101
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
102
|
Lei Z, Fritzsche B, Eckert K. Stability criterion for the magnetic separation of rare-earth ions. Phys Rev E 2020; 101:013109. [PMID: 32069612 DOI: 10.1103/physreve.101.013109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/07/2022]
Abstract
The stability criterion for the magnetic separation of rare-earth ions is studied, taking dysprosium Dy(iii) ions as an example. Emphasis is placed on quantifying the factors that limit the desired high enrichment. During magnetic separation, a layer enriched in Dy(iii) ions is generated via the surface evaporation of an aqueous solution which is levitated by the Kelvin force. Later, mass transport triggers instability in the enriched layer. The onset time and position of the instability is studied using an interferometer. The onset time signals that an advective process which significantly accelerates the stratification of enrichment is taking place, although the initial phase is quasi-diffusion-like. The onset position of the flow agrees well with that predicted with a generalized Rayleigh number (Ra^{*}=0) criterion which includes the Kelvin force term acting antiparallel to gravity. Further three-dimensional analysis of the potential energy, combining magnetic and gravitational terms, shows an energy barrier that has to be overcome to initiate instability. The position of the energy barrier coincides well with the onset position of the instability.
Collapse
Affiliation(s)
- Zhe Lei
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, D-01328 Dresden, Germany.,Institute of Processing Engineering and Environmental Technology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Barbara Fritzsche
- Institute of Processing Engineering and Environmental Technology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Kerstin Eckert
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, D-01328 Dresden, Germany.,Institute of Processing Engineering and Environmental Technology, Technische Universität Dresden, D-01069 Dresden, Germany
| |
Collapse
|
103
|
Guo R, Uddin MN, Price LS, Price SL. Calculation of Diamagnetic Susceptibility Tensors of Organic Crystals: From Coronene to Pharmaceutical Polymorphs. J Phys Chem A 2020; 124:1409-1420. [PMID: 31951408 PMCID: PMC7145345 DOI: 10.1021/acs.jpca.9b07104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Understanding
why crystallization in strong magnetic fields can
lead to new polymorphs requires methods to calculate the diamagnetic
response of organic molecular crystals. We develop the calculation
of the macroscopic diamagnetic susceptibility tensor, χcryst, for organic molecular crystals using periodic density
functional methods. The crystal magnetic susceptibility tensor, χcryst, for all experimentally known polymorphs,
and its molecular counterpart, χmol,
are calculated for flexible pharmaceuticals such as carbamazepine,
flufenamic acid, and chalcones, and rigid molecules, such as benzene,
pyridine, acridine, anthracene, and coronene, whose molecular magnetic
properties have been traditionally studied. A tensor addition method
is developed to approximate the crystal diamagnetic susceptibility
tensor, χcryst, from the molecular one, χmol, giving good agreement with those calculated
directly using the more costly periodic density functional method
for χcryst. The response of pharmaceutical
molecules and crystals to magnetic fields, as embodied by χcryst, is largely determined by the packing in the crystal,
as well as the molecular conformation. The anisotropy of χcryst can vary considerably between polymorphs though
the isotropic terms are fairly constant. The implications for developing
a computational method for predicting whether crystallization in a
magnetic field could produce a novel or different polymorph are discussed.
Collapse
Affiliation(s)
- Rui Guo
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - M Nadia Uddin
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - Louise S Price
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| | - Sarah L Price
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , U.K
| |
Collapse
|
104
|
Kim Y, Abafogi AT, Tran BM, Kim J, Lee J, Chen Z, Bae PK, Park K, Shin YB, van Noort D, Lee NY, Park S. Integrated Microfluidic Preconcentration and Nucleic Amplification System for Detection of Influenza A Virus H1N1 in Saliva. MICROMACHINES 2020; 11:E203. [PMID: 32079062 PMCID: PMC7074655 DOI: 10.3390/mi11020203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Influenza A viruses are often present in environmental and clinical samples at concentrations below the limit of detection (LOD) of molecular diagnostics. Here we report an integrated microfluidic preconcentration and nucleic amplification system (μFPNAS) which enables both preconcentration of influenza A virus H1N1 (H1N1) and amplification of its viral RNA, thereby lowering LOD for H1N1. H1N1 virus particles were first magnetically preconcentrated using magnetic nanoparticles conjugated with an antibody specific for the virus. Their isolated RNA was amplified to cDNA through thermocycling in a trapezoidal chamber of the μFPNAS. A detection limit as low as 100 TCID50 (50% tissue culture infective dose) in saliva can be obtained within 2 hours. These results suggest that the LOD of molecular diagnostics for virus can be lowered by systematically combining immunomagnetic separation and reverse transcriptase-polymerase chain reaction (RT-PCR) in one microfluidic device.
Collapse
Affiliation(s)
- Yonghee Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Abdurhaman Teyib Abafogi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Buu Minh Tran
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea; (B.M.T.); (N.Y.L.)
| | - Jaewon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Pan Kee Bae
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
| | - Kyoungsook Park
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
| | - Yong-Beom Shin
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of bioengineering, KRIBB School, University of science and Technology (UST), Daejeon 34141, Korea
| | - Danny van Noort
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
- Chair of Micro Process Engineering and Technology (COMPETE), University of Ljubljana, 1000 Ljubljana, Slovenia
- Centro de Investigación en Bioingeniería -BIO, Universidad de Ingenieria y Tecnologia—UTEC, Barranco 15036, Peru
| | - Nae Yoon Lee
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea; (B.M.T.); (N.Y.L.)
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
105
|
Li P, Gandhi D, Mutas M, Ran YF, Carr M, Rampini S, Hall W, Lee GU. Direct identification of the herpes simplex virus UL27 gene through single particle manipulation and optical detection using a micromagnetic array. NANOSCALE 2020; 12:3482-3490. [PMID: 31971211 DOI: 10.1039/c9nr10362g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetophoretic lab on a chip technologies are rapidly evolving into integrated systems for the identification of biomarkers and cells with ultra-high sensitivity. We demonstrate the highly efficient detection of the Human herpes simplex virus type 1 (HSV) UL27 gene through the programmed assembly of superparamagnetic (SPM) nanoparticles based on oligonucleotide hybridization. The state of assembly of the SPM nanoparticles was determined by optical signature of the synchronized motion on the beads on a micromagnetic array (MMA). This technique has been used to identify <200 copies of the HSV UL27 gene without amplification in less than 20 minutes. The MAA can also be used to separate gene-SPM bead aggregates from millions of unreacted SPM beads based on nonlinear magnetophoresis (NLM). The MMA-optical detection system promises to enable highly sensitive, nucleic acid analysis to be performed without amplification and with the consumption of minimal amounts of reagent.
