101
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
102
|
Machado DG, Lara MVS, Dobler PB, Almeida RF, Porciúncula LO. Caffeine prevents neurodegeneration and behavioral alterations in a mice model of agitated depression. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109776. [PMID: 31707092 DOI: 10.1016/j.pnpbp.2019.109776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.
Collapse
Affiliation(s)
- Daniele Guilhermano Machado
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| | - Marcus Vinicius Soares Lara
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Paula Bruna Dobler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Roberto Farina Almeida
- Universidade Federal de Ouro Preto, Centro de Pesquisa em Ciências Biológicas, Departamento de Ciências Biológicas, Ouro Preto, MG, Brazil
| | - Lisiane O Porciúncula
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| |
Collapse
|
103
|
Rhie SJ, Jung EY, Shim I. The role of neuroinflammation on pathogenesis of affective disorders. J Exerc Rehabil 2020; 16:2-9. [PMID: 32161729 PMCID: PMC7056473 DOI: 10.12965/jer.2040016.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that neuroinflammation plays an important role in etiology of psychiatric disorders. Neuronflammation involves a combination of psychological, neuroendocrine, and nervous systems resulting in changes of neurotransmitter metabolism, dysregulation of the hypothalamuspituitary-adrenal axis, pathologic microglial cell activation, impaired neuroplasticity, and structural and functional brain changes affecting cognition and emotional behavior. Inflammatory cytokines have been postulated to be the possible link and culprit in the disruption of these systems. The outcome of any type of dysregulation of the immune system in the brain might lead to occurrence of depression, anxiety. This review focuses on the possible impact of dysregulated cytokine networks which may cause pathogenesis of affective disorders such as depression and anxiety.
Collapse
Affiliation(s)
- Sung Ja Rhie
- Department of Beauty and Health, Halla University, Wonju, Korea
| | - Eun-Yee Jung
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
104
|
Krugmann KL, Mieloch FJ, Krieter J, Czycholl I. Investigation of influence of growing pigs' positive affective state on behavioral and physiological parameters using structural equation modeling. J Anim Sci 2020; 98:5718043. [PMID: 31999319 DOI: 10.1093/jas/skaa028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate whether the primarily positive affective state of fattening pigs influences various behavioral and physiological parameters such as the pigs' playing behavior, way of behaving in behavioral tests, body language signals, or diameter, and astroglia cell numbers of hippocampi, salivary immunoglobulin A (IgA) content, or salivary protein composition. Additionally, the suitability of the variables mentioned was examined to assess the pigs' positive affective state in practice, which still constitutes a latent variable not itself measurable. For this, a dataset including behavioral and physiological data of 60 fattening pigs from 3 different farms with different housing systems was analyzed by the partial least squares structural equation modeling (PLS-SEM) method. A hierarchical component model (HCM) was used including the pigs' positive affective state as a higher-order component (HOC) and the behavioral and physiological parameters as lower-order components (LOC). Playing behavior, body language signals, and behavioral tests were revealed, in this order, to be most influenced by the pigs' positive affective state since these resulted in the corresponding path coefficients (PC) of PC = 0.83, PC = 0.79, and PC = 0.62, respectively. Additionally moderate and weak R2-values occurred for the endogenous latent variables playing behavior (R2 = 69.8%), body language signals (R2 = 62.7%), and behavioral tests (R2 = 39.5%). Furthermore, the indicator of the "locomotor play" showed the highest indicator reliability (IR) (IR = 0.85) to estimate the latent variable of pigs' positive affective state. The results of the present study supplement the comprehension and assessment of the pigs' positive affective state in general.
Collapse
Affiliation(s)
- Katja L Krugmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Farina J Mieloch
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Irena Czycholl
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
105
|
Song M, Zhang J, Li X, Liu Y, Wang T, Yan Z, Chen J. Effects of Xiaoyaosan on Depressive-Like Behaviors in Rats With Chronic Unpredictable Mild Stress Through HPA Axis Induced Astrocytic Activities. Front Psychiatry 2020; 11:545823. [PMID: 33192662 PMCID: PMC7606759 DOI: 10.3389/fpsyt.2020.545823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Astrocytes in the hippocampus are immediately relevant to depressive-like behavior. By regulating their activities, Xiaoyaosan (XYS), a traditional Chinese medicine compound, works in the treatment of depression. OBJECTIVE Chronic unpredictable mild stress (CUMS) rat model was established to observe the regulation of XYS. We investigated the behavioral changes of CUMS, the expression of corticosterone (CORT) of the hypothalamo-pituitary-adrenal (HPA) axis, the expression of Glu-NMDA receptor and astrocytes glial fibrillary acidic protein (GFAP) in the hippocampus. We also investigated whether these changes were linked to XYS. METHODS 80 adult SD rats were randomly divided into four groups, control group, CUMS group, XYS group, and fluoxetine group. The rats in the control group and the CUMS group received 0.5 ml of deionized water once a day by intragastrically administration. Rats in the two treatment groups received XYS (2.224g/kg/d) and fluoxetine (2.0mg/kg/d) once a day, respectively. Rat hippocampus GFAP and Glu-NMDA receptor were respectively detected by real-time fluorescent quantitative PCR and western blot. The CORT of HPA axis was detected by Elisa. Body weight, food intake, and behavioral tests, such as open field tests, the sucrose preference test, and exhaustive swimming test, were used to assess depressive-like behavior in rats. RESULTS In this work, significant behavioral changes and differences in expression of the CORT of HPA axis and hippocampal GFAP and Glu-NMDA receptor were presented in CUMS-exposed rats. Like fluoxetine, XYS improved CUMS-induced rat's body weight, food intake, and depressive-like behavior. The study also proved that XYS could reverse the CUMS-induced changes of the CORT of HPA axis and affect the astrocytic activities and down-regulate the NR2B subunit of NMDA receptor (NR2B) level in the hippocampus. CONCLUSION Changes in the hippocampus GFAP and Glu-NMDA receptor may be an essential mechanism of depression. Besides, XYS may be critical to the treatment of depression by intervention the HPA axis, GFAP and Glu-NMDA receptor.
Collapse
Affiliation(s)
- Ming Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
106
|
Machado-Santos AR, Alves ND, Araújo B, Correia JS, Patrício P, Mateus-Pinheiro A, Loureiro-Campos E, Bessa JM, Sousa N, Pinto L. Astrocytic plasticity at the dorsal dentate gyrus on an animal model of recurrent depression. Neuroscience 2019; 454:94-104. [PMID: 31747562 DOI: 10.1016/j.neuroscience.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Astrocytes are now known to play crucial roles in the central nervous system, supporting and closely interacting with neurons and therefore able to modulate brain function. Both human postmortem studies in brain samples from patients diagnosed with Major Depressive Disorder and from animal models of depression reported numerical and morphological astrocytic changes specifically in the hippocampus. In particular, these studies revealed significant reductions in glial cell density denoted by a decreased number of S100B-positive cells and a decrease in GFAP expression in several brain regions including the hippocampus. To reveal plastic astrocytic changes in the context of recurrent depression, we longitudinally assessed dynamic astrocytic alterations (gene expression, cell densities and morphologic variations) in the hippocampal dentate gyrus under repeated exposure to unpredictable chronic mild stress (uCMS) and upon treatment with two antidepressants, fluoxetine and imipramine. Both antidepressants decreased astrocytic complexity immediately after stress exposure. Moreover, we show that astrocytic alterations, particularly an increased number of S100B-positive cells, are observed after recurrent stress exposure. Interestingly, these alterations were prevented at the long-term by either fluoxetine or imipramine treatment.
