101
|
Synthesis of SrTiO3 from celestite and rutile by mechanical activation assisted Solid-State reaction. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
102
|
Li S, Czap G, Li J, Zhang Y, Yu A, Yuan D, Kimura H, Wu R, Ho W. Confinement-Induced Catalytic Dissociation of Hydrogen Molecules in a Scanning Tunneling Microscope. J Am Chem Soc 2022; 144:9618-9623. [PMID: 35486711 DOI: 10.1021/jacs.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic scission of single chemical bonds has been induced by the nanoscale confinement in a scanning tunneling microscope (STM) junction. Individual hydrogen molecules sandwiched between the STM tip and a copper substrate can be dissociated solely by the reciprocating movement of the tip. The reaction rate depends sensitively on the local molecular environment, as exemplified by the effects of a nearby carbon monoxide molecule or a gold adatom. Detailed mechanisms and the nature of the transition states are revealed by density functional theory (DFT) calculations. This work provides insights into chemical reactions at the atomic scale induced by localized confinement applied by the STM tip. Furthermore, a single diatomic molecule can act as a molecular catalyst to enhance the reaction rate on a surface.
Collapse
Affiliation(s)
- Shaowei Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Gregory Czap
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Yanxing Zhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,College of Physics and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Arthur Yu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Dingwang Yuan
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hikari Kimura
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
103
|
Han G, Zhang P, Scholzen P, Noh H, Yang M, Kweon DH, Jeon J, Kim YH, Kim S, Han S, Andreev AS, Lang G, Ihm K, Li F, d'Espinose de Lacaillerie J, Baek J. Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angew Chem Int Ed Engl 2022; 61:e202117851. [DOI: 10.1002/anie.202117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Gao‐Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 P. R. China
| | - Pascal Scholzen
- Soft Matter Science and Engineering Laboratory (SIMM) UMR CNRS 7615, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Jong‐Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Seong‐Wook Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Sun‐Phil Han
- UNIST Central Research Facilities Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Andrey S. Andreev
- Total Research and Technology Feluy (TRTF) Zone Industrielle C 7181 Feluy Belgium
| | - Guillaume Lang
- Laboratoire de Physique et d'Étude des Matériaux (LPEM) UMR CNRS 8213, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | | | - Jong‐Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
104
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
105
|
Hu Y, Gu W, Hu H, Li X, Zhang Q. Mechanically activated calcium carbonate and zero-valent iron composites for one-step treatment of multiple pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27421-27429. [PMID: 34981379 DOI: 10.1007/s11356-021-17899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The growing presences of conventional and emerging contaminants make the wastewater treatment increasingly difficult and expensive on a global scale. ZVI tends to be an expectable material for the detoxification of some difficult contaminants such as chlorinated solvents and nitroaromatics. In this work, together use with calcium carbonate (CaCO3), which serves as a green supporter to ZVI and also direct participant toward the purification process, has been carried out by cogrinding to give a synergistic effect, particularly for treating multiple pollutants including both inorganic and organic compositions. Based on a set of analytical methods of XRD, FTIR, SEM, XPS, and other test methods, the activation mechanism of the ball milling process and the removal performances of the prepared composites were examined. The results prove that the mechanically activated calcium carbonate and ZVI composite samples exhibited extremely high removal capacity on a variety of pollutants contaminated water. The decolorization of azo dyes is mainly attributed to the breaking of chromogenic functional group nitrogen and nitrogen double bonds, and the removal mechanism of aromatic series occurs through a hydrogenation substitution reaction. As to the inorganic pollutant removals, besides the efficient heavy metal ion precipitations, phosphate and fluoride ions are co-precipitated through the formation of fluorapatite to achieve a simultaneous and synergistic removal effect. Under the optimal reaction conditions, the concentration of PO43- is reduced from 250 to 0 mg/L, and that of F- is reduced from 51.07 to 1.20 mg/L. The prepared composite sample of ZVI rand calcium carbonate allowed simultaneous removals of both inorganic and organic pollutants, simplifying the remediation process of complicated multiple contaminations.
Collapse
Affiliation(s)
- Yanhui Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Weijian Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Xuewei Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, 341109, China.
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China.
| |
Collapse
|
106
|
Gonnet L, Lennox CB, Do JL, Malvestiti I, Koenig SG, Nagapudi K, Friščić T. Metal-Catalyzed Organic Reactions by Resonant Acoustic Mixing. Angew Chem Int Ed Engl 2022; 61:e202115030. [PMID: 35138018 DOI: 10.1002/anie.202115030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/03/2023]
Abstract
We demonstrate catalytic organic synthesis by Resonant Acoustic Mixing (RAM): a mechanochemical methodology that does not require bulk solvent or milling media. Using as model reactions ruthenium-catalyzed ring-closing metathesis and copper-catalyzed sulfonamide-isocyanate coupling, RAM mechanosynthesis is shown to be faster, operationally simpler than conventional ball-milling, while also providing the first example of a mechanochemical strategy for ruthenium-catalyzed ene-yne metathesis. Reactions by RAM are readily and directly scaled-up without any significant changes in reaction conditions, as shown by the straightforward 200-fold scaling-up of the synthesis of the antidiabetic drug Tolbutamide, from hundreds of milligrams directly to 30 grams.
Collapse
Affiliation(s)
- Lori Gonnet
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada
| | - Cameron B Lennox
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada
| | - Ivani Malvestiti
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Jornalista Aníbal Fernandes, s/n, 50.740-560, Recife, Brazil
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3H 0B8, Canada
| |
Collapse
|
107
|
Tóthová E, Düvel A, Witte R, Brand RA, Sarkar A, Kruk R, Senna M, Da Silva KL, Menzel D, Girman V, Hegedüs M, Baláž M, Makreski P, Kubuki S, Kaňuchová M, Valíček J, Hahn H, Šepelák V. A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr 2FeMoO 6 With an Extraordinarily High Degree of Anti-Site Disorder. Front Chem 2022; 10:846910. [PMID: 35372274 PMCID: PMC8967169 DOI: 10.3389/fchem.2022.846910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Strontium ferromolybdate, Sr2FeMoO6, is an important member of the family of double perovskites with the possible technological applications in the field of spintronics and solid oxide fuel cells. Its preparation via a multi-step ceramic route or various wet chemistry-based routes is notoriously difficult. The present work demonstrates that Sr2FeMoO6 can be mechanosynthesized at ambient temperature in air directly from its precursors (SrO, α-Fe, MoO3) in the form of nanostructured powders, without the need for solvents and/or calcination under controlled oxygen fugacity. The mechanically induced evolution of the Sr2FeMoO6 phase and the far-from-equilibrium structural state of the reaction product are systematically monitored with XRD and a variety of spectroscopic techniques including Raman spectroscopy, 57Fe Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. The unique extensive oxidation of iron species (Fe0 → Fe3+) with simultaneous reduction of Mo cations (Mo6+ → Mo5+), occuring during the mechanosynthesis of Sr2FeMoO6, is attributed to the mechanically triggered formation of tiny metallic iron nanoparticles in superparamagnetic state with a large reaction surface and a high oxidation affinity, whose steady presence in the reaction mixture of the milled educts initiates/promotes the swift redox reaction. High-resolution transmission electron microscopy observations reveal that the mechanosynthesized Sr2FeMoO6, even after its moderate thermal treatment at 923 K for 30 min in air, exhibits the nanostructured nature with the average particle size of 21(4) nm. At the short-range scale, the nanostructure of the as-prepared Sr2FeMoO6 is characterized by both, the strongly distorted geometry of the constituent FeO6 octahedra and the extraordinarily high degree of anti-site disorder. The degree of anti-site disorder ASD = 0.5, derived independently from the present experimental XRD, Mössbauer, and SQUID magnetization data, corresponds to the completely random distribution of Fe3+ and Mo5+ cations over the sites of octahedral coordination provided by the double perovskite structure. Moreover, the fully anti-site disordered Sr2FeMoO6 nanoparticles exhibit superparamagnetism with the blocking temperature T B = 240 K and the deteriorated effective magnetic moment μ = 0.055 μ B per formula unit.
