101
|
Zhao L, Yang M, Shen Q, Liu X, Shi Z, Wang S, Tang B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Sci Rep 2016; 6:27841. [PMID: 27328657 PMCID: PMC4916506 DOI: 10.1038/srep27841] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice.
Collapse
Affiliation(s)
- Lina Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Mengmeng Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Qida Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Zuokun Shi
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
102
|
Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. PEST MANAGEMENT SCIENCE 2016; 72:1231-1241. [PMID: 26299648 DOI: 10.1002/ps.4103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Juvenile hormone (JH) plays a critical role in the regulation of metamorphosis in Leptinotarsa decemlineata, a notorious defoliator of potato. JH acid methyltransferase (JHAMT) is involved in one of the final steps of JH biosynthesis. RESULTS A putative JHAMT cDNA (LdJHAMT) was cloned. Two double-stranded RNAs (dsRNAs) (dsJHAMT1 and dsJHAMT2) against LdJHAMT were constructed and bacterially expressed. Experiments were conducted to investigate the effectiveness of RNAi in both second- and fourth-instar larvae. Dietary introduction of dsJHAMT1 and dsJHAMT2 successfully knocked down the target gene, lowered JH titre in the haemolymph and reduced the transcript of Krüppel homologue 1 gene. Ingestion of dsJHAMT caused larval death and weight loss, shortened larval developmental period and impaired pupation. Moreover, the dsJHAMT-fed pupae exhibited lower adult emergence rates. The resulting adults weighed an average of 50 mg less than the control group, and the females did not deposit eggs. Application of pyriproxyfen to the dsJHAMT-fed insects rescued all the negative effects. CONCLUSIONS LdJHAMT expresses functional JHAMT enzyme. The RNAi targeting LdJHAMT could be used for control of L. decemlineata. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
103
|
Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius. Sci Rep 2016; 6:26092. [PMID: 27185064 PMCID: PMC4869114 DOI: 10.1038/srep26092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/22/2016] [Indexed: 11/30/2022] Open
Abstract
The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs.
Collapse
|
104
|
The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genet 2016; 12:e1006020. [PMID: 27135810 PMCID: PMC4852927 DOI: 10.1371/journal.pgen.1006020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis.
Collapse
|
105
|
Ojani R, Liu P, Fu X, Zhu J. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:44-52. [PMID: 26689644 PMCID: PMC4767628 DOI: 10.1016/j.ibmb.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 05/16/2023]
Abstract
Juvenile hormone (JH) controls many biological events in insects by triggering dramatic changes in gene expression in target cells. The Methoprene-tolerant (MET) protein, an intracellular JH receptor, acts as a transcriptional regulator and binds to the promoters of tissue- and stage-specific JH target genes when JH is present. Our recent study has demonstrated that the transcriptional activation by MET is modulated by a membrane-initiated JH signaling pathway, involving phospholipase C (PLC) and calcium/calmodulin-dependent protein kinase II (CaMKII). Here we report that protein kinase C (PKC) is another essential intermediate of this pathway. PKC was activated by JH and this action was PLC-dependent. Inhibition of the PKC activity substantially weakened the JH-induced gene expression in mosquito cells. RNAi experiments indicated that several PKC isoforms were involved in the JH action during the post-emergence development of adult female mosquitoes. JH treatment considerably increased the binding of MET to the promoters of JH response genes in cultured mosquito abdomens that were collected from newly emerged female adults. The JH-induced DNA binding of MET was hindered when the abdomens were treated with a PKC inhibitor and JH. Therefore, the results suggest that PKC modulates the transactivation activity of MET by enhancing the binding of MET to JH response elements in the JH target genes. This mechanism may allow for variable and stage- and tissue-specific genomic responses to JH.
Collapse
Affiliation(s)
- Reyhaneh Ojani
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaonan Fu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
106
|
Vea IM, Tanaka S, Shiotsuki T, Jouraku A, Tanaka T, Minakuchi C. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS One 2016; 11:e0149459. [PMID: 26894583 PMCID: PMC4760703 DOI: 10.1371/journal.pone.0149459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Sayumi Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiharu Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
107
|
Fernandez-Nicolas A, Belles X. CREB-binding protein contributes to the regulation of endocrine and developmental pathways in insect hemimetabolan pre-metamorphosis. Biochim Biophys Acta Gen Subj 2015; 1860:508-15. [PMID: 26706852 DOI: 10.1016/j.bbagen.2015.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND CREB-binding protein (CBP) is a promiscuous transcriptional co-regulator. In insects, CBP has been studied in the fly Drosophila melanogaster, where it is known as Nejire. Studies in D. melanogaster have revealed that Nejire is involved in the regulation of many pathways during embryo development, especially in anterior/posterior polarity, through Hedgehog and Wingless signaling, and in dorsal/ventral patterning, through TGF-ß signaling. Regarding post-embryonic development, Nejire influences histone acetyl transferase activity on the ecdysone signaling pathway. METHODS AND RESULTS Functional genomics studies using RNAi have shown that CBP contributes to the regulation of feeding and ecdysis during the pre-metamorphic nymphal instar of the cockroach Blattella germanica and is involved in TGF-ß, ecdysone, and MEKRE93 pathways, contributing to the activation of Kr-h1 and E93 expression. In D. melanogaster, Nejire's involvement in the ecdysone pathway in pre-metamorphic stages is conserved, whereas the TGF-ß pathway has only been described in the embryo. CBP role in ecdysis pathway and in the activation of Kr-h1 and E93 expression is described here for the first time. CONCLUSIONS Studies in D. melanogaster may have been suggestive that CBP functions in insects are concentrated in the embryo. Results obtained in B. germanica indicate, however, that CBP have diverse and important functions in post-embryonic development and metamorphosis, especially regarding endocrine signaling. GENERAL SIGNIFICANCE Further research into a higher diversity of models will probably reveal that the multiple post-embryonic roles of CBP observed in B. germanica are general in insects.
