101
|
The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014; 46 Pt 3:365-78. [PMID: 25195164 DOI: 10.1016/j.neubiorev.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
Deakin and Graeff proposed that forebrain 5-hydroxytryptamine (5-HT) projections are activated by aversive events and mediate anticipatory coping responses including avoidance learning and suppression of the fight-flight escape/panic response. Other theories proposed 5-HT mediates aspects of behavioural inhibition or reward. Most of the evidence comes from rodent studies. We review 36 experimental studies in humans in which the technique of acute tryptophan depletion (ATD) was used to explicitly address the role of 5-HT in response inhibition, punishment and reward. ATD did not cause disinhibition of responding in the absence of rewards or punishments (9 studies). A major role for 5-HT in reward processing is unlikely but further tests are warranted by some ATD findings. Remarkably, ATD lessened the ability of punishments (losing points or notional money) to restrain behaviour without affecting reward processing in 7 studies. Two of these studies strongly indicate that ATD blocks 5-HT mediated aversively conditioned Pavlovian inhibition and this can explain a number of the behavioural effects of ATD.
Collapse
|
102
|
Behan B, Stone A, Garavan H. Right prefrontal and ventral striatum interactions underlying impulsive choice and impulsive responding. Hum Brain Mapp 2014; 36:187-98. [PMID: 25158155 DOI: 10.1002/hbm.22621] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 08/04/2014] [Accepted: 08/15/2014] [Indexed: 11/08/2022] Open
Abstract
Although a multifaceted concept, many forms of impulsivity may originate from interactions between prefrontally-mediated cognitive control mechanisms and limbic, reward or incentive salience approach processes. We describe a novel task that combines reward and control processes to probe this putative interaction. The task involves elements of the monetary incentive delay task (Knutson et al., [2000]: Neuroimage 12:20-27) and the Go/No-Go task (Garavan et al., [1999]: Neuroimage 17:1820-1829) and requires human subjects to make fast responses to targets for financial reward but to occasionally inhibit responding when a NoGo signal rather than a target is presented. In elucidating the dynamic between reward anticipation and control we observed that successful inhibitions on monetary trials, relative to unsuccessful inhibitions, were associated, during the anticipation phase, with increased activation in the right inferior frontal gyrus (rIFG), decreased activity in the ventral striatum (VS), and altered functional connectivity between the two. Notably, this rIFG area had a small overlap but was largely distinct from an adjacent rIFG region that was active for the subsequent motor response inhibitions. Combined, the results suggest a role for adjacent regions of the rIFG in impulsive choice and in impulsive responding and identify a functional coupling between the rIFG and the VS.
Collapse
Affiliation(s)
- Brendan Behan
- Department of Psychology and Trinity College Institute of Neuroscience, School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
103
|
Stephens EK, Avesar D, Gulledge AT. Activity-dependent serotonergic excitation of callosal projection neurons in the mouse prefrontal cortex. Front Neural Circuits 2014; 8:97. [PMID: 25206322 PMCID: PMC4144257 DOI: 10.3389/fncir.2014.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022] Open
Abstract
Layer 5 pyramidal neurons (L5PNs) in the mouse prefrontal cortex respond to serotonin (5-HT) according to their long-distance axonal projections; 5-HT1A (1A) receptors mediate inhibitory responses in corticopontine (CPn) L5PNs, while 5-HT2A (2A) receptors can enhance action potential (AP) output in callosal/commissural (COM) L5PNs, either directly (in “COM-excited” neurons), or following brief 1A-mediated inhibition (in “COM-biphasic” neurons). Here we compare the impact of 5-HT on the excitability of CPn and COM L5PNs experiencing variable excitatory drive produced by current injection (DC current or simulated synaptic current) or with exogenous glutamate. 5-HT delivered at resting membrane potentials, or paired with subthreshold depolarizing input, hyperpolarized CPn and COM-biphasic L5PNs and failed to promote AP generation in COM-excited L5PNs. Conversely, when paired with suprathreshold excitatory drive generating multiple APs, 5-HT suppressed AP output in CPn L5PNs, enhanced AP generation in COM-excited L5PNs, and generated variable responses in COM-biphasic L5PNs. While COM-excited neurons failed to respond to 5-HT in the presence of a 2A receptor antagonist, 32% of CPn neurons exhibited 2A-dependent excitation following blockade of 1A receptors. The presence of pharmacologically revealed 2A receptors in CPn L5PNs was correlated with the duration of 1A-mediated inhibition, yet biphasic excitatory responses to 5-HT were never observed, even when 5-HT was paired with strong excitatory drive. Our results suggest that 2A receptors selectively amplify the output of COM L5PNs experiencing suprathreshold excitatory drive, while shaping the duration of 1A-mediated inhibition in a subset of CPn L5PNs. Activity-dependent serotonergic excitation of COM L5PNs, combined with 1A-mediated inhibition of CPn and COM-biphasic L5PNs, may facilitate executive function by focusing network activity within cortical circuits subserving the most appropriate behavioral output.
Collapse
Affiliation(s)
- Emily K Stephens
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| | - Daniel Avesar
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| | - Allan T Gulledge
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA ; Program in Experimental and Molecular Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
104
|
Aliczki M, Fodor A, Balogh Z, Haller J, Zelena D. The effects of lactation on impulsive behavior in vasopressin-deficient Brattleboro rats. Horm Behav 2014; 66:545-51. [PMID: 25117459 DOI: 10.1016/j.yhbeh.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/17/2022]
Abstract
Vasopressin (AVP)-deficient Brattleboro rats develop a specific behavioral profile, which-among other things-include altered cognitive performance. This profile is markedly affected by alterations in neuroendocrine state of the animal such as during lactation. Given the links between AVP and cognition we hypothesized that AVP deficiency may lead to changes in impulsivity that is under cognitive control and the changes might be altered by lactation. Comparing virgin and lactating AVP-deficient female Brattleboro rats to their respective controls, we assessed the putative lactation-dependent effects of AVP deficiency on impulsivity in the delay discounting paradigm. Furthermore, to investigate the basis of such effects, we assessed possible interactions of AVP deficiency with GABAergic and serotonergic signaling and stress axis activity, systems playing important roles in impulse control. Our results showed that impulsivity was unaltered by AVP deficiency in virgin rats. In contrast a lactation-induced increase in impulsivity was abolished by AVP deficiency in lactating females. We also found that chlordiazepoxide-induced facilitation of GABAergic and imipramine-induced enhancement of serotonergic activity in virgins led to increased and decreased impulsivity, respectively. In contrast, during lactation these effects were visible only in AVP-deficient rats. These rats also exhibited increased stress axis activity compared to virgin animals, an effect that was abolished by AVP deficiency. Taken together, AVP appears to play a role in the regulation of impulsivity exclusively during lactation: it has an impulsivity increasing effect which is potentially mediated via stress axis-dependent mechanisms and fine-tuning of GABAergic and serotonergic function.
Collapse
Affiliation(s)
- Mano Aliczki
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Anna Fodor
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zoltan Balogh
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jozsef Haller
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dora Zelena
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
105
|
Coppens CM, de Boer SF, Buwalda B, Koolhaas JM. Aggression and aspects of impulsivity in wild-type rats. Aggress Behav 2014; 40:300-8. [PMID: 24464354 DOI: 10.1002/ab.21527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 12/06/2013] [Indexed: 12/23/2022]
Abstract
Aggression is closely related to impulsive behavior both in humans and in animals. To avoid potential negative consequences, aggressive behavior is kept in control by strong inhibitory mechanisms. Failure of these inhibitory mechanisms results in violent behavior. In the present experiments, we investigated whether aggressive behavior is related to impulsive behavior. Furthermore, we investigated if violent behavior can be distinguished from "normal" aggressive behavior in terms of impulsivity levels. We used rats of the wild-type Groningen strain, rats of this strain differ widely in their level of offensive aggression expressed toward an unfamiliar intruder male, ranging from no aggression at all to very high levels of intense and sometimes violent behavior. Violent behavior was displayed by some of the animals that were given repeated winning experience. We used behavioral performance in an unpredictable operant conditioning paradigm for food reinforcement (variable interval 15) and performance in a differential-reinforcement of low rate (DRL-60s) responding as determinants for impulsivity. We predicted that offensive aggression is correlated with behavioral flexibility measured by the VI-15 procedure and that aggressive behavior is characterized by low behavioral inhibition on the DRL task. In addition we expected that violent animals would be characterized by extremely low levels of behavioral inhibition on the DRL task. We showed that the level of offensive aggression indeed positively correlated with VI-15 performance. In addition, we showed that behavioral performance on the DRL procedure is similar in low and high aggressive rats. However, violent animals can be dissociated by a lower efficiency of lever pressing on a DRL-60s schedule of reinforcement.