Collapse
Affiliation(s)
- Erika Tóthová
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - André Düvel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Witte
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Richard A. Brand
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Physics and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Abhishek Sarkar
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Robert Kruk
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mamoru Senna
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Klebson Lucenildo Da Silva
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Physics, State University of Maringá, Maringá, Brazil
| | - Dirk Menzel
- Institute of Condensed Matter Physics, Braunschweig University of Technology, Braunschweig, Germany
| | - Vladimír Girman
- Institute of Physics, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | | | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Shiro Kubuki
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Mária Kaňuchová
- Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Košice, Slovakia
| | - Jan Valíček
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
- Faculty of Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vladimír Šepelák
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Faculty of Technology, College of Technology and Business in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
108
|
Stahorský M, Lukáčová Bujňáková Z, Dutková E, Kello M, Mahlovanyi B, Shpotyuk Y, Daneu N, Trajić J, Baláž M. Mechanochemical Preparation, Characterization and Biological Activity of Stable CuS Nanosuspension Capped by Bovine Serum Albumin. Front Chem 2022; 10:836795. [PMID: 35242741 PMCID: PMC8886246 DOI: 10.3389/fchem.2022.836795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
The biocompatible nanosuspension of CuS nanoparticles (NPs) using bovine serum albumin (BSA) as a capping agent was prepared using a two-stage mechanochemical approach. CuS NPs were firstly synthetized by a high-energy planetary ball milling in 15 min by milling elemental precursors. The stability of nanoparticles in the simulated body fluids was studied, revealing zero copper concentration in the leachates, except simulated lung fluid (SLF, 0.015%) and simulated gastric fluid (SGF, 0.078%). Albumin sorption on CuS NPs was studied in static and dynamic modes showing a higher kinetic rate for the dynamic mode. The equilibrium state of adsorption was reached after 90 min with an adsorption capacity of 86 mg/g compared to the static mode when the capacity 59 mg/g was reached after 2 h. Then, a wet stirred media milling in a solution of BSA was introduced to yield the CuS-BSA nanosuspension, being stable for more than 10 months, as confirmed by photon cross-correlation spectroscopy. The fluorescent properties of the nanosuspension were confirmed by photoluminescence spectroscopy, which also showed that tryptophan present in the BSA could be closer to the binding site of CuS than the tyrosine residue. The biological activity was determined by in vitro tests on selected cancer and non-tumor cell lines. The results have shown that the CuS-BSA nanosuspension inhibits the metabolic activity of the cells as well as decreases their viability upon photothermal ablation.
Collapse
Affiliation(s)
- Martin Stahorský
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia.,Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Košice, Slovakia
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Erika Dutková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Safarik University, Košice, Slovakia
| | - Bohdan Mahlovanyi
- Institute of Physics, University of Rzeszow, Rzeszów, Poland.,Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Yaroslav Shpotyuk
- Institute of Physics, University of Rzeszow, Rzeszów, Poland.,Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jelena Trajić
- Institute of Physics, University of Belgrade, Belgrade, Serbia
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
109
|
Han G, Zhang P, Scholzen P, Noh H, Yang M, Kweon DH, Jeon J, Kim YH, Kim S, Han S, Andreev AS, Lang G, Ihm K, Li F, d'Espinose de Lacaillerie J, Baek J. Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gao‐Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 P. R. China
| | - Pascal Scholzen
- Soft Matter Science and Engineering Laboratory (SIMM) UMR CNRS 7615, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Jong‐Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Seong‐Wook Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Sun‐Phil Han
- UNIST Central Research Facilities Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Andrey S. Andreev
- Total Research and Technology Feluy (TRTF) Zone Industrielle C 7181 Feluy Belgium
| | - Guillaume Lang
- Laboratoire de Physique et d'Étude des Matériaux (LPEM) UMR CNRS 8213, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | | | - Jong‐Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
110
|
In Situ Analytical Methods for the Characterization of Mechanochemical Reactions. CRYSTALS 2022. [DOI: 10.3390/cryst12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interest in mechanochemical reactions and their fields of application have increased enormously in recent times. Mechanically activated reactions offer the advantage of cost-efficiency as well as environmentally friendly syntheses routes. In contrast to thermally induced processes, the energy transfer via the milling media takes place on a local scale. This leads to unique reaction pathways, which often also result in the formation of metastable phases. For the understanding of reaction pathways on a mechanistic level, it is very important to follow the processes taking place in the grinding jar during milling. Besides the measurement of pressure and temperature changes during a mechanochemical reaction, in situ high energy synchrotron X-ray powder diffraction and Raman spectroscopy experiments have been successfully implemented over the last 10 years. This review will highlight the developments which were achieved in the field of in situ monitoring of mechanochemical reactions and their input to the understanding of mechanochemistry.
Collapse
|
111
|
AlBab ND, Nam H, Han C, Omastova M, Chehimi MM, Mohamed AA. Mechanochemical synthesis of gold-silver nanocomposites via diazonium salts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
112
|
Puccetti F, Lukin S, Užarević K, Colacino E, Halasz I, Bolm C, Hernández JG. Mechanistic Insights on the Mechanosynthesis of Phenytoin, a WHO Essential Medicine. Chemistry 2022; 28:e202104409. [PMID: 35041251 PMCID: PMC9304275 DOI: 10.1002/chem.202104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/20/2023]
Abstract
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.