Collapse
Affiliation(s)
- Ana Fernandez-Nicolas
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain.
| |
Collapse
|
108
|
Fu KY, Lü FG, Guo WC, Li GQ. CHARACTERIZATION AND FUNCTIONAL STUDY OF A PUTATIVE JUVENILE HORMONE DIOL KINASE IN THE COLORADO POTATO BEETLE Leptinotarsa decemlineata (Say). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:154-167. [PMID: 26280246 DOI: 10.1002/arch.21251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation.
Collapse
Affiliation(s)
- Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
109
|
Kayukawa T, Nagamine K, Ito Y, Nishita Y, Ishikawa Y, Shinoda T. Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene. J Biol Chem 2015; 291:1751-1762. [PMID: 26518872 DOI: 10.1074/jbc.m115.686121] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
The Broad-Complex gene (BR-C) encodes transcription factors that dictate larval-pupal metamorphosis in insects. The expression of BR-C is induced by molting hormone (20-hydroxyecdysone (20E)), and this induction is repressed by juvenile hormone (JH), which exists during the premature larval stage. Krüppel homolog 1 gene (Kr-h1) has been known as a JH-early inducible gene responsible for repression of metamorphosis; however, the functional relationship between Kr-h1 and repression of BR-C has remained unclear. To elucidate this relationship, we analyzed cis- and trans elements involved in the repression of BR-C using a Bombyx mori cell line. In the cells, as observed in larvae, JH induced the expression of Kr-h1 and concurrently suppressed 20E-induced expression of BR-C. Forced expression of Kr-h1 repressed the 20E-dependent activation of the BR-C promoter in the absence of JH, and Kr-h1 RNAi inhibited the JH-mediated repression, suggesting that Kr-h1 controlled the repression of BR-C. A survey of the upstream sequence of BR-C gene revealed a Kr-h1 binding site (KBS) in the BR-C promoter. When KBS was deleted from the promoter, the repression of BR-C was abolished. Electrophoresis mobility shift demonstrated that two Kr-h1 molecules bound to KBS in the BR-C promoter. Based on these results, we conclude that Kr-h1 protein molecules directly bind to the KBS sequence in the BR-C promoter and thereby repress 20E-dependent activation of the pupal specifier, BR-C. This study has revealed a considerable portion of the picture of JH signaling pathways from the reception of JH to the repression of metamorphosis.
Collapse
Affiliation(s)
- Takumi Kayukawa
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,.
| | - Keisuke Nagamine
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,; Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Yuka Ito
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshinori Nishita
- Department of Biological Science and Center for Genome Dynamics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yukio Ishikawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Tetsuro Shinoda
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
110
|
Jindra M, Bellés X, Shinoda T. Molecular basis of juvenile hormone signaling. CURRENT OPINION IN INSECT SCIENCE 2015; 11:39-46. [PMID: 28285758 DOI: 10.1016/j.cois.2015.08.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 05/23/2023]
Abstract
Despite important roles played by juvenile hormone (JH) in insects, the mechanisms underlying its action were until recently unknown. A breakthrough has been the demonstration that the bHLH-PAS protein Met is an intracellular receptor for JH. Binding of JH to Met triggers dimerization of Met with its partner protein Tai, and the resulting complex induces transcription of target genes. In addition, JH can potentiate this response by phosphorylating Met and Tai via cell membrane, second-messenger signaling. An important gene induced by the JH-Met-Tai complex is Kr-h1, which inhibits metamorphosis. Kr-h1 represses an 'adult specifier' gene E93. The action of this JH-activated pathway in maintaining the juvenile status is dispensable during early postembryonic development when larvae/nymphs lack competence to metamorphose.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| | - Xavier Bellés
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
111
|
Lü FG, Fu KY, Guo WC, Li GQ. Characterization of two juvenile hormone epoxide hydrolases by RNA interference in the Colorado potato beetle. Gene 2015; 570:264-71. [DOI: 10.1016/j.gene.2015.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/29/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
112
|
Ylla G, Belles X. Towards understanding the molecular basis of cockroach tergal gland morphogenesis. A transcriptomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:104-112. [PMID: 26086932 DOI: 10.1016/j.ibmb.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
The tergal gland is a structure exclusive of adult male cockroaches that produces substances attractive to the female and facilitates mating. It is formed de novo in tergites 7 and 8 during the transition from the last nymphal instar to the adult. Thus, the tergal gland can afford a suitable case study to investigate the molecular basis of a morphogenetic process occurring during metamorphosis. Using Blattella germanica as model, we constructed transcriptomes from male tergites 7-8 in non-metamorphosing specimens, and from the same tergites in metamorphosing specimens. We performed a de novo assembly all available transcriptomes to construct a reference transcriptome and we identified transcripts by homology. Finally we mapped all reads into the reference transcriptome in order to perform analysis of differentially expressed genes and a GO-enrichment test. A total of 5622 contigs appeared to be overrepresented in the transcriptome of metamorphosing specimens with respect to those specimens that did not metamorphose. Among these genes, there were six GO-terms with a p-value lower than 0.05 and among them GO: 0003676 ("nucleic acid binding") was especially interesting since it included transcription factors (TFs). Examination of TF-Pfam-motifs revealed that the transcriptome of metamorphosing specimens contains the highest diversity of these motifs, with 29 different types (seven of them exclusively expressed in this stage) compared with that of non-metamorphosing specimens, which contained 24 motif types. Transcriptome comparisons suggest that TFs are important drivers of the process of tergal gland formation during metamorphosis.