Collapse
Affiliation(s)
- Peng Li
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dhruv Gandhi
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Marina Mutas
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Yin-Fen Ran
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Michael Carr
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland and Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Stefano Rampini
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - William Hall
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
106
|
Guevara-Pantoja PE, Sánchez-Domínguez M, Caballero-Robledo GA. Micro-nanoparticles magnetic trap: Toward high sensitivity and rapid microfluidic continuous flow enzyme immunoassay. BIOMICROFLUIDICS 2020; 14:014111. [PMID: 32038740 PMCID: PMC6992449 DOI: 10.1063/1.5126027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 05/13/2023]
Abstract
In this work, we developed a microfluidic system for immunoassays where we combined the use of magnetic nanoparticles as immunosupport, a microfluidic magnetic trap, and a fluorogenic substrate in continuous flow for detection which, together with the optimization of the functionalization of surfaces to minimize nonspecific interactions, resulted in a detection limit in the order of femtomolar and a total assay time of 40 min for antibiotin antibody detection. A magnetic trap made of carbonyl-iron microparticles packaged inside a 200 μ m square microchannel was used to immobilize and concentrate nanoparticles. We functionalized the surface of the iron microparticles with a silica-polyethylene glycol (PEG) shell to avoid corrosion and unspecific protein binding. A new one-step method was developed to coat acrylic microchannels with an organofunctional silane functionalized with PEG to minimize unspecific binding. A model immunoassay was performed using nanoparticles decorated with biotin to capture antibiotin rabbit Immunoglobulin G (IgG) as target primary antibody. The detection was made using antirabbit IgG labeled with the enzyme alkaline phosphatase as a secondary antibody, and we measured fluorescence with a fluorescence microscope. All steps of the immunoassay were performed inside the chip. A calibration curve was obtained in which a detection limit of 8 pg/ml of antibiotin antibody was quantified. The simplicity of the device and the fact that it is made of acrylic, which is compatible with mass production, make it ideal for Point-Of-Care applications.
Collapse
Affiliation(s)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Nuevo León, Mexico
| | | |
Collapse
|
107
|
Sobecki C, Zhang J, Wang C. Numerical Study of Paramagnetic Elliptical Microparticles in Curved Channels and Uniform Magnetic Fields. MICROMACHINES 2019; 11:E37. [PMID: 31905597 PMCID: PMC7019469 DOI: 10.3390/mi11010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 01/20/2023]
Abstract
We numerically investigated the dynamics of a paramagnetic elliptical particle immersed in a low Reynolds number Poiseuille flow in a curved channel and under a uniform magnetic field by direct numerical simulation. A finite element method, based on an arbitrary Lagrangian-Eulerian approach, analyzed how the channel geometry, the strength and direction of the magnetic field, and the particle shape affected the rotation and radial migration of the particle. The net radial migration of the particle was analyzed after executing a π rotation and at the exit of the curved channel with and without a magnetic field. In the absence of a magnetic field, the rotation is symmetric, but the particle-wall distance remains the same. When a magnetic field is applied, the rotation of symmetry is broken, and the particle-wall distance increases as the magnetic field strength increases. The causation of the radial migration is due to the magnetic angular velocity caused by the magnetic torque that constantly changes directions during particle transportation. This research provides a method of magnetically manipulating non-spherical particles on lab-on-a-chip devices for industrial and biological applications.
Collapse
Affiliation(s)
| | | | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th St., Rolla, MO 65409, USA; (C.S.); (J.Z.)
| |
Collapse
|
108
|
Brimmo AT, Menachery A, Qasaimeh MA. Microelectrofluidic probe for sequential cell separation and patterning. LAB ON A CHIP 2019; 19:4052-4063. [PMID: 31680130 DOI: 10.1039/c9lc00748b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cell separation and patterning are of interest to several biological and medical applications including rare cell isolation and co-culture models. Numerous microfluidic devices have been used for cell separation and patterning, however, the typical closed channel configuration comes with challenges and limitations. Here, we report a dielectrophoresis (DEP) enabled microelectrofluidic probe (MeFP) for sequentially separating and patterning of mammalian cells in an open microfluidic system. The MeFP is a microfluidic probe with injection and aspiration apertures, integrated with an array of micro-hump electrodes on its tip. Aligning the MeFP parallel, and in close proximity, to a conductive substrate forms a vertical pin-plate electrode configuration that allows for an integration of DEP forces within the hydrodynamic flow confinement. Upon confining a heterogeneous cell suspension in the gap between the MeFP and the substrate, target cells are selectively captured on the micro-hump electrodes using positive DEP forces, and then deposited on the substrate in defined patterns. Characterization of the MeFP showed an increase in cell-capture efficiency when the MeFP is of a higher microfluidic multipole configuration. Separation of cancer cells from T lymphocytes was demonstrated with capture purity as high as 89.6%. Deposited patterns of isolated cells match the numerically calculated particle trajectories of the evaluated microfluidic multipoles configurations. By adjusting the flow configuration of the MeFP, we show that the patterned co-culture of two different cell types can be dynamically controlled for homotypic and heterotypic cell interaction studies. This work presents a multifunctional microfluidic tool that bio-fabricates selective multicellular patterns directly on an open substrate without the need for confined conduits.
Collapse
Affiliation(s)
- Ayoola T Brimmo
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Mechanical and Aerospace Engineering, New York University, NY, USA
| | - Anoop Menachery
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Mohammad A Qasaimeh
- Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Mechanical and Aerospace Engineering, New York University, NY, USA
| |
Collapse
|
109
|
Ilami M, Ahmed RJ, Edwards D, Thompson E, Zeinolabedinzadeh S, Marvi H. Magnetically Actuated Tunable Soft Electronics. ACS OMEGA 2019; 4:21242-21250. [PMID: 31867518 PMCID: PMC6921637 DOI: 10.1021/acsomega.9b02716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/19/2019] [Indexed: 05/30/2023]
Abstract
Variable electronics are vital in tunable filters, transmitters, and receivers, among other applications. In addition, the ability to remotely tune soft capacitors, resistors, and inductors is important for applications in which the device is not accessible. In this paper, a uniform method of remotely tuning the characteristic properties of soft electronic units (i.e. inductance, capacitance, and resistance) is presented. In this method, magnetically actuated ferrofluid mixed with iron powder is dragged in a soft fluidic channel made of polydimethylsiloxane (PDMS) to tune the electrical properties of the component. The effects of position and quantity of the ferrofluid and iron powder are studied over a range of frequencies, and the changes in inductance, capacitance, resistance, quality factor, and self-resonance frequency are reported accordingly. The position plays a bigger role in changing inductance, capacitance, and resistance. With the proposed design, the inductance can be changed by 20.9% from 3.31 μH for planar inductors and 23% from 0.44 μH for axial inductors. In addition, the capacitance of capacitors and impedance of resistors can be changed by 12.7% from 2.854 pF and 185.3% from 0.353 kΩ, respectively. Furthermore, the changes in the inductance, capacitance, and resistance follow "quasi-linear profiles" with the input during position and quantity effect experiments.