Collapse
Affiliation(s)
- Caroline M. Coppens
- Department of Behavioral Physiology; University of Groningen; Groningen The Netherlands
| | - Sietse F. de Boer
- Department of Behavioral Physiology; University of Groningen; Groningen The Netherlands
| | - Bauke Buwalda
- Department of Behavioral Physiology; University of Groningen; Groningen The Netherlands
| | - Jaap M. Koolhaas
- Department of Behavioral Physiology; University of Groningen; Groningen The Netherlands
| |
Collapse
|
106
|
Abstract
Impulsive behavior is a key constituent of many psychiatric illnesses, with maladaptive response control being a feature of disorders such as ADHD, schizophrenia, mania, and addiction. In order to understand the neurological underpinnings of impulsivity, a number of behavioral tasks have been developed for use with animal models. Data from studies with rats and other animals have led to the idea of the existence of dissociable components of impulsivity, which in turn informs studies of human disorders and potentially the development of specific therapies. Increasingly, mouse models are being used to investigate the known genetic contribution to psychiatric disorders in which abnormal response control leads to altered impulsive behaviors. In order to maximize the potential of these mouse models, it is important that researchers take into account the non-unitary nature of response control and impulsivity. In this article, we briefly review the tasks available to behavioral neuroscientists and how these can be used in order to tease apart the contribution of a specific genetic lesion into the discrete aspects of impulsive behavior.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom; School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
107
|
Ibias J, Pellón R. Different relations between schedule-induced polydipsia and impulsive behaviour in the Spontaneously Hypertensive Rat and in high impulsive Wistar rats: questioning the role of impulsivity in adjunctive behaviour. Behav Brain Res 2014; 271:184-94. [PMID: 24931797 DOI: 10.1016/j.bbr.2014.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
Rats belonging to three different strains (15 Wistar, 8 Spontaneously Hypertensive - SHR- and 8 Wistar Kyoto - WKY-) were used to evaluate the possible relationship between different levels of impulsivity and development of schedule-induced polydipsia (SIP). We first measured the rats' levels of impulsivity by means of delay-discounting and indifference-point procedures. Secondly, development of SIP was studied under a series of fixed time 15, 30, 60 and 120s food schedules, which were counterbalanced by means of a Latin-square design. Finally, we re-assessed the rats' levels of impulsivity by replicating the delay-discounting test. The findings showed that, starting from equivalent levels of impulsivity, development of SIP differed among the groups of rats. In comparison with the rest of the animals, the SHRs were observed to attain elevated drinking rates under SIP. On the other hand, the Wistar rats which had initial high impulsivity levels similar to those of the SHRs, displayed the lowest rates of induced drinking. Moreover, low levels of impulsivity in Wistar rats prior to SIP acquisition were reflected into high drinking rates. Relation of SIP and impulsivity is questioned by present results, which gives ground to the understanding of the behavioural mechanisms involved in adjunctive behaviour and its usefulness as an animal model of excessive behaviour.
Collapse
Affiliation(s)
- Javier Ibias
- Animal Behaviour Laboratories, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ricardo Pellón
- Animal Behaviour Laboratories, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
108
|
Morean ME, DeMartini KS, Leeman RF, Pearlson GD, Anticevic A, Krishnan-Sarin S, Krystal JH, O'Malley SS. Psychometrically improved, abbreviated versions of three classic measures of impulsivity and self-control. Psychol Assess 2014; 26:1003-20. [PMID: 24885848 DOI: 10.1037/pas0000003] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Self-reported impulsivity confers risk factor for substance abuse. However, the psychometric properties of many self-report impulsivity measures have been questioned, thereby undermining the interpretability of study findings using these measures. To better understand these measurement limitations and to suggest a path to assessing self-reported impulsivity with greater psychometric stability, we conducted a comprehensive psychometric evaluation of the Barratt Impulsiveness Scale-11 (BIS-11), the Behavioral Inhibition and Activation Scales (BIS/BAS), and the Brief Self-Control Scale (BSCS) using data from 1,449 individuals who participated in substance use research. For each measure, we evaluated (a) latent factor structure, (b) measurement invariance, (c) test-criterion relationships between the measures, and (d) test-criterion relations with drinking and smoking outcomes. Notably, we could not replicate the originally published latent structure for the BIS, BIS/BAS, or BSCS or any previously published alternative factor structure (English language). Using exploratory and confirmatory factor analysis, we identified psychometrically improved, abbreviated versions of each measure: 8-item, 2-factor BIS-11 (root-mean-square error of approximation [RMSEA] = .06, comparative fit index [CFI] = .95); 13-item, 4-factor BIS/BAS (RMSEA = .04, CFI = .96); and 7-item, 2-factor BSCS (RMSEA = .05, CFI = .96). These versions evidenced (a) stable, replicable factor structures, (b) scalar measurement invariance, ensuring our ability to make statistically interpretable comparisons across subgroups of interest (e.g., sex, race, drinking/smoking status), and (c) test-criterion relationships with each other and with drinking/smoking. This study provides strong support for using these psychometrically improved impulsivity measures, which improve data quality directly through better scale properties and indirectly through reducing response burden.
Collapse
Affiliation(s)
- Meghan E Morean
- Department of Psychiatry, Yale University School of Medicine
| | | | - Robert F Leeman
- Department of Psychiatry, Yale University School of Medicine
| | | | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine
| | | | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine
| | | |
Collapse
|
109
|
Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW. Serotonin depletion induces 'waiting impulsivity' on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 2014; 39:1519-26. [PMID: 24385133 PMCID: PMC3988556 DOI: 10.1038/npp.2013.351] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Convergent results from animal and human studies suggest that reducing serotonin neurotransmission promotes impulsive behavior. Here, serotonin depletion was induced by the dietary tryptophan depletion procedure (TD) in healthy volunteers to examine the role of serotonin in impulsive action and impulsive choice. We used a novel translational analog of a rodent 5-choice serial reaction time task (5-CSRTT)-- the human 4-CSRTT--and a reward delay-discounting questionnaire to measure effects on these different forms of 'waiting impulsivity'. There was no effect of TD on impulsive choice as indexed by the reward delay-discounting questionnaire. However, TD significantly increased 4-CSRTT premature responses (or impulsive action), which is remarkably similar to the previous findings of effect of serotonin depletion on rodent 5-CSRTT performance. Moreover, the increased premature responding in TD correlated significantly with individual differences on the motor impulsivity subscale of the Barratt Impulsivity Scale. TD also improved the accuracy of performance and speeded responding, possibly indicating enhanced attention and reward processing. The results suggest: (i) the 4-CSRTT will be a valuable addition to the tests already available to measure impulsivity in humans in a direct translational analog of a test extensively used in rodents; (ii) TD in humans produces a qualitatively similar profile of effects to those in rodents (ie, enhancing premature responding), hence supporting the conclusion that TD in humans exerts at least some of its effects on central serotonin; and (iii) this manipulation of serotonin produces dissociable effects on different measures of impulsivity, suggesting considerable specificity in its modulatory role.
Collapse
Affiliation(s)
- Yulia Worbe
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Emilio Fernandez-Egea
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
110
|
Stanis JJ, Andersen SL. Reducing substance use during adolescence: a translational framework for prevention. Psychopharmacology (Berl) 2014; 231:1437-53. [PMID: 24464527 PMCID: PMC3969413 DOI: 10.1007/s00213-013-3393-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/30/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Most substance use is initiated during adolescence when substantial development of relevant brain circuitry is still rapidly maturing. Developmental differences in reward processing, behavioral flexibility, and self-regulation lead to changes in resilience or vulnerability to drugs of abuse depending on exposure to risk factors. Intervention and prevention approaches to reducing addiction in teens may be able to capitalize on malleable brain systems in a predictable manner. OBJECTIVE This review will highlight what is known about how factors that increase vulnerability to addiction, including developmental stage, exposure to early life adversity (ranging from abuse, neglect, and bullying), drug exposure, and genetic predisposition, impact the development of relevant systems. RESULTS AND CONCLUSIONS Appropriate, early intervention may restore the normal course of an abnormal trajectory and reduce the likelihood of developing a substance use disorder (SUD) later in life. A considerable amount is known about the functional neuroanatomy and/or pharmacology of risky behaviors based on clinical and preclinical studies, but relatively little has been directly translated to reduce their impact on addiction in high-risk children or teenagers. An opportunity exists to effectively intervene before adolescence when substance use is likely to emerge.