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
113
|
Elshaer N, Piulachs MD. Crosstalk of EGFR signalling with Notch and Hippo pathways to regulate cell specification, migration and proliferation in cockroach panoistic ovaries. Biol Cell 2015; 107:273-85. [DOI: 10.1111/boc.201500003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/17/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Nashwa Elshaer
- Institut de Biologia Evolutiva; CSIC-Universitat Pompeu Fabra; Barcelona 08003 Spain
- Permanent address: Department of Pest Control; Faculty of Agriculture; Zagazig University; Egypt
| | - Maria-Dolors Piulachs
- Institut de Biologia Evolutiva; CSIC-Universitat Pompeu Fabra; Barcelona 08003 Spain
| |
Collapse
|
114
|
Villalobos-Sambucaro MJ, Riccillo FL, Calderón-Fernández GM, Sterkel M, Diambra LA, Ronderos JR. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus. Gen Comp Endocrinol 2015; 216:1-8. [PMID: 25963043 DOI: 10.1016/j.ygcen.2015.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022]
Abstract
Metamorphosis, which depends upon a fine balance between two groups of lipid-soluble hormones such as juvenile hormones (JHs) and ecdysteroids, is an important feature in insect evolution. While it is clear that the onset of metamorphosis depends on the decrease of JH levels, the way in which these hormones exert their activities is not fully understood in Triatominae species. The discovery of a Drosophila melanogaster mutant resistant to the treatment with the JH analog methoprene, led finally to the description of the methoprene-tolerant gene in Tribolium castaneum (TcMet) as a putative JH receptor. Here we present the genomic and functional characterization of an ortholog of the methoprene-tolerant gene in the hemimetabolous insect Rhodnius prolixus (RpMet). The analysis of the R. prolixus gene showed that the exonic structure is different from that described for holometabolous species, although all the critical protein motifs are well conserved. Expression analysis showed the presence of RpMet mRNA in all the tested tissues: ovary, testis, rectum, Malpighian tubules and salivary glands. When juvenile individuals were treated with RpMet specific double strand RNA (dsRNA), we observed abnormal molting events that resulted in individuals with morphological alterations (adultoids). Similarly, treatment of newly emerged fed females with dsRNA resulted in an abnormal development of the ovaries, with eggs revealing anomalies in size and accumulation of yolk, as well as a decrease in the amount of heme-binding protein. Altogether, our results validate that RpMet is involved in the transduction of JH signaling, controlling metamorphosis and reproduction in R. prolixus.
Collapse
Affiliation(s)
- María José Villalobos-Sambucaro
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Fernando Luis Riccillo
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Gustavo Mario Calderón-Fernández
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), (Universidad Nacional de La Plata-CONICET), La Plata, Argentina
| | - Marcos Sterkel
- Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Luis Anibal Diambra
- Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina.
| |
Collapse
|
115
|
MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proc Natl Acad Sci U S A 2015; 112:3740-5. [PMID: 25775510 DOI: 10.1073/pnas.1418522112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.
Collapse
|
116
|
Zhao XM, Liu C, Jiang LJ, Li QY, Zhou MT, Cheng TC, Mita K, Xia QY. A juvenile hormone transcription factor Bmdimm-fibroin H chain pathway is involved in the synthesis of silk protein in silkworm, Bombyx mori. J Biol Chem 2015; 290:972-86. [PMID: 25371208 PMCID: PMC4294524 DOI: 10.1074/jbc.m114.606921] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Indexed: 01/16/2023] Open
Abstract
The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and the Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chun Liu
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Li-Jun Jiang
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Qiong-Yan Li
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Meng-Ting Zhou
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Ting-Cai Cheng
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| | - Kazuei Mita
- From the State Key Laboratory of Silkworm Genome Biology and
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and Key Sericultural Laboratory of the Ministry of Agriculture, College of Bio-Technology, Southwest University, Chongqing 400716 and
| |
Collapse
|
117
|
Mello TRP, Aleixo AC, Pinheiro DG, Nunes FMF, Bitondi MMG, Hartfelder K, Barchuk AR, Simões ZLP. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Front Genet 2014; 5:445. [PMID: 25566327 PMCID: PMC4273664 DOI: 10.3389/fgene.2014.00445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023] Open
Abstract
Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.