Collapse
Affiliation(s)
- Francesco Puccetti
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Stipe Lukin
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Krunoslav Užarević
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | | | - Ivan Halasz
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - José G. Hernández
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 5410000ZagrebCroatia
| |
Collapse
|
113
|
Baláž M, Casas-Luna M, Augustinyak A, Tkáčiková Ľ, Szmuc K, Kováčová M, Čelko L, Shpotyuk Y. Hybrid Ag0/Ag2CO3–eggshell–plant nanocomposites for antimicrobial action prepared by bio-mechanochemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Hansma HG. Potassium at the Origins of Life: Did Biology Emerge from Biotite in Micaceous Clay? Life (Basel) 2022; 12:301. [PMID: 35207588 PMCID: PMC8880093 DOI: 10.3390/life12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Intracellular potassium concentrations, [K+], are high in all types of living cells, but the origins of this K+ are unknown. The simplest hypothesis is that life emerged in an environment that was high in K+. One such environment is the spaces between the sheets of the clay mineral mica. The best mica for life's origins is the black mica, biotite, because it has a high content of Mg++ and because it has iron in various oxidation states. Life also has many of the characteristics of the environment between mica sheets, giving further support for the possibility that mica was the substrate on and within which life emerged. Here, a scenario for life's origins is presented, in which the necessary processes and components for life arise in niches between mica sheets; vesicle membranes encapsulate these processes and components; the resulting vesicles fuse, forming protocells; and eventually, all of the necessary components and processes are encapsulated within individual cells, some of which survive to seed the early Earth with life. This paper presents three new foci for the hypothesis of life's origins between mica sheets: (1) that potassium is essential for life's origins on Earth; (2) that biotite mica has advantages over muscovite mica; and (3) that micaceous clay is a better environment than isolated mica for life's origins.
Collapse
|
115
|
Streletskii AN, Kolbanev IV, Borunova AB, Leonov AV, Nishchak OY, Permenov DG, Ivanova OP. Mechanochemical Preparation of Highly Dispersed MeOx/C Composites as Materials for Supercapacitors and Ion Batteries. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x21060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Streletskii AN, Vorob’eva GA, Kolbanev IV, Borunova AB, Leonov AV. Thermal Transformations in Mechanically Activated MeOx/C Systems (Me = Mo, Mn, Bi, and V). COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x21060144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
117
|
Gonnet L, Lennox CB, Do J, Malvestiti I, Koenig SG, Nagapudi K, Friščić T. Metal‐Catalyzed Organic Reactions by Resonant Acoustic Mixing**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lori Gonnet
- Department of Chemistry McGill University 801 Sherbrooke St. West Montreal QC, H3H 0B8 Canada
| | - Cameron B. Lennox
- Department of Chemistry McGill University 801 Sherbrooke St. West Montreal QC, H3H 0B8 Canada
| | - Jean‐Louis Do
- Department of Chemistry McGill University 801 Sherbrooke St. West Montreal QC, H3H 0B8 Canada
| | - Ivani Malvestiti
- Departamento de Química Fundamental Universidade Federal de Pernambuco Av. Jornalista Aníbal Fernandes, s/n 50.740-560 Recife Brazil
| | - Stefan G. Koenig
- Small Molecule Pharmaceutical Sciences Genentech, Inc. One DNA Way South San Francisco CA 94080 USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences Genentech, Inc. One DNA Way South San Francisco CA 94080 USA
| | - Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. West Montreal QC, H3H 0B8 Canada
| |
Collapse
|
118
|
Woods HA. Physiology: Neutral buoyancy by an insect. Curr Biol 2022; 32:R165-R167. [DOI: 10.1016/j.cub.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
119
|
Wilke M, Casati N. A new route to polyoxometalates via mechanochemistry. Chem Sci 2022; 13:1146-1151. [PMID: 35211281 PMCID: PMC8790782 DOI: 10.1039/d1sc05111c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanochemistry offers a new route to polyoxometalates (POMs) under mild conditions. The molybdenum isoPOM heptamolybdate and the molybdenum heteroPOMs of the Strandberg- and Keggin-type could be achieved from grinding together molybdenum oxide, potassium or ammonium carbonate and phosphate. The reactions were controlled by the stoichiometric ratio of the starting materials and the liquid used, with reaction times between 30 min and 3 h. In situ investigations of the syntheses reveal the formation of intermediates during the reactions. Their identification helps explaining the mechanism of formation of the intermediates as well as the final POMs. Under mild conditions, molybdenum POMs could be achieved mechanochemically from simple building blocks, within short reaction times. In situ investigations reveal the formation of intermediates and help explaining the mechanism behind the reaction.![]()
Collapse
Affiliation(s)
- Manuel Wilke
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - Nicola Casati
- Laboratory for Synchrotron Radiation - Condensed Matter, Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| |
Collapse
|
120
|
Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020449. [PMID: 35056763 PMCID: PMC8779840 DOI: 10.3390/molecules27020449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022]
Abstract
In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified “offer” of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.
Collapse
|
121
|
Reverberi AP, Vocciante M, Salerno M, Soda O, Fabiano B. A sustainable, top-down mechanosynthesis of carbohydrate-functionalized silver nanoparticles. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00391g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method for the production of metal nanoparticles with a tribological process is proposed, aiming at minimising power consumption and risk factors related to unsafe unit operations.
Collapse
Affiliation(s)
- Andrea Pietro Reverberi
- DCCI – Department of Chemistry and Industrial Chemistry, Genova University, via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Vocciante
- DCCI – Department of Chemistry and Industrial Chemistry, Genova University, via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Salerno
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Omar Soda
- DCCI – Department of Chemistry and Industrial Chemistry, Genova University, via Dodecaneso 31, 16146 Genova, Italy
| | - Bruno Fabiano
- DICCA – Department of Civil, Chemical and Environmental Engineering, Polytechnic School, Genova University, via Opera Pia 15, 16145 Genova, Italy
| |
Collapse
|
122
|
Kim KC, Jiang T, Kim NI, Kwon C. Effects of ball-to-powder diameter ratio and powder particle shape on EDEM simulation in a planetary ball mill. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
123
|
Maleki-Ghaleh H, Siadati MH, Omidi Y, Kavanlouei M, Barar J, Akbari-Fakhrabadi A, Adibkia K, Beygi-Khosrowshahi Y. Synchrotron SAXS/WAXS and TEM studies of zinc doped natural hydroxyapatite nanoparticles and their evaluation on osteogenic differentiation of human mesenchymal stem cells. MATERIALS CHEMISTRY AND PHYSICS 2022; 276:125346. [DOI: 10.1016/j.matchemphys.2021.125346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
124
|
Tang M, Ye Q, Du C, Peng Y, Makwarimba CP, He Y, Lu S. PCDD/F removal at low temperatures over vanadium-based catalyst: insight into the superiority of mechanochemical method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7042-7052. [PMID: 34467487 DOI: 10.1007/s11356-021-15477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The high toxicity and low volatility of PCDD/Fs prevent detailed study of their catalytic degradation removal characteristics. In this study, 1,2-dichlorobenzene (1,2-DCBz) was initially used as a model to investigate the catalytic characteristics of various vanadium-based catalysts prepared by different methods. Then, the optimized catalyst was used for catalytic degradation of real PCDD/Fs at low temperatures based on a self-made stable source. The VOx/TiO2 catalysts synthesized by the mechanochemical method (VTi-MC2) had a higher 1,2-DCBz removal efficiency (>85%) and stability (> 420 min) at low temperatures (< 200 °C) compared to VTi-SG (sol-gol method) and VTi-WI (wetness impregnation method). The physicochemical properties of catalysts were studied using comprehensive characterization. It was found that the VTi-MC2 has better VOx species distribution and possesses the highest V5+ species and surface adsorbed oxygen content, which are the key factors that contributed to the higher removal efficiency. Accordingly, the mechanochemical method can be used to control the physicochemical properties of catalysts by adjusting the milling parameters. The optimum ball milling time is 2 h and a suitable precursor is NH4VO3 for VOx/TiO2. Moreover, the removal efficiency and catalytic degradation efficiency of PCDD/Fs in gas phase catalyzed by VTi-MC2 were 97% and 50% respectively, within a range of temperatures below 200 °C, which are both higher than those reported research. In general, the mechanochemical strategy employed in this study provides a means for seeking more efficient catalysts used for low-temperature degradation of various trace organic pollutants.
