101
|
Hernández-Suárez B, Gillespie DA, Pawlak A. DNA Damage Response (DDR) proteins in canine cancer as potential research targets in comparative oncology. Vet Comp Oncol 2021; 20:347-361. [PMID: 34923737 PMCID: PMC9304296 DOI: 10.1111/vco.12795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
The DNA damage response (DDR) is a complex signal transduction network that is activated when endogenous or exogenous genotoxins damage or interfere with the replication of genomic DNA. Under such conditions, the DDR promotes DNA repair and ensures accurate replication and division of the genome. High levels of genomic instability are frequently observed in cancers and can stem from germline loss‐of‐function mutations in certain DDR genes, such as BRCA1, BRCA2, and p53, that form the basis of human cancer predisposition syndromes. In addition, mutation and/or aberrant expression of multiple DDR genes are frequently observed in sporadic human cancers. As a result, the DDR is considered to represent a viable target for cancer therapy in humans and a variety of strategies are under investigation. Cancer is also a significant cause of mortality in dogs, a species that offers certain advantages for experimental oncology. Domestic dogs present numerous inbred lines, many of which display predisposition to specific forms of cancer and the study of which may provide insight into the biological basis of this susceptibility. In addition, clinical trials are possible in dogs and may lead to therapeutic insights that could ultimately be extended to humans. Here we review what is known specifically about the DDR in dogs and discuss how this knowledge could be extended and exploited to advance experimental oncology in this species.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| | - David A Gillespie
- Instituto de Tecnologías Biomédicas, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, La Laguna 38071, Tenerife, Spain
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
102
|
Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: Pro-cancer functions. Aging Med (Milton) 2021; 4:337-344. [PMID: 34964015 PMCID: PMC8711221 DOI: 10.1002/agm2.12184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
This scoping review aims to perform a brief but comprehensive assessment of existing peer-reviewed literature and determine whether raising nicotinamide adenine dinucleotide can prevent or promote tumorigenesis. The examination of extensive peer-reviewed data regarding the synthesis of nicotinamide adenine dinucleotide has been performed with a focus on nuclear dynamics and the deoxyribose nucleic acid repair pathway. Various enzymatic protective functions have been identified from nicotinamide adenine dinucleotide levels, as well as the threat role that is also explored. Nicotinamide adenine dinucleotide precursors and sirtuin-activating compounds are becoming ubiquitous in the commercial market. Further research into whether elevating levels of nicotinamide adenine dinucleotide or overexpression of sirtuins can increase the potential for neoplasm or other age-related pathophysiology is warranted due to the high energy requirements of certain diseases such as cancer.
Collapse
Affiliation(s)
| | - Mauro Vaccarezza
- School of MedicineFaculty of Health SciencesCurtin UniversityBentley, PerthWestern AustraliaAustralia
| |
Collapse
|
103
|
Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res 2021; 409:112897. [PMID: 34717919 DOI: 10.1016/j.yexcr.2021.112897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
It is urgent to identify new biomarkers and therapeutic targets to ameliorate the clinical prognosis of patients with lung cancer. The functional significance and molecular mechanism of dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) in nonsmall cell lung cancer (NSCLC) progression is still elusive. In our current study, publicly available data and Western blotting experiments confirmed that DYNC1H1 expression was upregulated in lung cancer samples compared with noncancerous samples. Quantitative real-time PCR (qPCR) results indicated that high DYNC1H1 expression in lung cancer tissues was significantly associated with clinical tumor stage and distal metastasis; moreover, its high expression was negatively correlated with prognosis. Functional experiments demonstrated that DYNC1H1 loss of function caused a significant decrease in cell viability and cell proliferative ability, inhibition of the cell cycle, and promotion of both migration potential and invasion potential in vitro. Animal experiments by tail vein injection of lung cancer cells showed that DYNC1H1 knockdown significantly decreased lung cancer metastasis. Mechanistically, the results from a human protein array showed changes in the IFN-γ-JAK-STAT signaling pathway, and analysis of The Cancer Genome Atlas (TCGA) immune data demonstrated that disturbance of the immune microenvironment might be involved in the impaired growth and metastatic ability mediated by DYNC1H1 loss in NSCLC. DYNC1H1 might serve as a promising biological marker of prognosis and a potential clinical therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Hongyu Pan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Yu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Mingxia Yan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
104
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
105
|