Collapse
Affiliation(s)
- Tathyana R P Mello
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Aline C Aleixo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Daniel G Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista São Paulo, Brazil
| | - Francis M F Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos São Carlos, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Angel R Barchuk
- Laboratório de Biologia Animal Integrativa, Departamento de Biologia Celular, Tecidual e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas Alfenas, Brazil
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
118
|
Liu XP, Fu KY, Lü FG, Meng QW, Guo WC, Li GQ. Involvement of FTZ-F1 in the regulation of pupation in Leptinotarsa decemlineata (Say). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 55:51-60. [PMID: 25446391 DOI: 10.1016/j.ibmb.2014.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
During the final instar larvae of holometabolous insects, a pulse of 20-hydroxyecdysone (20E) and a drop in juvenile hormone (JH) trigger larval-pupal metamorphosis. In this study, two LdFTZ-F1 cDNAs (LdFTZ-F1-1 and LdFTZ-F1-2) were cloned in Leptinotarsa decemlineata. Both LdFTZ-F1-1 and LdFTZ-F1-2 were highly expressed just before or right after each molt, similar to the expression pattern of an ecdysteroidogenesis gene LdSHD. Ingestion of an ecdysteroid agonist halofenozide (Hal) enhanced LdFTZ-F1-1 and LdFTZ-F1-2 expression in the final larval instar. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against LdSHD repressed the expression. Moreover, Hal rescued the expression levels in LdSHD-silenced larvae. Thus, 20E peaks seem to induce the transcription of LdFTZ-F1s. Furthermore, ingesting dsLdFTZ-F1 from a common fragment of LdFTZ-F1-1 and LdFTZ-F1-2 successfully knocked down both LdFTZ-F1s, and impaired pupation. Finally, knocking down LdFTZ-F1s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered 20E titer, and reduced the expression of two 20E receptor genes. Silencing LdFTZ-F1s also induced the expression of a JH biosynthesis gene, increased JH titer, but decreased the mRNA level of a JH early-inducible gene. Thus, LdFTZ-F1s are involved in the regulation of pupation by modulating 20E and JH titers and mediating their signaling pathways.
Collapse
Affiliation(s)
- Xin-Ping Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
119
|
Lozano J, Kayukawa T, Shinoda T, Belles X. A role for Taiman in insect metamorphosis. PLoS Genet 2014; 10:e1004769. [PMID: 25356827 PMCID: PMC4214675 DOI: 10.1371/journal.pgen.1004769] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022] Open
Abstract
Recent studies in vitro have reported that the Methoprene-tolerant (Met) and Taiman (Tai) complex is the functional receptor of juvenile hormone (JH). Experiments in vivo of Met depletion have confirmed this factor's role in JH signal transduction, however, there is no equivalent data regarding Tai because its depletion in larval or nymphal stages of the beetle Tribolium castaneum and the bug Pyrrhocoris apterus results in 100% mortality. We have discovered that the cockroach Blattella germanica possesses four Tai isoforms resulting from the combination of two indels in the C-terminal region of the sequence. The presence of one equivalent indel-1 in Tai sequences in T. castaneum and other species suggests that Tai isoforms may be common in insects. Concomitant depletion of all four Tai isoforms in B. germanica resulted in 100% mortality, but when only the insertion 1 (IN-1) isoforms were depleted, mortality was significantly reduced and about half of the specimens experienced precocious adult development. This shows that Tai isoforms containing IN-1 are involved in transducing the JH signal that represses metamorphosis. Reporter assays indicated that both T. castaneum Tai isoforms, one that contains the IN-1 and another that does not (DEL-1) activated a JH response element (kJHRE) in Krüppel homolog 1 in conjunction with Met and JH. The results indicate that Tai is involved in the molecular mechanisms that repress metamorphosis, at least in B. germanica, and highlight the importance of distinguishing Tai isoforms when studying the functions of this transcription factor in development and other processes. Insect metamorphosis is one of the most fascinating processes of animal development. However, the mechanisms governing metamorphosis only started to be unveiled in the last century, when physiological research revealed that the main factor involved is juvenile hormone (JH), which represses metamorphosis in juvenile stages. Further steps to elucidate the molecular mechanisms underlying the action of JH remained elusive until recently, when the transcription factor Methoprene-tolerant (Met) was reported to be the JH receptor in the context of metamorphosis. Further experiments in vitro suggested that Met did not act alone as the JH receptor, but had to heterodimerise with another protein, Taiman (Tai). Unfortunately, Tai depletion experiments to demonstrate this protein's involvement in metamorphosis proved unsuccessful because they resulted in 100% mortality. We have discovered that Tai is expressed in a number of isoforms, and selective depletion has shown that at least some of these are involved in transducing the JH signal that represses metamorphosis. Moreover, our results show that the whole range of isoforms should be considered when studying Tai functions.