Collapse
Affiliation(s)
- Minghui Tang
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiulin Ye
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cuicui Du
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaqi Peng
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chengetai Portia Makwarimba
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yao He
- POWERCHINA Central China Electric Power Engineering Co., Ltd., Zhengzhou, 450007, China
| | - Shengyong Lu
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
125
|
The Art of Positronics in Contemporary Nanomaterials Science: A Case Study of Sub-Nanometer Scaled Glassy Arsenoselenides. MATERIALS 2022; 15:ma15010302. [PMID: 35009450 PMCID: PMC8745817 DOI: 10.3390/ma15010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022]
Abstract
The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100-x (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron-electron (Ps, positronium) states. Positron trapping in g-AsxSe100-x/PVP nanocomposites was modified by an enriched population of Ps-decay sites in PVP. This was proven within a three-state STM, assuming two additive inputs in an overall trapping arising from distinct positron and Ps-related states. Formalism of x3-x2-CDA (coupling decomposition algorithm), describing the conversion of Ps-decay sites into positron traps, was applied to identify volumetric nanostructurization in wet-milled g-As-Se, with respect to dry-milled ones. Under wet nanomilling, the Ps-decay sites stabilized in inter-particle triple junctions filled with PVP replaced positron traps in dry-milled substances, the latter corresponding to multi-atomic vacancies in mostly negative environments of Se atoms. With increased Se content, these traps were agglomerated due to an abundant amount of Se-Se bonds. Three-component lifetime spectra with nanostructurally- and compositionally-tuned Ps-decay inputs and average lifetimes serve as a basis to correctly understand the specific "rainbow" effects observed in the row from pelletized PVP to wet-milled, dry-milled, and unmilled samples.
Collapse
|
126
|
Stolar T, Alić J, Lončarić I, Etter M, Jung D, Farha OK, Đilović I, Meštrović E, Užarević K. Sustainable solid form screening: mechanochemical control over nucleobase hydrogen-bonded organic framework polymorphism. CrystEngComm 2022. [DOI: 10.1039/d2ce00668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The choice is yours! Liquid-assisted grinding can be used to control HOF polymorphism.
Collapse
Affiliation(s)
| | - Jasna Alić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg, Germany
| | - Dahee Jung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ivica Đilović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Ernest Meštrović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | |
Collapse
|
127
|
Chatziadi A, Skořepová E, Kohout M, Ridvan L, Šoóš M. Exploring the polymorphism of sofosbuvir via mechanochemistry: effect of milling jar geometry and material. CrystEngComm 2022. [DOI: 10.1039/d1ce01561c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, the influence of polypropylene jar properties on the polymorphic transformations of sofosbuvir during milling experiments is investigated.
Collapse
Affiliation(s)
- Argyro Chatziadi
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 6, Czech Republic
| | - Eliška Skořepová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 6, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Martin Kohout
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 6, Czech Republic
| | - Luděk Ridvan
- Zentiva, k.s, U Kabelovny 130, 10237, Prague 10, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 6, Czech Republic
| |
Collapse
|
128
|
Synthesis and Properties of SrTiO 3 Ceramic Doped with Sm 2O 3. MATERIALS 2021; 14:ma14247549. [PMID: 34947145 PMCID: PMC8706045 DOI: 10.3390/ma14247549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
The aim of this work was to study the effect of samarium oxide doping on a SrTiO3 perovskite ceramic. After analyzing the data obtained on the morphological features of the synthesized structures, it was found that an increase in the dopant concentration led not only to a change in the morphological features, but also in the density of the ferroelectrics. Using the X-ray diffraction method, it was found that doping with Sm2O3 led to the formation of a multiphase system of two cubic phases of SrTiO3 and Sm2O3. At the same time, an increase in the concentration of Sm2O3 dopant led to a change in the crystallinity degree, as well as deformation of the structure. Evaluation of the efficiency of use of synthesized ferroelectrics as catalysts for purification of aqueous media from manganese showed that an increase in the concentration of Sm2O3 dopant led to an increase in purification efficiency by 50–70%.
Collapse
|
129
|
Vakili M, Qin R, Cagnetta G, Huang J, Wang B, Yu G. Improved fractal kinetic model to predict mechanochemical destruction rate of organic pollutants. CHEMOSPHERE 2021; 284:131307. [PMID: 34182281 DOI: 10.1016/j.chemosphere.2021.131307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Mechanochemical destruction of organic pollutants by high energy milling with inorganic reagents is considered a promising non-thermal technology to detoxify hazardous waste. However, due to complex nature of the physicochemical phenomena involved, pollutant destruction kinetics heavily depends on the used reagents and operating parameters, thus varying case by case. In the present work, a fractal model was validated as flexible tool to interpolate pollutant mechanochemical destruction data satisfactorily. In addition, such model was expanded to estimate the contributions of the inorganic reagent and the pollutant to the overall reaction rate. Specifically, the kinetic constant associated to mechanical activation of the co-milling reagent and that related to pollutant destruction reaction were calculated. Their values resulted to depend only on the specific compound, hence, the tabulated data could be used to predict the pollutant mechanochemical degradation rate for any kind of mixture.