Collapse
Affiliation(s)
- Ana R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno D Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana S Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
107
|
Moschetti G, Amodeo G, Paladini MS, Molteni R, Balboni G, Panerai A, Sacerdote P, Franchi S. Prokineticin 2 promotes and sustains neuroinflammation in vincristine treated mice: Focus on pain and emotional like behavior. Brain Behav Immun 2019; 82:422-431. [PMID: 31525509 DOI: 10.1016/j.bbi.2019.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Vincristine (VCR) treatment is often associated to painful neuropathy. Its development is independent from antitumoral mechanism and involves neuroinflammation. We investigated the role of the chemokine prokineticin (PK)2 in a mouse model of VCR induced neuropathy using a PK-receptors (PK-R) antagonist to counteract its development. We also evaluated emotional like deficits in VCR mice. VCR (0,1 mg/kg) was i.p. injected in C57BL/6J male mice once a day for 14 consecutive days. Pain, anxiety and depressive like behaviors were assessed in animals. PK2, PK-Rs, cytokines, neuroinflammatory markers (CD68, CD11b, GFAP, TLR4) and ATF3 were evaluated in DRG, spinal cord, prefrontal cortex and hippocampus. The PK-Rs antagonist PC1, was s.c. injected (150 μg/kg) twice a day from day 7 (hypersensitivity state) until day 14. Its effect on pain and neuroinflammation was evaluated. VCR mice developed neuropathic pain but not mood alterations. After 7 days of VCR treatment we observed a neuroinflammatory condition in DRG with high levels of PK-Rs, TLR4, CD68, ATF3 and IL-1β without relevant alterations in spinal cord. At day 14, an upregulation of PK system and a marked neuroinflammation was evident also in spinal cord. Moreover, at the same time, we observed initial alterations in supraspinal brain areas. PC1 treatment significantly counteracted neuropathic pain and blunted neuroinflammation.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Panerai
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
108
|
Shim HS, Park HJ, Woo J, Lee CJ, Shim I. Role of astrocytic GABAergic system on inflammatory cytokine-induced anxiety-like behavior. Neuropharmacology 2019; 160:107776. [PMID: 31513788 DOI: 10.1016/j.neuropharm.2019.107776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that not only neurons but astrocytes contain a considerable amount of γ-aminobutyric acid (GABA), which can be released and activate the receptors responsive to GABA. The purpose of this study is to test whether gliotransmitters from astrocytes may play a role in etiology of anxiety symptoms. Intracerebroventricular (i.c.v.) infusion of interleukin-1β (IL-1β), one of potent inflammatory cytokines, induced anxiety-like behaviors and activated the glial fibrillary acidic protein (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Pretreatment with astrocytes toxin, l-α-aminoadipate (L-AAA) reduced anxiety-like behaviors and the GFAP expression in the PVN. Intraparaventricular nucleus (iPVN) infusion of IL-1β produced markedly anxiety-like behaviors and increased release of GABA from astrocytes. However, treatment of glial cell inhibitor, L-AAA or blocker of Bestrophin-1 (Best1), 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) markedly inactivated astrocytes and also reduced the anxiety-like behaviors. Treatment of L-AAA or NPPB decreased IL-1β-induced gliotransmitter GABA release measured by in vivo microdialysis. These results suggest that selective inhibition of astrocytes or astocytic GABA release in the PVN may serve as an effective therapeutic strategy for treating anxiety and affective disorders.
Collapse
Affiliation(s)
- Hyun Soo Shim
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea; Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyun Jung Park
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea; Department of Food Science and Biotechnology, Kyonggi University, 154-42, Gwanggyosan-ro, Youngtong-gu, Suwon, Gyeonggi, 16227, South Korea
| | - Junsung Woo
- Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - C Justin Lee
- Center for Neuroscience, Brain Science Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongys0daemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
109
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
110
|
Liu Y, Ding XF, Wang XX, Zou XJ, Li XJ, Liu YY, Li J, Qian XY, Chen JX. Xiaoyaosan exerts antidepressant-like effects by regulating the functions of astrocytes and EAATs in the prefrontal cortex of mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:215. [PMID: 31412844 PMCID: PMC6694586 DOI: 10.1186/s12906-019-2613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mounting evidence indicates that the cerebral cortex is an important physiological system of emotional activity, and its dysfunction may be the main cause of stress. Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS), which initiates rapid signal transmission in the synapse before its reuptake into the surrounding glia, specifically astrocytes (ASTs). The astrocytic excitatory amino acid transporters 1 (EAAT1) and 2 (EAAT2) are the major transporters that take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with depression. Therefore, we hypothesized that the underlying antidepressant-like mechanism of Xiaoyaosan (XYS), a Chinese herbal formula, may be related to the regulation of astrocytic EAATs. Therefore, we studied the antidepressant mechanism of XYS on the basis of EAAT dysfunction in ASTs. METHODS Eighty adult C57BL/6 J mice were randomly divided into 4 groups: a control group, a chronic unpredictable mild stress (CUMS) group, a Xiaoyaosan (XYS) treatment group and a fluoxetine hydrochloride (Flu) treatment group. Except for the control group, mice in the other groups all received chronic unpredictable mild stress for 21 days. Mice in the control and CUMS groups received gavage administration with 0.5 mL of normal saline (NS) for 21 days, and mice in the XYS and Flu treatment groups were administered dosages of 0.25 g/kg/d and 2.6 mg/kg/d by gavage. The effects of XYS on the depressive-like behavioral tests, including the open field test (OFT), forced swimming test (FST) and sucrose preference test (SPT), were examined. The glutamate (Glu) concentrations of the prefrontal cortex (PFC) were detected with colorimetry. The morphology of neurons in the PFC was observed by Nissl staining. The expression of glial fibrillary acidic protein (GFAP), NeuN, EAAT1 and EAAT2 proteins in the PFC of mice was detected by using Western blotting and immunohistochemistry. Quantitative real-time PCR (qPCR) was used to detect the expression of the GFAP, NeuN, EAAT1 and EAAT2 genes in the PFC of mice. RESULTS The results of behavioral tests showed that CUMS-induced mice exhibited depressive-like behavior, which could be improved in some tests with XYS and Flu treatment. Immunohistochemistry and Western blot analysis showed that the protein levels of GFAP, NeuN, EAAT1 and EAAT2 in the PFC of CUMS mice were significantly lower than those in the control group, and these changes could be reversed by XYS and Flu. The results of qPCR analysis showed that the expression of GFAP, NeuN, EAAT1 and EAAT2 mRNAs in the PFC of CUMS mice was not significantly changed, with the exception of EAAT2, compared with that of the control group, while the expression of the above mRNAs was significantly higher in the XYS and Flu groups than that in the CUMS group. CONCLUSION XYS may exert antidepressant-like effects by improving the functions of AST and EAATs and attenuating glutamate-induced neuronal damage in the frontal cortex.
