101
|
Kohane IS. An autism case history to review the systematic analysis of large-scale data to refine the diagnosis and treatment of neuropsychiatric disorders. Biol Psychiatry 2015; 77:59-65. [PMID: 25034947 PMCID: PMC4260993 DOI: 10.1016/j.biopsych.2014.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/05/2014] [Accepted: 05/22/2014] [Indexed: 01/18/2023]
Abstract
Analysis of large-scale systems of biomedical data provides a perspective on neuropsychiatric disease that may be otherwise elusive. Described here is an analysis of three large-scale systems of data from autism spectrum disorder (ASD) and of ASD research as an exemplar of what might be achieved from study of such data. First is the biomedical literature that highlights the fact that there are two very successful but quite separate research communities and findings pertaining to genetics and the molecular biology of ASD. There are those studies positing ASD causes that are related to immunological dysregulation and those related to disorders of synaptic function and neuronal connectivity. Second is the emerging use of electronic health record systems and other large clinical databases that allow the data acquired during the course of care to be used to identify distinct subpopulations, clinical trajectories, and pathophysiological substructures of ASD. These systems reveal subsets of patients with distinct clinical trajectories, some of which are immunologically related and others which follow pathologies conventionally thought of as neurological. The third is genome-wide genomic and transcriptomic analyses which show molecular pathways that overlap neurological and immunological mechanisms. The convergence of these three large-scale data perspectives illustrates the scientific leverage that large-scale data analyses can provide in guiding researchers in an approach to the diagnosis of neuropsychiatric disease that is inclusive and comprehensive.
Collapse
Affiliation(s)
- Isaac S Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
102
|
Ji Y, Yu WQ, Eom YS, Bruce F, Craft CM, Grzywacz NM, Lee EJ. The effect of TIMP-1 on the cone mosaic in the retina of the rat model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 56:352-64. [PMID: 25515575 DOI: 10.1167/iovs.14-15398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The array of photoreceptors found in normal retinas provides uniform and regular sampling of the visual space. In contrast, cones in retinas of the S334ter-line-3 rat model for RP migrate to form a mosaic of rings, leaving large holes with few or no photoreceptors. Similar mosaics appear in human patients with other forms of retinal dystrophy. In the current study, we aimed to investigate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the mosaic of cones in S334ter-line-3 rat retinas. We focused on TIMP-1 because it is one of the regulators of the extracellular matrix important for cellular migration. METHODS Immunohistochemistry was performed to reveal M-opsin cone cells (M-cone) and the results were quantified to test statistically whether or not TIMP-1 restores the mosaics to normal. In particular, the tests focused on the Voronoi and nearest-neighbor distance analyses. RESULTS Our tests indicated that TIMP-1 led to significant disruption of the M-opsin cone rings in S334ter-line-3 rat retinas and resulted in almost complete homogeneous mosaics. In addition, TIMP-1 induced the M-cone spatial distribution to become closer to random with decreased regularity in S334ter-line-3 rat retinas. CONCLUSIONS These findings confirm that TIMP-1 induced M-cone mosaics in S334ter-line-3 to gain homogeneity without reaching the degree of regularity seen in normal retinal mosaics. Even if TIMP-1 fails to promote regularity, the effects of this drug on homogeneity appear to be so dramatic that TIMP-1 may be a potential therapeutic agent. TIMP-1 improves sampling of the visual field simply by causing homogeneity.
Collapse
Affiliation(s)
- Yerina Ji
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| | - Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| | - Yun Sung Eom
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Farouk Bruce
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States
| | - Cheryl Mae Craft
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Mary D. Allen Laboratory for Vision Research, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States
| | - Eun-Jin Lee
- Center for Vision Science and Technology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
103
|
CXCL12 Modulates Prostate Cancer Cell Adhesion by Altering the Levels or Activities of β1-Containing Integrins. Int J Cell Biol 2014; 2014:981750. [PMID: 25580125 PMCID: PMC4279265 DOI: 10.1155/2014/981750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which prostate cancer (PCa) cell adhesion and migration are controlled during metastasis are not well understood. Here, we studied the effect of CXCL12 in PCa cell adhesion and spreading in DU145 and PC3 cell lines using as substrates collagen I, fibronectin (FN), and their recombinant fragments. CXCL12 treatment increased β1 integrin-dependent PC3 cell adhesion on FN which correlated with increased focal adhesion kinase activation. However neither α5β1 nor α4β1 subunits were involved in this adhesion. By contrast, CXCL12 decreased DU145 adhesion and spreading on FN by downregulating α5 and β1 integrin expression. To demonstrate the clinical relevance of CXCL12 in PCa, we measured CXCL12 levels in plasma by using ELISA and found that the chemokine is elevated in PCa patients when compared to controls. The high concentration of CXCL12 in patients suffering from PCa in comparison to those with benign disease or healthy individuals implicates CXCL12 as a potential biomarker for PCa. In addition these data show that CXCL12 may be crucial in controlling PCa cell adhesion on fibronectin and collagen I, possibly via crosstalk with integrin receptors and/or altering the expression levels of integrin subunits.
Collapse
|
104
|
Balanis N, Carlin CR. Mutual cross-talk between fibronectin integrins and the EGF receptor: Molecular basis and biological significance. CELLULAR LOGISTICS 2014; 2:46-51. [PMID: 22645710 PMCID: PMC3355975 DOI: 10.4161/cl.20112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extension of the plasma membrane is one of the first steps in cell migration. Understanding how cells “choose” between various types of membrane protrusion enhances our knowledge of both normal and cancer cell physiology. The EGF receptor is a paradigm for understanding how transmembrane receptor tyrosine kinases regulate intracellular signaling following ligand stimulation. Evidence from the past decade indicates that EGF receptors also form macromolecular complexes with integrin receptors leading to EGF receptor transactivation during cell adhesion. However, relatively little is known about how these complexes form and impact cell migration. Our recent work characterized a molecular complex between EGF receptor and β3 integrin which recognizes RGD motifs in extracellular matrix proteins. Complex formation requires a dileucine motif (679-LL) in the intracellular juxtamembrane region of the EGF receptor that also controls whether or not the receptor undergoes Src kinase-dependent phosphorylation at Tyr-845. In contrast to wild-type receptors, mutant EGF receptors defective for Tyr-845 phosphorylation form complexes with β1 integrin that also binds RGD motifs. In addition, we have discovered that EGF receptor antagonizes small GTPase RhoA by mediating membrane recruitment of its regulatory GAP p190RhoGAP. In this addendum we discuss a potential new role for Src-dependent EGF receptor transactivation in integrin/EGF receptor complex formation. We also discuss how our study fits with previous observations linking p190RhoGAP to RhoA-dependent cytoskeletal rearrangements involved in cell migration, and provide new data that the EGF receptor is compartmentalized to relatively immature zyxin-poor focal adhesions which are the likely site of p190RhoGAP signaling.