Collapse
Affiliation(s)
- Mohammadtaghi Vakili
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing, 408100, China
| | - Ruobing Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, Tsinghua University, Beijing, 100084, China
| | - Giovanni Cagnetta
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
130
|
Torre F, Mingazzini C, Mirabile Gattia D, Huminiuc T, Rinaldi A, Polcar T, Delogu F, Locci AM. Investigation on the Thermodynamic Stability of Nanocrystalline W-Based Alloys: A Combined Theoretical and Experimental Approach. MATERIALS 2021; 14:ma14237179. [PMID: 34885357 PMCID: PMC8658593 DOI: 10.3390/ma14237179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
The stability of nanostructured metal alloys is currently being extensively investigated, and several mathematical models have been developed to describe the thermodynamics of these systems. However, model capability in terms of thermal stability predictions strongly relies on grain boundary-related parameters that are difficult to measure or estimate accurately. To overcome this limitation, a novel theoretical approach is proposed and adopted in this work to identify W-based nanocrystalline alloys which are potentially able to show thermodynamic stability. A comparison between model outcomes and experimental findings is reported for two selected alloys, namely W-Ag and W-Al. Experimental results clearly highlight that W-Ag mixtures retain a segregated structure on relatively coarse length scales even after prolonged mechanical treatments. Moreover, annealing at moderate temperatures readily induces demixing of the constituent elements. In contrast, homogeneous nanostructured W-Al solid solutions are obtained by ball milling of elemental powders. These alloys show enhanced thermal stability with respect to pure W even at high homologous temperatures. Experimental evidences agree with model predictions for both the investigated systems.
Collapse
Affiliation(s)
- Francesco Torre
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy; (F.T.); (F.D.)
| | - Claudio Mingazzini
- Sustainability Department, SSPT-PROMAS-TEMAF, ENEA, Via Ravegnana, 186, SP302, 48018 Faenza, Italy;
| | - Daniele Mirabile Gattia
- Sustainability Department, SSPT-PROMAS-MATPRO, ENEA, Via Anguillarese 301, 00123 Rome, Italy; (D.M.G.); (A.R.)
| | - Teodor Huminiuc
- Engineering Materials, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK; (T.H.); (T.P.)
| | - Antonio Rinaldi
- Sustainability Department, SSPT-PROMAS-MATPRO, ENEA, Via Anguillarese 301, 00123 Rome, Italy; (D.M.G.); (A.R.)
| | - Tomas Polcar
- Engineering Materials, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK; (T.H.); (T.P.)
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy; (F.T.); (F.D.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Mario Locci
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 3, 09123 Cagliari, Italy; (F.T.); (F.D.)
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence:
| |
Collapse
|
131
|
Lennox CB, Do JL, Crew JG, Arhangelskis M, Titi HM, Howarth AJ, Farha OK, Friščić T. Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chem Sci 2021; 12:14499-14506. [PMID: 34881001 PMCID: PMC8580121 DOI: 10.1039/d1sc03665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanochemistry enables rapid access to boron imidazolate frameworks (BIFs), including ultralight materials based on Li and Cu(i) nodes, as well as new, previously unexplored systems based on Ag(i) nodes. Compared to solution methods, mechanochemistry is faster, provides materials with improved porosity, and replaces harsh reactants (e.g. n-butylithium) with simpler and safer oxides, carbonates or hydroxides. Periodic density-functional theory (DFT) calculations on polymorphic pairs of BIFs based on Li+, Cu+ and Ag+ nodes reveals that heavy-atom nodes increase the stability of the open SOD-framework relative to the non-porous dia-polymorph.
Collapse
Affiliation(s)
- Cameron B Lennox
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Joshua G Crew
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,School of Chemistry, Cardiff University Main Building. Park Place Cardiff CF10 3AT UK
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,Faculty of Chemistry, University of Warsaw 1 Pasteura St 02-093 Warsaw Poland
| | - Hatem M Titi
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| | - Ashlee J Howarth
- FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada.,Department of Biochemistry and Chemistry, Concordia University 7141 Sherbrooke St. W H4B 1R6 Montreal Canada.,International Institute for Nanotechnology, Department of Chemistry, Northwestern University 2145 Sheridan Road 60208 Evanston Il USA
| | - Omar K Farha
- International Institute for Nanotechnology, Department of Chemistry, Northwestern University 2145 Sheridan Road 60208 Evanston Il USA
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W H3A 0B8 Montreal Canada .,FRQNT Quebec Centre for Advanced Materials (QCAM/CQMF) Montreal Canada
| |
Collapse
|
132
|
Rathmann T, Petersen H, Reichle S, Schmidt W, Amrute AP, Etter M, Weidenthaler C. In situ synchrotron x-ray diffraction studies monitoring mechanochemical reactions of hard materials: Challenges and limitations. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114102. [PMID: 34852549 DOI: 10.1063/5.0068627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In situ monitoring of mechanochemical reactions of soft matter is feasible by synchrotron diffraction experiments. However, so far, reactions of hard materials in existing polymer milling vessels failed due to insufficient energy input. In this study, we present the development of a suitable setup for in situ diffraction experiments at a synchrotron facility. The mechanochemical transformation of boehmite, γ-AlOOH, to corundum, α-Al2O3, was chosen as a model system. The modifications of the mill's clamping system and the vessels themselves were investigated separately. Starting from a commercially available Retsch MM 400 shaker mill, the influence of the geometrical adaptation of the setup on the milling process was investigated. Simply extending the specimen holder proved to be not sufficient because changes in mechanical forces need to be accounted for in the construction of optimized extensions. Milling vessels that are suitable for diffraction experiments and also guarantee the required energy input as well as mechanical stability were developed. The vessels consist of a steel body and modular polymer/steel rings as x-ray transparent windows. In addition, the vessels are equipped with a gas inlet and outlet system that is connectable to a gas analytics setup. Based on the respective modifications, the transformation of boehmite to corundum could be observed in an optimized setup.
Collapse
Affiliation(s)
- Tobias Rathmann
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Hilke Petersen
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Steffen Reichle
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Wolfgang Schmidt
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Amol P Amrute
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Martin Etter
- Deutsches Elektronen Synchrotron (DESY) P02.1 PETRA III, Notkestr. 85, 22607 Hamburg, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| |
Collapse
|
133
|
Maluangnont T, Chanlek N, Khamman O, Vittayakorn W, Sooknoi T. Structural and Compositional Characteristics of Ball-Milled Lepidocrocite Alkali Titanate and the Correlation to Its Surface Acidic-Basic Properties. Inorg Chem 2021; 60:16326-16336. [PMID: 34644500 DOI: 10.1021/acs.inorgchem.1c02162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The studies on mechanical treatments of layered alkali metal oxides are limited despite their diverse compositions/structures and potential for property tuning. In this work, we vibratory mill Cs0.7Zn0.35Ti1.65O4, K0.8Zn0.4Ti1.6O4, and Cs2Ti6O13 for up to 4 h, during which the lepidocrocite-type structure and the plate-like morphology are well preserved. X-ray diffraction (XRD) indicates a tiny (≤0.6 Å) interlayer expansion accompanied by the enhancement of the preferred orientation along the stacking direction. Chemical analyses across multiple length scales suggest Cs deintercalation, elemental redistributions, and bulk-to-surface (or crystal edge) Cs migration. This ball-milling-induced Cs-rich moiety partially blocks the surface acid sites, although the solids still show a dominating acidic character. The ball-milled samples Cs0.7-pZn0.35-qTi1.65O4-δ contain vacancies between the sheets (p) and at the sheets (q and δ). It is deduced from Sanderson's electronegativity equalization principle and experimentally verified by X-ray photoelectron spectroscopy (XPS) that ball milling increases (decreases) the partial charge at the surface acidic Ti4+/Zn2+ (basic O2-) sites. These nonporous solids (≤20 m2·g-1) contain water sorbed on the external surface as high as 1.1 mol·mol-1, which is comparable to that in a water-intercalated sample. Our work expands the current understanding of the reactivity vs robustness in layered alkali titanates under physically demanding conditions, complementing knowledge gathered via the soft chemistry approach.