Collapse
Affiliation(s)
- Mahdi Ilami
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| | - Reza J. Ahmed
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| | - Dakota Edwards
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| | - Erskine Thompson
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| | - Saeed Zeinolabedinzadeh
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| | - Hamidreza Marvi
- School
for Engineering of Matter, Transport and Energy and School of Electrical,
Computer and Energy Engineering, The Arizona
State University, Tempe, Arizona 85281, United States
| |
Collapse
|
110
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
111
|
Lane SIR, Butement J, Harrington J, Underwood T, Shrimpton J, West J. Perpetual sedimentation for the continuous delivery of particulate suspensions. LAB ON A CHIP 2019; 19:3771-3775. [PMID: 31608915 DOI: 10.1039/c9lc00774a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particle sedimentation is deleterious to a tremendous variety of microfluidic applications. Using an open instrumentation approach we show that syringe rotation retains particles in a suspended state, providing a universal solution for the continuous delivery of particulate samples to microfluidic processors.
Collapse
Affiliation(s)
- Simon I R Lane
- Faculty of Engineering and Physical Sciences, University of Southampton, UK and Institute for Life Sciences, University of Southampton, UK.
| | - Jonathan Butement
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Jack Harrington
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Tim Underwood
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - John Shrimpton
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
112
|
Xiang N, Li Q, Shi Z, Zhou C, Jiang F, Han Y, Ni Z. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration. Electrophoresis 2019; 41:875-882. [PMID: 31705675 DOI: 10.1002/elps.201900385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
We developed a low-cost multi-core inertial microfluidic centrifuge (IM-centrifuge) to achieve a continuous-flow cell/particle concentration at a throughput of up to 20 mL/min. To lower the cost of our IM-centrifuge, we clamped a disposable multilayer film-based inertial microfluidic (MFIM) chip with two reusable plastic housings. The key MFIM chip was fabricated in low-cost materials by stacking different polymer-film channel layers and double-sided tape. To increase processing throughput, multiplexing spiral inertial microfluidic channels were integrated within an all-in-one MFIM chip, and a novel sample distribution strategy was employed to equally distribute the sample into each channel layer. Then, we characterized the focusing performance in the MFIM chip over a wide flow-rate range. The experimental results showed that our IM-centrifuge was able to focus various-sized particles/cells to achieve volume reduction. The sample distribution strategy also effectively ensured identical focusing and concentration performances in different cores. Finally, our IM-centrifuge was successfully applied to concentrate microalgae cells with irregular shapes and highly polydisperse sizes. Thus, our IM-centrifuge holds the potential to be employed as a low-cost, high-throughput centrifuge for disposable use in low-resource settings.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhiguo Shi
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Chenguang Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
113
|
Dodoo J, Stokes AA. Shaping and transporting diamagnetic sessile drops. BIOMICROFLUIDICS 2019; 13:064110. [PMID: 31737159 PMCID: PMC6850968 DOI: 10.1063/1.5124805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 05/07/2023]
Abstract
Electromagnetic fields are commonly used to control small quantities of fluids in microfluidics and digital microfluidics. Magnetic control techniques are less well studied than their electric counterparts, with only a few investigations into liquid diamagnetism. The ratio of magnetic to surface energy (magnetic Bond number B m ) is an order of magnitude smaller for diamagnetic drops ( B m ≈ - 0.3 at 1.2 T applied field) than for paramagnetic drops ( B m ≈ 9.0 at 1.2 T applied field). This weaker interaction between the magnetic field and the diamagnetic drop has led to the phenomenon being overlooked in digital microfluidics. Here, we investigate shaping and transport of diamagnetic drops using magnetostatic fields. Our findings highlight how diamagnetic fluids can be used as a novel tool in the toolbox of microfluidics and digital microfluidics.
Collapse
Affiliation(s)
- Jennifer Dodoo
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Edinburgh EH9 3LJ, United Kingdom
| | - Adam A Stokes
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Edinburgh EH9 3LJ, United Kingdom
| |
Collapse
|
114
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
115
|
Chansoria P, Shirwaiker R. Characterizing the Process Physics of Ultrasound-Assisted Bioprinting. Sci Rep 2019; 9:13889. [PMID: 31554888 PMCID: PMC6761177 DOI: 10.1038/s41598-019-50449-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°-0°) and orthogonal (0°-90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Rohan Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, United States of America.
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, 27695, United States of America.
| |
Collapse
|
116
|
Liang D, Ma P, Zhu C, Fu T, Ma Y, Wang K, Luo G. Manipulable Formation of Ferrofluid Droplets in Y-Shaped Flow-Focusing Microchannels. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Di Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Pengcheng Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Guangsheng Luo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
117
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
118
|
Zhang Q, Wu Y, Ma Y, Li HZ. Self-Sustained Coalescence-Breakup Cycles of Ferrodrops under a Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12028-12034. [PMID: 31433661 DOI: 10.1021/acs.langmuir.9b02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-sustained coalescence-breakup cycles of ferrodrops were investigated for the first time by a high-speed camera under various magnetic fields. Under an axial magnetic field, the upper ferrodrop would deform into a conic shape before coalescing with the bottom ferropeak. Within 0.2 ms after coalescence, the minimum width of the expanding neck obeys a power-law relationship with time, while the exponents increase with the magnetic field and deviate with a decreasing trend in the later coalescence. The cone angle of the upper ferrodrop before coalescence gradually decreases while it increases before breakup with the magnetic field. A critical magnetic field around 35 mT was reported, above which the ferrofluid column undergoes the periodic phenomenon of coalescence and breakup. The frequency for the whole coalescence-breakup cycle increases exponentially with the applied magnetic field. A simplified force balance allows capturing the periodic mechanism involved in this driven harmonic oscillator.