Pharmacogenomic Testing and Patient Perception Inform Pain Pharmacotherapy. J Pers Med 2021; 11:jpm11111112. [PMID: 34834463 PMCID: PMC8621784 DOI: 10.3390/jpm11111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Chronic pain is one of the most common reasons for individuals to seek medications. Historically, opioids have been the mainstay of chronic pain management. However, in some patient populations, opioids fail to demonstrate therapeutic efficacy, whereas in other populations, opioids may cause toxic effects, even at lower doses. Response to pain medication is affected by many factors, including an individual's genetic variations. Pharmacogenomic testing has been designed to help achieve optimal treatment outcomes. This study aimed at assessing the impact of CYP2D6 pharmacogenomic testing on physicians' choice in prescribing chronic pain medications and patient pain control. (2) Methods: This retrospective study reviewed 107 patient charts from a single site pain management center. All 107 patients received pharmacogenomic testing. The outcomes of interest were confirmation that the optimal pain medication is being administered or a change in the chronic pain medication is warranted as a result of the pharmacogenomic testing. The main independent variable was the pharmacogenomic test result. Other independent variables included patient gender, race, and comorbidities. The retrospective study was reviewed and approved by the Touro College and University System IRB, HSIRB1653E. (3) Results: Patients self-reported pain intensity on a scale of 1-10 before and after pharmacogenomic testing. Then, 100% of patients in the retrospective study were tested for their pain pharmacogenomic profile. Of the 107 patients participating in the study, more than 50% had their medications altered as a result of the pharmacogenomic testing. The percentage of patients with intense pain were decreased post-pharmacogenomic testing (5.6%) as compared to pre-pharmacogenomic testing (10.5%). Patients with intense, moderate, and mild pain categories were more likely to receive changes in pain medications. In contrast, patients with severe pain were less likely to receive a change in pain medication. Hispanic ethnicity was associated with a statistically significantly decrease in a pain scale category. Illegal drug abuse was associated with a decrease in pain scale category. Change in medication dose was associated with a decrease in pain scale category. (4) Conclusion: In this retrospective study, implementation of pharmacogenomic testing demonstrated significant benefits to patients with intense pain undergoing treatment.
Collapse
|
106
|
Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review. Cancers (Basel) 2021; 13:cancers13205064. [PMID: 34680213 PMCID: PMC8533890 DOI: 10.3390/cancers13205064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Advances in medicine have improved outcomes in children diagnosed with cancer, with overall 5-year survival rates for these children now exceeding 80%. Two-thirds of childhood cancer survivors have at least one late effect of cancer therapy, with one-third having serious or even life-threatening effects. One of the most serious late effects is a development of subsequent malignant neoplasms (histologically different cancers, which appear after the treatment for primary cancer), which occur in about 3-10% of survivors and are associated with high mortality. In cancers with a very good prognosis, subsequent malignant neoplasms significantly affect long-term survival. Therefore, there is an effort to reduce particularly hazardous treatments. This review discusses the importance of individual factors (gender, genetic factors, cytostatic drugs, radiotherapy) in the development of subsequent malignant neoplasms and the possibilities of their prediction and prevention in the future.
Collapse
|
107
|
Abrahams L, Savisaar R, Mordstein C, Young B, Kudla G, Hurst LD. Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing via motif disruption. Nucleic Acids Res 2021; 49:9665-9685. [PMID: 34469537 PMCID: PMC8464065 DOI: 10.1093/nar/gkab750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5–30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8–20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.
Collapse
Affiliation(s)
- Liam Abrahams
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Christine Mordstein
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.,Aarhus University, Department of Molecular Biology and Genetics, C F Møllers Allé 3, 8000 Aarhus, Denmark
| | - Bethan Young
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
108
|
Woo JH, Kim KC, Kim HY, Kim IH, Kim SH, Lee K. Comparative toxicity of polyhexamethylene guanidine phosphate in three strains of rats. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00169-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
109
|
Novel Approaches to an Integrated Route for Trisomy 21 Evaluation. Biomolecules 2021; 11:biom11091328. [PMID: 34572541 PMCID: PMC8465311 DOI: 10.3390/biom11091328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Trisomy 21 (T21) is one of the most commonly occurring genetic disorders, caused by the partial or complete triplication of chromosome 21. Despite the significant progress in the diagnostic tools applied for prenatal screening, commonly used methods are still imprecise and involve invasive diagnostic procedures that are related to a maternal risk of miscarriage. In this case, novel prenatal biomarkers are still being evaluated using highly specialized techniques, which could increase the diagnostic usefulness of biochemical prenatal screening for T21. From the other hand, the T21′s pathogenesis, caused by the improper division of genetic material, disrupting many metabolic pathways, could be further evaluated with the use of omics methods, which could result in bringing relevant insights for the evaluation of potential medical targets. Accordingly, a literature search was undertaken to collect novel information about prenatal screening for Down syndrome with the use of advanced technology, with a particular emphasis on the evaluation of novel screening biomarkers and the discovery of potential medical targets. These meta-analyses are focused on novel approaches designed with the use of omics techniques, representing the most rapidly developing and promising field in research today. Considering the limitations and progress of these methods, the use of omics techniques in evaluating T21 pathogenesis could bring beneficial results in prenatal screening, simultaneously uncovering novel potential medical targets.