Collapse
Affiliation(s)
- Yan Liu
- School of Pre-clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
- School of Pre-clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Xiu-fang Ding
- School of Traditional Chinese medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road Chaoyang District, Beijing, 100029 China
| | - Xin-xing Wang
- School of Pre-clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Xiao-juan Zou
- School of Pre-clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Xiao-juan Li
- School of Pre-clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
- School of Traditional Chinese medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road Chaoyang District, Beijing, 100029 China
| | - Yue-yun Liu
- School of Traditional Chinese medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road Chaoyang District, Beijing, 100029 China
| | - Jie Li
- School of Pre-clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Xiu-yun Qian
- School of Pre-clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Jia-xu Chen
- School of Pre-clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 China
- School of Traditional Chinese medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road Chaoyang District, Beijing, 100029 China
| |
Collapse
|
111
|
Dahoun T, Calcia MA, Veronese M, Bloomfield P, Reis Marques T, Turkheimer F, Howes OD. The association of psychosocial risk factors for mental health with a brain marker altered by inflammation: A translocator protein (TSPO) PET imaging study. Brain Behav Immun 2019; 80:742-750. [PMID: 31112791 DOI: 10.1016/j.bbi.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Psychiatric disorders associated with psychosocial risk factors, including depression and psychosis, have been shown to demonstrate increased microglia activity. Whilst preclinical studies indicate that psychosocial stress leads to increased levels of microglia in the frontal cortex, no study has yet been performed in humans. This study aimed at investigating whether psychosocial risk factors for depression and/or psychosis would be associated with alterations in a brain marker expressed by microglia, the translocator specific protein (TSPO) in humans. We used [11C]-PBR28 Positron Emission Tomography on healthy subjects exposed to childhood and adulthood psychosocial risk factors (high-risk group, N = 12) and age- and sex-matched healthy controls not exposed to childhood and adulthood psychosocial risk factors (low-risk group, N = 12). The [11C]-PBR28 volume of distribution (VT) and Distribution Volume Ratio (DVR) were measured in the total gray matter, and frontal, parietal, temporal, occipital lobes. Levels of childhood trauma, anxiety and depression were measured using respectively the Childhood Trauma Questionnaire, State-anxiety questionnaire and Beck Depression Inventory. Compared to the low-risk group, the high-risk group did not exhibit significant differences in the mean [11C]-PBR28 VT (F(1,20) = 1.619, p = 0.218) or DVR (F(1,22) = 0.952, p = 0.340) on any region. There were no significant correlations between the [11C]-PBR28 VT and DVRs in total gray matter and frontal lobe and measures of childhood trauma, anxiety and depression. Psychosocial risk factors for depression and/or psychosis are unlikely to be associated with alterations in [11C]-PBR28 binding, indicating that alterations in TSPO expression reported in these disorders is unlikely to be caused by psychosocial risk factors alone.
Collapse
Affiliation(s)
- Tarik Dahoun
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX37 JX, UK
| | - Marilia A Calcia
- Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Peter Bloomfield
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Oliver D Howes
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London W12 0NN, UK; Institute of Psychiatry, Neurology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK.
| |
Collapse
|
112
|
Novel Treatment Targets Based on Insights in the Etiology of Depression: Role of IL-6 Trans-Signaling and Stress-Induced Elevation of Glutamate and ATP. Pharmaceuticals (Basel) 2019; 12:ph12030113. [PMID: 31362361 PMCID: PMC6789839 DOI: 10.3390/ph12030113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation and psychological stress are risk factors for major depression and suicide. Both increase central glutamate levels and activate the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Both factors also affect the function of the chloride transporters, Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2), and provoke interleukin-6 (IL-6) trans-signaling. This leads to measurable increases in circulating corticosteroids, catecholamines, anxiety, somatic and psychological symptoms, and a decline in cognitive functions. Recognition of the sequence of pathological events allows the prediction of novel targets for therapeutic intervention. Amongst others, these include blockade of the big-K potassium channel, blockade of the P2X4 channel, TYK2-kinase inhibition, noradrenaline α2B-receptor antagonism, nicotinic α7-receptor stimulation, and the Sgp130Fc antibody. A better understanding of downstream processes evoked by inflammation and stress also allows suggestions for tentatively better biomarkers (e.g., SERPINA3N, MARCKS, or 13C-tryptophan metabolism).
Collapse
|
113
|
Steardo L, de Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front Psychiatry 2019; 10:501. [PMID: 31379620 PMCID: PMC6656854 DOI: 10.3389/fpsyt.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of sleep disorders is approximately 50%, with an even higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental illness characterized by shifts in mood and activity. The BD syndrome also involves heterogeneous symptomatology, including cognitive dysfunctions and impairments of the autonomic nervous system. Sleep abnormalities are frequently associated with BD and are often a good predictor of a mood swing. Preservation of stable sleep-wake cycles is therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations in the structure or duration of sleep are reported in all phases of BD. Understanding the role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of the different types of glial cells to BD and sleep abnormalities are discussed in this paper.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elvira Anna Carbone
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Pasquale De Fazio
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
114
|
Stanisavljević A, Perić I, Bernardi RE, Gass P, Filipović D. Clozapine increased c-Fos protein expression in several brain subregions of socially isolated rats. Brain Res Bull 2019; 152:35-44. [PMID: 31299320 DOI: 10.1016/j.brainresbull.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
Chronic social stress and/or pharmacological treatments differentially modulate the expression of c-Fos, a marker of neuronal activity, in subregions of the rat brain. Here, we examined the effect of the atypical antipsychotic Clozapine (Clz) (20 mg/kg/day for 3 weeks) on the neuronal activation pattern of c-Fos protein expression in stress-relevant brain subregions of adult male Wistar rats exposed to chronic social isolation (CSIS: 3 weeks), an animal model of depression and schizophrenia, and controls. The protein expression of c-Fos was also used to map neuronal populations in brain subregions activated by CSIS alone. Subregions which showed significantly increased c-Fos protein expression following CSIS included the retrosplenial cortex (RSC), (subregions:RSC granular cortex, c region (RSGc) and dysgranular (RSD)), dentate gyrus, dorsal (DGd), paraventricular thalamic nucleus, posterior part (PVP), lateral (LA)/basolateral (BL) complex of amygdala, caudate putamen (CPu) and accumbens nucleus, shell (AcbSh). Increases in c-Fos protein expression in the RSGc, RSD, DGd, PVP, LA/BL complex of amygdala and striatum (CPu, Acb Core (AcbC) and AcbSh) following Clz treatment in controls were found. Clz applied simultaneously with CSIS modulated neuronal activity in CPu, AcbC and AcbSh subregions compared to CSIS alone, increasing c-Fos protein expression. Furthermore, Clz revealed synergistic effects with CSIS in the CA1d and PVP. These identified neural circuits reflect brain subregions activated following CSIS and/or Clz administration. These data further contribute to the understanding of the effectiveness of Clz in the modulation of brain subregion activation in response to CSIS.
Collapse
Affiliation(s)
- Andrijana Stanisavljević
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia
| | - Ivana Perić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia.