Collapse
Affiliation(s)
- Jesus Lozano
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Takumi Kayukawa
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Tetsuro Shinoda
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
120
|
Marchal E, Hult EF, Huang J, Pang Z, Stay B, Tobe SS. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development. PLoS One 2014; 9:e106737. [PMID: 25197795 PMCID: PMC4157775 DOI: 10.1371/journal.pone.0106737] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Independent of the design of the life cycle of any insect, their growth and reproduction are highly choreographed through the action of two versatile hormones: ecdysteroids and juvenile hormones (JH). However, the means by which JH can target tissues and exert its pleiotropic physiological effects is currently still not completely elucidated. Although the identity of the one JH receptor is currently still elusive, recent evidence seems to point to the product of the Methoprene-tolerant gene (Met) as the most likely contender in transducing the action of JH. Studies on the role of this transcription factor have mostly been focused on immature insect stages. In this study we used the viviparous cockroach Diploptera punctata, a favorite model in studying JH endocrinology, to examine the role of Met during reproduction. A tissue distribution and developmental profile of transcript levels was determined for Met and its downstream partners during the first gonadotropic cycle of this cockroach. Using RNA interference, our study shows that silencing Met results in an arrest of basal oocyte development; vitellogenin is no longer transcribed in the fat body and no longer taken up by the ovary. Patency is not induced in these animals which fail to produce the characteristic profile of JH biosynthesis typical of the first gonadotropic cycle. Moreover, the ultrastructure of the follicle cells showed conspicuous whorls of rough endoplasmic reticulum and a failure to form chorion. Our study describes the role of Met on a cellular and physiological level during insect reproduction, and confirms the role of Met as a key factor in the JH signaling pathway.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenguo Pang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Barbara Stay
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
121
|
Cui Y, Sui Y, Xu J, Zhu F, Palli SR. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:23-32. [PMID: 24931431 PMCID: PMC4143451 DOI: 10.1016/j.ibmb.2014.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 05/19/2023]
Abstract
Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Yipeng Sui
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Fang Zhu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
122
|
Belles X, Santos CG. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:60-8. [PMID: 25008785 DOI: 10.1016/j.ibmb.2014.06.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 05/12/2023]
Abstract
Recent studies on transcription factor E93 revealed that it triggers adult morphogenesis in Blattella germanica, Tribolium castaneum and Drosophila melanogaster. Moreover, we show here that Krüppel homolog 1 (Kr-h1), a transducer of the antimetamorphic action of juvenile hormone (JH), represses E93 expression. Kr-h1 is upstream of E93, and upstream of Kr-h1 is Methoprene-tolerant (Met), the latter being the JH receptor in hemimetabolan and holometabolan species. As such, the Met - Kr-h1 - E93 pathway (hereinafter named "MEKRE93 pathway") appears to be central to the status quo action of JH, which switch adult morphogenesis off and on in species ranging from cockroaches to flies. The decrease in Kr-h1 mRNA and the rise of E93 expression that triggers adult morphogenesis occur at the beginning of the last instar nymph or in the prepupae of hemimetabolan and holometabolan species, respectively. This suggests that the hemimetabolan last nymph (considering the entire stage, from the apolysis to the last instar until the next apolysis that gives rise to the adult) is ontogenetically homologous to the holometabolan pupa (also considered between two apolyses, thus comprising the prepupal stage).
Collapse
Affiliation(s)
- Xavier Belles
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain.
| | - Carolina G Santos
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain; Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
123
|
Song J, Wu Z, Wang Z, Deng S, Zhou S. Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:94-101. [PMID: 25017142 DOI: 10.1016/j.ibmb.2014.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) prevents insect larval metamorphosis and stimulates processes for adult reproduction. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor, is shown to mediate the anti-metamorphic effect of JH in both holometabolous and hemimetabolous insects. However, the role of Kr-h1 in JH-mediated reproduction has not been determined. Using the migratory locust, Locusta migratoria, we showed here that Kr-h1 was expressed in response to JH in female adults, and Kr-h1 transcription was directly regulated by the JH-receptor complex comprised of Methoprene-tolerant (Met) and steroid receptor co-activator. We demonstrated that Kr-h1 RNAi phenocopied Met RNAi and JH-deprived condition during post-eclosion development and vitellogenesis of female locusts. Knockdown of Kr-h1 resulted in substantial reduction of Vg expression in the fat body and lipid accumulation in the primary oocytes, accompanied by blocked follicular epithelium development, oocyte maturation and ovarian growth. Our data therefore reveal a crucial role of Kr-h1 in insect vitellogenesis and egg production. This study suggests that JH-Met-Kr-h1 signaling pathway is also functional in insect reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongxia Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shun Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
124
|
Lozano J, Belles X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS One 2014; 9:e103614. [PMID: 25072526 PMCID: PMC4114754 DOI: 10.1371/journal.pone.0103614] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
Juvenile Hormone (JH) represses metamorphosis of young instars in insects. One of the main players in hormonal signalling is Methoprene-tolerant (Met), which plays the role of JH receptor. Using the Polyneopteran insect Blattella germanica as the model and RNAi for transcript depletion, we have confirmed that Met transduces the antimetamorphic signal of JH in young nymphs and plays a role in the last nymphal instar moult in this species. Previously, the function of Met as the JH receptor had been demonstrated in the Eumetabola clade, with experiments in Holometabola (in the beetle Tribolium castaneum) and in their sister group Paraneoptera (in the bug Pyrrhocoris apterus). Our result shows that the function of Met as JH receptor is also conserved in the more basal Polyneoptera. The function of Met as JH transducer might thus predate the evolutionary innovation of metamorphosis. Moreover, expression of Met was also found in last nymphal instar of B. germanica, when JH is absent. Depletion of Met in this stage provoked deficiencies in wing growth and ecdysis problems in the imaginal moult. Down-regulation of the ecdysone-inducible gene E75A and Insulin-Like-Peptide 1 in these Met-depleted specimens suggest that Met is involved in the ecdysone and insulin signalling pathways in last nymphal instar, when JH is virtually absent.