Collapse
|
110
|
Zimani AN, Peterlin B, Kovanda A. Increasing Genomic Literacy Through National Genomic Projects. Front Genet 2021; 12:693253. [PMID: 34456970 PMCID: PMC8387713 DOI: 10.3389/fgene.2021.693253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Genomics is an advancing field of medicine, science, ethics, and legislation. Keeping up to date with this challenging discipline requires continuous education and exchange of knowledge between many target groups. Specific challenges in genomic education include tailoring complex topics to diverse audiences ranging from the general public and patients to highly educated professionals. National genomic projects face many of the same challenges and thus offer many opportunities to highlight common educational strategies for improving genomic literacy. We have reviewed 41 current national genomic projects and have identified 16 projects specifically describing their approach to genomic education. The following target groups were included in the educational efforts: the general public (nine projects), patients (six projects), and genomic professionals (16 projects), reflecting the general overall aims of the projects such as determining normal and pathological genomic variation, improving infrastructure, and facilitating personalized medicine. The national genomic projects aim to increase genomic literacy through supplementing existing national education in genomics as well as independent measures specifically tailored to each target group, such as training events, research collaboration, and online resources for healthcare professionals, patients, and patient organizations. This review provides the current state of educational activities within national genomic projects for different target groups and identifies good practices that could contribute to patient empowerment, public engagement, proficient healthcare professionals, and lend support to personalized medicine.
Collapse
Affiliation(s)
- Ana Nyasha Zimani
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
111
|
Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021; 15:353-361. [PMID: 34456559 PMCID: PMC8388126 DOI: 10.2147/btt.s326422] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and their associated protein (Cas-9) is the most effective, efficient, and accurate method of genome editing tool in all living cells and utilized in many applied disciplines. Guide RNA (gRNA) and CRISPR-associated (Cas-9) proteins are the two essential components in CRISPR/Cas-9 system. The mechanism of CRISPR/Cas-9 genome editing contains three steps, recognition, cleavage, and repair. The designed sgRNA recognizes the target sequence in the gene of interest through a complementary base pair. While the Cas-9 nuclease makes double-stranded breaks at a site 3 base pair upstream to protospacer adjacent motif, then the double-stranded break is repaired by either non-homologous end joining or homology-directed repair cellular mechanisms. The CRISPR/Cas-9 genome-editing tool has a wide number of applications in many areas including medicine, agriculture, and biotechnology. In agriculture, it could help in the design of new grains to improve their nutritional value. In medicine, it is being investigated for cancers, HIV, and gene therapy such as sickle cell disease, cystic fibrosis, and Duchenne muscular dystrophy. The technology is also being utilized in the regulation of specific genes through the advanced modification of Cas-9 protein. However, immunogenicity, effective delivery systems, off-target effect, and ethical issues have been the major barriers to extend the technology in clinical applications. Although CRISPR/Cas-9 becomes a new era in molecular biology and has countless roles ranging from basic molecular researches to clinical applications, there are still challenges to rub in the practical applications and various improvements are needed to overcome obstacles.
Collapse
Affiliation(s)
- Misganaw Asmamaw
- Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Belay Zawdie
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
112
|
Hong D, Zheng YY, Xin Y, Sun L, Yang H, Lin MY, Liu C, Li BN, Zhang ZW, Zhuang J, Qian MY, Wang SS. Genetic syndromes screening by facial recognition technology: VGG-16 screening model construction and evaluation. Orphanet J Rare Dis 2021; 16:344. [PMID: 34344442 PMCID: PMC8336249 DOI: 10.1186/s13023-021-01979-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Many genetic syndromes (GSs) have distinct facial dysmorphism, and facial gestalts can be used as a diagnostic tool for recognizing a syndrome. Facial recognition technology has advanced in recent years, and the screening of GSs by facial recognition technology has become feasible. This study constructed an automatic facial recognition model for the identification of children with GSs. Results A total of 456 frontal facial photos were collected from 228 children with GSs and 228 healthy children in Guangdong Provincial People's Hospital from Jun 2016 to Jan 2021. Only one frontal facial image was selected for each participant. The VGG-16 network (named after its proposal lab, Visual Geometry Group from Oxford University) was pretrained by transfer learning methods, and a facial recognition model based on the VGG-16 architecture was constructed. The performance of the VGG-16 model was evaluated by five-fold cross-validation. Comparison of VGG-16 model to five physicians were also performed. The VGG-16 model achieved the highest accuracy of 0.8860 ± 0.0211, specificity of 0.9124 ± 0.0308, recall of 0.8597 ± 0.0190, F1-score of 0.8829 ± 0.0215 and an area under the receiver operating characteristic curve of 0.9443 ± 0.0276 (95% confidence interval: 0.9210–0.9620) for GS screening, which was significantly higher than that achieved by human experts. Conclusions This study highlighted the feasibility of facial recognition technology for GSs identification. The VGG-16 recognition model can play a prominent role in GSs screening in clinical practice.