| |
Collapse
|
115
|
Mayegowda SB, Thomas C. Glial pathology in neuropsychiatric disorders: a brief review. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0120. [PMID: 31280243 DOI: 10.1515/jbcpp-2018-0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Neurons have been considered the major functional entities of the nervous system that are responsible for most of the functions even though glial cells largely outnumber them. However, recent reports have proved that glial cells do not function just like glue in the nervous system but also substantially affect neuronal function and activities, and are significantly involved in the underlying pathobiology of various psychiatric disorders. Dysfunctional astrocytes and degeneration of glial cells are postulated to be critical factors contributing to the aggravation of depressive-like symptoms in humans, which was proved using animal models. Alteration in glial cell function predominantly targets three main brain regions - the prefrontal cortex, limbic areas including the hippocampus, and the amygdala, which have been extensively studied by various researchers across the globe. These studies have postulated that failure in adopting to the changing neurophysiology due to stress will lead to regressive plasticity in the hippocampus and prefrontal cortex, but to progressive plasticity in the amygdala. In this present review, an effort has been made to understand the different alterations in chronic stress models in correlation with clinical conditions, providing evidence on the defective maintenance of glial function and its potential role in the precipitation of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shilpa Borehalli Mayegowda
- School of Basic and Applied Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout,Bengaluru 560 078, India, Mobile: +919972939466
| | - Christofer Thomas
- Department of Physiology, Sapthagiri Institute of Medical Sciences and Research Centre, Bengaluru, India
| |
Collapse
|
116
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
117
|
Lin N, Dong XJ, Wang TY, He WJ, Wei J, Wu HY, Wang TH. Characteristics of olfactory ensheathing cells and microarray analysis in Tupaia belangeri (Wagner, 1841). Mol Med Rep 2019; 20:1819-1825. [PMID: 31257532 PMCID: PMC6625397 DOI: 10.3892/mmr.2019.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
Tree shrews are most closely related to the primates and so possess a number of advantages in experimental studies; they have been used as an animal model in bacterial and virus infection, cancer, endocrine system disease, and certain nervous system diseases. Their olfactory ensheathing cells (OECs) are able to release several cytokines to promote neuronal survival, regeneration and remyelination. The present study used western blot analysis to identify antibody specificity in protein extracts from whole tree shrew brains to identify the specificity of p75 nerve growth factor receptor (NGFR) derived from rabbits (75 kDa). OECs were cultured and isolated, then stained and identified using the antibodies for p75NGFR. To investigate the capacity of OECs to express cytokines and growth factors, microarray technology was used, and the analysis revealed that OECs were able to express 9,821 genes. Of these genes, 44 genes were from the neurotrophic factor family, which may indicate their potential in transplantation in vivo. The present study considered the function of OECs as revealed by other studies, and may contribute to future research.
Collapse
Affiliation(s)
- Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiu-Juan Dong
- Department of Physical Education, Hainan Normal University, Haikou, Hainan 571100, P.R. China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wen-Ji He
- Department of Ultrasonic Cardiogram, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Jing Wei
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Hai-Ying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
118
|
Khan A, Shal B, Naveed M, Shah FA, Atiq A, Khan NU, Kim YS, Khan S. Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology 2019; 72:38-50. [DOI: 10.1016/j.neuro.2019.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
119
|
Murphy‐Royal C, Gordon GR, Bains JS. Stress‐induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia 2019; 67:1806-1820. [DOI: 10.1002/glia.23610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ciaran Murphy‐Royal
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Grant R. Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Jaideep S. Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| |
Collapse
|
120
|
Hu Z, Du X, Yang Y, Botchway BOA, Fang M. Progesterone and fluoxetine treatments of postpartum depressive-like behavior in rat model. Cell Biol Int 2019; 43:539-552. [PMID: 30811083 DOI: 10.1002/cbin.11123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/23/2019] [Indexed: 12/19/2022]
Abstract
Research studies have indicated that alterations in plasma progesterone levels might be associated with the hippocampal synaptic plasticity of postpartum depressive-like behavior. Herein, we assess both progesterone and fluoxetine effects in adult female Sprague-Dawley rats with postpartum depressive-like behavior. Depressive-like behavior of postpartum rats was established using chronic ultra-mild stress (CUMS) method for 1 week from gestation day 15. Postpartum rats that showed depressive-like behavior were treated with either progesterone (subcutaneously, 0.5 mg/kg) from gestation day 17 to gestation day 22 or fluoxetine (by gavage, 10 mg/kg/day) for 4 weeks after birth. Open field and sucrose preference tests were conducted at the start, week 2 and week 4 postpartum. Golgi staining, immunofluorescence and Western blot analyses of rats' hippocampi were conducted on week 4 postpartum. Results showed CUMS increases depressive-like behavior, however, treatment with progesterone and fluoxetine improves this behavior. Both progesterone and fluoxetine treatments increase the numbers of dendritic spines pyramidal neurons in the CA3 region of the hippocampus as well as protein expression levels of microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP). CUMS-induced decrement of MAP-2 and SYP protein expressions can be prevented by treatment with progesterone in advanced pregnant stage and fluoxetine in the postpartum period.
Collapse
Affiliation(s)
- Zhiying Hu
- Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
121
|
Stress Elicits Contrasting Effects on the Structure and Number of Astrocytes in the Amygdala versus Hippocampus. eNeuro 2019; 6:eN-NWR-0338-18. [PMID: 30783612 PMCID: PMC6378323 DOI: 10.1523/eneuro.0338-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 01/08/2023] Open
Abstract
Stress causes divergent patterns of structural and physiological plasticity in the hippocampus versus amygdala. However, a majority of earlier studies focused primarily on neurons. Despite growing evidence for the importance of glia in health and disease, relatively little is known about how stress affects astrocytes. Further, previous work focused on hippocampal astrocytes. Hence, we examined the impact of chronic immobilization stress (2 h/d, 10 d), on the number and structure of astrocytes in the rat hippocampus and amygdala. We observed a reduction in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes in the basal amygdala (BA), 1 d after the end of 10 d of chronic stress. Detailed morphometric analysis of individual dye-filled astrocytes also revealed a decrease in the neuropil volume occupied by these astrocytes in the BA, alongside a reduction in the volume fraction of fine astrocytic protrusions rather than larger dendrite-like processes. By contrast, the same chronic stress had no effect on the number or morphology of astrocytes in hippocampal area CA3. We also confirmed previous reports that chronic stress triggers dendritic hypertrophy in dye-filled BA principal neurons that were located adjacent to astrocytes that had undergone atrophy. Thus, building on earlier evidence for contrasting patterns of stress-induced plasticity in neurons across brain areas, our findings offer new evidence that the same stress can also elicit divergent morphological effects in astrocytes in the hippocampus versus the amygdala.
Collapse
|
122
|
Lian S, Xu B, Wang D, Wang L, Li W, Yao R, Ji H, Wang J, Guo J, Li S, Yang H. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res 2019; 359:304-311. [DOI: 10.1016/j.bbr.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
|
123
|
Loprinzi PD, Frith E. Protective and therapeutic effects of exercise on stress-induced memory impairment. J Physiol Sci 2019; 69:1-12. [PMID: 30203315 PMCID: PMC10717705 DOI: 10.1007/s12576-018-0638-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The objective of this paper was to systematically evaluate the potential preventive and therapeutic effects of exercise in attenuating stress-induced memory impairment. A systematic review was employed, searching PubMed, PsychInfo, Sports Discus and Google Scholar databases. For eligibility, studies had to be published in English, employ an experimental design, have the acute or chronic bout of exercise occur prior to, during or after the stressor, implement a psychophysiological stressor, and have an assessment of memory function occurring after the stressor. In total, 23 studies were evaluated, all of which were conducted among animal models. All 23 studies employed a chronic exercise protocol and a chronic stress protocol. Eight studies evaluated a preventive model, three employed a concurrent model, ten studies employed a therapeutic model, and two studies evaluated both a preventive and therapeutic model within the same study. Among the eight studies employing a preventive model, all eight demonstrated that the stress regimen impaired memory function. In all eight of these studies, when exercise occurred prior to the stressor, exercise attenuated the stress-induced memory impairment effect. Among the ten studies employing a therapeutic model, one study showed that the stress protocol enhanced memory function, one showed that the stress protocol did not influence memory, and eight demonstrated that the stress regimen impaired memory function. Among the eight studies showing that the stress protocol impaired memory function, all eight studies demonstrated that exercise, after the stressor, attenuated stress-induced memory impairment. Within animal models, chronic stress is associated with memory impairment and chronic exercise has both a preventive and therapeutic effect in attenuating stress-induced memory impairment. Additional experimental work in human studies is needed. Such work should also examine acute exercise and stress protocols.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA.