Collapse
Affiliation(s)
- Jessica J Stanis
- Laboratory of Developmental Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
111
|
Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 2014; 1327:1-26. [PMID: 24654857 DOI: 10.1111/nyas.12388] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two, and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly support the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative--either biologically or with respect to their relationships to addictions--is convincing, multiple lines of study link distinct subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity.
Collapse
Affiliation(s)
- J David Jentsch
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
112
|
Prenatal iron deficiency and monoamine oxidase A (MAOA) polymorphisms: combined risk for later cognitive performance in rhesus monkeys. GENES AND NUTRITION 2014; 9:381. [PMID: 24402517 DOI: 10.1007/s12263-013-0381-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Monoamine oxidase A (MAOA) gene polymorphisms resulting in high and low transcription rates are associated with individual differences in reward efficacy and response inhibition. Iron deficiency (ID) is the most frequent single-nutrient deficiency worldwide, and prenatal ID has recently been shown to carry a risk for lower mental development scores in infants. In this study, a potential interaction of MAOA genotype and prenatal ID was studied in young male rhesus monkeys. Cognitive tasks, including problem solving, responsiveness to reward and attention, were used to characterize the potential interaction of these two fetal risks. ID was induced by feeding rhesus monkey dams an iron-deficient (10 ppm, ID) or an iron-sufficient (100 ppm, IS) diet during gestation (n = 10/group). Subgroups of the ID and IS diet offspring had low-MAOA or high-MAOA transcription rate polymorphisms. ID combined with low-MAOA genotype showed distinctive effects on reward preference and problem solving while ID in hi-MAOA juveniles modified response inhibition. Given the incidence of ID and MAOA polymorphisms in humans, this interaction could be a significant determinant of cognitive performance.
Collapse
|
113
|
Heilbronner SR, Meck WH. Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes 2014; 101:123-34. [PMID: 24135569 PMCID: PMC4081038 DOI: 10.1016/j.beproc.2013.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 12/26/2022]
Abstract
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
114
|
Cunningham KA, Anastasio NC. Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 2014; 76 Pt B:460-78. [PMID: 23850573 PMCID: PMC4090081 DOI: 10.1016/j.neuropharm.2013.06.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/07/2023]
Abstract
Cocaine abuse and addiction remain great challenges on the public health agendas in the U.S. and the world. Increasingly sophisticated perspectives on addiction to cocaine and other drugs of abuse have evolved with concerted research efforts over the last 30 years. Relapse remains a particularly powerful clinical problem as, even upon termination of drug use and initiation of abstinence, the recidivism rates can be very high. The cycling course of cocaine intake, abstinence and relapse is tied to a multitude of behavioral and cognitive processes including impulsivity (a predisposition toward rapid unplanned reactions to stimuli without regard to the negative consequences), and cocaine cue reactivity (responsivity to cocaine-associated stimuli) cited as two key phenotypes that contribute to relapse vulnerability even years into recovery. Preclinical studies suggest that serotonin (5-hydroxytryptamine; 5-HT) neurotransmission in key neural circuits may contribute to these interlocked phenotypes well as the altered neurobiological states evoked by cocaine that precipitate relapse events. As such, 5-HT is an important target in the quest to understand the neurobiology of relapse-predictive phenotypes, to successfully treat this complex disorder and improve diagnostic and prognostic capabilities. This review emphasizes the role of 5-HT and its receptor proteins in key addiction phenotypes and the implications of current findings to the future of therapeutics in addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Kathryn A Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
115
|
López-Granero C, Cardona D, Giménez E, Lozano R, Barril J, Aschner M, Sánchez-Santed F, Cañadas F. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: Relationship to AChE mRNA expression. Neurotoxicology 2014; 40:57-64. [DOI: 10.1016/j.neuro.2013.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022]
|
116
|
Faulkner P, Selvaraj S, Pine A, Howes OD, Roiser JP. The relationship between reward and punishment processing and the 5-HT1A receptor as shown by PET. Psychopharmacology (Berl) 2014; 231:2579-86. [PMID: 24429872 PMCID: PMC4057624 DOI: 10.1007/s00213-013-3426-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/20/2013] [Indexed: 11/24/2022]
Abstract
RATIONALE The serotonin (5-HT) system has been reported to be involved in decision-making. A key component of this neurotransmitter system is the 5-HT1A receptor, and research is beginning to show how this receptor can influence decision-making. However, this relationship has rarely been studied in humans. OBJECTIVES This study assessed whether individual variability in 5-HT1A availability correlates with decision-making in healthy volunteers. METHODS We measured regional availability of the 5-HT1A receptor in the hippocampal complex and striatum using positron emission tomography and correlated this with performance on two decision-making tasks measuring sensitivity to probability, rewards and punishments and temporal discounting, respectively. RESULTS No relationship between decision-making behaviour and 5-HT1A availability in the striatum was found. However, a positive correlation was detected between participants' 5-HT1A availability in the hippocampal complex and their sensitivity to the probability of winning. Furthermore, there was a negative correlation between the degree to which participants discounted future rewards and 5-HT1A availability in the hippocampal complex. CONCLUSIONS These data support a role for the 5-HT1A receptor in the aberrant decision-making that can occur in neuropsychiatric disorders such as depression.
Collapse
Affiliation(s)
- Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK,
| | | | | | | | | |
Collapse
|
117
|
Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Neuropsychopharmacology 2014; 39:370-82. [PMID: 23939424 PMCID: PMC3970795 DOI: 10.1038/npp.2013.199] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 11/08/2022]
Abstract
Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors.
Collapse
|
118
|
Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 2013; 37:2149-65. [PMID: 23994273 PMCID: PMC3849135 DOI: 10.1016/j.neubiorev.2013.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits.
Collapse
Affiliation(s)
- Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, M/C0603, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | | | |
Collapse
|
119
|
Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SRO, Alsiö J, Oomen CA, Holmes A, Saksida LM, Bussey TJ. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 2013; 8:1961-84. [PMID: 24051959 PMCID: PMC3914026 DOI: 10.1038/nprot.2013.122] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.
Collapse
|
120
|
Halcomb ME, Gould TD, Grahame NJ. Lithium, but not valproate, reduces impulsive choice in the delay-discounting task in mice. Neuropsychopharmacology 2013; 38:1937-44. [PMID: 23584261 PMCID: PMC3746699 DOI: 10.1038/npp.2013.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
Both lithium and valproate are well-established treatments for bipolar disorder. Studies have also found that lithium is effective at reducing suicidal behaviors in patients with mood disorders. Impulsivity is a validated endophenotype of both bipolar disorder and suicidal behavior. We assessed effects of treatment with lithium or valproate on cognitive impulsivity in selectively bred mice previously shown to manifest relatively high levels of cognitive impulsivity. Mice were trained in the delay-discounting paradigm, a measure of cognitive impulsivity reflecting a behavioral bias towards immediacy, and then treated with lithium, valproate, or control chow. After 3 weeks of drug treatment, mice were tested at various delays to a large, delayed reward. Drug treatment continued during this time. Lithium reduced impulsivity, whereas valproate had no effect on choice behavior. Both drugs increased the number of choice trials and reinforcer intake, but effects on choice behavior did not depend on these motivational changes. To our knowledge, this is the first study demonstrating lithium's effects to reduce cognitive impulsivity. Future studies may focus on the ability of putative pharmacotherapies for patients at risk for bipolar disorder or suicide to modify the impulsive choice dimension of this diseases.
Collapse
Affiliation(s)
- Meredith E Halcomb
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas J Grahame
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN, USA,Department of Psychology, Indiana University Purdue University, 402 N. Blackford St, LD120F, Indianapolis, IN 46205, USA, Tel: +1 317 274 0194, Fax: +1 317 274 6756, E-mail:
| |
Collapse
|
121
|
Yildirim BO, Derksen JJ. Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neurosci Biobehav Rev 2013; 37:1254-96. [DOI: 10.1016/j.neubiorev.2013.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/09/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022]
|
122
|
Systemic administration of 8-OH-DPAT and eticlopride, but not SCH23390, alters loss-chasing behavior in the rat. Neuropsychopharmacology 2013; 38:1094-104. [PMID: 23303072 PMCID: PMC3629409 DOI: 10.1038/npp.2013.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gambling to recover losses is a common gaming behavior. In a clinical context, however, this phenomenon mediates the relationship between diminished control over gambling and the adverse socioeconomic consequences of gambling problems. Modeling loss-chasing through analogous behaviors in rats could facilitate its pharmacological investigation as a potential therapeutic target. Here, rats were trained to make operant responses that produced both food rewards, and unpredictably, imminent time-out periods in which rewards would be unavailable. At these decision points, rats were offered choices between waiting for these time-out periods to elapse before resuming responding for rewards ('quit' responses), or selecting risky options with a 0.5 probability of avoiding the time-outs altogether and a 0.5 probability of time-out periods twice as long as signaled originally ('chase' responses). Chasing behavior, and the latencies to chase or quit, during sequences of unfavorable outcomes were tested following systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT, the D2 receptor antagonist, eticlopride, and the D1 receptor antagonist, SCH23390. 8-OH-DPAT and eticlopride significantly reduced the proportion of chase responses, and the mean number of consecutive chase responses, in a dose-dependent manner. 8-OH-DPAT also increased latencies to chase. Increasing doses of eticlopride first speeded, then slowed, latencies to quit while SCH23390 had no significant effects on any measure. Research is needed to identify the precise cognitive mechanisms mediating these kinds of risky choices in rats. However, our data provide the first experimental demonstration that 5-HT1A and D2, but not D1, receptor activity influence a behavioral analog of loss-chasing in rats.