Collapse
Affiliation(s)
- Dian Hong
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China
| | - Ying-Yi Zheng
- Cardiac Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Xin
- Department of Paediatric Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ling Sun
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China
| | - Hang Yang
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China
| | - Min-Yin Lin
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China
| | - Cong Liu
- Department of Paediatric Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Bo-Ning Li
- Department of Paediatric Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhi-Wei Zhang
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Ming-Yang Qian
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China.
| | - Shu-Shui Wang
- Department of Paediatric Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510000, China.
| |
Collapse
|
113
|
Zeng C, Tsoi LC, Gudjonsson JE. Dysregulated epigenetic modifications in psoriasis. Exp Dermatol 2021; 30:1156-1166. [PMID: 33756010 DOI: 10.1111/exd.14332] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
The observed incidence of psoriasis has been gradually increasing over time (J Am Acad Dermatol, 03, 2009, 394), but the underlying pathogenic factors have remained unclear. Recent studies suggest the importance of epigenetic modification in the pathogenesis of psoriasis. Aberrant epigenetic patterns including changes in DNA methylation, histone modifications and non-coding RNA expression are observed in psoriatic skin. Reversing these epigenetic mechanisms has showed improvement in psoriatic phenotypes, making epigenetic therapy a potential avenue for psoriasis treatment. Here, we summarize relevant evidence for epigenetic dysregulation contributing to psoriasis susceptibility and pathogenesis, and the factors responsible for epigenetic modifications, providing directions for potential future clinical avenues.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI, USA
| |
Collapse
|
114
|
Polymorphism rs7214723 in CAMKK1: a new genetic variant associated with cardiovascular diseases. Biosci Rep 2021; 41:229102. [PMID: 34165505 PMCID: PMC8264181 DOI: 10.1042/bsr20210326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. CVDs have a complex etiology due to the several factors underlying its development including environment, lifestyle, and genetics. Given the role of calcium signal transduction in several CVDs, we investigated via PCR-restriction fragment length polymorphism (RFLP) the single nucleotide polymorphism (SNP) rs7214723 within the calcium/calmodulin-dependent kinase kinase 1 (CAMKK1) gene coding for the Ca2+/calmodulin-dependent protein kinase kinase I. The variant rs7214723 causes E375G substitution within the kinase domain of CAMKK1. A cross-sectional study was conducted on 300 cardiac patients. RFLP-PCR technique was applied, and statistical analysis was performed to evaluate genotypic and allelic frequencies and to identify an association between SNP and risk of developing specific CVD. Genotype and allele frequencies for rs7214723 were statistically different between cardiopathic and several European reference populations. A logistic regression analysis adjusted for gender, age, diabetes, hypertension, BMI and previous history of malignancy was applied on cardiopathic genotypic data and no association was found between rs7214723 polymorphism and risk of developing specific coronary artery disease (CAD) and aortic stenosis (AS). These results suggest the potential role of rs7214723 in CVD susceptibility as a possible genetic biomarker.
Collapse
|
115
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
116
|
Gresky J, Dorn J, Teßmann B, Petiti E. How rare is rare? A literature survey of the last 45 years of paleopathological research on ancient rare diseases. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:94-102. [PMID: 33813348 DOI: 10.1016/j.ijpp.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper aims to provide a quantitative estimation of the representation of diseases defined as rare today in the bioarchaeological literature and to outline the reasons for this. MATERIALS A 45-year bibliometric study of publications in seven bioarchaeological journals, along with two journals and editorial groups of broader scientific focus. METHODS Analyses of distribution patterns of the search hits and diachronic trends for achondroplasia, autosomal-dominant osteopetrosis, osteogenesis imperfecta, and osteopoikilosis, compared to those for tuberculosis as control measure of coverage. RESULTS Studies of ancient rare diseases (ARD) are mostly published as case reports in specialized journals and their number did not benefit from the introduction of biomolecular studies. The higher frequency of cases of achondroplasia suggests that not all rare diseases are equally under-represented. CONCLUSIONS Rare diseases are still largely under-represented in bioarchaeological literature. Their marginality likely results from a combination of taphonomic, methodological and public visibility factors. SIGNIFICANCE This article is the first attempt to provide a quantitative assessment of the under-representation of ARD and to outline the factors behind it. LIMITATIONS Rare diseases are an etiologically heterogeneous group. The number of surveyed journals and articles, as well as targeted diseases might be limiting factors. SUGGESTIONS FOR FURTHER RESEARCH Increasing collection and dissemination of data on ARD; opening a wide-ranging debate on their definition; implementation of biomolecular studies.