| | - Emily Frith
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA
| |
Collapse
|
124
|
Song C, Wu YS, Yang ZY, Kalueff AV, Tsao YY, Dong Y, Su KP. Astrocyte-Conditioned Medium Protects Prefrontal Cortical Neurons from Glutamate-Induced Cell Death by Inhibiting TNF-α Expression. Neuroimmunomodulation 2019; 26:33-42. [PMID: 30699428 DOI: 10.1159/000495211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Both excitotoxicity and neurotrophin deficiency may contribute to the etiology of depression and neurodegeneration. Astrocytes not only regulate glutamate metabolism and clearance, they also produce neurotrophins in the brain. However, the direct interaction between neurons and astrocytes remains unknown. METHODS This study evaluated the cellular mechanisms by which astrocyte-conditioned medium (ACM) protects prefrontal cortical neurons from glutamate-induced death by measuring cell viability and morphology as well as mRNA and protein expression of brain-derived neurotrophic factor (BDNF), BDNF receptors, glial cell line-derived neurotrophic factor (GDNF), and the proinflammatory cytokine, tumor necrosis factor (TNF)-α. Neurons and astrocytes were purified from the brains of neonatal 1-day-old Sprague-Dawley rats. ACM was harvested after exposing astrocytes to culture medium containing 100 μM glutamate for 48 h. RESULTS Glutamate insult (100 μM for 6 h) significantly reduced neuronal cell viability and increased the mRNA expression of BDNF. Glutamate (24 h) decreased neuronal viability and the expression of BDNF, but increased mRNA expression of GFAP, p75 neurotrophin receptor (p75NTR), and TNF-α. ACM pretreatment (2 h) reversed glutamate-decreased cell viability and increased BDNF, but reduced the expression of GDNF, P75NTR, and TNF-α at the mRNA level. Western blotting generally confirmed the mRNA expression following 24 glutamate insults. Furthermore, the glutamate-induced decrease in the protein expression of BDNF and full-length TrkB receptor and increase in pro-BDNF, truncated TrkB isoform 1 receptor, p75NTR, GDNF, and TNF-α were significantly attenuated by ACM pretreatment. CONCLUSIONS The study demonstrates that ACM exerts neuroprotective effects on cell viability, and this effect is most likely mediated through the modulation of neurotrophin and TNF-α expression.
Collapse
Affiliation(s)
- Cai Song
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan,
| | - Yih-Shyuan Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Zhi-You Yang
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation
- Ural Federal University, Ekaterinburg, Russian Federation
| | - Yin-Yin Tsao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yilong Dong
- School of Medicine, Yunnan University, Kunming, China
| | - Kuan-Pin Su
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, and Departments of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
125
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
126
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
127
|
Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and dimethyl fumarate ameliorate depression-like behaviour in a rat model of chronic unpredictable mild stress. Brain Res 2018; 1701:227-236. [DOI: 10.1016/j.brainres.2018.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 12/27/2022]
|
128
|
Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2018; 396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Bojana Mićić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; University of Belgrade, Faculty of Biology, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia. http://www.vinca.rs
| |
Collapse
|
129
|
Su WJ, Zhang T, Jiang CL, Wang W. Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus. Front Cell Neurosci 2018; 12:412. [PMID: 30483062 PMCID: PMC6243034 DOI: 10.3389/fncel.2018.00412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Backgrounds: Abundant reports indicate that neuroinflammatory signaling contributes to behavioral complications associated with depression and may be related to treatment response. The glial cells, especially microglia and astrocytes in brain regions of hippocampus and medial prefrontal cortex (mPFC), are major components of CNS innate immunity. Moreover, purinergic receptor P2X, ligand-gated ion channel 7 (P2X7R) was recently reckoned as a pivotal regulator in central immune system. Besides, it was pointed out that clemastine, a first-generation histamine receptor H1 (HRH1) antagonist with considerable safety profile and pharmacological effect, may suppress immune activation through modulating P2X7R. Herein, we investigated the potential anti-neuroinflammatory effects of clemastine on chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in a mouse model. Methods: Male BALB/c mice were subjected to CUMS for 4 weeks, some of them were injected with clemastine fumarate solution. After the stress procedure, behavioral tests including Sucrose Preference Tests (SPTs), Tail Suspension Tests (TSTs) and locomotor activities were performed to evaluate depressive-like phenotype. Subsequently, expression of cytokines and microglia-related inflammatory biomarkers were assessed. Results: In the present research, we found that clemastine significantly reversed both the declination of SPT percentage and the extension of TST immobility durations in depression mouse model without affecting locomotor activity. Also, we observed that clemastine regulated the imbalance of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in the hippocampus and serum of depressive-like mice. Additionally, clemastine significantly suppressed microglial M1-like activation specifically in the hippocampus, and also improved hippocampal astrocytic loss. Furthermore, clemastine downregulated hippocampal P2X7R without interfering with the expression of HRH1. Conclusion: As a safe and efficient anti-allergic agent, clemastine could impressively alleviate stress-related depressive-like phenotype in mice. Further evidence supported that it was because of the potential function of clemastine in modulating the expression of P2X7 receptor possibly independent of HRH1, therefore suppressing the microglial M1-like activation and pro-inflammatory cytokines release in brain regions of hippocampus rather than mPFC.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Ting Zhang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China.,Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, China
| |
Collapse
|
130
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
131
|
Rodríguez-Arias M, Montagud-Romero S, Guardia Carrión AM, Ferrer-Pérez C, Pérez-Villalba A, Marco E, López Gallardo M, Viveros MP, Miñarro J. Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei. PLoS One 2018; 13:e0206421. [PMID: 30365534 PMCID: PMC6203396 DOI: 10.1371/journal.pone.0206421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The experience of social stress during adolescence is associated with higher vulnerability to drug use. Increases in the acquisition of cocaine self-administration, in the escalation of cocaine-seeking behavior, and in the conditioned rewarding effects of cocaine have been observed in rodents exposed to repeated social defeat (RSD). In addition, prolonged or severe stress induces a proinflammatory state with microglial activation and increased cytokine production. The aim of the present work was to describe the long-term effects induced by RSD during adolescence on the neuroinflammatory response and synaptic structure by evaluating different glial and neuronal markers. In addition to an increase in the conditioned rewarding effects of cocaine, our results showed that RSD in adolescence produced inflammatory reactivity in microglia that is prolonged into adulthood, affecting astrocytes and neurons of two reward-processing areas of the brain (the prelimbic cortex, and the nucleus accumbens core). Considered as a whole these results suggest that social stress experience modulates vulnerability to suffer a loss of glia-supporting functions and neuronal functional synaptic density due to drug consumption in later life.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
- * E-mail:
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | | | - Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Ana Pérez-Villalba
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eva Marco
- Department of Animal Physiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - María-Paz Viveros
- Department of physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
132
|
Fiore NT, Austin PJ. Glial-cytokine-neuronal Adaptations in the Ventral Hippocampus of Rats with Affective Behavioral Changes Following Peripheral Nerve Injury. Neuroscience 2018; 390:119-140. [DOI: 10.1016/j.neuroscience.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
|
133
|
Son H, Baek JH, Go BS, Jung DH, Sontakke SB, Chung HJ, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Lee DK, Kim HJ. Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex. Neuropharmacology 2018; 143:143-152. [PMID: 30266598 DOI: 10.1016/j.neuropharm.2018.09.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Emerging evidence has shown the low levels of glutamate (Glu) and glutamine (Gln) and the hypoactivity in the cortex of patients with depression. The hypoactivity is closely related with low frequency of glutamatergic signaling that is affected by the levels of Glu and Gln. Thus, we hypothesized that there might be a causality among low levels of Glu and Gln, hypoactive glutamatergic neurotransmissions, and depressive behaviors. Here, we found low Glu and Gln levels and low frequency of spontaneous excitatory postsynaptic current (sEPSC) of glutamatergic neurons in the medial prefrontal cortex (mPFC) of chronic immobilization stress (CIS)-induced depressed mice. The depressed mice also showed hypoactive Gln synthetase (GS). Inhibition of GS by methionine sulfoximine (MSO) decreased Glu and Gln levels and increased depressive behaviors with low frequency of sEPSC in the mPFC, indicating that Glu and Gln decrements cause hypoactive glutamatergic neurotransmissions and depressive behaviors. Both Glu and Gln could increase sEPSC of glutamatergic neurons in the mPFC on slice patch, but only Gln overcame MSO to increase sEPSC, suggesting that exogenous Gln would recover CIS-induced low frequency of sEPSC caused by hypoactive GS and act as an antidepressant. Expectedly, Gln supplementation showed antidepressant effects against CIS; it increased glutamatergic neurotransmissions with Glu and Gln increment in the mPFC and attenuated depressive behaviors. Moreover, selective glutamatergic activation in the mPFC by optogenetics decreased depressive behavior. In conclusion, depressive behaviors evoked by chronic stress were due to hypoactive glutamatergic neurons in the mPFC caused by low levels of Glu and Gln, and exogenous Gln can be used as an alternative antidepressant to increase glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Ji Hyeong Baek
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Bok Soon Go
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Doo-Hyuk Jung
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Sneha B Sontakke
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Health Sciences, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea.