Collapse
|
123
|
Abstract
RATIONALE Depletion of brain serotonin (5-HT) results in impulsive behaviour as measured by increased premature responding in the five-choice serial reaction time (5-CSRT) test. Acute selective blockade of 5-HT2C receptors also increases this form of impulsive action, whereas 5-HT2C receptor stimulation reduces premature responding. OBJECTIVES These experiments determined the impact of genetic disruption of 5-HT2C receptor function on impulsive responding in the 5-CSRT test. METHODS Food-restricted 5-HT2C receptor null mutant and wild-type (WT) mice were trained on the 5-CSRT test in which subjects detect and correctly respond to brief light stimuli for food reinforcement. Impulsivity is measured as premature responses that occur prior to stimulus presentation. RESULTS Both lines of mice quickly learned this task, but there were no genotype differences in premature responding or any other aspect of performance. A series of drug challenges were then given. The 5-HT2C receptor agonist Ro60-0175 (0.6 mg/kg) reduced premature responding in WT mice but not mutant mice. The 5-HT2C receptor antagonist SB242084 increased premature responding in WT mice only. Cocaine increased premature responding at 7.5 mg/kg but not at a higher dose that disrupted overall responding; these effects were observed in both lines of mice. Amphetamine (0.25 and 0.5 mg/kg) did not affect premature responding, but disrupted other aspects of performance in both genotypes. CONCLUSIONS Genetic deletion of 5-HT2C receptor function does not induce an impulsive state or exacerbate that state induced by psychomotor stimulants but does prevent the acute effects of 5-HT2C receptor stimulation or blockade on impulsive action.
Collapse
|
124
|
Costa A, la Fougère C, Pogarell O, Möller HJ, Riedel M, Ettinger U. Impulsivity is related to striatal dopamine transporter availability in healthy males. Psychiatry Res 2013; 211:251-6. [PMID: 23158972 DOI: 10.1016/j.pscychresns.2012.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/28/2023]
Abstract
Impulsivity characterises various psychiatric disorders, particularly attention-deficit/hyperactivity disorder (ADHD). Evidence shows that ADHD symptoms are associated with dopamine dysfunction and alleviated with methylphenidate, a drug that reduces dopamine transporter availability. ADHD-like symptoms and impulsive traits are continuously distributed across the general population. Here, we aimed to investigate the dopaminergic basis of impulsivity and other ADHD-related traits in healthy individuals by studying the association of these traits with striatal dopamine transporter availability. Single-photon emission computed tomography with [(123)I] FP-CIT was performed on 38 healthy males. Impulsivity was measured using the Barratt Impulsiveness Scale (BIS) and hyperactivity-impulsivity and inattention using the Adult ADHD Self-Report Scale (ASRS). We found that greater dopamine transporter availability was associated with higher BIS impulsivity but not with ADHD-related traits. The association with BIS was significant after accounting for individual differences in age and neuroticism. These results suggest that individual differences in the dopamine system may be a neural correlate of trait impulsivity in healthy individuals.
Collapse
Affiliation(s)
- Anna Costa
- Department of Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | |
Collapse
|
125
|
López-Granero C, Cardona D, Giménez E, Lozano R, Barril J, Sánchez-Santed F, Cañadas F. Chronic dietary exposure to chlorpyrifos causes behavioral impairments, low activity of brain membrane-bound acetylcholinesterase, and increased brain acetylcholinesterase-R mRNA. Toxicology 2013; 308:41-9. [PMID: 23545134 DOI: 10.1016/j.tox.2013.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 01/20/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) insecticide that is metabolically activated to the highly toxic chlorpyrifos oxon. Dietary exposure is the main route of intoxication for non-occupational exposures. However, only limited behavioral effects of chronic dietary exposure have been investigated. Therefore, male Wistar rats were fed a dose of 5mg/kg/day of CPF for thirty-one weeks. Animals were evaluated in spatial learning and impulsivity tasks after 21 weeks of CPF dietary exposure and one week after exposure ended, respectively. In addition, the degree of inhibition of brain acetylcholinesterase (AChE) was evaluated for both the soluble and particulate forms of the enzyme, as well as AChE gene expression. Also, brain acylpeptide hydrolase (APH) was investigated as an alternative target for OP-mediated effects. All variables were evaluated at various time points in response to CPF diet and after exposure ended. Results from behavioral procedures suggest cognitive and emotional disorders. Moreover, low levels of activity representing membrane-bound oligomeric forms (tetramers) were also observed. In addition, increased brain AChE-R mRNA levels were detected after four weeks of CPF dietary exposure. However, no changes in levels of brain APH were observed among groups. In conclusion, our data point to a relationship between cognitive impairments and changes in AChE forms, specifically to a high inhibition of the particulate form and a modification of alternative splicing of mRNA during CPF dietary exposure.
Collapse
Affiliation(s)
- Caridad López-Granero
- Departamento de Psicología, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, La Cañada, 04120, Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
126
|
Peptide inhibitors disrupt the serotonin 5-HT2C receptor interaction with phosphatase and tensin homolog to allosterically modulate cellular signaling and behavior. J Neurosci 2013; 33:1615-30. [PMID: 23345234 DOI: 10.1523/jneurosci.2656-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT(2C) receptor (5-HT(2C)R) is essential in normal physiology, whereas aberrant 5-HT(2C)R function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT(2C)R interacts with specific protein partners, but the impact of such interactions on 5-HT(2C)R function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT(2C)R and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT(2C)R-mediated biology but not that of the closely homologous 5-HT(2A)R. A peptide derived from the third intracellular loop of the human 5-HT(2C)R [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT(2C)R-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT(2C)R signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT(2C)R allostery and therapeutics for 5-HT(2C)R-mediated disorders.
Collapse
|
127
|
Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B. Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 2013; 37:1779-88. [PMID: 23510331 DOI: 10.1111/ejn.12191] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 12/31/2022]
Abstract
Variation in dopamine receptor levels has been associated with different facets of impulsivity. To further delineate the neural substrates underlying impulsive action (inability to withhold a prepotent motor response) and impulsive choice (delay aversion), we characterised rats in the Differential Reinforcement of Low Rates of Responding task and a delay discounting task. We also measured performance on an effort-based discounting task. We then assessed D1 and D2 dopamine receptor mRNA expression in subregions of the prefrontal cortex and nucleus accumbens using in situ hybridisation, and compared these data with behavioral performance. Expression of D1 and D2 receptor mRNA in distinct brain regions was predictive of impulsive action. A dissociation within the nucleus accumbens was observed between subregions and receptor subtypes; higher D1 mRNA expression in the shell predicted greater impulsive action, whereas lower D2 mRNA expression in the core predicted greater impulsive action. We also observed a negative correlation between impulsive action and D2 mRNA expression in the prelimbic cortex. Interestingly, a similar relationship was present between impulsive choice and prelimbic cortex D2 mRNA, despite the fact that behavioral indices of impulsive action and impulsive choice were uncorrelated. Finally, we found that both high D1 mRNA expression in the insular cortex and low D2 mRNA expression in the infralimbic cortex were associated with willingness to exert effort for rewards. Notably, dopamine receptor mRNA in these regions was not associated with either facet of impulsivity. The data presented here provide novel molecular and neuroanatomical distinctions between different forms of impulsivity, as well as effort-based decision-making.