Collapse
Affiliation(s)
- Julia Gresky
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany.
| | - Juliane Dorn
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany
| | - Barbara Teßmann
- Berlin Society of Anthropology, Ethnology and Prehistory, Berlin, Germany
| | - Emmanuele Petiti
- German Archaeological Institute, Department of Natural Sciences, Berlin, Germany
| |
Collapse
|
117
|
Wei Z, Qi X, Zhai S, Chen Y, Xia X, Zheng B, Sun X, Zhang G, Wang L, Zhang Q, Xu C, Jiang S, Li X, Xie B, Liao X, Ai Z, Li X. Down-regulation of SORL1 is associated with Alzheimer's disease through activating ABC transporter pathway. ACTA ACUST UNITED AC 2021; 76:187-192. [PMID: 33909958 DOI: 10.1515/znc-2019-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with high morbidity among elderly people. A genetic attribution has been extensively proved. Here, we propose to further prioritize genes that harbor single nucleotide variation (SNV) or structural variation (SV) for AD and explore the underlying potential mechanisms through exploiting their expression and methylation spectra. A high-confidence AD-associated candidate gene list was obtained from the ClinVar and Human Gene Mutation Database (HGMD). Genome-wide methylation and expression profiles of AD and normal subjects were downloaded from the Gene Expression Omnibus (GEO). Through comprehensive comparison of expression and methylation levels between AD and normal samples, as well as different stages of AD samples, SORL1 was identified as the most plausible gene for AD incidence and progression. Gene Set Enrichment Analysis (GSEA) revealed significant activation of the ABC (ATP binding cassette) transporter with the aberrant up-regulation of SORL1 within AD samples. This study unfolds the expression and methylation spectra of previously probed genes with SNV or SV in AD for the first time, and reports an aberrant activation of the ABC transporter pathway that might contribute to AD progression. This should shed some light on AD diagnosis and precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xingdi Qi
- Public Administration, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Shijun Zhai
- Department of Nuclear Medicine, Putuo People's Hospital, Tongji University, Shanghai200060, P.R. China
| | - Yan Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| | - Boyu Zheng
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xugang Sun
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Guangming Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Ling Wang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Qi Zhang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Chen Xu
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Shihe Jiang
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiulian Li
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Bingxin Xie
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xiaohui Liao
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Zhu Ai
- Department of Geriatric, The Second Hospital of Tianjin Medical University, Tianjin300211, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China
| |
Collapse
|
118
|
García-Cordero JM, Martínez-Palma NY, Madrigal-Bujaidar E, Jiménez-Martínez C, Madrigal-Santillán E, Morales-González JA, Paniagua-Pérez R, Álvarez-González I. Phaseolin, a Protein from the Seed of Phaseolus vulgaris, Has Antioxidant, Antigenotoxic, and Chemopreventive Properties. Nutrients 2021; 13:1750. [PMID: 34063915 PMCID: PMC8224085 DOI: 10.3390/nu13061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The present report was designed to determine the antioxidant and antigenotoxic effects of phaseolin (isolated from Phaseolus vulgaris) against mouse colon and liver damage induced by azoxymethane (AOM) and its colon chemopreventive effect. Eight groups with 12 mice each were utilized for an eight-week experiment: the control group was intragastrically (ig) administered 0.9% saline solution; the positive control group was intraperitoneally (ip) injected with 7.5 mg/kg AOM twice a week (weeks three and four of the experiment); three groups were ig administered each day with phaseolin (40, 200, and 400 mg/kg); and three groups were ig administered phaseolin daily (40, 200, and 400 mg/kg) plus 7.5 mg/kg AOM twice a week in weeks three and four of the experiment. The results showed that phaseolin did not produce oxidative stress, DNA damage, or aberrant crypts; in contrast, 100% inhibition of lipoperoxidation, protein oxidation, and nitrites induction generated by AOM was found in both organs, and DPPH radical capture occurred. The two highest phaseolin doses reduced DNA damage induced by AOM in both organs by more than 90% and reduced the AOM-induced aberrant crypts by 84%. Therefore, our study demonstrated the strong in vivo antioxidant, antigenotoxic, and chemopreventive potential of phaseolin.