Collapse
|
105
|
Zhao F, Liu C, Hao YM, Qu B, Cui YJ, Zhang N, Gao XJ, Li QZ. Up-regulation of integrin α6β4 expression by mitogens involved in dairy cow mammary development. In Vitro Cell Dev Biol Anim 2014; 51:287-99. [PMID: 25319126 DOI: 10.1007/s11626-014-9827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
In dairy cows, the extracellular microenvironment varies significantly from the virgin state to lactation. The function of integrin α6β4 is dependent on cell type and extracellular microenvironment, and the precise expression profile of α6β4 and its effects on mammary development remain to be determined. In the present study, real-time PCR and immunohistochemistry were used to analyze the expression and localization of integrin α6β4 in Holstein dairy cow mammary glands. The effects of integrin α6β4 on the proliferation induced by mammogenic mitogens were identified by blocking integrin function in purified dairy cow mammary epithelial cells (DCMECs). The results showed that the localization of β4 subunit and its exclusive partner the α6 subunit were not consistent but were co-localized in basal luminal cells and myoepithelial cells, appearing to prefer the basal surface of the plasma membrane. Moreover, α6 and β4 subunit messenger RNA (mRNA) levels changed throughout the stages of dairy cow mammary development, reflected well by protein levels, and remained higher in the virgin and pregnancy states, with duct/alveolus morphogenesis and active cell proliferation, than during lactation, when growth arrest is essential for mammary epithelial cell differentiation. Finally, the upregulation of integrin expression by both mammogenic growth hormone and insulin-like growth factor-1 and the inhibited growth of DCMECs by function-blocking integrin antibodies confirmed that integrin α6β4 was indeed involved in dairy cow mammary development.
Collapse
Affiliation(s)
- Feng Zhao
- Key laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Jessica L Lee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
107
|
Yoo SY, Merzlyak A, Lee SW. Synthetic phage for tissue regeneration. Mediators Inflamm 2014; 2014:192790. [PMID: 24991085 PMCID: PMC4058494 DOI: 10.1155/2014/192790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/18/2014] [Indexed: 11/17/2022] Open
Abstract
Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.
Collapse
Affiliation(s)
- So Young Yoo
- Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| | - Anna Merzlyak
- Department of Bioengineering, University of California, Berkeley, and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
108
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
109
|
Speicher T, Siegenthaler B, Bogorad RL, Ruppert R, Petzold T, Padrissa-Altes S, Bachofner M, Anderson DG, Koteliansky V, Fässler R, Werner S. Knockdown and knockout of β1-integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nat Commun 2014; 5:3862. [PMID: 24844558 DOI: 10.1038/ncomms4862] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
The liver has a unique regenerative capability, which involves extensive remodelling of cell-cell and cell-matrix contacts. Here we study the role of integrins in mouse liver regeneration using Cre/loxP-mediated gene deletion or intravenous delivery of β1-integrin siRNA formulated into nanoparticles that predominantly target hepatocytes. We show that although short-term loss of β1-integrin has no obvious consequences for normal livers, partial hepatectomy leads to severe liver necrosis and reduced hepatocyte proliferation. Mechanistically, loss of β1-integrin in hepatocytes impairs ligand-induced phosphorylation of the epidermal growth factor and hepatocyte growth factor receptors, thereby attenuating downstream receptor signalling in vitro and in vivo. These results identify a crucial role and novel mechanism of action of β1-integrins in liver regeneration and demonstrate that protein depletion by nanoparticle-based delivery of specific siRNA is a powerful strategy to study gene function in the regenerating liver.
Collapse
Affiliation(s)
- Tobias Speicher
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich,8093, Switzerland
| | - Beat Siegenthaler
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich,8093, Switzerland
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Raphael Ruppert
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tobias Petzold
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Susagna Padrissa-Altes
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich,8093, Switzerland
| | - Marc Bachofner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich,8093, Switzerland
| | - Daniel G Anderson
- 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Victor Koteliansky
- Skolkovo Institute of Science and Technology, ul. Novaya, d.100, Skolkovo 143025, Russian Federation
| | - Reinhard Fässler
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich,8093, Switzerland
| |
Collapse
|
110
|
Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, Tanaka N, Sawada Y, Kawauchi K. Loss of p53 enhances NF-κB-dependent lamellipodia formation. J Cell Physiol 2014; 229:696-704. [PMID: 24647813 DOI: 10.1002/jcp.24505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022]
Abstract
Tumor suppressor p53 prevents tumorigenesis and tumor growth by suppressing the activation of several transcription factors, including nuclear factor-κB (NF-κB) and STAT3. On the other hand, p53 stimulates actin cytoskeleton remodeling and integrin-related signaling cascades. Here, we examined the p53-mediated link between regulation of the actin cytoskeleton and activation of NF-κB and STAT3 in MCF-7 cells and mouse embryonic fibroblasts (MEFs). In the absence of p53, STAT3 was constitutively activated. This activation was attenuated by depleting the expression of p65, a component of NF-κB. Integrin β3 expression and lamellipodia formation were also downregulated by NF-κB depletion. Inhibition of integrin αvβ3, Rac1 or Arp2/3, which diminished lamellipodia formation, suppressed STAT3 activation induced by p53 depletion. These results suggest that loss of p53 leads to STAT3 activation via NF-κB-dependent lamellipodia formation. Our study proposes a novel role for p53 in modulating the actin cytoskeleton through suppression of NF-κB, which restricts STAT3 activation.