Collapse
Affiliation(s)
- Qindan Zhang
- Laboratory of Reactions and Process Engineering , CNRS, University of Lorraine , 1, rue Grandville , BP 20451, Nancy Cedex 54001 , France
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Yining Wu
- Laboratory of Reactions and Process Engineering , CNRS, University of Lorraine , 1, rue Grandville , BP 20451, Nancy Cedex 54001 , France
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Huai Z Li
- Laboratory of Reactions and Process Engineering , CNRS, University of Lorraine , 1, rue Grandville , BP 20451, Nancy Cedex 54001 , France
| |
Collapse
|
119
|
Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications. ACS NANO 2019; 13:8517-8536. [PMID: 31373794 DOI: 10.1021/acsnano.9b04129] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Due to inspiration from the Nepenthes pitcher plant, a frontier of devices has emerged with unmatched capabilities. Liquid-infused surfaces (LISs), particularly known for their liquid-repelling behavior under low tilting angles (<5°), have demonstrated a plethora of applications in medical, marine, energy, industrial, and environmental materials. This review presents recent developments of LIS technology and its prospective to define the future direction of this technology in solving tomorrow's real-life challenges. First, an introduction to the different models explaining the physical phenomena of these surfaces, their wettability, and viscous-dependent frictional forces is discussed. Then, an outline of different emerging strategies required to fabricate a stable liquid-infused interface is presented, including different substrates, lubricants, surface chemistries, and design parameters which can be tuned depending on the application. Furthermore, applications of LIS coatings in the areas of anticorrosion, antifouling, anti-icing, self-healing, droplet manipulation, and biomedical devices will be presented followed by the limitations and future direction of this technology.
Collapse
|
120
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
121
|
From CS, Sauret E, Galindo-Torres SA, Gu YT. Interaction pressure tensor on high-order lattice Boltzmann models for nonideal fluids. Phys Rev E 2019; 99:063318. [PMID: 31330592 DOI: 10.1103/physreve.99.063318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 06/10/2023]
Abstract
In this work we address the application of pseudopotentials directly on high-order lattice Boltzmann models. We derive a general expression for the pressure tensor on high-order lattices considering all nonideal interactions, including intra- and intermolecular interactions, following the discrete lattice theory introduced by X. Shan [Phys. Rev. E 77, 066702 (2008)PLEEE81539-375510.1103/PhysRevE.77.066702]. From the derived expression, a generalized continuum approximation, truncated at fourth-order isotropy, is obtained that is readily applicable to high-order lattices. With this, we demonstrate that high-order lattice models with pseudopotentials can satisfy thermodynamic consistency. The derived generalized expression and continuum approximation are validated for the case of a flat interface and compared against the standard definition available from the literature. The generalized expression is also shown to accurately reproduce the Laplace experiment for a variety of high-order lattice structures. This work sets the preliminary steps towards the application of high-order lattice models for simulating nonideal fluid mixtures.
Collapse
Affiliation(s)
- C S From
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - E Sauret
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - S A Galindo-Torres
- Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool L69 3BX, United Kingdom
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Y T Gu
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| |
Collapse
|
122
|
Zhao W, Liu Y, Jenkins BD, Cheng R, Harris BN, Zhang W, Xie J, Murrow JR, Hodgson J, Egan M, Bankey A, Nikolinakos PG, Ali HY, Meichner K, Newman LA, Davis MB, Mao L. Tumor antigen-independent and cell size variation-inclusive enrichment of viable circulating tumor cells. LAB ON A CHIP 2019; 19:1860-1876. [PMID: 31041975 PMCID: PMC6590080 DOI: 10.1039/c9lc00210c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Isolation of circulating tumor cells (CTCs) from blood provides a minimally-invasive alternative for basic understanding, diagnosis, and prognosis of metastatic cancer. The roles and clinical values of CTCs are under intensive investigation, yet most studies are limited by technical challenges in the comprehensive enrichment of intact and viable CTCs with minimal white blood cell (WBC) contamination. Here, we report a novel method based on contrast of cell magnetization in biocompatible ferrofluids (a colloidal magnetic nanoparticle suspension), termed as integrated ferrohydrodynamic cell separation (iFCS), that enriches CTCs in a tumor antigen-independent and cell size variation-inclusive manner, achieves a high throughput (12 mL h-1), high recovery rate (99.08% at down to ∼10 cells per mL spike ratio), and low WBC contamination (533 cells for every one milliliter blood processed) and is biocompatible. This method will enable large cohort research to define the clinical and diagnostic value of CTC subtypes.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yang Liu
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | | | - Rui Cheng
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Bryana N. Harris
- Department of Chemical Engineering, Auburn University, Auburn, AL 36830, USA
| | - Weizhong Zhang
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Jin Xie
- Department of Chemistry, The University of Georgia, Athens, GA 30602, USA
| | - Jonathan R. Murrow
- Department of Medicine, Augusta University-The University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Jamie Hodgson
- University Cancer & Blood Center, LLC, Athens, GA, 30607
| | - Mary Egan
- University Cancer & Blood Center, LLC, Athens, GA, 30607
| | - Ana Bankey
- University Cancer & Blood Center, LLC, Athens, GA, 30607
| | | | - Haythem Y. Ali
- Department of Hematology and Oncology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Kristina Meichner
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Lisa A. Newman
- Department of Surgery, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY 10021
| | - Melissa B. Davis
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY 10021
- Department of Public Health Sciences, Henry Ford Health System and Henry Ford Cancer Institute, Detroit, MI 48202, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
123
|
Gómez-Pastora J, Karampelas IH, Bringas E, Furlani EP, Ortiz I. Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions. Sci Rep 2019; 9:7265. [PMID: 31086252 PMCID: PMC6514169 DOI: 10.1038/s41598-019-43827-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
In this work, we report a numerical flow-focused study of bead magnetophoresis inside a continuous-flow microchannel in order to provide a detailed analysis of bead motion and its effect on fluid flow. The numerical model involves a Lagrangian approach and predicts the bead separation from blood and their collection into a flowing buffer by the application of a magnetic field generated by a permanent magnet. The following scenarios are modelled: (i) one-way coupling wherein momentum is transferred from the fluid to beads, which are treated as point particles, (ii) two-way coupling wherein the beads are treated as point particles and momentum is transferred from the bead to the fluid and vice versa, and (iii) two-way coupling taking into account the effects of bead volume in fluid displacement. The results indicate that although there is little difference in the bead trajectories for the three scenarios, there is significant variation in the flow fields, especially when high magnetic forces are applied on the beads. Therefore, an accurate full flow-focused model that takes into account the effects of the bead motion and volume on the flow field should be solved when high magnetic forces are employed. Nonetheless, when the beads are subjected to medium or low magnetic forces, computationally inexpensive models can be safely employed to model magnetophoresis.