Collapse
Affiliation(s)
- Jesus Lozano
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
125
|
Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proc Natl Acad Sci U S A 2014; 111:7024-9. [PMID: 24778249 DOI: 10.1073/pnas.1401478111] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.
Collapse
|
126
|
Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori. Int J Genomics 2014; 2014:426025. [PMID: 24809046 PMCID: PMC3997853 DOI: 10.1155/2014/426025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 01/23/2023] Open
Abstract
Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling.
Collapse
|
127
|
Kayukawa T, Murata M, Kobayashi I, Muramatsu D, Okada C, Uchino K, Sezutsu H, Kiuchi M, Tamura T, Hiruma K, Ishikawa Y, Shinoda T. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Dev Biol 2014; 388:48-56. [DOI: 10.1016/j.ydbio.2014.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
128
|
Hepat R, Kim Y. JH modulates a cellular immunity of Tribolium castaneum in a Met-independent manner. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:40-47. [PMID: 24607640 DOI: 10.1016/j.jinsphys.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Juvenile hormone (JH) regulates diverse physiological processes in insects during entire developmental stages. Especially, the identification of Methoprene-tolerant (Met), a JH nuclear receptor, allows us to better understand molecular actions of JH to control gene expressions related with metamorphosis. However, several physiological processes including cellular immune response and some molecular actions of JH have been suspected to be mediated via its non-genomic actions. To prove its non-genomic action, JH nuclear signals were suppressed by RNA interference (RNAi) of Met or its downstream gene, Krüppel homolog 1 (Kr-h1), in the red flour beetle, Tribolium castaneum. These RNAi-treated larvae failed to undergo a normal development and suffered precocious metamorphosis. Hemocytes of T. castaneum exhibited their spreading behavior on extracellular matrix and nodule formation in response to bacterial challenge. When the larvae were treated with either RNAi of Met or Kr-h1, the hemocytes of the treated larvae were responsive to JH without any significant difference with those of control larvae. These results suggest that the response of hemocytes to JH is not mediated by its nuclear signal. On the other hand, the JH modulation of hemocyte behaviors of T. castaneum was significantly influenced by membrane and cytosolic protein activities, in which ethoxyzolamide (a specific inhibitor of carbonic anhydrase), calphostin C (a specific inhibitor of protein kinase C) or ouabain (a specific inhibitor of Na(+)-K(+) ATPase) significantly suppressed the responsiveness of hemocytes to JH.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
129
|
Ren D, Cai Z, Song J, Wu Z, Zhou S. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. INSECT MOLECULAR BIOLOGY 2014; 23:175-184. [PMID: 24308607 DOI: 10.1111/imb.12074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) by introducing double-stranded RNA (dsRNA) is a powerful approach to the analysis of gene function in insects; however, RNAi responses vary dramatically in different insect species and tissues, and the underlying mechanisms remain poorly understood. The migratory locust, a destructive insect pest and a hemimetabolic insect with panoistic ovaries, is considered to be a highly susceptible species to RNAi via dsRNA injection, but its ovary appears to be completely insensitive. In the present study, we showed that dsRNA persisted only briefly in locust haemolymph. The ovariole sheath was permeable to dsRNA, but injected dsRNA was not present in the follicle cells and oocytes. The lack of dsRNA uptake into the follicle cells and oocytes is likely to be the primary factor that contributes to the ineffective RNAi response in locust ovaries. These observations provide insights into tissue-dependent variability of RNAi and help in achieving successful gene silencing in insensitive tissues.