Collapse
|
111
|
Jiang L, Kimura RH, Ma X, Tu Y, Miao Z, Shen B, Chin FT, Shi H, Gambhir SS, Cheng Z. A radiofluorinated divalent cystine knot peptide for tumor PET imaging. Mol Pharm 2014; 11:3885-92. [PMID: 24717098 PMCID: PMC4212002 DOI: 10.1021/mp500018s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A divalent
knottin containing two separate integrin binding epitopes
(RGD) in the adjacent loops, 3-4A, was recently developed and reported
in our previous publication. In the current study, 3-4A was radiofluorinated
with a 4-nitrophenyl 2-18F-fluoropropinate (18F-NFP) group and the resulting divalent positron emission tomography
(PET) probe, 18F-FP–3-4A, was evaluated as a novel
imaging probe to detect integrin αvβ3 positive tumors
in living animals. Knottin 3-4A was synthesized by solid phase peptide
synthesis, folded, and site-specifically conjugated with 18/19F-NFP to produce the fluorinated peptide 18/19F-fluoropropinate-3-4A
(18/19F-FP–3-4A). The stability of 18F-FP–3-4A was tested in both phosphate buffered saline (PBS)
buffer and mouse serum. Cell uptake assays of the radiolabeled peptides
were performed using U87MG cells. In addition, small animal PET imaging
and biodistribution studies of 18F-FP–3-4A were
performed in U87MG tumor-bearing mice. The receptor targeting specificity
of the radiolabeled peptide was also verified by coinjecting the probe
with a blocking peptide cyclo(RGDyK). Our study showed that 18F-FP–3-4A exhibited excellent stability in PBS buffer (pH
7.4) and mouse serum. Small animal PET imaging and biodistribution
data revealed that 18F-FP–3-4A exhibited rapid and
good tumor uptake (3.76 ± 0.59% ID/g and 2.22 ± 0.62% ID/g
at 0.5 and 1 h, respectively). 18F-FP–3-4A was rapidly
cleared from the normal tissues, resulting in excellent tumor-to-normal
tissue contrasts. For example, liver uptake was only 0.39 ± 0.07%
ID/g and the tumor to liver ratio was 5.69 at 1 h p.i. Furthermore,
coinjection of cyclo(RGDyK) with 18F-FP–3-4A significantly
inhibited tumor uptake (0.41 ± 0.12 vs 1.02 ± 0.19% ID/g
at 2.5 h) in U87MG xenograft models, demonstrating specific accumulation
of the probe in the tumor. In summary, the divalent probe 18F-FP–3-4A is characterized by rapid and high tumor uptake
and excellent tumor-to-normal tissue ratios. 18F-FP–3-4A
is a highly promising knottin based PET probe for translating into
clinical imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University , 180 Fenglin Road, Shanghai, China 200032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Fibroblast growth factors, or FGFs, are a large family of polypeptide cytokines exhibiting a pleiotropy of functions, from cell growth to angiogenesis, wound healing, and tissue repair. This review broadly covers the genetics and protein expression of the FGF family members and the signaling pathways involved in FGF-mediated growth regulation. We emphasize the role of FGFs in the pathogenesis of hepatocellular carcinoma (HCC), including their effects on regulation of the tumor microenvironment and angiogenesis. Finally, we present current views on FGF's potential role as a prognostic marker in clinical practice, as well as its potential as a therapeutic target in HCC.
Collapse
|
113
|
Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol 2014; 34:144-53. [DOI: 10.1016/j.matbio.2013.10.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
114
|
Teo ZL, McQueen-Miscamble L, Turner K, Martinez G, Madakashira B, Dedhar S, Robinson ML, de Iongh RU. Integrin linked kinase (ILK) is required for lens epithelial cell survival, proliferation and differentiation. Exp Eye Res 2014; 121:130-42. [PMID: 24472646 DOI: 10.1016/j.exer.2014.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
Abstract
While the role of growth factors in lens development has been investigated extensively, the role of extracellular matrix signalling is less well understood. The developing lens expresses predominantly laminin-binding integrins (such as α3β1, α6β1), which are cooperatively required in the lens epithelium during development. We investigated the role of ILK, a downstream mediator of integrin signalling in mice conditionally null for Ilk. Mutant lenses showed epithelial thinning at E17.5 with reduced proliferation and epithelial cell number and aberrant fibre differentiation. There was complete loss of the central epithelium from postnatal day (P) 2 due to cell death followed by fibre cell degeneration and death by P10 as well as rupture of the lens capsule between P10 and P21. At E17.5 there was significant inhibition (∼50%) of epithelial cell cycle progression, as shown by BrdU incorporation, cyclin D1/D2 and phospho-histone H3 immunostaining. The epithelial marker, E-cadherin, was decreased progressively from E17.5 to P2, in the central epithelium, but there was no significant change in Pax6 expression. Analyses of ERK and Akt phosphorylation indicated marked depression of MAPK and PI3K-Akt signalling, which correlated with decreased phosphorylation of FRS2α and Shp2, indicating altered activation of FGF receptors. At later postnatal stages there was reduced or delayed expression of fibre cell markers (β-crystallin and p57(kip2)). Loss of Ilk also affected deposition of extracellular matrix, with marked retention of collagen IV within differentiating fibre cells. By quantitative RT-PCR array there was significantly decreased expression of 19 genes associated with focal adhesions, actin filament stability and MAPK and PI3K/Akt signalling. Overall, these data indicate that ILK is required for complete activation of signalling cascades downstream of the FGF receptor in lens epithelium and fibre cells during development and thus is involved in epithelial proliferation, survival and subsequent fibre differentiation.
Collapse
Affiliation(s)
- Zhi Ling Teo
- Ocular Development Laboratory, Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | - Lachlan McQueen-Miscamble
- Ocular Development Laboratory, Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | - Kirsty Turner
- Ocular Development Laboratory, Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | - Gemma Martinez
- Ocular Development Laboratory, Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | | - Shoukat Dedhar
- British Columbia Cancer Research Centre, Vancouver, B.C., Canada
| | | | - Robb U de Iongh
- Ocular Development Laboratory, Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
115
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
116
|
Hypothalamic proteoglycan syndecan-3 is a novel cocaine addiction resilience factor. Nat Commun 2013; 4:1955. [PMID: 23736082 PMCID: PMC3709481 DOI: 10.1038/ncomms2955] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 11/08/2022] Open
Abstract
Proteoglycans like syndecan-3 have complex signaling roles in addition to their function as structural components of the extracellular matrix. Here, we show that syndecan-3 in the lateral hypothalamus has an unexpected new role in limiting compulsive cocaine intake. In particular, we observe that syndecan-3 null mice self-administer greater amounts of cocaine than wild-type mice. This effect can be rescued by re-expression of syndecan-3 in the lateral hypothalamus with an adeno-associated viral vector. Adeno-associated viral vector delivery of syndecan-3 to the lateral hypothalamus also reduces motivation for cocaine in normal mice. Syndecan-3 limits cocaine intake by modulating the effects of glial-cell-line-derived neurotrophic factor, which uses syndecan-3 as an alternative receptor. Our findings indicate syndecan-3-dependent signaling as a novel therapeutic target for the treatment of cocaine addiction.