Collapse
Affiliation(s)
- Nicholas W Simon
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Linley SB, Hoover WB, Vertes RP. Pattern of distribution of serotonergic fibers to the orbitomedial and insular cortex in the rat. J Chem Neuroanat 2013; 48-49:29-45. [PMID: 23337940 DOI: 10.1016/j.jchemneu.2012.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/23/2023]
Abstract
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the brain, including the cerebral cortex. Although some early reports described the 5-HT innervation of the prefrontal cortex (PFC) in rats, the focus was on sensorimotor regions and not on the 'limbic' PFC - or on the medial, orbital and insular cortices. In addition, no reports have described the distribution of 5-HT fibers to PFC in rats using antisera to the serotonin transporter (SERT). Using immunostaining for SERT, we examined the pattern of distribution of 5-HT fibers to the medial, orbital and insular cortices in the rat. We show that 5-HT fibers distribute massively throughout all divisions of the PFC, with distinct laminar variations. Specifically, 5-HT fibers were densely concentrated in superficial (layer 1) and deep (layers 5/6) of the PFC but less heavily so in intermediate layers (layers 2/3). This pattern was most pronounced in the orbital cortex, particularly in the ventral and ventrolateral orbital cortices. With the emergence of granular divisions of the insular cortex, the granular cell layer (layer 4) was readily identifiable by a dense band of labeling confined to it, separating layer 4 from less heavily labeled superficial and deep layers. The pattern of 5-HT innervation of medial, orbital and insular cortices significantly differed from that of sensorimotor regions of the PFC. Serotonergic labeling was much denser overall in limbic compared to non-limbic regions of the PFC, as was striking demonstrated by the generally weaker labeling in layers 1-3 of the primary sensory and motor cortices. The massive serotonergic innervation of the medial, orbital and insular divisions of the PFC likely contributes substantially to well established serotonergic effects on affective and cognitive functions, including a key role in many neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Stephanie B Linley
- Department of Psychology, Florida Atlantic University, Boca Raton, FL 33431, United States
| | | | | |
Collapse
|
129
|
Zeeb FD, Wong AC, Winstanley CA. Differential effects of environmental enrichment, social-housing, and isolation-rearing on a rat gambling task: dissociations between impulsive action and risky decision-making. Psychopharmacology (Berl) 2013; 225:381-95. [PMID: 22864967 DOI: 10.1007/s00213-012-2822-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/19/2012] [Indexed: 01/22/2023]
Abstract
RATIONALE Decision-making deficits, measured using the Iowa Gambling Task (IGT), are observed in many psychiatric populations. Additionally, evidence suggests that the environment also influences the development of these same disorders. OBJECTIVE To determine the direct influence of the environment on decision-making by utilizing the rat gambling task (rGT), a risky decision-making test modeled after the IGT. METHODS Male rats reared in isolation, in pairs, or in an enriched environment were trained on the rGT as adults. During the rGT, animals chose from four different options. The optimal strategy on the rGT and IGT is the same: to favor options associated with smaller immediate rewards and less punishment/loss. Impulsive action is also measured during rGT performance by recording the number of premature responses made, similar to the five-choice serial reaction time task. RESULTS Compared to pair-housed rats, isolated and environmentally enriched rats were slower at learning the optimal strategy. However, following training, only isolation-reared rats chose the disadvantageous options more often. Amphetamine altered decision-making on the rGT in socially housed animals, yet isolates were unaffected. Conversely, amphetamine increased premature responding similarly in all groups. This increase was attenuated by prior administration of a dopamine D(1) or D(2) antagonist; however, the ability of amphetamine to alter decision-making was not blocked by either drug. CONCLUSIONS Housing environment affects animals' ability to learn and perform a decision-making task. Additionally, amphetamine's effect on impulsive action appears to be mediated by the dopaminergic system, whereas its effect on risky decision-making may be mediated by other neurotransmitters.
Collapse
Affiliation(s)
- Fiona D Zeeb
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
130
|
Fikke LT, Melinder A, Landrø NI. The effects of acute tryptophan depletion on impulsivity and mood in adolescents engaging in non-suicidal self-injury. Hum Psychopharmacol 2013; 28:61-71. [PMID: 23359467 DOI: 10.1002/hup.2283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 11/14/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Non-suicidal self-injury (NSSI) is associated with impaired emotion regulation and impulsivity. Low serotonin (5-hydroxytryptamine) function is associated with NSSI, impaired emotion regulation and impulsivity. We investigated the effects of experimentally lowered 5-hydroxytryptamine activity, via acute tryptophan depletion (ATD), on impulsive action, reflection impulsivity and mood in female adolescents engaging in NSSI. METHODS Thirty-two female adolescents engaging in NSSI participated in a parallel group ATD study. Following ATD, impulsive action was assessed using the Continuous Performance Test, Identical Pairs Version. Reflection impulsivity was assessed using the Matching Familiar Figures Test. Mood-lowering was examined using the Profile of Mood States. RESULTS Following ATD, the participants showed an impulsive response style (as reflected in their low β) and increased attentional capacity (as reflected in their elevated d'). ATD did not affect reflection impulsivity or mood. CONCLUSIONS Acute tryptophan depletion caused an impulsive response style and increased attentional capacity. Importantly, the findings suggest that low serotonin function is a vulnerability among female adolescents for engaging in NSSI when in emotional distress.
Collapse
Affiliation(s)
- Linn T Fikke
- The Cognitive Developmental Research Unit, EKUP, Department of Psychology, University of Oslo, Norway.
| | | | | |
Collapse
|
131
|
Stein JS, Pinkston JW, Brewer AT, Francisco MT, Madden GJ. Delay discounting in Lewis and Fischer 344 rats: steady-state and rapid-determination adjusting-amount procedures. J Exp Anal Behav 2012; 97:305-21. [PMID: 22693360 DOI: 10.1901/jeab.2012.97-305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 02/28/2012] [Indexed: 02/04/2023]
Abstract
Lewis rats have been shown to make more impulsive choices than Fischer 344 rats in discrete-trial choice procedures that arrange fixed (i.e., nontitrating) reinforcement parameters. However, nontitrating procedures yield only gross estimates of preference, as choice measures in animal subjects are rarely graded at the level of the individual subject. The present study was designed to examine potential strain differences in delay discounting using an adjusting-amount procedure, in which distributed (rather than exclusive) choice is observed due to dynamic titration of reinforcer magnitude across trials. Using a steady-state version of the adjusting-amount procedure in which delay was manipulated between experimental conditions, steeper delay discounting was observed in Lewis rats compared to Fischer 344 rats; further, delay discounting in both strains was well described by the traditional hyperbolic discounting model. However, upon partial completion of the present study, a study published elsewhere (Wilhelm & Mitchell, 2009) demonstrated no difference in delay discounting between these strains with the use of a more rapid version of the adjusting-amount procedure (i.e., in which delay is manipulated daily). Thus, following completion of the steady-state assessment in the present study, all surviving Lewis and Fischer 344 rats completed an approximation of this rapid-determination procedure in which no strain difference in delay discounting was observed.
Collapse
|
132
|
Torta DME, Vizzari V, Castelli L, Zibetti M, Lanotte M, Lopiano L, Geminiani G. Impulsivities and Parkinson's disease: delay aversion is not worsened by Deep Brain Stimulation of the subthalamic nucleus. PLoS One 2012; 7:e43261. [PMID: 22984415 PMCID: PMC3439437 DOI: 10.1371/journal.pone.0043261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/18/2012] [Indexed: 12/13/2022] Open
Abstract
Deep Brain Stimulation (DBS) of the Subthalamic Nucleus (STN) improves motor symptoms in Parkinson's disease (PD), but can exert detrimental effects on impulsivity. These effects are especially related to the inability to slow down when high-conflict choices have to be made. However, the influence that DBS has on delay aversion is still under-investigated. Here, we tested a group of 21 PD patients on and off stimulation (off medication) by using the Cambridge Gamble Task (CGT), a computerized task that allows the investigation of risk-related behaviours and delay aversion, and psychological questionnaires such as the Barratt Impulsiveness Scale (BIS), the Sensitivity to Punishment and to Reward Questionnaire (SPSRQ), and the Quick Delay Questionnaire (QDQ). We found that delay aversion scores on the CGT were no higher when patients were on stimulation as compared to when they were off stimulation. In contrast, PD patients reported feeling more impulsive in the off stimulation state, as revealed by significantly higher scores on the BIS. Higher scores on the sensitivity to punishment subscale of the SPSRQ highlighted that possible punishments influence patients' behaviours more than possible rewards. Significant correlations between delay aversion scores on the CGT and QDQ delay aversion subscale suggest that these two instruments can be used in synergy to reach a convergent validity. In conclusion, our results show that not all impulsivities are detrimentally affected by DBS of the STN and that the joint use of experimental paradigms and psychological questionnaires can provide useful insights in the study of impulsivity.