Collapse
Affiliation(s)
- Jenifer Gómez-Pastora
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain
| | | | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USA
- Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USA
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, Spain.
| |
Collapse
|
124
|
Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proc Natl Acad Sci U S A 2019; 116:7873-7878. [PMID: 30936303 DOI: 10.1073/pnas.1821284116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic tape heads are ubiquitously used to read and record on magnetic tapes in technologies as diverse as old VHS tapes, modern hard-drive disks, or magnetic bands on credit cards. Their design highlights the ability to convert electric signals into fluctuations of the magnetic field at very high frequencies, which is essential for the high-density storage demanded nowadays. Here, we twist this conventional use of tape heads to implement one in a magnetic tweezers design, which offers the unique capability of changing the force with a bandwidth of ∼10 kHz. We calibrate our instrument by developing an analytical expression that predicts the magnetic force acting on a superparamagnetic bead based on the Karlqvist approximation of the magnetic field created by a tape head. This theory is validated by measuring the force dependence of protein L unfolding/folding step sizes and the folding properties of the R3 talin domain. We demonstrate the potential of our instrument by carrying out millisecond-long quenches to capture the formation of the ephemeral molten globule state in protein L, which has never been observed before. Our instrument provides the capability of interrogating individual molecules under fast-changing forces with a control and resolution below a fraction of a piconewton, opening a range of force spectroscopy protocols to study protein dynamics under force.
Collapse
|
125
|
Park CM, Kim YM, Kim KH, Wang D, Su C, Yoon Y. Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. CHEMOSPHERE 2019; 221:392-402. [PMID: 30641380 PMCID: PMC7373271 DOI: 10.1016/j.chemosphere.2019.01.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/02/2023]
Abstract
Toxic substances such as heavy metals or persistent organic pollutants raise global environmental concerns. Thus, diverse water decontamination approaches using nano-adsorbents and/or photocatalysts based on nanotechnology are being developed. Particularly, many studies have examined the removal of organic and inorganic contaminants with novel graphene-based nano spinel ferrites (GNSFs) as potential cost-effective alternatives to traditionally used materials, owing to their enhanced physical and chemical properties. The introduction of magnetic spinel ferrites into 2-D graphene-family nanomaterials to form GNSFs brings various benefits such as inhibited particle agglomeration, enhanced active surface area, and easier magnetic separation for reuse, making the GNSFs highly efficient and eco-friendly materials. Here, we present a short review on the state-of-the-art progresses on developments of GNSFs, as well as their potential application for removing several recalcitrant contaminants including organic dyes, antibiotics, and heavy metal ions. Particularly, the mechanisms involved in the adsorptive and photocatalytic degradation are thoroughly reviewed, and the reusability of the GNSFs is also highlighted. This review concludes that the GNSFs hold great potential in remediating contaminated aquatic environments. Further studies are needed for their practical and large-scale applications.
Collapse
Affiliation(s)
- Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Mo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222, Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Dengjun Wang
- National Research Council Research Associate at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Chunming Su
- Groundwater, Watershed and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA.
| |
Collapse
|
126
|
Malbec R, Chami B, Aeschbach L, Ruiz Buendía GA, Socol M, Joseph P, Leïchlé T, Trofimenko E, Bancaud A, Dion V. µLAS: Sizing of expanded trinucleotide repeats with femtomolar sensitivity in less than 5 minutes. Sci Rep 2019; 9:23. [PMID: 30631115 PMCID: PMC6328573 DOI: 10.1038/s41598-018-36632-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
We present µLAS, a lab-on-chip system that concentrates, separates, and detects DNA fragments in a single module. µLAS speeds up DNA size analysis in minutes using femtomolar amounts of amplified DNA. Here we tested the relevance of µLAS for sizing expanded trinucleotide repeats, which cause over 20 different neurological and neuromuscular disorders. Because the length of trinucleotide repeats correlates with the severity of the diseases, it is crucial to be able to size repeat tract length accurately and efficiently. Expanded trinucleotide repeats are however genetically unstable and difficult to amplify. Thus, the amount of amplified material to work with is often limited, making its analysis labor-intensive. We report the detection of heterogeneous allele lengths in 8 samples from myotonic dystrophy type 1 and Huntington disease patients with up to 750 CAG/CTG repeats in five minutes or less. The high sensitivity of the method allowed us to minimize the number of amplification cycles and thus reduce amplification artefacts without compromising the detection of the expanded allele. These results suggest that µLAS can speed up routine molecular biology applications of repetitive sequences and may improve the molecular diagnostic of expanded repeat disorders.
Collapse
Affiliation(s)
- Rémi Malbec
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Bayan Chami
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Lorène Aeschbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
| | - Gustavo A Ruiz Buendía
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
| | - Marius Socol
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Thierry Leïchlé
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France
| | - Evgeniya Trofimenko
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, Lausanne, 1005, Switzerland
| | - Aurélien Bancaud
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, 31031, France.
| | - Vincent Dion
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, Lausanne, 1015, Switzerland.
| |
Collapse
|
127
|
Al-Hetlani E, Amin MO. Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection. Mikrochim Acta 2019; 186:55. [DOI: 10.1007/s00604-018-3118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
128
|
Esmaeilsabzali H, Payer RTM, Guo Y, Cox ME, Parameswaran AM, Beischlag TV, Park EJ. Development of a microfluidic platform for size-based hydrodynamic enrichment and PSMA-targeted immunomagnetic isolation of circulating tumour cells in prostate cancer. BIOMICROFLUIDICS 2019; 13:014110. [PMID: 30867880 PMCID: PMC6404957 DOI: 10.1063/1.5064473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/28/2019] [Indexed: 05/06/2023]
Abstract
Efforts to further improve the clinical management of prostate cancer (PCa) are hindered by delays in diagnosis of tumours and treatment deficiencies, as well as inaccurate prognoses that lead to unnecessary or inefficient treatments. The quantitative and qualitative analysis of circulating tumour cells (CTCs) may address these issues and could facilitate the selection of effective treatment courses and the discovery of new therapeutic targets. Therefore, there is much interest in isolation of elusive CTCs from blood. We introduce a microfluidic platform composed of a multiorifice flow fractionation (MOFF) filter cascaded to an integrated microfluidic magnetic (IMM) chip. The MOFF filter is primarily employed to enrich immunomagnetically labeled blood samples by size-based hydrodynamic removal of free magnetic beads that must originally be added to samples at disproportionately high concentrations to ensure the efficient immunomagnetic labeling of target cancer cells. The IMM chip is then utilized to capture prostate-specific membrane antigen-immunomagnetically labeled cancer cells from enriched samples. Our preclinical studies showed that the proposed method can selectively capture up to 75% of blood-borne PCa cells at clinically-relevant low concentrations (as low as 5 cells/ml), with the IMM chip showing up to 100% magnetic capture capability.