Collapse
Affiliation(s)
- Juan Manuel García-Cordero
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Nikte Y. Martínez-Palma
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
| | - Cristian Jiménez-Martínez
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - José A. Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. Mexico-Xochimilco 289, Ciudad de Mexico 14389, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
| |
Collapse
|
119
|
Zhang Q, Qin Z, Yi S, Wei H, Zhou XZ, Su J. Clinical application of whole-exome sequencing: A retrospective, single-center study. Exp Ther Med 2021; 22:753. [PMID: 34035850 PMCID: PMC8135134 DOI: 10.3892/etm.2021.10185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to assess the practical diagnostic value of whole-exome sequencing (WES) in patients with different phenotypes and to explore possible strategies to increase the capability of WES in identifying disease-causing genes. A total of 1,360 patients (aged from 1 day to 42 years old) with manifestations of genetic diseases were genotyped using WES and statistical analysis was performed on the results obtained. Within this cohort, the overall positive rate of identification of a disease-causing gene alteration was 44.41%. The positive identification rate where trio-samples were used (from the proband and both parents) was higher than that where a single proband sample was used (50.00 vs. 43.71%), and 604 positive cases with 150 genetic syndromes, 510 genes and 718 mutations were detected. Missense mutations were the most common variations (n=335, 45.27%) and visual or auditory abnormalities (58.51%) had the highest rate of association with a genetic abnormality. The positive detection rate of WES was elevated with the increase in the number of clinical symptoms from 1 to 8. The present study indicated that WES may be used as a valuable tool in the clinic and the positive rate depends more on the professional experience of clinicians rather than on the analytical capabilities of the data analyst. At the same time, particular attention must be paid to certain possible factors (such as the age of the patients as well as possible exon deletions), which may affect the diagnostic rate while applying this process.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Zailong Qin
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Shang Yi
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Hao Wei
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Xun Zhao Zhou
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| | - Jiasun Su
- Laboratory of Genetic and Metabolism, Department of Paediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
120
|
Grazioli S, Petris G. Synthetic genomics for curing genetic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:477-520. [PMID: 34175051 DOI: 10.1016/bs.pmbts.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the beginning of the genome sequencing era, it has become increasingly evident that genetics plays a role in all diseases, of which only a minority are single-gene disorders, the most common target of current gene therapies. However, the majority of people have some kind of health problems resulting from congenital genetic mutations (over 6000 diseases have been associated to genes, https://www.omim.org/statistics/geneMap) and most genetic disorders are rare and only incompletely understood. The vision and techniques applied to the synthesis of genomes may help to address unmet medical needs from a chromosome and genome-scale perspective. In this chapter, we address the potential therapy of genetic diseases from a different outlook, in which we no longer focus on small gene corrections but on higher-order tools for genome manipulation. These will play a crucial role in the next years, as they prelude to a much deeper understanding of the architecture of the human genome and a more accurate modeling of human diseases, offering new therapeutic opportunities.
Collapse
Affiliation(s)
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge, United Kingdom.
| |
Collapse
|
121
|
The 'Jekyll and Hyde' of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int J Mol Sci 2021; 22:ijms22073344. [PMID: 33805856 PMCID: PMC8037741 DOI: 10.3390/ijms22073344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. Inversely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA), and sympathetic nervous system activation. Glucocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of energy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance, and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, and the most prominent are early life adversity, or exposure to traumatic stress. We hypothesise that when the HPA axis is so disturbed after early life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Collapse
|
122
|
Álvarez-González I, Camacho-Cantera S, Gómez-González P, Barrón MJR, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Madrigal-Bujaidar E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci Rep 2021; 11:6897. [PMID: 33767322 PMCID: PMC7994804 DOI: 10.1038/s41598-021-86366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
We evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Scarlett Camacho-Cantera
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Patricia Gómez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Michael J Rendón Barrón
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - José A Morales-González
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. México-Xochimilco 289, Ciudad de México, 14389, México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México.
| |
Collapse
|
123
|
Podder A, Lee HJ, Kim BH. Fluorescent Nucleic Acid Systems for Biosensors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arup Podder
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
124
|
Brancatella A, Cappellani D, Kaufmann M, Borsari S, Piaggi P, Baldinotti F, Caligo MA, Jones G, Marcocci C, Cetani F. Do the Heterozygous Carriers of a CYP24A1 Mutation Display a Different Biochemical Phenotype Than Wild Types? J Clin Endocrinol Metab 2021; 106:708-717. [PMID: 33249478 DOI: 10.1210/clinem/dgaa876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 01/07/2023]
Abstract
CONTEXT Human cytochrome P450 24 subfamily A member 1 (CYP24A1) loss-of-function mutations result in impaired activity of the 24-hydroxylase involved in vitamin D catabolism, thus inducing a vitamin D-dependent hypercalcemia. Homozygotes often present an overt clinical phenotype named idiopathic infantile hypercalcemia (IIH), whereas it is debated whether heterozygotes display an abnormal phenotype. OBJECTIVE To compare the clinical and biochemical features of heterozygous carriers of CYP24A1 variant and healthy wild-type controls sharing the same genetic and environmental exposure. METHODS A large family harboring the nonsense c.667A>T, p.Arg223* pathogenic variant in the CYP24A1 gene was evaluated. All subjects underwent clinical and biochemical evaluation and complete analysis of vitamin D metabolites using mass spectroscopy including 1,24,25(OH)3D3. Subjects were divided into 2 groups according to their genotype: heterozygotes and wild-type for the CYP24A1 variant. RESULTS The proband, a 40-year-old man, homozygous for p.Arg223* pathogenic variant, had a history of mild hypercalcemia with a seasonal trend, recurrent nephrolithiasis, and no episodes of acute hypercalcemia. He showed the highest serum levels of fibroblast growth factor 23, the highest 25(OH)D3/24,25(OH)2D3 ratio and undetectable levels of 1,24,25(OH)3D3, which represent indicators of a loss-of-function CYP24A1. Compared with the wild-types, heterozygotes had higher serum calcium and 25(OH)D3 concentrations (P = .017 and P = .025, respectively), without any difference in the other biochemical parameters and in the rate of nephrolithiasis. CONCLUSION Heterozygotes exhibit a biochemical phenotype different from that of wild-type subjects. In clinical practice, these individuals might require surveillance because of the potential risk of developing hypercalcemia and related clinical manifestations if exposed to triggering factors.