Collapse
Affiliation(s)
- Diana M E Torta
- Department of Psychology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
133
|
Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Grando J, Brocardo PS, Bettio LEB, Capra JC, Rodrigues ALS. Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav 2012; 103:220-9. [PMID: 22960127 DOI: 10.1016/j.pbb.2012.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/25/2022]
Abstract
The olfactory bulbectomy (OB) is an animal model of depression that results in behavioral, neurochemical and neuroendocrinological changes, features comparable to those seen in depressive patients. This study investigated OB-induced alterations in locomotor activity and exploratory behavior in the open-field test, self-care and motivational behavior in the splash test, hyperactivity in the novel object test and novel cage test, and the influence of chronic treatment with fluoxetine (10mg/kg, p.o., once daily for 14days) on these parameters. Fluoxetine reversed OB-induced hyperactivity in the open-field test, locomotor hyperactivity and the increase in exploratory behavior induced by novelty in the novel object and novel cage tests, and the loss of self-care and motivational behavior in the splash test. Moreover, OB decreased the number of grooming and fecal boli in the open-field and novel cage tests, alterations that were not reversed by fluoxetine. OB caused an increase in hippocampal, but not in prefrontal acetylcholinesterase (AChE) activity. Fluoxetine was able to reverse the increase in hippocampal AChE activity induced by OB. Serum corticosterone was increased in SHAM and bulbectomized mice treated with fluoxetine. In conclusion, OB mice exhibited depressive-like behaviors associated with an increase in hippocampal AChE activity, effects that were reversed by chronic treatment with fluoxetine.
Collapse
Affiliation(s)
- Daniele G Machado
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário-Trindade - 88040-900, Florianópolis-SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Doremus-Fitzwater TL, Barreto M, Spear LP. Age-related differences in impulsivity among adolescent and adult Sprague-Dawley rats. Behav Neurosci 2012; 126:735-41. [PMID: 22889309 DOI: 10.1037/a0029697] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adolescence is an ontogenetic period characterized by numerous hormonal, neural, and behavioral changes. In animal models, adolescents exhibit greater levels of novelty-seeking behavior and risk-taking relative to adults, behaviors associated in humans with increases in impulsivity and elevated propensities to engage in drug and alcohol seeking behaviors. The current series of experiments sought to explore possible age-related differences in impulsivity when indexed using delay discounting in adolescent (postnatal day [P] 25-27) and adult (P68-71) female (Experiment 1) and male (Experiment 2) Sprague-Dawley rats. In both experiments, adolescents exhibited significantly greater levels of impulsive-like behavior in this test relative to adults-even when data were adjusted to account for baseline differences in activity levels (i.e., general nose-poking behavior) across age. Taken together, these results extend to both sexes previous findings of adolescent-associated elevations in impulsivity observed among male mice using delay discounting, as well as among male rats using other procedures to index impulsivity. That these age differences were observed among both male and female rats suggests that impulsivity may be a pervasive feature of adolescence, and contributes to the expression of risky behaviors during this ontogenetic period.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | |
Collapse
|
135
|
Parker MO, Gaviria J, Haigh A, Millington ME, Brown VJ, Combe FJ, Brennan CH. Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behav Brain Res 2012; 232:264-8. [PMID: 22561034 PMCID: PMC4167590 DOI: 10.1016/j.bbr.2012.04.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 11/25/2022]
Abstract
The potential of zebrafish as a comparative model in behavioural neuroscience is currently hampered only by the lack of reliable and validated behavioural assays available to researchers. In the present experiment, we describe the performance of zebrafish in a test of attentional set formation. The fish were initially trained on a two-choice colour discrimination. Upon reaching acquisition criterion, the reinforced alternative was switched to the previously unreinforced alternative. Again, upon reaching criterion, the cues were replaced with a novel pair of colours (intra-dimensional shift) and reversed again on reaching criteria. We found that zebrafish show a steady decrease in trials-to-criteria over the four phases of the experiment, suggesting that they are forming and maintaining an attentional set, as has previously been demonstrated with mammals. Reversal learning deficits have been implicated in a variety of human psychological disorders (e.g., disorders of impulse control) and as such, we propose that performance of zebrafish in this procedure may represent a useful comparative model to complement existing rodent models.
Collapse
Affiliation(s)
- Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Jessica Gaviria
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Alastair Haigh
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Mollie E. Millington
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Verity J. Brown
- School of Psychology, University of St Andrews, Fife, Scotland, UK
| | - Fraser J. Combe
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
136
|
Demoto Y, Okada G, Okamoto Y, Kunisato Y, Aoyama S, Onoda K, Munakata A, Nomura M, Tanaka SC, Schweighofer N, Doya K, Yamawaki S. Neural and personality correlates of individual differences related to the effects of acute tryptophan depletion on future reward evaluation. Neuropsychobiology 2012; 65:55-64. [PMID: 22222380 DOI: 10.1159/000328990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS In general, humans tend to discount the value of delayed reward. An increase in the rate of discounting leads to an inability to select a delayed reward over a smaller immediate reward (reward-delay impulsivity). Although deficits in the serotonergic system are implicated in this reward-delay impulsivity, there is individual variation in response to serotonin depletion. The aim of the present study was to investigate whether the effects of serotonin depletion on the ability to evaluate future reward are affected by individual personality traits or brain activation. METHODS Personality traits were assessed using the NEO-Five Factor Inventory and Temperament and Character Inventory. The central serotonergic levels of 16 healthy volunteers were manipulated by dietary tryptophan depletion. Subjects performed a delayed reward choice task that required the continuous estimation of reward value during functional magnetic resonance imaging scanning. RESULTS Discounting rates were increased in 9 participants, but were unchanged or decreased in 7 participants in response to tryptophan depletion. Participants whose discounting rate was increased by tryptophan depletion had significantly higher neuroticism and lower self-directedness. Furthermore, tryptophan depletion differentially affected the groups in terms of hemodynamic responses to the value of predicted future reward in the right insula. CONCLUSIONS These results suggest that individuals who have high neuroticism and low self-directedness as personality traits are particularly vulnerable to the effect of low serotonin on future reward evaluation accompanied by altered brain activation patterns.
Collapse
Affiliation(s)
- Yoshihiko Demoto
- Division of Frontier Medical Science, Department of Psychiatry and Neurosciences, Graduate School of Biomedical Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, Weierink L, Ham J, de Geus EJC, Schoffelmeer ANM, van den Brink W, Veltman DJ, de Vries TJ, Pattij T, Goudriaan AE. The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One 2012; 7:e36781. [PMID: 22574225 PMCID: PMC3344935 DOI: 10.1371/journal.pone.0036781] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology.
Collapse
Affiliation(s)
- Nienke Broos
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lianne Schmaal
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Wiskerke
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lennard Kostelijk
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Lam
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicky Stoop
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lonneke Weierink
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jannemieke Ham
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Anton N. M. Schoffelmeer
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Taco J. de Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Anna E. Goudriaan
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
138
|
Dalley JW, Roiser JP. Dopamine, serotonin and impulsivity. Neuroscience 2012; 215:42-58. [PMID: 22542672 DOI: 10.1016/j.neuroscience.2012.03.065] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 12/17/2022]
Abstract
Impulsive people have a strong urge to act without thinking. It is sometimes regarded as a positive trait but rash impulsiveness is also widely present in clinical disorders such as attention deficit hyperactivity disorder (ADHD), drug dependence, mania, and antisocial behaviour. Contemporary research has begun to make major inroads into unravelling the brain mechanisms underlying impulsive behaviour with a prominent focus on the limbic cortico-striatal systems. With this progress has come the understanding that impulsivity is a multi-faceted behavioural trait involving neurally and psychologically diverse elements. We discuss the significance of this heterogeneity for clinical disorders expressing impulsive behaviour and the pivotal contribution made by the brain dopamine and serotonin systems in the aetiology and treatment of behavioural syndromes expressing impulsive symptoms.