Collapse
Affiliation(s)
| | - Robert T M Payer
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Yubin Guo
- The Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Jack Bell Research Centre, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Michael E Cox
- The Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Jack Bell Research Centre, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Ash M Parameswaran
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
129
|
Hayakawa M, Vialetto J, Anyfantakis M, Takinoue M, Rudiuk S, Morel M, Baigl D. Effect of moderate magnetic fields on the surface tension of aqueous liquids: a reliable assessment. RSC Adv 2019; 9:10030-10033. [PMID: 35520912 PMCID: PMC9062369 DOI: 10.1039/c9ra00849g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/23/2019] [Indexed: 11/21/2022] Open
Abstract
We precisely measure the effect of moderate magnetic field intensity on the surface tension of liquids, by placing pendant drops inside uniform fields where bulk forces due to gradients are eliminated. The surface tension of water is unaffected while that of paramagnetic salt solutions slightly decreases with increasing field strength. A novel setup measures the effect of magnetic field intensities on the surface tension of liquids placed inside uniform fields.![]()
Collapse
Affiliation(s)
- Masayuki Hayakawa
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Jacopo Vialetto
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Manos Anyfantakis
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | | | - Sergii Rudiuk
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Mathieu Morel
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Damien Baigl
- PASTEUR
- Department of Chemistry
- École Normale Supérieure
- PSL University
- Sorbonne Université
| |
Collapse
|
130
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
131
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
132
|
Navi M, Abbasi N, Jeyhani M, Gnyawali V, Tsai SSH. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform. LAB ON A CHIP 2018; 18:3361-3370. [PMID: 30375625 DOI: 10.1039/c8lc00867a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics enables cellular encapsulation for biomedical applications such as single-cell analysis, which is an important tool used by biologists to study cells on a single-cell level, and understand cellular heterogeneity in cell populations. However, most cell encapsulation strategies in microfluidics rely on random encapsulation processes, resulting in large numbers of empty droplets. Therefore, post-sorting of droplets is necessary to obtain samples of purely cell-encapsulating droplets. With the recent advent of aqueous two-phase systems (ATPS) as a biocompatible alternative of the conventional water-in-oil droplet systems for cellular encapsulation, there has also been a focus on integrating ATPS with droplet microfluidics. In this paper, we describe a new technique that combines ATPS-based water-in-water droplets with diamagnetic manipulation to isolate single-cell encapsulating water-in-water droplets, and achieve a purity of 100% in a single pass. We exploit the selective partitioning of ferrofluid in an ATPS of polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), to achieve diamagnetic manipulation of water-in-water droplets. A cell-triggered Rayleigh-Plateau instability in the dispersed phase thread results in a size distinction between the cell-encapsulating and empty droplets, enabling diamagnetic separation and sorting of the cell-encapsulating droplets from empty droplets. This is a simple and biocompatible all-aqueous platform for single-cell encapsulation and droplet manipulation, with applications in single-cell analysis.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto, Canada.
| | | | | | | | | |
Collapse
|
133
|
Mateos-Maroto A, Guerrero-Martínez A, Rubio RG, Ortega F, Martínez-Pedrero F. Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29367-29377. [PMID: 30088905 DOI: 10.1021/acsami.8b09862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some biological microorganisms can crawl or swim due to coordinated motions of their cytoskeleton or the flagella located inside their bodies, which push the cells forward through intracellular forces. To date, there is no demonstration of synthetic systems propelling at low Reynolds number via the precise actuation of the material confined within an enclosing lipid membrane. Here, we report lipid vesicles and other more complex self-assembled biohybrid structures able to propel due to the advection flows generated by the actuated rotation of the superparamagnetic particles they contain. The proposed swimming and release strategies, based on cooperative hydrodynamic mechanisms and near-infrared laser pulse-triggered destabilization of the phospholipid membranes, open new possibilities for the on-command transport of minute quantities of drugs, fluid or nano-objects. The lipid membranes protect the confined substances from the outside environment during transportation, thus enabling them to work in physiological conditions.
Collapse
Affiliation(s)
- A Mateos-Maroto
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - A Guerrero-Martínez
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - R G Rubio
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - F Ortega
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| | - F Martínez-Pedrero
- Departamento de Química-Física , Universidad Complutense de Madrid , Avenida Complutense s/n , Madrid 28040 , Spain
| |
Collapse
|
134
|
Solsona M, Nieuwelink A, Meirer F, Abelmann L, Odijk M, Olthuis W, Weckhuysen BM, van den Berg A. Magnetophoretic Sorting of Single Catalyst Particles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Solsona
- BIOS lab on a chip groupMESA+ Institute for NanotechnologyUniversity of Twente Drienerlolaan 5 Enschede The Netherlands
| | - Anne‐Eva Nieuwelink
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Leon Abelmann
- BIOS lab on a chip groupMESA+ Institute for NanotechnologyUniversity of Twente Drienerlolaan 5 Enschede The Netherlands
- KIST Europe Campus E7 Saarbrücken Germany
| | - Mathieu Odijk
- BIOS lab on a chip groupMESA+ Institute for NanotechnologyUniversity of Twente Drienerlolaan 5 Enschede The Netherlands
| | - Wouter Olthuis
- BIOS lab on a chip groupMESA+ Institute for NanotechnologyUniversity of Twente Drienerlolaan 5 Enschede The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Albert van den Berg
- BIOS lab on a chip groupMESA+ Institute for NanotechnologyUniversity of Twente Drienerlolaan 5 Enschede The Netherlands
| |
Collapse
|
135
|
|
136
|
Jalali M, AbdelFatah T, Mahshid SS, Labib M, Sudalaiyadum Perumal A, Mahshid S. A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801893. [PMID: 30048039 DOI: 10.1002/smll.201801893] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/11/2018] [Indexed: 05/28/2023]
Abstract
Efficient capture and rapid detection of pathogenic bacteria from body fluids lead to early diagnostics of bacterial infections and significantly enhance the survival rate. We propose a universal nano/microfluidic device integrated with a 3D nanostructured detection platform for sensitive and quantifiable detection of pathogenic bacteria. Surface characterization of the nanostructured detection platform confirms a uniform distribution of hierarchical 3D nano-/microisland (NMI) structures with spatial orientation and nanorough protrusions. The hierarchical 3D NMI is the unique characteristic of the integrated device, which enables enhanced capture and quantifiable detection of bacteria via both a probe-free and immunoaffinity detection method. As a proof of principle, we demonstrate probe-free capture of pathogenic Escherichia coli (E. coli) and immunocapture of methicillin-resistant-Staphylococcus aureus (MRSA). Our device demonstrates a linear range between 50 and 104 CFU mL-1 , with average efficiency of 93% and 85% for probe-free detection of E. coli and immunoaffinity detection of MRSA, respectively. It is successfully demonstrated that the spatial orientation of 3D NMIs contributes in quantifiable detection of fluorescently labeled bacteria, while the nanorough protrusions contribute in probe-free capture of bacteria. The ease of fabrication, integration, and implementation can inspire future point-of-care devices based on nanomaterial interfaces for sensitive and high-throughput optical detection.