Collapse
Affiliation(s)
- Alessandro Brancatella
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Daniele Cappellani
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | | | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| |
Collapse
|
125
|
Broce IJ, Castruita PA, Yokoyama JS. Moving Toward Patient-Tailored Treatment in ALS and FTD: The Potential of Genomic Assessment as a Tool for Biological Discovery and Trial Recruitment. Front Neurosci 2021; 15:639078. [PMID: 33732107 PMCID: PMC7956998 DOI: 10.3389/fnins.2021.639078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
126
|
Current knowledge on genetic variants shaping placental transcriptome and their link to gestational and postnatal health. Placenta 2021; 116:2-11. [PMID: 33663810 DOI: 10.1016/j.placenta.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Despite the indispensable role of the placenta in the successful course of pregnancy, regulation of its dynamic transcriptome is still underexplored. The purpose of this literature review was to give an overview and draw attention to the contribution of genetic variation in shaping the human placental gene expression. Studies of placental transcriptome shaped by chromosomal variants are limited and may be confounded by cellular mosaicism and somatic genomic rearrangements. Even in relatively simple cases, such as aneuploidies, the placental transcriptome appears to differ from the assumed systematically increased transcript levels of the involved chromosomes. Single nucleotide variants modulating placental gene expression referred to as expression quantitative trait loci (eQTLs) have been analyzed only in ten candidate gene and three genome-wide association studies (GWAS). The latter identified 417 confident placental eGenes, supported by at least two independent studies. Functional profiling of eGenes highlighted biological pathways important in pregnancy, such as immune response or transmembrane transport activity. A fraction of placental eQTLs (1-3%) co-localize with GWAS loci for adult disorders (metabolic, immunological, neurological), suggesting a co-contributory role of the placenta in the developmental programming of health. Some placental eQTLs have been identified as risk factors for adverse pregnancy outcomes, such as rs4769613 (C > T), located near the FLT1 gene and confidently associated with preeclampsia. More studies are needed to map genetic variants shaping gene expression in different placental cell types across three trimesters in normal and complicated gestations and to clarify to what extent these heritable factors contribute to maternal and offspring disease risks.
Collapse
|
127
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
128
|
Wong PK, Cheah FC, Syafruddin SE, Mohtar MA, Azmi N, Ng PY, Chua EW. CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders. Front Pediatr 2021; 9:592571. [PMID: 33791256 PMCID: PMC8006930 DOI: 10.3389/fped.2021.592571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.
Collapse
Affiliation(s)
- Poh Kuan Wong
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
129
|
Abstract
CRISPR-Cas systems, widespread in bacteria and archaea, are mainly responsible for adaptive cellular immunity against exogenous DNA (plasmid and phage). However, the latest research shows their involvement in other functions, such as gene expression regulation, DNA repair and virulence. In recent years, they have undergone intensive research as convenient tools for genomic editing, with Cas9 being the most commonly used nuclease. Gene editing may be of interest in biotechnology, medicine (treatment of inherited disorders, cancer, etc.), and in the development of model systems for various genetic diseases. The dCas9 system, based on a modified Cas9 devoid of nuclease activity, called CRISPRi, is widely used to control gene expression in bacteria for new drug biotargets validation and is also promising for therapy of genetic diseases. In addition to direct use for genomic editing in medicine, CRISPR-Cas can also be used in diagnostics, for microorganisms’ genotyping, controlling the spread of drug resistance, or even directly as “smart” antibiotics. This review focuses on the main applications of CRISPR-Cas in medicine, and challenges and perspectives of these approaches.
