HT-29 colorectal cells. Further research on the composition of the DCM fraction is warranted.
Collapse
Affiliation(s)
- In-Hye Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taekil Eom
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Joon-Young Park
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyung-Joo Kim
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Future Fisheries Food Research Center, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
148
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
149
|
Li G, Zhong Y, Wang W, Jia X, Zhu H, Jiang W, Song Y, Xu W, Wu S. Sempervirine Mediates Autophagy and Apoptosis via the Akt/mTOR Signaling Pathways in Glioma Cells. Front Pharmacol 2021; 12:770667. [PMID: 34916946 PMCID: PMC8670093 DOI: 10.3389/fphar.2021.770667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The potential antitumor effects of sempervirine (SPV), an alkaloid compound derived from the traditional Chinese medicine Gelsemium elegans Benth., on different malignant tumors were described in detail. The impact of SPV on glioma cells and the basic atomic components remain uncertain. This study aimed to investigate the activity of SPV in vitro and in vivo. The effect of SPV on the growth of human glioma cells was determined to explore three aspects, namely, cell cycle, cell apoptosis, and autophagy. In this study, glioma cells, U251 and U87 cells, and one animal model were used. Cells were treated with SPV (0, 1, 4, and 8 μM) for 48 h. The cell viability, cell cycle, apoptosis rate and autophagic flux were examined. Cell cycle, apoptotic, autophagy, and Akt/mTOR signal pathway-related proteins, such as CDK1, Cyclin B1, Beclin-1, p62, LC3, AKT, and mTOR were investigated by Western blot approach. As a result, cells induced by SPV led to G2/M phase arrest and apoptosis. SPV also promoted the effect of autophagic flux and accumulation of LC3B. SPV reduced the expression of p62 protein and induced the autophagic death of glioma cells. Furthermore, SPV downregulated the expressions of AKT and mTOR phosphorylated proteins in the mTOR signaling pathway, thereby affecting the onset of apoptosis and autophagy in U251 cells. In conclusion, SPV induced cellular G2/M phase arrest and blockade of the Akt/mTOR signaling pathway, thereby triggering apoptosis and cellular autophagy. The in vivo and in vitro studies confirmed that SPV inhibits the growth of glioma cancer.
Collapse
Affiliation(s)
- Gaopan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuhuan Zhong
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenyi Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaokang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenwen Jiang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Song
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuisheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research and Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
150
|
Anthocyanidins Inhibit Growth and Chemosensitize Triple-Negative Breast Cancer via the NF-κB Signaling Pathway. Cancers (Basel) 2021; 13:cancers13246248. [PMID: 34944868 PMCID: PMC8699375 DOI: 10.3390/cancers13246248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Breast cancer is the most common female cancer diagnosed in the U.S. and the second most common cause of cancer death in women. Chemotherapeutics used to treat breast cancer often have side effects, which are sometimes life-threatening. Moreover, the tumors can develop resistance over time, making breast cancer treatment challenging. In this paper, we show that the oral administration of colored pigments isolated from bilberry/blueberry, called anthocyanidins (Anthos), significantly decrease MDA-MB-231 orthoxenograft tumor volume, inhibit the growth and metastasis of breast cancer, sensitize drug-resistant tumor cells, and exhibit a lower rate of lymph node and lung metastasis, compared to control. Our results also suggest regulation of cell-cycle progression and inhibition of NF-κB activation as mechanisms underpinning the anti-proliferative activity of Anthos in breast cancer. These mechanistic insights are expected to be valuable for clinical translation of berry Anthos, either alone or as adjuvant to chemotherapy, for the treatment of breast cancer patients. Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Due to the lack of drug-targetable receptors, chemotherapy is the only systemic treatment option. Although chemotherapeutic drugs respond initially in TNBC, many patients relapse and have a poor prognosis. Poor survival after metastatic relapse is largely attributed to the development of resistance to chemotherapeutic drugs. In this study, we show that bilberry-derived anthocyanidins (Anthos) can inhibit the growth and metastasis of TNBC and chemosensitize paclitaxel (PAC)-resistant TNBC cells by modulating the NF-κB signaling pathway, as well as metastatic and angiogenic mediators. Anthos administered orally significantly decreased MDA-MB-231 orthoxenograft tumor volume and led to lower rates of lymph node and lung metastasis, compared to control. Treatment of PAC-resistant MDA-MB-231Tx cells with Anthos and PAC in combination lowered the IC50 of PAC by nearly 20-fold. The combination treatment also significantly (p < 0.01) decreased the tumor volume in MDA-MB-231Tx orthoxenografts, compared to control. In contrast, Anthos and PAC alone were ineffective against MDA-MB-231Tx tumors. Our approach of using Anthos to inhibit the growth and metastasis of breast cancers, as well as to chemosensitize PAC-resistant TNBC, provides a highly promising and effective strategy for the management of TNBC.
Collapse
|