Collapse
Affiliation(s)
- Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Sahar Sadat Mahshid
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
137
|
Solsona M, Nieuwelink AE, Meirer F, Abelmann L, Odijk M, Olthuis W, Weckhuysen BM, van den Berg A. Magnetophoretic Sorting of Single Catalyst Particles. Angew Chem Int Ed Engl 2018; 57:10589-10594. [PMID: 29962102 DOI: 10.1002/anie.201804942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/28/2023]
Abstract
A better understanding of the deactivation processes taking place within solid catalysts is vital to design better ones. However, since inter-particle heterogeneities are more a rule than an exception, particle sorting is crucial to analyse single catalyst particles in detail. Microfluidics offers new possibilities to sort catalysts at the single particle level. Herein, we report a first-of-its-kind 3D printed magnetophoretic chip able to sort catalyst particles by their magnetic moment. Fluid catalytic cracking (FCC) particles were separated based on their Fe content. Magnetophoretic sorting shows that large Fe aggregates exist within 20 % of the FCC particles with the highest Fe content. The availability of Brønsted acid sites decreases with increasing Fe content. This work paves the way towards a high-throughput catalyst diagnostics platform to determine why specific catalyst particles perform better than others.
Collapse
Affiliation(s)
- Miguel Solsona
- BIOS lab on a chip group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands
| | - Anne-Eva Nieuwelink
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Leon Abelmann
- BIOS lab on a chip group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.,KIST Europe, Campus E7, Saarbrücken, Germany
| | - Mathieu Odijk
- BIOS lab on a chip group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands
| | - Wouter Olthuis
- BIOS lab on a chip group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Albert van den Berg
- BIOS lab on a chip group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands
| |
Collapse
|
138
|
Xiang N, Shi X, Han Y, Shi Z, Jiang F, Ni Z. Inertial Microfluidic Syringe Cell Concentrator. Anal Chem 2018; 90:9515-9522. [DOI: 10.1021/acs.analchem.8b02201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhiguo Shi
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
139
|
Wang W, Timonen JVI, Carlson A, Drotlef DM, Zhang CT, Kolle S, Grinthal A, Wong TS, Hatton B, Kang SH, Kennedy S, Chi J, Blough RT, Sitti M, Mahadevan L, Aizenberg J. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018; 559:77-82. [PMID: 29942075 DOI: 10.1038/s41586-018-0250-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/09/2018] [Indexed: 11/09/2022]
Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties3 has recently been explored using responsive gels4, shape-memory polymers5, liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.
Collapse
Affiliation(s)
- Wendong Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Jaakko V I Timonen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Applied Physics, Aalto University School of Science, Espoo, Finland
| | - Andreas Carlson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Department of Mathematics, Mechanics Division, University of Oslo, Oslo, Norway
| | | | - Cathy T Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Stefan Kolle
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Alison Grinthal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Tak-Sing Wong
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Department of Mechanical and Nuclear Engineering and the Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Benjamin Hatton
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hoon Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Department of Mechanical Engineering, Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Kennedy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Department of Biomedical and Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Joshua Chi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Thomas Blough
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.,Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
140
|
Obara T, Toyomaki K, Uegaki Y, Kikuchi Y, Arai J, Kuroda K, Suwabe A. Prozone-like phenomenon found in chemiluminescent enzyme immunoassay using magnetic particles for measurement of serum anti-single stranded DNA antibody titers: Definition and management. Clin Chim Acta 2018; 485:88-94. [PMID: 29928865 DOI: 10.1016/j.cca.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Serum anti-single stranded DNA antibody (anti-ssDNAab) is used as a marker for systemic lupus erythematosus. We found a 'prozone-like phenomenon,' which was different from an original prozone phenomenon, in chemiluminescent enzyme immunoassay using magnetic particles for the measurement of serum anti-ssDNAab titers. We investigated mechanisms of the prozone-like phenomenon and countermeasures to prevent it from being overlooked. METHODS This study examined 679 samples from patients tested for anti-ssDNAab titer at our hospital. In addition, the BF photometry OD value 2 (OD2), an index of optical density, was monitored simultaneously. RESULTS The undiluted samples with a prozone-like phenomenon showed extremely lower OD2. Those samples were able to be distinguished from other samples by setting OD2 criteria based on the 95% prediction interval. Significant differences (p < 0.05) were found in the titer ratios (ten-fold diluted against undiluted) between groups with >1.5 and other groups with <1.5 for the ratios of OD2. CONCLUSIONS We proposed two valuable methods to find a prozone-like phenomenon: one by setting OD2 criteria based on the 95% prediction interval and the other by analyzing the ratios both in titers and OD2 between undiluted and 10-fold diluted samples.
Collapse
Affiliation(s)
- Takehiro Obara
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan.