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea.
| |
Collapse
|
134
|
Lou YX, Li J, Wang ZZ, Xia CY, Chen NH. Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology (Berl) 2018; 235:2529-2540. [PMID: 30069586 DOI: 10.1007/s00213-018-4936-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE The decrease of astrocyte number and hypothalamic-pituitary-adrenal (HPA) axis overactivity are observed in individuals with major depressive disorder. Elevated levels of glucocorticoids induced by hyperactivation of the HPA axis may result in glucocorticoid receptor (GR) activation. However, it is unclear whether there is a direct link between GR activation and the decrease of astrocyte number. METHODS Animals were exposed to chronic unpredictable stress (CUS) for 28 days and treated with continuous subcutaneous injections of vehicle or corticosterone (CORT; 40 mg/kg/day) for 21 days. We then administered mifepristone on day 21 after CUS and on day 18 after the CORT treatment. We observed behavioral deficits in the sucrose preference test, open field test, and forced swim test. Protein expression was analyzed using immunofluorescence (IF) and western blot (WB). RESULTS Animals exposed to CUS exhibited behavioral deficits in tests measuring anhedonia, anxiety, and despair state. They also had decreases in glial fibrillary acidic protein (GFAP) expression and numbers of GFAP-positive cells in the hippocampus. The behavioral and cellular alterations induced by CUS were reversed by subchronic treatment with the GR antagonist mifepristone. We also found that the subcutaneous injection of glucocorticoids may induce depression-like behavior and reduce GFAP protein expression in rats, which was similarly reversed by mifepristone. CONCLUSIONS These findings provide experimental evidence that GR activation due to elevated CORT levels induces the decrease of hippocampal astrocyte number in rats.
Collapse
Affiliation(s)
- Yu-Xia Lou
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
135
|
A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary- adrenal axis. BIOMEDICA 2018; 38:437-450. [PMID: 30335249 DOI: 10.7705/biomedica.v38i3.3688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/13/2017] [Indexed: 12/23/2022]
Abstract
The serotonergic and immunological hypothesis of depression proposes that certain types of excessive stress distort the relationship between the activities of the innate immune and central nervous systems, so that the stress caused by an infection, or excessive psychological stress, activate toll-like receptors such as the TLR-4, the transcription factor NF-kB, the inflammasome NLRP3, as well as the secretion of interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and other factors of the innate immune response, causing first, the general symptoms of the disease which appear with any infection, but also those characteristic of depressive illness such as dysphoria and anhedonia.
The evidence indicates that, if the stimulus persists or recurs within 24 hours, the indole-2, 3-dioxygenase enzyme (IDO) of the kynurenine metabolic pathway, which increases the synthesis of quinolinic acid, is activated with an associated reduction of serotonin synthesis. Quinolinic acid activates NMDA receptors in the central nervous system and stimulates the secretion of interleukins IL-6 and 1L-1β, among others, promoting hyper-activity of the HPA axis and reinforcing a bias of the tryptophan metabolism to produce quinolinic acid, and interleukins by the innate immune system, further reducing the synthesis of serotonin and consolidating the depressive process.
We discuss the evidence showing that this process can be initiated by either interleukin stimulated by an infection or some vaccines or excessive psychological stress that activates the HPA axis together with said innate immune response, causing a process of aseptic inflammation in the central nervous system.
Collapse
|
136
|
Liu X, Yuan J, Guang Y, Wang X, Feng Z. Longitudinal in vivo Diffusion Tensor Imaging Detects Differential Microstructural Alterations in the Hippocampus of Chronic Social Defeat Stress-Susceptible and Resilient Mice. Front Neurosci 2018; 12:613. [PMID: 30210285 PMCID: PMC6123364 DOI: 10.3389/fnins.2018.00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Microstructural alterations in the hippocampus may underlie stress-related disorders and stress susceptibility. However, whether these alterations are pre-existing stress vulnerability biomarkers or accumulative results of chronic stress remain unclear. Moreover, examining the whole hippocampus as one unit and ignoring the possibility of a lateralized effect of stress may mask some stress effects and contribute to the heterogeneity of previous findings. Methods: After C57BL/6 mice were exposed to a 10-day chronic social defeat stress (CSDS) paradigm, different stress phenotypes, i.e., susceptible (n = 10) and resilient (n = 7) mice, were discriminated by the behavior of the mice in a social interaction test. With in vivo diffusion tensor imaging (DTI) scans that were conducted both before and after the stress paradigm, we evaluated diffusion properties in the left and right, dorsal (dHi) and ventral hippocampus (vHi) of experimental mice. Results: A significantly lower fractional anisotropy (FA) was found in the right vHi of the susceptible mice prior to the CSDS paradigm than that found in the resilient mice, suggesting that pre-existing microstructural abnormalities may result in stress susceptibility. However, no significant group differences were found in the post-stress FA values of any of the hippocampal regions of interest (ROIs). In addition, mean diffusivity (MD) and radial diffusivity (RD) values were found to be significantly greater only in the right dHi of the resilient group compared to those of the susceptible mice. Furthermore, a significant longitudinal decrease was only observed in the right dHi RD value of the susceptible mice. Moreover, the social interaction (SI) ratio was positively related to post-stress left MD, right dHi MD, and right dHi RD values and the longitudinal right dHi MD percent change. Meanwhile, a negative relationship was detected between the SI ratio and bilateral mean of the post-stress left relative to right vHi FA value, highlighting the important role of right hippocampus in stress-resilience phenotype. Conclusion: Our findings demonstrated different longitudinal microstructural alterations in the bilateral dHi and vHi between stress-susceptible and resilient subgroups and indicated a right-sided lateralized stress effect, which may be useful in the diagnosis and prevention of stress-related disorders as well as their intervention.