Collapse
Affiliation(s)
- Tosapol Maluangnont
- Electroceramics Research Laboratory, College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.,Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Orawan Khamman
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwilai Vittayakorn
- Electroceramics Research Laboratory, College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tawan Sooknoi
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.,Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
134
|
Palomo A, Maltseva O, Garcia-Lodeiro I, Fernández-Jiménez A. Portland Versus Alkaline Cement: Continuity or Clean Break: "A Key Decision for Global Sustainability". Front Chem 2021; 9:705475. [PMID: 34712645 PMCID: PMC8547590 DOI: 10.3389/fchem.2021.705475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
This review undertakes rigorous analysis of much of the copious literature available to the scientific community on the use of alkali-activated binders (AABs) in construction. The authors’ main intention is to categorically refute arguments of that part of the scientific community underestimating or even dismissing the actual potential of AABs as alternatives to Portland cement (PC). The main premise invoked in support of those arguments is a presumed lack of material resources for precursors that would make AAB industrial-scale production unfeasible anywhere on the planet (a substantial number of scientific papers show that the raw materials required for AAB manufacture are in abundance worldwide). The review also analyses the role of alkaline activators in the chemistry of AABs; it is important to clarify and highlight that alkaline activators are not, by any means, confined to the two synthetic products (caustic soda and waterglass) mostly employed by researchers; other sustainable and efficient products are widely available. Finally, the review deals with the versatility of AAB production processes. The technologies required for the large scale manufacturing of AABs are mostly already in place in PC factories; actually no huge investment is required to transform a PC plant in a AAB factory; and quality and compositional uniformity of Alkaline Cements (binders produced through an industrial process) would be guaranteed. The last conclusions extracted from this review-paper are related with: i) the low carbon footprint of one-part AABs and ii) the urgent need of exploring standardization formulas allowing the commercial development of (sustainable) binders different from PC.
Collapse
Affiliation(s)
- A Palomo
- Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Madrid, Spain
| | - O Maltseva
- Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Madrid, Spain
| | - I Garcia-Lodeiro
- Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Madrid, Spain
| | - A Fernández-Jiménez
- Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Madrid, Spain
| |
Collapse
|
135
|
Geng X, Zhao W, Zhou Q, Duan Y, Huang T, Liu X. Effect of the Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash, Part 2: Sulfur Additive. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xinze Geng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Weimeng Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Qiang Zhou
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Yufeng Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Tianfang Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
136
|
Chow CF, Lam CS, Lau KC, Gong CB. Waste-to-Energy: Production of Fuel Gases from Plastic Wastes. Polymers (Basel) 2021; 13:polym13213672. [PMID: 34771229 PMCID: PMC8588166 DOI: 10.3390/polym13213672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
A new mechanochemical method was developed to convert polymer wastes, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), to fuel gases (H2, CH4, and CO) under ball-milling with KMnO4 at room temperature. By using various solid-state characterizations (XPS, SEM, EDS, FTIR, and NMR), and density functional theory calculations, it was found that the activation followed the hydrogen atom transfer (HAT) mechanism. Two metal oxidant molecules were found to abstract two separate hydrogen atoms from the α-CH and β-CH units of substrates, [-βCH2-αCH(R)-]n, where R = H in PE, R = γCH3 in PP, and R = Cl in PVC, resulting in a di-radical, [-βCH•-αC•(R)-]. Subsequently, the two unpaired electrons of the di-radical were recombined into an alkene intermediate, [-βCH = αC(R)-], which underwent further oxidation to produce H2, CH4, and CO gases.
Collapse
Affiliation(s)
- Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China
- Correspondence: ; Tel.: +852-29487671
| | - Chow-Shing Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China; (C.-S.L.); (K.-C.L.)
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China; (C.-S.L.); (K.-C.L.)
| | - Cheng-Bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China;
| |
Collapse
|
137
|
Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing. Nat Commun 2021; 12:6134. [PMID: 34675198 PMCID: PMC8531352 DOI: 10.1038/s41467-021-26264-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022] Open
Abstract
Time resolved in situ (TRIS) monitoring has revolutionised the study of mechanochemical transformations but has been limited by available data quality. Here we report how a combination of miniaturised grinding jars together with innovations in X-ray powder diffraction data collection and state-of-the-art analysis strategies transform the power of TRIS synchrotron mechanochemical experiments. Accurate phase compositions, comparable to those obtained by ex situ measurements, can be obtained with small sample loadings. Moreover, microstructural parameters (crystal size and microstrain) can be also determined with high confidence. This strategy applies to all chemistries, is readily implemented, and yields high-quality diffraction data even using a low energy synchrotron source. This offers a direct avenue towards the mechanochemical investigation of reactions comprising scarce, expensive, or toxic compounds. Our strategy is applied to model systems, including inorganic, metal-organic, and organic mechanosyntheses, resolves previously misinterpreted mechanisms in mechanochemical syntheses, and promises broad, new directions for mechanochemical research.
Collapse
|
138
|
Belenguer AM, Lampronti GI, Sanders JKM. Implications of Thermodynamic Control: Dynamic Equilibrium Under Ball Mill Grinding Conditions. Isr J Chem 2021. [DOI: 10.1002/ijch.202100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana M. Belenguer
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom
| | - Giulio I. Lampronti
- Department of Earth Sciences University of Cambridge Downing Street Cambridge CB2 3EQ United Kingdom
| | - Jeremy K. M. Sanders
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW United Kingdom
| |
Collapse
|
139
|
Leitch JA, Smallman HR, Browne DL. Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling. J Org Chem 2021; 86:14095-14101. [PMID: 34256566 DOI: 10.1021/acs.joc.1c01233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanochemical synthesis of 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile and related organic fluorophores/photocatalysts via a solvent-minimized four-fold SNAr pathway is herein described. Employing sodium tert-butoxide as base, and negating the need for any air/moisture-sensitive reaction set-ups, a selection of organic dyes was synthesized in just 1 h using this ball-milling technique. Furthermore, the transformation was then showcased on a multigram scale.