| | - Kazushi Toyomaki
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan
| | - Yurino Uegaki
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan
| | - Yoshie Kikuchi
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Morioka, Japan
| | - Jiro Arai
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Keiko Kuroda
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Akira Suwabe
- Department of Laboratory Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
141
|
Chen Q, Li D, Malekanfard A, Cao Q, Lin J, Wang M, Han X, Xuan X. Tunable, Sheathless Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets. Anal Chem 2018; 90:8600-8606. [DOI: 10.1021/acs.analchem.8b01813] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Amirreza Malekanfard
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
142
|
|
143
|
Alnaimat F, Dagher S, Mathew B, Hilal‐Alnqbi A, Khashan S. Microfluidics Based Magnetophoresis: A Review. CHEM REC 2018; 18:1596-1612. [DOI: 10.1002/tcr.201800018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Fadi Alnaimat
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Sawsan Dagher
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Bobby Mathew
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Ali Hilal‐Alnqbi
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
- Abu Dhabi Polytechnic Abu Dhabi UAE
| | - Saud Khashan
- Mechanical Engineering DepartmentJordan University of Science and Technology Irbid Jordan
| |
Collapse
|
144
|
|
145
|
Gómez-Pastora J, González-Fernández C, Real E, Iles A, Bringas E, Furlani EP, Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. LAB ON A CHIP 2018; 18:1593-1606. [PMID: 29748668 DOI: 10.1039/c8lc00396c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic beads can be functionalized to capture and separate target pathogens from blood for extracorporeal detoxification. The beads can be magnetically separated from a blood stream and collected into a coflowing buffer solution using a two-phase liquid-liquid continuous-flow microfluidic device in the presence of an external field. However, device design and process optimization, i.e. high bead recovery with minimum blood loss or dilution remain a substantial technological challenge. We introduce a CFD-based Eulerian-Lagrangian computational model that enables the rational design and optimization of such systems. The model takes into account dominant magnetic and hydrodynamic forces on the beads as well as coupled bead-fluid interactions. Fluid flow (Navier-Stokes equations) and mass transfer (Fick's law) between the coflowing fluids are solved numerically, while the magnetic force on the beads is predicted using analytical methods. The model is demonstrated via application to a prototype device and used to predict key performance metrics; degree of bead separation, flow patterns, and mass transfer, i.e. blood diffusion to the buffer phase. The impact of different process variables and parameters - flow rates, bead and magnet dimensions and fluid viscosities - on both bead recovery and blood loss or dilution is quantified for the first time. The performance of the prototype device is characterized using fluorescence microscopy and the experimental results are found to match theoretical predictions within an absolute error of 15%. While the model is demonstrated here for analysis of a detoxification device, it can be readily adapted to a broad range of magnetically-enabled microfluidic applications, e.g. bioseparation, sorting and sensing.
Collapse
Affiliation(s)
- Jenifer Gómez-Pastora
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Av. de los Castros s/n, 39005, Santander, Cantabria, Spain.
| | | | | | | | | | | | | |
Collapse
|
146
|
Biofabrication of in situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated using Magnetic Levitation. Sci Rep 2018; 8:7239. [PMID: 29740095 PMCID: PMC5940762 DOI: 10.1038/s41598-018-25718-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Magnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.
Collapse
|
147
|
Munaz A, Shiddiky MJA, Nguyen NT. Recent advances and current challenges in magnetophoresis based micro magnetofluidics. BIOMICROFLUIDICS 2018; 12:031501. [PMID: 29983837 PMCID: PMC6013300 DOI: 10.1063/1.5035388] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
The combination of magnetism and microscale fluid flow has opened up a new era for handling and manipulation of samples in microfluidics. In particular, magnetophoresis, the migration of particles in a magnetic field, is extremely attractive for microfluidic handling due to its contactless nature, independence of ionic concentration, and lack of induced heating. The present paper focuses on recent advances and current challenges of magnetophoresis and highlights the key parameters affecting the manipulation of particles by magnetophoresis. The magnetic field is discussed according to their relative motion to the sample as stationary and dynamic fields. The migration of particles is categorized as positive and negative magnetophoresis. The applications of magnetophoresis are discussed according to the basic manipulation tasks such as mixing, separation, and trapping of particles or cells. Finally, the paper highlights the limitations of current approaches and provides the future perspective for this research area.
Collapse
Affiliation(s)
- Ahmed Munaz
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | | | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
148
|
Gädke J, Thies JW, Kleinfeldt L, Schulze T, Biedendieck R, Rustenbeck I, Garnweitner G, Krull R, Dietzel A. Selective manipulation of superparamagnetic nanoparticles for product purification and microfluidic diagnostics. Eur J Pharm Biopharm 2018; 126:67-74. [DOI: 10.1016/j.ejpb.2017.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/02/2017] [Accepted: 09/12/2017] [Indexed: 01/20/2023]
|
149
|
Pezzi H, Niles DJ, Schehr JL, Beebe DJ, Lang JM. Integration of Magnetic Bead-Based Cell Selection into Complex Isolations. ACS OMEGA 2018; 3:3908-3917. [PMID: 29732449 PMCID: PMC5928489 DOI: 10.1021/acsomega.7b01427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/22/2018] [Indexed: 05/12/2023]
Abstract
Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no "one-size fits all" magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user's assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications.
Collapse
Affiliation(s)
- Hannah
M. Pezzi
- Department
of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David J. Niles
- Department
of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jennifer L. Schehr
- Department of Medicine and Carbone Cancer Center, University
of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - David J. Beebe
- Department
of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Medicine and Carbone Cancer Center, University
of Wisconsin−Madison, Madison, Wisconsin 53705, United States
- E-mail: (D.J.B.)
| | - Joshua M. Lang
- Department
of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Medicine and Carbone Cancer Center, University
of Wisconsin−Madison, Madison, Wisconsin 53705, United States
- E-mail: (J.M.L.)
| |
Collapse
|
150
|
Thies JW, Thürmann B, Vierheller A, Dietzel A. Particle-Based Microfluidic Quartz Crystal Microbalance (QCM) Biosensing Utilizing Mass Amplification and Magnetic Bead Convection. MICROMACHINES 2018; 9:E194. [PMID: 30424127 PMCID: PMC6187493 DOI: 10.3390/mi9040194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 01/02/2023]
Abstract
Microfluidic quartz crystal microbalances (QCM) can be used as powerful biosensors that not only allow quantifying a target analyte, but also provide kinetic information about the surface processes of binding and release. Nevertheless, their practical use as point-of-care devices is restricted by a limit of detection (LoD) of some ng/cm². It prohibits the measurement of small molecules in low concentrations within the initial sample. Here, two concepts based on superparamagnetic particles are presented that allow enhancing the LoD of a QCM. First, a particle-enhanced C-reactive protein (CRP) measurement on a QCM is shown. The signal response could be increased by a factor of up to five by utilizing the particles for mass amplification. Further, a scheme for sample pre-preparation utilizing convective up-concentration involving magnetic bead manipulation is investigated. These experiments are carried out with a glass device that is fabricated by utilizing a femtosecond laser. Operation regimes for the magnetic manipulation of particles within the microfluidic channel with integrated pole pieces that are activated by external permanent magnets are described. Finally, the potential combination of the concepts of mass amplification and up-concentration within an integrated lab-on-a chip device is discussed.
Collapse
Affiliation(s)
- Jan-W Thies
- Institute of Microtechnology (IMT), TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, Franz-Liszt-Straße 35 A, 38106 Braunschweig, Germany.
| | - Bettina Thürmann
- Institute of Microtechnology (IMT), TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
| | - Anke Vierheller
- Institute of Microtechnology (IMT), TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology (IMT), TU Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Center of Pharmaceutical Engineering (PVZ), TU Braunschweig, Franz-Liszt-Straße 35 A, 38106 Braunschweig, Germany.
| |
Collapse
|