Collapse
|
117
|
Abstract
Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| | - James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| |
Collapse
|
118
|
Davis PJ, Lin HY, Tang HY, Davis FB, Mousa SA. Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 2013; 23:1503-9. [PMID: 24011085 DOI: 10.1089/thy.2013.0280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At thyroid hormone response elements on specific genes, complexes of nuclear thyroid hormone receptors (TRs) and 3,5,3'-triiodo-L-thyronine (T(3)), coactivator or corepressor nucleoproteins, and histone acetylases or deacetylases mediate genomic effects of the hormone. Nongenomic effects of the hormone are those whose initiation does not primarily depend upon formation of the TR-T(3) complex. Among the nongenomic effects of thyroid hormone are a set of actions initiated at a cell surface receptor on integrin αvβ3 that are relevant to a) intracellular trafficking of proteins, including TRβ1, b) serine phosphorylation and acetylation of this nuclear receptor, c) assembly within the nucleus of complexes of coactivators and corepressor, and d) transcription of specific genes, including that for TRβ1. These actions initiated at αvβ3 are reviewed here and appear to be adjunctive to the genomic actions of the TR-T(3) complex.
Collapse
Affiliation(s)
- Paul J Davis
- 1 Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Albany, New York
| | | | | | | | | |
Collapse
|
119
|
Ishii T, Warabi E, Siow RCM, Mann GE. Sequestosome1/p62: a regulator of redox-sensitive voltage-activated potassium channels, arterial remodeling, inflammation, and neurite outgrowth. Free Radic Biol Med 2013; 65:102-116. [PMID: 23792273 DOI: 10.1016/j.freeradbiomed.2013.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/14/2022]
Abstract
Sequestosome1/p62 (SQSTM1) is an oxidative stress-inducible protein regulated by the redox-sensitive transcription factor Nrf2. It is not an antioxidant but known as a multifunctional regulator of cell signaling with an ability to modulate targeted or selective degradation of proteins through autophagy. SQSTM1 implements these functions through physical interactions with different types of proteins including atypical PKCs, nonreceptor-type tyrosine kinase p56(Lck) (Lck), polyubiquitin, and autophagosomal factor LC3. One of the notable physiological functions of SQSTM1 is the regulation of redox-sensitive voltage-gated potassium (Kv) channels which are composed of α and β subunits: (Kvα)4 (Kvβ)4. Previous studies have established that SQSTM1 scaffolds PKCζ, enhancing phosphorylation of Kvβ which induces inhibition of pulmonary arterial Kv1.5 channels under acute hypoxia. Recent studies reveal that Lck indirectly interacts with Kv1.3 α subunits and plays a key role in acute hypoxia-induced Kv1.3 channel inhibition in T lymphocytes. Kv1.3 channels provide a signaling platform to modulate the migration and proliferation of arterial smooth muscle cells and activation of T lymphocytes, and hence have been recognized as a therapeutic target for treatment of restenosis and autoimmune diseases. In this review, we focus on the functional interactions of SQSTM1 with Kv channels through two key partners aPKCs and Lck. Furthermore, we provide molecular insights into the functions of SQSTM1 in suppression of proliferation of arterial smooth muscle cells and neointimal hyperplasia following carotid artery ligation, in T lymphocyte differentiation and activation, and in NGF-induced neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
120
|
Otagiri D, Yamada Y, Hozumi K, Katagiri F, Kikkawa Y, Nomizu M. Cell attachment and spreading activity of mixed laminin peptide-chitosan membranes. Biopolymers 2013; 100:751-9. [DOI: 10.1002/bip.22303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/24/2013] [Accepted: 05/28/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Dai Otagiri
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Kentaro Hozumi
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
121
|
Gagen D, Faralli JA, Filla MS, Peters DM. The role of integrins in the trabecular meshwork. J Ocul Pharmacol Ther 2013; 30:110-20. [PMID: 24266581 DOI: 10.1089/jop.2013.0176] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). However, integrins are not just adhesion receptors. They can act as "bidirectional signal transducers" that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. Among the activities regulated by integrins are cell adhesion, assembly of the ECM, growth factor signaling, apoptosis, organization of the cytoskeleton, and cytoskeleton-mediated processes such as contraction, endocytosis, and phagocytosis. Integrins regulate these activities through a complex network of intracellular signaling kinases and adaptor proteins that associate with the transmembrane and cytoplasmic domains of the integrin subunits. In this review, we will discuss how some of the known integrin-mediated activities can control the function of the trabecular meshwork. We will also discuss how integrin activity is a tightly regulated process that involves conformation changes within the heterodimer which are mediated by specific integrin-binding proteins.