Collapse
Affiliation(s)
- Xiao Liu
- School of Psychology, Army Medical University, Chongqing, China
| | - Jizhen Yuan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Guang
- School of Psychology, Army Medical University, Chongqing, China
| | - Xiaoxia Wang
- School of Psychology, Army Medical University, Chongqing, China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
137
|
Joshi PC, Benerjee S. Effects of glucocorticoids in depression: Role of astrocytes. AIMS Neurosci 2018; 5:200-210. [PMID: 32341961 PMCID: PMC7179343 DOI: 10.3934/neuroscience.2018.3.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Astrocytes or astroglia are heterogeneous cells, similar to neurons, that have different properties in different brain regions. The implications of steroid hormones on glial cells and stress-related pathologies have been studied previously. Glucocorticoids (GCs) that are released in response to stress have been shown to be deleterious to neurons in various brain regions. Further, in the light of the effect of GCs on astrocytes, several reports have shown the crucial role of glia. Still, much remains to be done to understand the stress-astrocytes-glucocorticoid interactions associated with the pathological consequences of various CNS disorders. This review is an attempt to summarize the effects of GCs and stress on astrocytes and its implications in depression.
Collapse
Affiliation(s)
- Pranav Chintamani Joshi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sugato Benerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
138
|
Medina-Rodriguez EM, Lowell JA, Worthen RJ, Syed SA, Beurel E. Involvement of Innate and Adaptive Immune Systems Alterations in the Pathophysiology and Treatment of Depression. Front Neurosci 2018; 12:547. [PMID: 30174579 PMCID: PMC6107705 DOI: 10.3389/fnins.2018.00547] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating disorder, often fatal. Treatment options are few and often do not provide immediate relief to the patients. The increasing involvement of inflammation in the pathology of MDD has provided new potential therapeutic avenues. Cytokine levels are elevated in the blood and cerebrospinal fluid of MDD patients whereas immune cells often exhibit an immunosuppressed phenotype in MDD patients. Blocking cytokine actions in patients exhibiting MDD show some antidepressant efficacy. However, the role of cytokines, and the immune response in MDD patients remain to be determined. We reviewed here the roles of the innate and adaptive immune systems in MDD, as well as potential mechanisms whereby the immune response might be regulated in MDD.
Collapse
Affiliation(s)
- Eva M. Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jeffrey A. Lowell
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ryan J. Worthen
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shariful A. Syed
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
139
|
Marathe SV, D'almeida PL, Virmani G, Bathini P, Alberi L. Effects of Monoamines and Antidepressants on Astrocyte Physiology: Implications for Monoamine Hypothesis of Depression. J Exp Neurosci 2018; 12:1179069518789149. [PMID: 30046253 PMCID: PMC6056786 DOI: 10.1177/1179069518789149] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric
disorders affecting over one-fifth of the population worldwide. Owing to our
limited understanding of the pathophysiology of MDD, the quest for finding novel
antidepressant drug targets is severely impeded. Monoamine hypothesis of MDD
provides a robust theoretical framework, forming the core of a large jigsaw
puzzle, around which we must look for the vital missing pieces. Growing evidence
suggests that the glial loss observed in key regions of the limbic system in
depressed patients, at least partly, accounts for the structural and cognitive
manifestations of MDD. Studies in animal models have subsequently hinted at the
possibility that the glial atrophy may play a causative role in the
precipitation of depressive symptoms. Antidepressants as well as monoamine
neurotransmitters exert profound effects on the gene expression and metabolism
in astrocytes. This raises an intriguing possibility that the astrocytes may
play a central role alongside neurons in the behavioral effects of
antidepressant drugs. In this article, we discuss the gene expression and
metabolic changes brought about by antidepressants in astrocytes, which could be
of relevance to synaptic plasticity and behavioral effects of antidepressant
treatments.
Collapse
Affiliation(s)
| | | | - Garima Virmani
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Praveen Bathini
- Department of Medicine University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health SA (SICHH), Fribourg, Switzerland
| | - Lavinia Alberi
- Department of Medicine University of Fribourg, Fribourg, Switzerland.,Swiss Integrative Center for Human Health SA (SICHH), Fribourg, Switzerland
| |
Collapse
|
140
|
Astrocyte pathology in the ventral prefrontal white matter in depression. J Psychiatr Res 2018; 102:150-158. [PMID: 29660602 PMCID: PMC6005746 DOI: 10.1016/j.jpsychires.2018.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Astrocyte functions in white matter are less well understood than in gray matter. Our recent study of white matter in ventral prefrontal cortex (vPFC) revealed alterations in expression of myelin-related genes in major depressive disorder (MDD). Since white matter astrocytes maintain myelin, we hypothesized that morphometry of these cells will be altered in MDD in the same prefrontal white matter region in which myelin-related genes are altered. White matter adjacent to vPFC was examined in 25 MDD and 21 control subjects. Density and size of GFAP-immunoreactive (-ir) astrocyte cell bodies was measured. The area fraction of GFAP-ir astrocytes (cell bodies + processes) was also estimated. GFAP mRNA expression was determined using qRT-PCR. The density of GFAP-ir astrocytes was also measured in vPFC white matter of rats subjected to chronic unpredictable stress (CUS) and control animals. Fibrous and smooth GFAP-ir astrocytes were distinguished in human white matter. The density of both types of astrocytes was significantly decreased in MDD. Area fraction of GFAP immunoreactivity was significantly decreased in MDD, but mean soma size remained unchanged. Expression of GFAP mRNA was significantly decreased in MDD. In CUS rats there was a significant decrease in astrocyte density in prefrontal white matter. The decrease in density and area fraction of white matter astrocytes and GFAP mRNA in MDD may be linked to myelin pathology previously noted in these subjects. Astrocyte pathology may contribute to axon disturbances in axon integrity reported by neuroimaging studies in MDD and interfere with signal conduction in the white matter.
Collapse
|
141
|
Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S. Anti-Depressant Fluoxetine Reveals its Therapeutic Effect Via Astrocytes. EBioMedicine 2018; 32:72-83. [PMID: 29887330 PMCID: PMC6020856 DOI: 10.1016/j.ebiom.2018.05.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Although psychotropic drugs act on neurons and glial cells, how glia respond, and whether glial responses are involved in therapeutic effects are poorly understood. Here, we show that fluoxetine (FLX), an anti-depressant, mediates its anti-depressive effect by increasing the gliotransmission of ATP. FLX increased ATP exocytosis via vesicular nucleotide transporter (VNUT). FLX-induced anti-depressive behavior was decreased in astrocyte-selective VNUT-knockout mice or when VNUT was deleted in mice, but it was increased when astrocyte-selective VNUT was overexpressed in mice. This suggests that VNUT-dependent astrocytic ATP exocytosis has a critical role in the therapeutic effect of FLX. Released ATP and its metabolite adenosine act on P2Y11 and adenosine A2b receptors expressed by astrocytes, causing an increase in brain-derived neurotrophic factor in astrocytes. These findings suggest that in addition to neurons, FLX acts on astrocytes and mediates its therapeutic effects by increasing ATP gliotransmission. Anti-depressant FLX acts on astrocytes and increases VNUT-dependent ATP exocytosis. Such astrocytic responses are responsible for the FLX-induced therapeutic effects. Astrocytic ATP and its metabolite adenosine increase BDNF in astrocytes, and reveal the therapeutic effects.