Collapse
Affiliation(s)
- J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK. jwd20@cam. ac. uk
| | | |
Collapse
|
139
|
Leeman RF, Patock-Peckham JA, Potenza MN. Impaired control over alcohol use: An under-addressed risk factor for problem drinking in young adults? Exp Clin Psychopharmacol 2012; 20:92-106. [PMID: 22182417 PMCID: PMC3613490 DOI: 10.1037/a0026463] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Impaired control over alcohol use may be defined as "a breakdown of an intention to limit consumption in a particular situation" (Heather, Tebbutt, Mattick, & Zamir, 1993, p. 701) and has long been considered an important feature of alcohol dependence. Evidence suggests impaired control is highly relevant to young adult problem drinking. In the natural history of problem drinking, impaired control tends to develop early and may predict alcohol-related problems prospectively in undergraduates. Impaired control over alcohol use may be a facet of generalized behavioral undercontrol specifically related to drinking. In particular, impaired control is theoretically and empirically related to impulsivity. The question of whether impaired control represents a facet of impulsivity or a related but separate construct requires further study. However, theoretical arguments and empirical evidence suggest that there are unique qualities to the constructs. Specifically, existing data suggest that self-report measures of impaired control and impulsivity over alcohol use relate distinctly to problem drinking indices in young adults. Several lines of future research concerning impaired control are suggested, using the impulsivity literature as a guide. We conclude that impaired control is a valuable construct to the study of young adult problem drinking and that measures of impaired control should be included in more young adult alcohol studies. The extent to which impaired control over the use of other substances and impaired control over engagement in other addictive behaviors are clinically relevant constructs requires additional study.
Collapse
Affiliation(s)
- Robert F Leeman
- Department of Psychiatry, Yale University School of Medicine, Substance Abuse Center, CMHC, 34 Park Street, Room S200, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
140
|
Burton CL, Fletcher PJ. Age and sex differences in impulsive action in rats: The role of dopamine and glutamate. Behav Brain Res 2012; 230:21-33. [DOI: 10.1016/j.bbr.2012.01.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
|
141
|
Man MS, Mikheenko Y, Braesicke K, Cockcroft G, Roberts AC. Serotonin at the level of the amygdala and orbitofrontal cortex modulates distinct aspects of positive emotion in primates. Int J Neuropsychopharmacol 2012; 15:91-105. [PMID: 21726490 PMCID: PMC3243904 DOI: 10.1017/s1461145711000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/18/2011] [Accepted: 03/22/2011] [Indexed: 02/02/2023] Open
Abstract
Impaired top-down regulation of the amygdala, and its modulation by serotonin (5-HT), is strongly implicated in the dysregulation of negative emotion that characterizes a number of affective disorders. However, the contribution of these mechanisms to the regulation of positive emotion is not well understood. This study investigated the role of 5-HT within the amygdala and the orbitofrontal cortex (OFC), on the expression of appetitive Pavlovian conditioned emotional responses and their reversal in a primate, the common marmoset. Its effects were compared to those of the amygdala itself. Having developed conditioned autonomic and behavioural responses to an appetitive cue prior to surgery, marmosets with excitotoxic amygdala lesions failed to display such conditioned autonomic arousal at retention, but still displayed intact cue-directed conditioned behaviours. In contrast, 5,7-DHT infusions into the amygdala, reducing extracellular 5-HT levels, selectively enhanced the expression of appetitive conditioned behaviour at retention. Similar infusions into the OFC, producing marked reductions in post-mortem 5-HT tissue levels, had no overall effect on autonomic or behavioural responses, either at retention or during reversal learning, but caused an uncoupling of these responses, thereby fractionating emotional output. These data demonstrate the critical role of the amygdala in the expression of appetitive autonomic conditioning, and the region-selective contribution of 5-HT in the amygdala and OFC, respectively, to the expression of conditioned behaviour and the overall coordination of the emotional response. They provide insight into the neurochemical mechanisms underlying the regulation of positive emotional responses, advancing our understanding of the neural basis of pathologically dysregulated emotion.
Collapse
Affiliation(s)
- Mei-See Man
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Yevheniia Mikheenko
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Katrin Braesicke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| | - Gemma Cockcroft
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, UK
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Downing Street, UK
| |
Collapse
|
142
|
Hinds AL, Woody EZ, Van Ameringen M, Schmidt LA, Szechtman H. When too much is not enough: obsessive-compulsive disorder as a pathology of stopping, rather than starting. PLoS One 2012; 7:e30586. [PMID: 22291994 PMCID: PMC3266914 DOI: 10.1371/journal.pone.0030586] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background In obsessive-compulsive disorder (OCD), individuals feel compelled to repeatedly perform security-related behaviors, even though these behaviours seem excessive and unwarranted to them. The present research investigated two alternative ways of explaining such behavior: (1) a dysfunction of activation—a starting problem—in which the level of excitation in response to stimuli suggesting potential danger is abnormally strong; versus (2) a dysfunction of termination—a stopping problem—in which the satiety-like process for shutting down security-related thoughts and actions is abnormally weak. Method In two experiments, 70 patients with OCD (57 with washing compulsions, 13 with checking compulsions) and 72 controls were exposed to contamination cues—immersing a hand in wet diapers —and later allowed to wash their hands, first limited to 30 s and then for as long as desired. The intensity of activation of security motivation was measured objectively by change in respiratory sinus arrythmia. Subjective ratings (e.g., contamination) and behavioral measures (e.g., duration of hand washing) were also collected. Results Compared to controls, OCD patients with washing compulsions did not differ significantly in their levels of initial activation to the threat of contamination; however, they were significantly less able to reduce this activation by engaging in the corrective behavior of hand-washing. Further, the deactivating effect of hand-washing in OCD patients with checking compulsions was similar to that for controls, indicating that the dysfunction of termination in OCD is specific to the patient's symptom profile. Conclusions These results are the first to show that OCD is characterized by a reduced ability of security-related behavior to terminate motivation evoked by potential danger, rather than a heightened initial sensitivity to potential threat. They lend support to the security-motivation theory of OCD (Szechtman & Woody, 2004) and have important implications both for research into the biological mechanisms underlying OCD and for the development of new treatment approaches.
Collapse
Affiliation(s)
- Andrea L. Hinds
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Erik Z. Woody
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Louis A. Schmidt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
143
|
The role of serotonin in the regulation of patience and impulsivity. Mol Neurobiol 2012; 45:213-24. [PMID: 22262065 PMCID: PMC3311865 DOI: 10.1007/s12035-012-8232-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/02/2012] [Indexed: 01/14/2023]
Abstract
Classic theories suggest that central serotonergic neurons are involved in the behavioral inhibition that is associated with the prediction of negative rewards or punishment. Failed behavioral inhibition can cause impulsive behaviors. However, the behavioral inhibition that results from predicting punishment is not sufficient to explain some forms of impulsive behavior. In this article, we propose that the forebrain serotonergic system is involved in “waiting to avoid punishment” for future punishments and “waiting to obtain reward” for future rewards. Recently, we have found that serotonergic neurons increase their tonic firing rate when rats await food and water rewards and conditioned reinforcer tones. The rate of tonic firing during the delay period was significantly higher when rats were waiting for rewards than for tones, and rats were unable to wait as long for tones as for rewards. These results suggest that increased serotonergic neuronal firing facilitates waiting behavior when there is the prospect of a forthcoming reward and that serotonergic activation contributes to the patience that allows rats to wait longer. We propose a working hypothesis to explain how the serotonergic system regulates patience while waiting for future rewards.
Collapse
|
144
|
Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology (Berl) 2012; 219:469-90. [PMID: 22057662 PMCID: PMC3249521 DOI: 10.1007/s00213-011-2550-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/13/2011] [Indexed: 12/11/2022]
Abstract
RATIONALE Pathological gambling (PG) has recently been considered as a "behavioral" or nonsubstance addiction. A comparison of the characteristics of PG and substance use disorders (SUDs) has clinical ramifications and could help advance future research on these conditions. Specific relationships with impulsivity and compulsivity may be central to understanding PG and SUDs. OBJECTIVES This review was conducted to compare and contrast research findings in PG and SUDs pertaining to neurocognitive tasks, brain function, and neurochemistry, with a focus on impulsivity and compulsivity. RESULTS Multiple similarities were found between PG and SUDs, including poor performance on neurocognitive tasks, specifically with respect to impulsive choice and response tendencies and compulsive features (e.g., response perseveration and action with diminished relationship to goals or reward). Findings suggest dysfunction involving similar brain regions, including the ventromedial prefrontal cortex and striatum and similar neurotransmitter systems, including dopaminergic and serotonergic. Unique features exist which may in part reflect influences of acute or chronic exposures to specific substances. CONCLUSIONS Both similarities and differences exist between PG and SUDs. Understanding these similarities more precisely may facilitate treatment development across addictions, whereas understanding differences may provide insight into treatment development for specific disorders. Individual differences in features of impulsivity and compulsivity may represent important endophenotypic targets for prevention and treatment strategies.