Collapse
Affiliation(s)
- Debjani Gagen
- 1 Department of Pathology and Laboratory Medicine, Medical Science Center, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|
122
|
Thuma F, Ngora H, Zöller M. The metastasis-associated molecule C4.4A promotes tissue invasion and anchorage independence by associating with the alpha6beta4 integrin. Mol Oncol 2013; 7:917-28. [PMID: 23727360 PMCID: PMC5528461 DOI: 10.1016/j.molonc.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023] Open
Abstract
C4.4A is a metastasis-associated molecule that functions appear to rely on associated alph6beta4 integrin. To corroborate the impact of the C4.4A-alpha6beta4 integrin association on metastasis formation, C4.4A was knocked-down in a highly metastatic rat pancreatic adenocarcinoma (ASML, ASML-C4.4Akd). Metastasis formation by ASML-C4.4Akd cells after intrafootpad application was strongly retarded in draining nodes and lung colonization was rare. Furthermore, cisplatin treatment significantly prolonged the survival time only of ASML-C4.4Akd-bearing rats. ASML-C4.4Akd cells display reduced migratory activity and impaired matrix protein degradation due to inefficient MMP14 activation; loss of drug-resistance is due to mitigated PI3K/Akt pathway activation. These losses of function rely on the laminin receptor C4.4A recruiting activated alpha6beta4 integrin into rafts, where C4.4A cooperates with alpha6beta4 and via alpha6beta4 with MMP14. Within this raft-located complex, MMP14 provokes focalized matrix degradation and mostly alpha6beta4 integrin promotes BAD phosphorylation and upregulated Bcl2 and BclXl expression. Thus, metastasis-promoting activities of C4.4A are not genuine characteristics of C4.4A. Instead, the raft-located laminin receptor C4.4A recruits alpha6beta4 integrin and supports via the alpha6beta4 integrin MMP14 activation. Thereby C4.4A acts as a linker to facilitate several steps in the metastatic cascade. Taking the restricted C4.4A expression in non-transformed tissue, this knowledge should pave the way toward the use of C4.4A as a therapeutic target.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Honoré Ngora
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg D-69120, Germany
- German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
123
|
Cagnet S, Faraldo MM, Kreft M, Sonnenberg A, Raymond K, Glukhova MA. Signaling events mediated by α3β1 integrin are essential for mammary tumorigenesis. Oncogene 2013; 33:4286-95. [PMID: 24077284 DOI: 10.1038/onc.2013.391] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
The constitutive activation of β-catenin signaling in the mammary basal epithelial cell layer in transgenic K5ΔNβcat mice leads to basal-type tumor development. Integrins of the β1 family and integrin-mediated signaling events have an important role in breast tumor growth and progression. We show here that the deletion of α3β1 integrin, a major laminin receptor, from the basal layer of the mammary epithelium of K5ΔNβcat mice completely prevented the tumorigenesis induced by β-catenin signaling. Moreover, the depletion of α3β1 integrin from a spontaneously transformed mouse mammary basal epithelial cell line (MEC) prevented the cells from forming colonies in soft agar and greatly reduced tumor development in orthotopic grafts. Inhibition of the integrin signaling intermediates Rac1 or PAK1 (P21-activated Kinase 1) in MEC affected tumor cell growth in soft agar, whereas the expression of activated forms of these effectors in α3-depleted cells rescued the capacity of these cells to grow in non-adherent conditions. Similarly, the tumorigenic potential of α3-depleted cells was restored by the expression of activated PAK1, as assessed by orthotopic transplantation assay. In three-dimensional Matrigel culture, MEC survival and proliferation were affected by the depletion of α3β1 integrin, which also significantly decreased the activation of focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK). Our data suggest that the activation of signaling cascades downstream from α3β1 and involving the Rac1/PAK1 pathway, MAPK and JNK, promotes prosurvival and proproliferative signals required for the malignant growth of basal mammary epithelial cells, providing further insight into the molecular mechanisms underlying breast cancer initiation and progression.
Collapse
Affiliation(s)
- S Cagnet
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M M Faraldo
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - K Raymond
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| | - M A Glukhova
- 1] Institut Curie, Centre de Recherche, Paris, France [2] Section de Recherche, UMR144 Centre National de la Recherche Scientifique-Institut Curie, Paris, France
| |
Collapse
|
124
|
Cota CD, Segade F, Davidson B. Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis. Brief Funct Genomics 2013; 13:3-14. [PMID: 24005910 DOI: 10.1093/bfgp/elt034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.
Collapse
|
125
|
Stange R, Kronenberg D, Timmen M, Everding J, Hidding H, Eckes B, Hansen U, Holtkamp M, Karst U, Pap T, Raschke MJ. Age-related bone deterioration is diminished by disrupted collagen sensing in integrin α2β1 deficient mice. Bone 2013; 56:48-54. [PMID: 23680479 DOI: 10.1016/j.bone.2013.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
Collagen binding integrins are of essential importance in the crosstalk between cells and the extracellular matrix. Integrin α2β1 is a major receptor for collagen I, the most abundant protein in bone. In this study we show for the first time that integrin α2 deficiency is linked to collagen type I expression in bone. Investigating the femurs of wild type and integrin α2β1 deficient mice, we found that loss of integrin α2 results in altered bone properties. Histomorphometric analysis of integrin α2 long bones displayed more trabecular network compared to wild type bones. During age related bone loss the integrin α2β1 deficient bones retain trabecular structure even at old age. These findings were supported by functional, biomechanical testing, wherein the bones of integrin α2β1 deficient mice do not undergo age-related alteration of biomechanical properties. These results might be explained by the increased presence of collagen in integrin α2β1 deficient bone. Collagen type I could be detected in higher quantities in the integrin α2β1 deficient bones, forming abnormal, amorphous fibrils. This was linked to higher expression levels of collagen type I and other bone formation related proteins as alkaline phosphatase of integrin α2β1 deficient osteoblasts. Osteoclasts of integrin α2β1 deficient mice did not show any differences. Consequently these results indicate that the absence of integrin α2β1 alleviates the effects of age related bone degradation through over-expression of collagen type I and demonstrate a molecular mechanism how collagen binding integrins might directly impact bone aging.
Collapse
Affiliation(s)
- Richard Stange
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Mainali D, Smith EA. Select cytoplasmic and membrane proteins increase the percentage of immobile integrins but do not affect the average diffusion coefficient of mobile integrins. Anal Bioanal Chem 2013; 405:8561-8. [DOI: 10.1007/s00216-013-7279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
|
127
|
Hämälistö S, Pouwels J, de Franceschi N, Saari M, Ivarsson Y, Zimmermann P, Brech A, Stenmark H, Ivaska J. A ZO-1/α5β1-integrin complex regulates cytokinesis downstream of PKCε in NCI-H460 cells plated on fibronectin. PLoS One 2013; 8:e70696. [PMID: 23967087 PMCID: PMC3742740 DOI: 10.1371/journal.pone.0070696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/21/2013] [Indexed: 01/22/2023] Open
Abstract
Recently, we demonstrated that integrin adhesion to the extracellular matrix at the cleavage furrow is essential for cytokinesis of adherent cells. Here, we report that tight junction protein ZO-1 (Zonula Occludens-1) is required for successful cytokinesis in NCI-H460 cells plated on fibronectin. This function of ZO-1 involves interaction with the cytoplasmic domain of α5-integrin to facilitate recruitment of active fibronectin-binding integrins to the base of the cleavage furrow. In the absence of ZO-1, or a functional ZO-1/α5β1-integrin complex, proper actin-dependent constriction between daughter cells is impaired and cells fail cytokinesis. Super-resolution microscopy reveals that in ZO-1 depleted cells the furrow becomes delocalized from the matrix. We also show that PKCε-dependent phosphorylation at Serine168 is required for ZO-1 localization to the furrow and successful cell division. Altogether, our results identify a novel regulatory pathway involving the interplay between ZO-1, α5-integrin and PKCε in the late stages of mammalian cell division.