Collapse
Affiliation(s)
- Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London W1CN 1AX, United Kingdom
| | - Harry R Smallman
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London W1CN 1AX, United Kingdom
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London W1CN 1AX, United Kingdom
| |
Collapse
|
140
|
Bama JA, Dudognon E, Affouard F. Impact of Low Concentration of Strongly Hydrogen-Bonded Water Molecules on the Dynamics of Amorphous Terfenadine: Insights from Molecular Dynamics Simulations and Dielectric Relaxation Spectroscopy. J Phys Chem B 2021; 125:11292-11307. [PMID: 34590855 DOI: 10.1021/acs.jpcb.1c06087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impact of low water concentration of strongly hydrogen-bonded water molecules on the dynamical properties of amorphous terfenadine (TFD) is investigated through complementary molecular dynamics (MD) simulations and dielectric relaxation spectroscopy (DRS) experiments. In this article, we especially highlight the important role played by some residual water molecules in the concentration of 1-2% (w/w) trapped in the TFD glassy matrix, which are particularly difficult to remove experimentally without a specific heating/drying process. From MD computations and analyses of the hydrogen bonding (HB) interactions, different categories of water molecules are revealed and particularly the presence of strongly HB water molecules. These latter localize themselves in small pockets in empty spaces existing in between the TFD molecules due to the poor packing of the glassy state and preferentially interact with the polar groups close to the flexible central part of the TFD molecules. We present a simple model which rationalizes at the molecular scale the effect of these strongly HB water molecules on dynamics and how they give rise to a supplementary relaxation process (namely process S) which is detected for the first time in the glassy state of TFD annealed at room temperature while this process is completely absent in a non-annealed glass. It also explains how this supplementary relaxation is coupled with the intramolecular motion (namely process γ) of the very flexible central part of the TFD molecule. The present findings help to understand more generally the microscopic origin of the secondary relaxations often detected by DRS in the glassy states of molecular compounds for which the exact nature is still debated.
Collapse
Affiliation(s)
- Jeanne-Annick Bama
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| | - Emeline Dudognon
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| | - Frédéric Affouard
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille F-59000, France
| |
Collapse
|
141
|
Dang Q, Lin H, Fan Z, Ma L, Shao Q, Ji Y, Zheng F, Geng S, Yang SZ, Kong N, Zhu W, Li Y, Liao F, Huang X, Shao M. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat Commun 2021; 12:6007. [PMID: 34650084 PMCID: PMC8516950 DOI: 10.1038/s41467-021-26336-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022] Open
Abstract
Exploring new materials is essential in the field of material science. Especially, searching for optimal materials with utmost atomic utilization, ideal activities and desirable stability for catalytic applications requires smart design of materials' structures. Herein, we report iridium metallene oxide: 1 T phase-iridium dioxide (IrO2) by a synthetic strategy combining mechanochemistry and thermal treatment in a strong alkaline medium. This material demonstrates high activity for oxygen evolution reaction with a low overpotential of 197 millivolt in acidic electrolyte at 10 milliamperes per geometric square centimeter (mA cmgeo-2). Together, it achieves high turnover frequencies of 4.2 sUPD-1 (3.0 sBET-1) at 1.50 V vs. reversible hydrogen electrode. Furthermore, 1T-IrO2 also shows little degradation after 126 hours chronopotentiometry measurement under the high current density of 250 mA cmgeo-2 in proton exchange membrane device. Theoretical calculations reveal that the active site of Ir in 1T-IrO2 provides an optimal free energy uphill in *OH formation, leading to the enhanced performance. The discovery of this 1T-metallene oxide material will provide new opportunities for catalysis and other applications.
Collapse
Affiliation(s)
- Qian Dang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Lu Ma
- NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, P. R. China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Fangfang Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Shize Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Shi-Ze Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA.
| | - Ningning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China.
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Jiangsu, P. R. China.
| |
Collapse
|
142
|
Geng X, Zhao W, Zhou Q, Duan Y, Huang T, Liu X. Effect of a Mechanochemical Process on the Stability of Mercury in Simulated Fly Ash. Part 1. Ball Milling. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinze Geng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Weimeng Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Qiang Zhou
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Yufeng Duan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Tianfang Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
143
|
Tsuzuki T. Mechanochemical synthesis of metal oxide nanoparticles. Commun Chem 2021; 4:143. [PMID: 36697599 PMCID: PMC9814100 DOI: 10.1038/s42004-021-00582-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
In the last decades, mechanochemical processing has emerged as a sustainable method for the large-scale production of a variety of nanomaterials. In particular, mechanochemical synthesis can afford well-dispersed metal-oxide nanoparticles, which are used in wide-ranging applications including energy storage and conversion, environmental monitoring, or biomedical uses. This article reviews recent progress in the mechanochemical synthesis of metal-oxide nanoparticles, explores reaction mechanisms, and contrasts the influence of chosen process parameters on the properties of end products. The role of choice of reaction pathway, as well as advantages and limitations compared to other synthesis methods are discussed. A prospect for future development of this synthetic method is proposed.
Collapse
Affiliation(s)
- Takuya Tsuzuki
- grid.1001.00000 0001 2180 7477School of Engineering, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
144
|
Trifiletti V, Asker C, Tseberlidis G, Riva S, Zhao K, Tang W, Binetti S, Fenwick O. Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity. FRONTIERS IN ELECTRONICS 2021. [DOI: 10.3389/felec.2021.758603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent decades, many technological advances have been enabled by nanoscale phenomena, giving rise to the field of nanotechnology. In particular, unique optical and electronic phenomena occur on length scales less than 10 nanometres, which enable novel applications. Halide perovskites have been the focus of intense research on their optoelectronic properties and have demonstrated impressive performance in photovoltaic devices and later in other optoelectronic technologies, such as lasers and light-emitting diodes. The most studied crystalline form is the three-dimensional one, but, recently, the exploration of the low-dimensional derivatives has enabled new sub-classes of halide perovskite materials to emerge with distinct properties. In these materials, low-dimensional metal halide structures responsible for the electronic properties are separated and partially insulated from one another by the (typically organic) cations. Confinement occurs on a crystal lattice level, enabling bulk or thin-film materials that retain a degree of low-dimensional character. In particular, quasi-zero dimensional perovskite derivatives are proving to have distinct electronic, absorption, and photoluminescence properties. They are being explored for various technologies beyond photovoltaics (e.g. thermoelectrics, lasing, photodetectors, memristors, capacitors, LEDs). This review brings together the recent literature on these zero-dimensional materials in an interdisciplinary way that can spur applications for these compounds. The synthesis methods, the electrical, optical, and chemical properties, the advances in applications, and the challenges that need to be overcome as candidates for future electronic devices have been covered.