Kinoshita et al. demonstrated that astrocytes are a therapeutic target of the antidepressant, fluoxetine (FLX). They found that FLX stimulates VNUT-dependent ATP release from astrocytes leading to a BDNF-mediated anti-depressive effect. This study demonstrated the astrocytic regulation of this anti-depressive effect, which complements the previously described conventional mechanism of FLX. Because the involvement of astrocytes in the pathogenesis of depression is of current interest, this new insight into the role of astrocytes in anti-depressive effects should support the establishment of novel therapeutic strategies for depression.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kayoko Fujishita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Ha Pham Ngoc Le
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hideaki Hayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
142
|
Early Maternal Deprivation Induces Microglial Activation, Alters Glial Fibrillary Acidic Protein Immunoreactivity and Indoleamine 2,3-Dioxygenase during the Development of Offspring Rats. Mol Neurobiol 2018; 56:1096-1108. [PMID: 29873040 DOI: 10.1007/s12035-018-1161-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
Maternal deprivation (MD) induces behavioral changes and impacts brain circuits that could be associated with the pathophysiology of depression. This study investigated the markers of microglia and astrocyte activation as well as indoleamine 2,3-dioxygenase (IDO) expression in developmental programming after early life MD (on postnatal days (PNDs) 20, 30, 40, and 60). On PND 60, the rats that were subjected to MD displayed depressive-like behavior. On PND 10, it was found that there was a decrease in the level of glial fibrillary acidic protein (GFAP) immunopositive cells, a decrease in the level of IDO expression, and an increase in the level of Iba-1 (microglial marker) in the hippocampus of rats that were subjected to MD. On PND 20, levels of GFAP were also found to have decreased in the hippocampus, and there was an increase in the level of Iba-1 in the hippocampus. AIF-1 (microglial marker) expression was observed in the PFC following MD. On PND 30, the levels of Iba-1 remained elevated. On PND 40, the levels of GFAP were found to have increased in the hippocampus of rats that were subjected to MD. On PND 60, the levels of GFAP and AIF-1 remained elevated following MD. These results suggest that early life stress induces negative developmental programming in rats, as demonstrated by depressive-like behavior in adult life. Moreover, MD increases microglial activation in both early and late developmental phases. The levels of GFAP and IDO decreased in the early stages but were found to be higher in later developmental periods. These findings suggest that MD could differentially affect the expression of the IDO enzyme, astrocytes, and microglial activation depending on the neurodevelopmental period. The onset of an inflammatory state from resident brain cells could be associated with the activation of the kynurenine pathway and the development of depressive behavior in adulthood.
Collapse
|
143
|
Chan TE, Grossman YS, Bloss EB, Janssen WG, Lou W, McEwen BS, Dumitriu D, Morrison JH. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex. Front Aging Neurosci 2018; 10:146. [PMID: 29875653 PMCID: PMC5974224 DOI: 10.3389/fnagi.2018.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.
Collapse
Affiliation(s)
- Thomas E. Chan
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Yael S. Grossman
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Erik B. Bloss
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - William G. Janssen
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Department of Neuroscience, Rockefeller University, New York, NY, United States
| | - Dani Dumitriu
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - John H. Morrison
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- California National Primate Research Center, Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
144
|
Inactivation of Basolateral Amygdala Prevents Stress-Induced Astroglial Loss in the Prefrontal Cortex. Mol Neurobiol 2018; 56:350-366. [DOI: 10.1007/s12035-018-1057-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
145
|
Zhao Y, Lin Z, Chen L, Ouyang L, Gu L, Chen F, Zhang Q. Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:99-109. [PMID: 29369777 DOI: 10.1016/j.pnpbp.2018.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Astrocytes have become promising new agents against major depressive disorders (MDD) primarily due to the crucial role they play in the pathogenesis of such disorders. However, a simple and reliable animal model that can be used to screen for astrocyte-targeting antidepressants has not yet been developed. In this study, we utilized a repeated corticosterone (CORT) injection paradigm to develop a mouse depression model wherein we examined the occurrence of alterations in hippocampal astrocyte population by using two astrocytic markers, namely, glial fibrillary acidic protein (GFAP) and S100β. Moreover, we determined the effects of fluoxetine and diazepam on CORT-induced astrocytic alterations to assess the predictive validity. Results showed that repeated CORT injections showed no effects on the number of GFAP+ and S100β+ astrocytes, but they decreased the protrusion length of GFAP+ astrocytes and GFAP protein expression in the hippocampus. Furthermore, repeated CORT injections produced a sustained increase of S100β protein levels in the entire hippocampus of male mice. CORT-induced hippocampal astrocyte disruption was antagonized by chronic fluoxetine treatment. By contrast, the anxiolytic drug diazepam was ineffective in the same experimental setting. All these findings suggest that the repeated CORT injection paradigm produces the astrocytic alterations similar to those in MDD and can serve as a useful mouse model to screen antidepressants meant to target astrocytes. These observations can also help in further discussing the underlying mechanisms of CORT-induced astrocytic alterations.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Lin Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liufeng Ouyang
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an 716000, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Feiyan Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
146
|
Abstract
Major depressive disorder (MDD) is a chronic and debilitating illness that affects over 350 million people worldwide; however, current treatments have failed to cure or prevent the progress of depression. Increasing evidence suggests a crucial role for connexins in MDD. In this review, we have summarised recent accomplishments regarding the role of connexins, gap junctions, and hemichannels in the aetiology of MDD, and discussed the limitations of current research. A blockage of gap junctions or hemichannels induces depressive behaviour. Possible underlying mechanisms include the regulation of neurosecretory functions and synaptic activity by gap junctions and hemichannels. Gap junctions are functionally inhibited under stress conditions. Conversely, hemichannel permeability is increased. Antidepressants inhibit hemichannel permeability; however, they have contrasting effects on the function of gap junctions under normal conditions and can protect them against stress. In conclusion, the blockage of hemichannels concurrent with improvements in gap junction functionality might be potential targets for depression treatment.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tohru Yamakuni
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
147
|
Corticosterone impairs gap junctions in the prefrontal cortical and hippocampal astrocytes via different mechanisms. Neuropharmacology 2018; 131:20-30. [DOI: 10.1016/j.neuropharm.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 01/20/2023]
|
148
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
149
|
Antidepressant effect of recombinant NT4-NAP/AAV on social isolated mice through intranasal route. Oncotarget 2018; 8:10103-10113. [PMID: 28052034 PMCID: PMC5354645 DOI: 10.18632/oncotarget.14356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
The purpose of the present study was to observe the depression-like behavior induced by social isolation; detect the antidepressant effect of a recombinant adeno-associated virus (AAV) expressing NAP on social isolation mice by intranasal delivery. After construction of NT4-NAP/AAV, expression of NAP was confirmed in vitro. 3-week-old C57/BL mice were bred individually in cages as social isolation-rearing. Six weeks later, the first subset of mice underwent behavioral tests and western blot; the second was for enzyme-linked immunosorbent assay. NT4-NAP/AAV was delivered quaque die by nasal administration for consecutive 10 days before behavioral test. Several depression-like behaviors were observed in social isolation mice, including decreased relative sucrose preference, longer immobility time in forced swimming test, lower plasma corticosterone and decreased brain-derived neurotrophic factor in hippocampus. Thus, social isolation procedure appears to be an animal model of depression with good face and construct validity. What's more, the antidepressant effect in social isolation-rearing mice was observed after intranasal administration of NT4-NAP/AAV, suggesting that this might be a promising therapeutic strategy for depressive disorder.
Collapse
|
150
|
Chronic Treatment with Fluoxetine or Clozapine of Socially Isolated Rats Prevents Subsector-Specific Reduction of Parvalbumin Immunoreactive Cells in the Hippocampus. Neuroscience 2018; 371:384-394. [DOI: 10.1016/j.neuroscience.2017.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
|