Collapse
Affiliation(s)
- Saara Hämälistö
- Center for Biotechnology, University of Turku, Turku, Finland
| | - Jeroen Pouwels
- Center for Biotechnology, University of Turku, Turku, Finland
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku, Finland
| | - Nicola de Franceschi
- Center for Biotechnology, University of Turku, Turku, Finland
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku, Finland
| | - Markku Saari
- Center for Biotechnology, University of Turku, Turku, Finland
| | - Ylva Ivarsson
- Department Human Genetics, K.U. Leuven, Leuven, Belgium
| | | | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johanna Ivaska
- Center for Biotechnology, University of Turku, Turku, Finland
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
128
|
Ayoub E, Hall A, Scott AM, Chagnon MJ, Miquel G, Hallé M, Noda M, Bikfalvi A, Tremblay ML. Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTP-PEST in the control of cell motility. J Biol Chem 2013; 288:25739-25748. [PMID: 23897807 DOI: 10.1074/jbc.m113.501007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis.
Collapse
Affiliation(s)
- Emily Ayoub
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Anita Hall
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Adam M Scott
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Mélanie J Chagnon
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Géraldine Miquel
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Maxime Hallé
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Masaharu Noda
- the Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan, and
| | - Andreas Bikfalvi
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Michel L Tremblay
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada,.
| |
Collapse
|
129
|
Glukhova MA, Streuli CH. How integrins control breast biology. Curr Opin Cell Biol 2013; 25:633-41. [PMID: 23886475 PMCID: PMC3807876 DOI: 10.1016/j.ceb.2013.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 02/07/2023]
Abstract
This article explores new ideas about how the ECM-integrin axis controls normal and malignant breast biology. We discuss the role of integrins in mammary stem cells, and how cell-matrix interactions regulate ductal and alveolar development and function. We also examine the contribution of integrins to tissue disorganisation and metastasis, and how an altered stromal and ECM tumour microenvironment affects the cancer cell niche both within primary tumours and at distant sites. Finally, we mention novel strategies for integrin-directed breast cancer treatment.
Collapse
Affiliation(s)
- Marina A Glukhova
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
130
|
Jacquemet G, Humphries MJ, Caswell PT. Role of adhesion receptor trafficking in 3D cell migration. Curr Opin Cell Biol 2013; 25:627-32. [PMID: 23797030 PMCID: PMC3759831 DOI: 10.1016/j.ceb.2013.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
Adhesion receptor trafficking makes a major contribution to cell migration in 3D. Integrin and syndecan receptors synergise to control signals for migration. Specific integrin heterodimers perform different roles during migration.
This review discusses recent advances in our understanding of adhesion receptor trafficking in vitro, and extrapolates them as far as what is currently possible towards an understanding of migration in three dimensions in vivo. Our specific focus is the mechanisms for endocytosis and recycling of the two major classes of cell-matrix adhesion receptors, integrins and syndecans. We review the signalling networks that are employed to regulate trafficking and conversely the effects of trafficking on signalling itself. We then define the contribution that this element of the migration process makes to processes such as wound healing and tumour invasion.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
131
|
Ozhand A, Lee E, Wu AH, Ellingjord-Dale M, Akslen LA, McKean-Cowdin R, Ursin G. Variation in inflammatory cytokine/growth-factor genes and mammographic density in premenopausal women aged 50-55. PLoS One 2013; 8:e65313. [PMID: 23762340 PMCID: PMC3676419 DOI: 10.1371/journal.pone.0065313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 04/28/2013] [Indexed: 11/24/2022] Open
Abstract
Background Mammographic density (MD) has been found to be an independent risk factor for breast cancer. Although data from twin studies suggest that MD has a strong genetic component, the exact genes involved remain to be identified. Alterations in stromal composition and the number of epithelial cells are the most predominant histopathological determinants of mammographic density. Interactions between the breast stroma and epithelium are critically important in the maturation and development of the mammary gland and the cross-talk between these cells are mediated by paracrine growth factors and cytokines. The potential impact of genetic variation in growth factors and cytokines on MD is largely unknown. Methods We investigated the association between 89 single nucleotide polymorphisms (SNPs) in 7 cytokine/growth-factor genes (FGFR2, IGFBP1, IGFBP3, TGFB1, TNF, VEGF, IL6) and percent MD in 301 premenopausal women (aged 50 to 55 years) participating in the Norwegian Breast Cancer Screening Program. We evaluated the suggestive associations in 216 premenopausal Singapore Chinese Women of the same age. Results We found statistically significant associations between 9 tagging SNPs in the IL6 gene and MD in Norwegian women; the effect ranged from 3–5% in MD per variant allele (p-values = 0.02 to 0.0002). One SNP in the IL6 (rs10242595) significantly influenced MD in Singapore Chinese women. Conclusion Genetic variations in IL6 may be associated with MD and therefore may be an indicator of breast cancer risk in premenopausal women.
Collapse
Affiliation(s)
- Ali Ozhand
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Eunjung Lee
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Anna H. Wu
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | | | - Lars A. Akslen
- Centre for Cancer Biomarkers, The Gade Laboratorium for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Giske Ursin
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Cancer Registry of Norway, Oslo, Norway
- * E-mail:
| |
Collapse
|
132
|
Hughes MA, Brennan PM, Bunting AS, Cameron K, Murray AF, Shipston MJ. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues. J Biomed Mater Res A 2013; 102:1350-60. [PMID: 23733444 PMCID: PMC4243028 DOI: 10.1002/jbm.a.34813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/17/2013] [Indexed: 11/29/2022]
Abstract
Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. © 2013 The Authors. Journal ofBiomedicalMaterials Research Part APublished byWiley Periodicals, Inc.Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1350–1360, 2014.