Collapse
|
145
|
|
146
|
Gonnet L, Baron M, Baltas M. Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry. Molecules 2021; 26:5667. [PMID: 34577138 PMCID: PMC8464795 DOI: 10.3390/molecules26185667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Green Chemistry has become in the last two decades an increasing part of research interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its potential use in biological systems.
Collapse
Affiliation(s)
- Lori Gonnet
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Michel Baron
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
| | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France
| |
Collapse
|
147
|
Petersen H, Reichle S, Leiting S, Losch P, Kersten W, Rathmann T, Tseng J, Etter M, Schmidt W, Weidenthaler C. In Situ Synchrotron X-ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements. Chemistry 2021; 27:12558-12565. [PMID: 34062026 PMCID: PMC8456871 DOI: 10.1002/chem.202101260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/06/2022]
Abstract
Mechanochemistry, as a synthesis tool for inorganic materials, became an ever-growing field in material chemistry. The direct energy transfer by collision of the educts with the milling media gives the possibility to design environmental-friendly reactions. Nevertheless, the underlying process of energy transfer and hence the kinetics of mechanosynthesis remain unclear. Herein, we present in situ synchrotron X-ray diffraction studies coupled with pressure measurements performed during the formation of ZnS and the subsequent phase transition (PT) from the hexagonal to the cubic modification. Milling Zn and S8 results in the sublimation of S8 , observed by a sudden pressure increase. Simultaneously, the hexagonal metastable ZnS-modification (wurtzite) forms. Via detection of the pressure maximum, the exact start of the wurtzite formation can be determined. Immediately after the formation of wurtzite, the structural PT to the thermodynamic stable cubic modification sphalerite takes place. This PT can be described by the Prout-Tompkins equation for autocatalytic reactions, similar to thermally induced PT in sulfur vapor at high temperatures (T>1133 K). The increase in the reactivity of the wurtzite formation is explained by the reaction in sulfur vapor and the induction of defect structures by the collisions with the milling media.
Collapse
Affiliation(s)
- Hilke Petersen
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Steffen Reichle
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sebastian Leiting
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pit Losch
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Wolfgang Kersten
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Rathmann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Jochi Tseng
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Martin Etter
- P02.1 Petra III, Deutsches Elektronen Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany
| | - Wolfgang Schmidt
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Claudia Weidenthaler
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
148
|
Toward a Greener World-Cyclodextrin Derivatization by Mechanochemistry. Molecules 2021; 26:molecules26175193. [PMID: 34500627 PMCID: PMC8433980 DOI: 10.3390/molecules26175193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrin (CD) derivatives are a challenge, mainly due to solubility problems. In many cases, the synthesis of CD derivatives requires high-boiling solvents, whereas the product isolation from the aqueous methods often requires energy-intensive processes. Complex formation faces similar challenges in that it involves interacting materials with conflicting properties. However, many authors also refer to the formation of non-covalent bonds, such as the formation of inclusion complexes or metal–organic networks, as reactions or synthesis, which makes it difficult to classify the technical papers. In many cases, the solubility of both the starting material and the product in the same solvent differs significantly. The sweetest point of mechanochemistry is the reduced demand or complete elimination of solvents from the synthesis. The lack of solvents can make syntheses more economical and greener. The limited molecular movements in solid-state allow the preparation of CD derivatives, which are difficult to produce under solvent reaction conditions. A mechanochemical reaction generally has a higher reagent utilization rate. When the reaction yields a good guest co-product, solvent-free conditions can be slower than in solution conditions. Regioselective syntheses of per-6-amino and alkylthio-CD derivatives or insoluble cyclodextrin polymers and nanosponges are good examples of what a greener technology can offer through solvent-free reaction conditions. In the case of thiolated CD derivatives, the absence of solvents results in significant suppression of the thiol group oxidation, too. The insoluble polymer synthesis is also more efficient when using the same molar ratio of the reagents as the solution reaction. Solid reactants not only reduce the chance of hydrolysis of multifunctional reactants or side reactions, but the spatial proximity of macrocycles also reduces the length of the spacing formed by the crosslinker. The structure of insoluble polymers of the mechanochemical reactions generally is more compact, with fewer and shorter hydrophilic arms than the products of the solution reactions.
Collapse
|
149
|
Akopova TA, Demina TS, Khavpachev MA, Popyrina TN, Grachev AV, Ivanov PL, Zelenetskii AN. Hydrophobic Modification of Chitosan via Reactive Solvent-Free Extrusion. Polymers (Basel) 2021; 13:2807. [PMID: 34451348 PMCID: PMC8399264 DOI: 10.3390/polym13162807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/31/2023] Open
Abstract
Hydrophobic derivatives of polysaccharides possess an amphiphilic behavior and are widely used as rheological modifiers, selective sorbents, and stabilizers for compositions intended for various applications. In this work, we studied the mechanochemical reactions of chitosan alkylation when interacting with docosylglycidyl and hexadecylglycidyl ethers in the absence of solvents at shear deformation in a pilot twin-screw extruder. The chemical structure and physical properties of the obtained derivatives were characterized by elemental analysis, FT-IR spectroscopy, dynamic light scattering, scanning electron microscopy, and mechanical tests. According to calculations for products soluble in aqueous media, it was possible to introduce about 5-12 hydrophobic fragments per chitosan macromolecule with a degree of polymerization of 500-2000. The length of the carbon chain of the alkyl substituent significantly affects its reactivity under the chosen conditions of mechanochemical synthesis. It was shown that modification disturbs the packing ability of the macromolecules, resulting in an increase of plasticity and drop in the elastic modulus of the film made from the hydrophobically modified chitosan samples.
Collapse
Affiliation(s)
- Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Mukhamed A. Khavpachev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Andrey V. Grachev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119991 Moscow, Russia;
| | - Pavel L. Ivanov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Alexander N. Zelenetskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| |
Collapse
|
150
|
Jones AC, Nicholson WI, Leitch JA, Browne DL. A Ball-Milling-Enabled Cross-Electrophile Coupling. Org Lett 2021; 23:6337-6341. [PMID: 34342468 DOI: 10.1021/acs.orglett.1c02096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nickel-catalyzed cross-electrophile coupling of aryl halides and alkyl halides enabled by ball-milling is herein described. Under a mechanochemical manifold, the reductive C-C bond formation was achieved in the absence of bulk solvent and air/moisture sensitive setups, in reaction times of 2 h. The mechanical action provided by ball milling permits the use of a range of zinc sources to turnover the nickel catalytic cycle, enabling the synthesis of 28 cross-electrophile coupled products.
Collapse
Affiliation(s)
- Andrew C Jones
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - William I Nicholson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| |
Collapse
|