Collapse
Affiliation(s)
- D Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
130
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
131
|
Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev Biol 2014; 390:221-30. [PMID: 24662045 DOI: 10.1016/j.ydbio.2014.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Takaaki Daimon
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| |
Collapse
|
132
|
Smykal V, Bajgar A, Provaznik J, Fexova S, Buricova M, Takaki K, Hodkova M, Jindra M, Dolezel D. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:69-76. [PMID: 24361539 DOI: 10.1016/j.ibmb.2013.12.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 05/11/2023]
Abstract
Juvenile hormone (JH), a sesquiterpenoid produced by the insect corpus allatum gland (CA), prevents metamorphosis in larvae and stimulates vitellogenesis in adult females. Whether the same JH signaling pathway regulates both processes is presently unknown. Here, we employ the robust JH response during reproduction and development of the linden bug, Pyrrhocoris apterus, to compare the function of key JH-signaling genes encoding the JH receptor, Methoprene-tolerant (Met), its binding partner Taiman (Tai), and a JH-inducible protein, Krüppel-homolog 1 (Kr-h1). RNA interference (RNAi) with Met or Tai, but not Kr-h1, blocked ovarian development and suppressed vitellogenin gene expression in the fat body of females raised under reproduction-inducing conditions. Loss of Met and Tai matched the effects of CA ablation or the natural absence of JH during reproductive diapause. Stimulation of vitellogenesis by treatment of diapausing females with a JH mimic methoprene also required both Met and Tai in the fat body, whereas Kr-h1 RNAi had no effect. Therefore, the Met-Tai complex likely functions as a JH receptor during vitellogenesis. In contrast to Met and Kr-h1 that are both required for JH to prevent precocious metamorphosis in P. apterus larvae, removal of Tai disrupted larval ecdysis without causing premature adult development. Our results show that while Met operates during metamorphosis in larvae and reproduction in adult females, its partner Tai is only required for the latter. The diverse functions of JH thus likely rely on a common receptor whose actions are modulated by distinct components.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Jan Provaznik
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Silvie Fexova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marcela Buricova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Magdalena Hodkova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| | - David Dolezel
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
133
|
Chorion formation in panoistic ovaries requires windei and trimethylation of histone 3 lysine 9. Exp Cell Res 2014; 320:46-53. [DOI: 10.1016/j.yexcr.2013.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/05/2023]
|
134
|
Zhou LT, Jia S, Wan PJ, Kong Y, Guo WC, Ahmat T, Li GQ. RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1049-1056. [PMID: 23973411 DOI: 10.1016/j.jinsphys.2013.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
In Leptinotarsa decemlineata, juvenile hormones (JHs) play primary roles in the regulation of metamorphosis, reproduction and diapause. In JH biosynthetic pathway in insect corpora allata, methylation of farnesoic acid or JH acid using S-adenosyl-L-methionine generates a potent feedback inhibitor S-adenosyl-L-homocysteine (AdoHcy). Rapid removal of AdoHcy is hypothesized to be essential for JH synthesis. AdoHcy hydrolase (SAHase) is the only eukaryotic enzyme catalyzing the removal. In the present paper, we firstly cloned a putative LdSAHase gene from L. decemlineata. The cDNA consists of 1806 bp and encodes a 525 amino acid protein. LdSAHase was expressed in all developmental stages. The gene had the highest and the lowest level of transcription respectively in the 3rd- and 4th-instars' heads that contain corpora allata, which was positively correlated with JH titer in the haemolymph and the mRNA level of a JH early-inducible gene, the Krüppel homolog 1 gene (Kr-h1). Secondly, dietary ingestion of bacterially-expressed LdSAHase-dsRNA significantly decreased LdSAHase and LdKr-h1 mRNA levels, reduced JH titer, and caused the death of the larvae, and the failure of pupation and adult emergence. After continuous exposure for 12 days, 42% of the larvae died, 65% of the prepupae failed to pupate and 100% of the pupae failed to emerge. Moreover, RNAi-mediated LdSAHase knockdown also reduced larval developing time, and decreased larval weight. Lastly, application of JH analogue pyriproxyfen to LdSAHase-dsRNA-exposed larvae did not greatly increase LdSAHase expression level and JH content, but up-regulated LdKr-h1 mRNA level. Expectedly, pyriproxyfen application could partially rescue the negative effects on the survival and the development. Thus, our results support the hypothesis that SAHase plays a critical role in JH biosynthesis in insects.
Collapse
Affiliation(s)
- Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
135
|
Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep 2013; 3:1570. [PMID: 23535851 PMCID: PMC3610134 DOI: 10.1038/srep01570] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
The red flour beetle, Tribolium castaneum, has been widely used as a laboratory model for analyzing gene function. In this study, we established a novel cell line (Tc81) from T. castaneum embryos and validated the utility of this cell line by analyzing the juvenile hormone (JH) signaling pathway. In Tc81 cells, the Krüppel homolog 1 gene (Kr-h1), which is a JH-dependent repressor of insect metamorphosis, was rapidly induced by subnanomolar levels of JHs. Bioinformatics analysis and reporter assays identified 2 JH response elements (kJHREs) located in the region upstream of the transcription start site and in the first intron of Kr-h1. Furthermore, methoprene tolerant (Met) and steroid receptor co-activator (SRC) RNAi reduced JH-dependent induction of Kr-h1 transcripts and kJHRE-reporter activities. Thus, this novel Tc81 cell line is useful for the elucidation of JH signaling and is a promising tool for the functional analysis of genes by RNAi and reporter assays.