Collapse
Affiliation(s)
- Mark A Hughes
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | | | | | | | | | | |
Collapse
|
133
|
Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013; 24:830-3. [PMID: 23726156 DOI: 10.1016/j.copbio.2013.04.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is critically important for many cellular processes including growth, differentiation, survival, and morphogenesis. Cells remodel and reshape the ECM by degrading and reassembling it, playing an active role in sculpting their surrounding environment and directing their own phenotypes. Both mechanical and biochemical molecules influence ECM dynamics in multiple ways; by releasing small bioactive signaling molecules, releasing growth factors stored within the ECM, eliciting structural changes to matrix proteins which expose cryptic sites and by degrading matrix proteins directly. The dynamic reciprocal communication between cells and the ECM plays a fundamental roll in tissue development, homeostasis, and wound healing.
Collapse
Affiliation(s)
- Kelly C Clause
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | | |
Collapse
|
134
|
Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem 2013; 288:17954-67. [PMID: 23653350 DOI: 10.1074/jbc.m113.475277] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously established that overexpression of the EGF receptor (EGFR) is sufficient to induce tumor formation by otherwise nontransformed mammary epithelial cells, and that the initiation of epithelial-mesenchymal transition (EMT) is capable of increasing the invasion and metastasis of these cells. Using this breast cancer (BC) model, we find that in addition to EGF, adhesion to fibronectin (FN) activates signal transducer and activator of transcription 3 (STAT3) through EGFR-dependent and -independent mechanisms. Importantly, EMT facilitated a signaling switch from SRC-dependent EGFR:STAT3 signaling in pre-EMT cells to EGFR-independent FN:JAK2:STAT3 signaling in their post-EMT counterparts, thereby sensitizing these cells to JAK2 inhibition. Accordingly, human metastatic BC cells that failed to activate STAT3 downstream of EGFR did display robust STAT3 activity upon adhesion to FN. Furthermore, FN enhanced outgrowth in three-dimensional organotypic cultures via a mechanism that is dependent upon β1 integrin, Janus kinase 2 (JAK2), and STAT3 but not EGFR. Collectively, our data demonstrate that matrix-initiated signaling is sufficient to drive STAT3 activation, a reaction that is facilitated by EMT during BC metastatic progression.
Collapse
Affiliation(s)
- Nikolas Balanis
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
135
|
Norton J, Cooley J, Islam AFMT, Cota CD, Davidson B. Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis. Development 2013; 140:1301-11. [PMID: 23444358 DOI: 10.1242/dev.085548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
136
|
Baltanás R, Bush A, Couto A, Durrieu L, Hohmann S, Colman-Lerner A. Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the HOG MAPK pathway. Sci Signal 2013; 6:ra26. [PMID: 23612707 DOI: 10.1126/scisignal.2003312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. We investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell wall integrity (CWI) response. Although the PR MAPK pathway shares components with a third MAPK pathway, the high osmolarity (HOG) response, each one is normally only activated by its cognate stimulus, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity-dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the "shmooing" morphogenetic process. Activation required the polarisome, the CWI MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover, which improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to fine-tune yeast response in a complex environment.
Collapse
Affiliation(s)
- Rodrigo Baltanás
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas y Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | | | | | | | | | | |
Collapse
|
137
|
Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 2013; 379:92-106. [PMID: 23608456 DOI: 10.1016/j.ydbio.2013.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/11/2023]
Abstract
SOX10 involvement in syndromic form of Hirschsprung disease (intestinal aganglionosis, HSCR) in humans as well as developmental defects in animal models highlight the importance of this transcription factor in control of the pool of enteric progenitors and their differentiation. Here, we characterized the role of SOX10 in cell migration and its interactions with β1-integrins. To this end, we crossed the Sox10(lacZ/+) mice with the conditional Ht-PA::Cre; beta1(neo/+) and beta1(fl/fl) mice and compared the phenotype of embryos of different genotypes during enteric nervous system (ENS) development. The Sox10(lacZ/+); Ht-PA::Cre; beta1(neo/fl) double mutant embryos presented with increased intestinal aganglionosis length and more severe neuronal network disorganization compared to single mutants. These defects, detected by E11.5, are not compensated after birth, showing that a coordinated and balanced interaction between these two genes is required for normal ENS development. Use of video-microscopy revealed that defects observed result from reduced migration speed and altered directionality of enteric neural crest cells. Expression of β1-integrins upon SOX10 overexpression or in Sox10(lacZ/+) mice was also analyzed. The modulation of SOX10 expression altered β1-integrins, suggesting that SOX10 levels are critical for proper expression and function of this adhesion molecule. Together with previous studies, our results strongly indicate that SOX10 mediates ENCC adhesion and migration, and contribute to the understanding of the molecular and cellular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 mutations.
Collapse
Affiliation(s)
- Yuli Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France; Université Paris-Est, UMR_S955, UPEC, F-94000 Créteil, France
| | | | | | | | | | | | | |
Collapse
|
138
|
Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 2013; 24:472-85. [PMID: 23453597 PMCID: PMC3605578 DOI: 10.1016/j.devcel.2013.01.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 11/12/2022]
Abstract
Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.
Collapse
|
139
|
Hughes MA, Bunting AS, Cameron K, Murray AF, Shipston MJ. Modulating patterned adhesion and repulsion of HEK 293 cells on microengineered parylene-C/SiO(2) substrates. J Biomed Mater Res A 2013; 101:349-57. [PMID: 22847960 PMCID: PMC4243025 DOI: 10.1002/jbm.a.34329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
This article describes high resolution patterning of HEK 293 cells on a construct of micropatterned parylene-C and silicon dioxide. Photolithographic patterning of parylene-C on silicon dioxide is an established and consistent process. Activation of patterns by immersion in serum has previously enabled patterning of murine hippocampal neurons and glia, as well as the human hNT cell line. Adapting this protocol we now illustrate high resolution patterning of the HEK 293 cell line. We explore hypotheses that patterning is mediated by transmembrane integrin interactions with differentially absorbed serum proteins, and also by etching the surface substrate with piranha solution. Using rationalized protein activation solutions in place of serum, we show that cell patterning can be modulated or even inverted. These cell-patterning findings assist our wider goal of engineering and interfacing functional neuronal networks via a silicon semiconductor platform.