Collapse
Affiliation(s)
- Robert F Leeman
- Department of Psychiatry, Yale University School of Medicine, CMHC, 34 Park Street, New Haven, CT 06405, USA.
| | | |
Collapse
|
145
|
Agnoli L, Carli M. Dorsal-striatal 5-HT₂A and 5-HT₂C receptors control impulsivity and perseverative responding in the 5-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:633-45. [PMID: 22113450 DOI: 10.1007/s00213-011-2581-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/07/2011] [Indexed: 12/29/2022]
Abstract
RATIONAL Prefrontal cortex (PFC) and dorsal striatum are part of the neural circuit critical for executive attention. The relationship between 5-HT and aspects of attention and executive control is complex depending on experimental conditions and the level of activation of different 5-HT receptors within the nuclei of corticostriatal circuitry. OBJECTIVE The present study investigated which 5-HT(2A) and 5-HT(2C) receptors in the dorsomedial-striatum (dm-STR) contribute to executive attention deficit induced by blockade of NMDA receptors in the PFC. MATERIALS AND RESULTS Executive attention was assessed by the five-choice serial reaction time task (5-CSRTT), which provides indices of attention (accuracy) and those of executive control over performance such as premature (an index of impulsivity) and perseverative responding. The effects of targeted infusion in dm-STR of 100 and 300 ng/μl doses of the selective 5-HT(2A) antagonist M100907 and 1 and 3 μg/μl doses of 5-HT(2C) agonist Ro60-0175 was examined in animals injected with 50 ng/μl dose of a competitive NMDA receptor antagonist 3-(R)-2-carboxypiperazin-4-phosphonic acid (CPP) in the mPFC. Blockade of NMDA receptors impaired accuracy as well as executive control as shown by increased premature and perseverative responding. The CPP-induced premature and perseverative over-responding were dose-dependently prevented by both M100907 and Ro60-0175. Both drugs partially removed the CPP-induced accuracy deficit but only at the highest dose tested. CONCLUSIONS It is suggested that in the dorsal striatum, 5-HT by an action on 5-HT(2A) and 5-HT(2C) receptors may integrate the glutamate corticostriatal inputs critical for different aspects of the 5-CSRT task performance.
Collapse
Affiliation(s)
- Laura Agnoli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri", via G. La Masa 19, Milan 20156, Italy
| | | |
Collapse
|
146
|
Hamilton KR, Potenza MN. Relations among delay discounting, addictions, and money mismanagement: implications and future directions. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2012; 38:30-42. [PMID: 22211535 PMCID: PMC3691101 DOI: 10.3109/00952990.2011.643978] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Delay discounting is a reduction in the subjective value of a delayed outcome. Elevated delay discounting is a type of impulsivity that is associated with harmful behaviors, including substance abuse and financial mismanagement. METHODS Elevated delay discounting as related to addiction and financial mismanagement was reviewed from psychological, neurobiological, and behavioral economic perspectives. RESULTS Addiction and financial mismanagement frequently co-occur, and elevated delay discounting may be a common mechanism contributing to both of these problematic behaviors. CONCLUSIONS Future research on the relationships between delay discounting, substance abuse, and financial mismanagement can provide important insights for developing improved prevention and treatment strategies.
Collapse
Affiliation(s)
- Kristen R Hamilton
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
147
|
The effects of acute tryptophan depletion on costly information sampling: impulsivity or aversive processing? Psychopharmacology (Berl) 2012; 219:587-97. [PMID: 22094531 PMCID: PMC3291823 DOI: 10.1007/s00213-011-2577-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/04/2011] [Indexed: 11/06/2022]
Abstract
RATIONALE The neurotransmitter serotonin (5-HT) has been implicated in both aversive processing and impulsivity. Reconciling these accounts, recent studies have demonstrated that 5-HT is important for punishment-induced behavioural inhibition. These studies focused on situations where actions lead directly to punishments. However, decision-making often involves making tradeoffs between small 'local' costs and larger 'global' losses. OBJECTIVE We aimed to distinguish whether 5-HT promotes avoidance of local losses, global losses, or both, in contrast to an overall effect on reflection impulsivity. We further examined the influence of individual differences in sub-clinical depression, anxiety and impulsivity on global and local loss avoidance. METHODS Healthy volunteers (N = 21) underwent an acute tryptophan depletion procedure in a double-blind, placebo-controlled crossover design. We measured global and local loss avoidance in a decision-making task where subjects could sample information at a small cost to avoid making incorrect decisions, which resulted in large losses. RESULTS Tryptophan depletion removed the suppressive effects of small local costs on information sampling behaviour. Sub-clinical depressive symptoms produced effects on information sampling similar to (but independent from) those of tryptophan depletion. Dispositional anxiety was related to global loss avoidance. However, trait impulsivity was unrelated to information sampling. CONCLUSIONS The current findings are consistent with recent theoretical work that characterises 5-HT as pruning a tree of potential decisions, eliminating options expected to lead to aversive outcomes. Our results extend this account by proposing that 5-HT promotes reflexive avoidance of relatively immediate aversive outcomes, potentially at the expense of more globally construed future losses.
Collapse
|
148
|
Roesch MR, Bryden DW. Impact of size and delay on neural activity in the rat limbic corticostriatal system. Front Neurosci 2011; 5:130. [PMID: 22363252 PMCID: PMC3277262 DOI: 10.3389/fnins.2011.00130] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/04/2011] [Indexed: 11/17/2022] Open
Abstract
A number of factors influence an animal’s economic decisions. Two most commonly studied are the magnitude of and delay to reward. To investigate how these factors are represented in the firing rates of single neurons, we devised a behavioral task that independently manipulated the expected delay to and size of reward. Rats perceived the differently delayed and sized rewards as having different values and were more motivated under short delay and big-reward conditions than under long delay and small reward conditions as measured by percent choice, accuracy, and reaction time. Since the creation of this task, we have recorded from several different brain areas including, orbitofrontal cortex, striatum, amygdala, substantia nigra pars reticulata, and midbrain dopamine neurons. Here, we review and compare those data with a substantial focus on those areas that have been shown to be critical for performance on classic time discounting procedures and provide a potential mechanism by which they might interact when animals are deciding between differently delayed rewards. We found that most brain areas in the cortico-limbic circuit encode both the magnitude and delay to reward delivery in one form or another, but only a few encode them together at the single neuron level.
Collapse
Affiliation(s)
- Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science, University of Maryland College Park, MD, USA
| | | |
Collapse
|
149
|
Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio). Behav Brain Res 2011; 227:73-80. [PMID: 22062587 DOI: 10.1016/j.bbr.2011.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 01/15/2023]
Abstract
Zebrafish are an established and widely utilized developmental genetic model system, but limitations in developed behavioral assays have meant that their potential as a model in behavioral neuroscience has yet to be fully realized. Here, we describe the development of a novel operant behavioral assay to examine a variety of aspects of stimulus control in zebrafish using a 3 choice serial reaction time task (3 CSRTT). Fish were briefly exposed to three spatially distinct, but perceptually identical stimuli, presented in a random order after a fixed-time inter-trial interval (ITI). Entries to the correct response aperture either during the stimulus presentation, or within a brief limited hold period following presentation, were reinforced with illumination of the magazine light and delivery of a small food reward. Following training, premature responding was probed with a long-ITI session three times; once at baseline, once following a saline injection and once following an injection of a low dose of amphetamine (AMPH; 0.025 mg/kg). We predicted that if premature responding was related to impulsivity (as in rodents) it would be reduced following the AMPH injection. Results confirmed that zebrafish could learn to perform a complex operant task similar to tasks developed for rodents which are used to probe sustained attention and impulsivity, but the results from the AMPH trials were inconclusive. This study provides the foundations for development and further validation of this species as a model for some aspects of human attentional and impulse control disorders, such as substance abuse disorder.
Collapse
|
150
|
A neural correlate of predicted and actual reward-value information in monkey pedunculopontine tegmental and dorsal raphe nucleus during saccade tasks. Neural Plast 2011; 2011:579840. [PMID: 22013541 PMCID: PMC3195531 DOI: 10.1155/2011/579840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 11/28/2022] Open
Abstract
Dopamine, acetylcholine, and serotonin, the main modulators of the central nervous system, have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the role of the other neuromodulators remains rather elusive. Here, we review our recent studies using extracellular recording from neurons in the pedunculopontine tegmental nucleus, where many cholinergic neurons exist, and the dorsal raphe nucleus, where many serotonergic neurons exist, while monkeys performed eye movement tasks to obtain different reward values. The firing patterns of these neurons are often tonic throughout the task period, while dopaminergic neurons exhibited a phasic activity pattern to the task event. The different modulation patterns, together with the activity of dopaminergic neurons, reveal dynamic information processing between these different neuromodulator systems.
Collapse
|