Collapse
|
136
|
Huang JH, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta Gen Subj 2013; 1830:2178-87. [DOI: 10.1016/j.bbagen.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
|
137
|
Matsui H, Kakei M, Iwami M, Sakurai S. Hormonal regulation of the death commitment in programmed cell death of the silkworm anterior silk glands. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1575-1581. [PMID: 23063728 DOI: 10.1016/j.jinsphys.2012.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
During larval-pupal transformation, the anterior silk glands (ASGs) of the silkworm Bombyx mori undergo programmed cell death (PCD) triggered by 20-hydroxyecdysone (20E). Under standard in vitro culture conditions (0.3 ml of medium with 1 μM 20E), ASGs of the fourth-instar larvae do not undergo PCD in response to 20E. Similarly, larvae of the fifth instar do not respond to 20E through day 5 of the instar (V5). However, ASGs of V6 die when challenged by 20E, indicating that the glands might be destined to die before V6 but that a death commitment is not yet present. When we increased the volume of culture medium for one gland from 0.3 to 9 ml, V5 ASGs underwent PCD. We examined the response of ASGs to 20E every day by culturing them in 9 ml of medium and found that ASGs on and after V2 were fully responsive to 20E. Because pupal commitment is associated with juvenile hormone (JH), the corpora allata (a JH secretory organ) were removed on day 3 of the fourth larval instar (IV3), and their ASGs on V0 were cultured with 20E. Removal of the corpora allata allowed the V0 larval ASGs to respond to 20E with PCD. In contrast, topical application of a JH analogue inhibited the response to 20E when applied on or before V5. We conclude that the acquisition of responsiveness to 20E precedes the loss of JH sensitivity, and that the death commitment in ASGs occurs between V5 and 6.
Collapse
Affiliation(s)
- Hiroto Matsui
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
138
|
Riddiford LM. How does juvenile hormone control insect metamorphosis and reproduction? Gen Comp Endocrinol 2012; 179:477-84. [PMID: 22728566 DOI: 10.1016/j.ygcen.2012.06.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 01/08/2023]
Abstract
In insects juvenile hormone (JH) regulates both metamorphosis and reproduction. This lecture focuses on our current understanding of JH action at the molecular level in both of these processes based primarily on studies in the tobacco hornworm Manduca sexta, the flour beetle Tribolium castaneum, the mosquito Aedes aegypti, and the fruit fly Drosophila melanogaster. The roles of the JH receptor complex and the transcription factors that it regulates during larval molting and metamorphosis are summarized. Also highlighted are the intriguing interactions of the JH and insulin signaling pathways in both imaginal disc development and vitellogenesis. Critical actions of JH and its receptor in the timing of maturation of the adult optic lobe and of female receptivity in Drosophila are also discussed.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
139
|
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:181-204. [PMID: 22994547 DOI: 10.1146/annurev-ento-120811-153700] [Citation(s) in RCA: 577] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | | | | |
Collapse
|
140
|
Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc Natl Acad Sci U S A 2012; 109:11729-34. [PMID: 22753472 DOI: 10.1073/pnas.1204951109] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Krüppel homolog 1 gene (Kr-h1) has been proposed to play a key role in the repression of insect metamorphosis. Kr-h1 is assumed to be induced by juvenile hormone (JH) via a JH receptor, methoprene-tolerant (Met), but the mechanism of induction is unclear. To elucidate the molecular mechanism of Kr-h1 induction, we first cloned cDNAs encoding Kr-h1 (BmKr-h1) and Met (BmMet1 and BmMet2) homologs from Bombyx mori. In a B. mori cell line, BmKr-h1 was rapidly induced by subnanomolar levels of natural JHs. Reporter assays identified a JH response element (kJHRE), comprising 141 nucleotides, located ∼2 kb upstream from the BmKr-h1 transcription start site. The core region of kJHRE (GGCCTCCACGTG) contains a canonical E-box sequence to which Met, a basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) transcription factor, is likely to bind. In mammalian HEK293 cells, which lack an intrinsic JH receptor, ectopic expression of BmMet2 fused with Gal4DBD induced JH-dependent activity of an upstream activation sequence reporter. Meanwhile, the kJHRE reporter was activated JH-dependently in HEK293 cells only when cotransfected with BmMet2 and BmSRC, another bHLH-PAS family member, suggesting that BmMet2 and BmSRC jointly interact with kJHRE. We also found that the interaction between BmMet2 and BmSRC is dependent on JH. Therefore, we propose the following hypothesis for the mechanism of JH-mediated induction of BmKr-h1: BmMet2 accepts JH as a ligand, JH-liganded BmMet2 interacts with BmSRC, and the JH/BmMet2/BmSRC complex activates BmKr-h1 by interacting with kJHRE.
Collapse
|
141
|
Super-induction of Dicer-2 expression by alien double-stranded RNAs: an evolutionary ancient response to viral infection? Dev Genes Evol 2012; 222:229-35. [DOI: 10.1007/s00427-012-0404-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/25/2012] [Indexed: 12/15/2022]
|
142
|
Bernardo TJ, Dubrovsky EB. Molecular Mechanisms of Transcription Activation by Juvenile Hormone: A Critical Role for bHLH-PAS and Nuclear Receptor Proteins. INSECTS 2012; 3:324-38. [PMID: 26467963 PMCID: PMC4553631 DOI: 10.3390/insects3010324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) is responsible for controlling many biological processes. In several insect species JH has been implicated as a key regulator of developmental timing, preventing the premature onset of metamorphosis during larval growth periods. However, the molecular basis of JH action is not well-understood. In this review, we highlight recent advances which demonstrate the importance of transcription factors from the bHLH-PAS and nuclear receptor families in mediating the response to JH.
Collapse
Affiliation(s)
| | - Edward B Dubrovsky
- Department of Biology, Fordham University, Bronx, NY 10458, USA.
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|