Collapse
Affiliation(s)
- M A Hughes
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | |
Collapse
|
140
|
Akhtar N, Streuli CH. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 2013; 15:17-27. [PMID: 23263281 PMCID: PMC3701152 DOI: 10.1038/ncb2646] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M139PT, UK.
| | | |
Collapse
|
141
|
|
142
|
Spassov DS, Wong CH, Wong SY, Reiter JF, Moasser MM. Trask loss enhances tumorigenic growth by liberating integrin signaling and growth factor receptor cross-talk in unanchored cells. Cancer Res 2012; 73:1168-79. [PMID: 23243018 DOI: 10.1158/0008-5472.can-12-2496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cell surface glycoprotein Trask/CDCP1 is phosphorylated during anchorage loss in epithelial cells in which it inhibits integrin clustering, outside-in signaling, and cell adhesion. Its role in cancer has been difficult to understand, because of the lack of a discernible pattern in its various alterations in cancer cells. To address this issue, we generated mice lacking Trask function. Mammary tumors driven by the PyMT oncogene and skin tumors driven by the SmoM2 oncogene arose with accelerated kinetics in Trask-deficient mice, establishing a tumor suppressing function for this gene. Mechanistic investigations in mammary tumor cell lines derived from wild-type or Trask-deficient mice revealed a derepression of integrin signaling and an enhancement of integrin-growth factor receptor cross-talk, specifically in unanchored cell states. A similar restrictive link between anchorage and growth in untransformed epithelial cells was observed and disrupted by elimination of Trask. Together our results establish a tumor-suppressing function in Trask that restricts epithelial cell growth to the anchored state.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
143
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
144
|
Tringali C, Lupo B, Silvestri I, Papini N, Anastasia L, Tettamanti G, Venerando B. The plasma membrane sialidase NEU3 regulates the malignancy of renal carcinoma cells by controlling β1 integrin internalization and recycling. J Biol Chem 2012; 287:42835-45. [PMID: 23139422 DOI: 10.1074/jbc.m112.407718] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy.
Collapse
Affiliation(s)
- Cristina Tringali
- Department of Medical Biotechnology, University of Milan, Segrate, 20090 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
145
|
The microtubule targeting agent PBOX-15 inhibits integrin-mediated cell adhesion and induces apoptosis in acute lymphoblastic leukaemia cells. Int J Oncol 2012; 42:239-46. [PMID: 23135704 DOI: 10.3892/ijo.2012.1688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022] Open
Abstract
Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.
Collapse
|
146
|
Santiago-Medina M, Myers JP, Gomez TM. Imaging adhesion and signaling dynamics in Xenopus laevis growth cones. Dev Neurobiol 2012; 72:585-99. [PMID: 21465668 DOI: 10.1002/dneu.20886] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenopus laevis provides a robust model system to study cellular signaling and downstream processes during development both in vitro and in vivo. Intracellular signals must function within highly restricted spatial and temporal domains to activate specific downstream targets and cellular processes. Combining the versatility of developing Xenopus neurons with advances in fluorescent protein biosensors and imaging technologies has allowed many dynamic cellular processes to be visualized. This review will focus on the techniques we use to visualize and measure cell signaling, motility and adhesion by quantitative fluorescence microscopy in vitro and in vivo.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|
147
|
Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 2012; 64:1078-89. [PMID: 22465487 DOI: 10.1016/j.addr.2012.03.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
The regeneration of large bone defects caused by trauma or disease remains a significant clinical problem. Although osteoinductive growth factors such as bone morphogenetic proteins have entered clinics, transplantation of autologous bone remains the gold standard to treat bone defects. The effective treatment of bone defects by protein therapeutics in humans requires quantities that exceed the physiological doses by several orders of magnitude. This not only results in very high treatment costs but also bears considerable risks for adverse side effects. These issues have motivated the development of biomaterials technologies allowing to better control biomolecule delivery from the solid phase. Here we review recent approaches to immobilize biomolecules by affinity binding or by covalent grafting to biomaterial matrices. We focus on biomaterials concepts that are inspired by extracellular matrix (ECM) biology and in particular the dynamic interaction of growth factors with the ECM. We highlight the value of synthetic, ECM-mimicking matrices for future technologies to study bone biology and develop the next generation of 'smart' implants.
Collapse
|
148
|
Petz M, Them NCC, Huber H, Mikulits W. PDGF enhances IRES-mediated translation of Laminin B1 by cytoplasmic accumulation of La during epithelial to mesenchymal transition. Nucleic Acids Res 2012; 40:9738-49. [PMID: 22904067 PMCID: PMC3479205 DOI: 10.1093/nar/gks760] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix protein Laminin B1 (LamB1) regulates tumor cell migration and invasion. Carcinoma cells acquire invasive properties by epithelial to mesenchymal transition (EMT), which is a fundamental step in dissemination of metastatic cells from the primary tumor. Recently, we showed that enhanced translation of LamB1 upon EMT of malignant hepatocytes is mediated by an internal ribosome entry site (IRES). We demonstrated that the IRES transacting factor La binds the minimal IRES motif and positively modulates IRES activity of LamB1. Here, we show that platelet-derived growth factor (PDGF) enhances IRES activity of LamB1 by the increasing cytoplasmic localization of La during EMT. Accordingly, cells expressing dominant negative PDGF receptor display reduced cytoplasmic accumulation of La and show no elevation of IRES activity or endogenous LamB1 levels after stimulation with PDGF. Furthermore, La-mediated regulation of LamB1 IRES activity predominantly depends on MAPK/ERK signaling downstream of PDGF. Notably, LamB1 expression is not significantly downregulated by the impairment of the translation initiation factor eIF4E. In vivo, knockdown of La associated with decreased LamB1 expression and reduced tumor growth. Together, these data suggest that PDGF is required for the cytoplasmic accumulation of La that triggers IRES-dependent translation of LamB1 during EMT.
Collapse
Affiliation(s)
- Michaela Petz
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
149
|
Talhouk R. On cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol 2012; 4:a013540. [PMID: 22855728 DOI: 10.1101/cshperspect.a013540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rabih Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
150
|
Jahchan NS, Wang D, Bissell MJ, Luo K. SnoN regulates mammary gland alveologenesis and onset of lactation by promoting prolactin/Stat5 signaling. Development 2012; 139:3147-56. [PMID: 22833129 DOI: 10.1242/dev.079616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-β and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-β signaling, coordinates TGF-β and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-β and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN-/- mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|