Collapse
|
130
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
131
|
Attitudes among South African university staff and students towards disclosing secondary genetic findings. J Community Genet 2020; 12:171-184. [PMID: 33219499 DOI: 10.1007/s12687-020-00494-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022] Open
Abstract
The present study represents an initial step in understanding diverse academic perspectives on the disclosure of secondary findings (SFs) from genetic research conducted in Africa. Using an online survey completed by 674 university students and academic staff in South Africa, we elicited attitudes towards the return of SFs. Latent class analysis (LCA) was performed to classify sub-groups of participants according to their overall attitudes to returning SFs. We did not find substantial differences in attitudes towards the return of findings between staff and students. Overall, respondents were in favour of the return of SFs in genetics research, depending on the type. The majority of survey respondents (80%) indicated that research participants should be given the option of deciding whether to have genetic SFs returned. LCA revealed that the largest group (53%) comprised individuals with more favourable attitudes to the return of SFs in genetics research. Those with less favourable attitudes comprised only 4% of the sample. This study provides important insights that may, together with further empirical evidence, inform the development of research guidelines and policy to assist healthcare professionals and researchers.
Collapse
|
132
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
133
|
Croce S, Chibon F. Molecular prognostication of uterine smooth muscle neoplasms: From CGH array to CINSARC signature and beyond. Genes Chromosomes Cancer 2020; 60:129-137. [PMID: 33099852 DOI: 10.1002/gcc.22906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023] Open
Abstract
Uterine leiomyoma and leiomyosarcoma are located at the ends of the spectrum of smooth muscle lesions. Leiomyosarcoma belongs to the complex genomic sarcomas characterized by complex karyotypes. In contrast, leiomyoma, has a low level of chromosomal complexity. The analysis of genomic profiles of uterine smooth muscle tumors shows that genomic complexity, which is an expression of chromosomal instability, correlates with the metastatic potential and malignity of tumors: the more genetically complex a smooth muscle tumor is, the more malignant is its progression. In uterine tumors with uncertain malignant potential, the assessment of genomic index by CGH array, that is, counting the genomic complexity of a tumor, allows tumors with a risk of recurrence such as leiomyosarcomas to be distinguished from benign tumors like leiomyomas. The prognosis of leiomyosarcoma is poor and the most powerful prognostic factor so far is stage, as the histologic grade is not informative. In the quest to find efficient molecular prognostic factors, the transcriptomic signature CINSARC Nanocind, a mirror of chromosomic complexity and instability, outperforms stage, in both overall and recurrence-free survival. Genomic index and the CINSARC signature will contribute to improving diagnoses, therapeutic strategies, and randomization in future clinical trials. The biological understanding of the links between the CINSARC signature and metastatic mechanisms may lead to the development of new drugs. Furthermore, ctDNA is a promising new technique to detect residual disease and early recurrence.
Collapse
Affiliation(s)
- Sabrina Croce
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France.,INSERM U1218, Bordeaux, France
| | - Frédéric Chibon
- Oncosarc, INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Department of Pathology, Institut Claudius Régaud, IUCT-Oncopole, Toulouse, France
| |
Collapse
|
134
|
Pomplun S, Gates ZP, Zhang G, Quartararo AJ, Pentelute BL. Discovery of Nucleic Acid Binding Molecules from Combinatorial Biohybrid Nucleobase Peptide Libraries. J Am Chem Soc 2020; 142:19642-19651. [PMID: 33166454 DOI: 10.1021/jacs.0c08964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature has three biopolymers: oligonucleotides, polypeptides, and oligosaccharides. Each biopolymer has independent functions, but when needed, they form mixed assemblies for higher-order purposes, as in the case of ribosomal protein synthesis. Rather than forming large complexes to coordinate the role of different biopolymers, we dovetail protein amino acids and nucleobases into a single low molecular weight precision polyamide polymer. We established efficient chemical synthesis and de novo sequencing procedures and prepared combinatorial libraries with up to 100 million biohybrid molecules. This biohybrid material has a higher bulk affinity to oligonucleotides than peptides composed exclusively of canonical amino acids. Using affinity selection mass spectrometry, we discovered variants with a high affinity for pre-microRNA hairpins. Our platform points toward the development of high throughput discovery of sequence defined polymers with designer properties, such as oligonucleotide binding.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Genwei Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
135
|
Abstract
Diagnostic processes typically rely on traditional and laborious methods, that are prone to human error, resulting in frequent misdiagnosis of diseases. Computational approaches are being increasingly used for more precise diagnosis of the clinical pathology, diagnosis of genetic and microbial diseases, and analysis of clinical chemistry data. These approaches are progressively used for improving the reliability of testing, resulting in reduced diagnostic errors. Artificial intelligence (AI)-based computational approaches mostly rely on training sets obtained from patient data stored in clinical databases. However, the use of AI is associated with several ethical issues, including patient privacy and data ownership. The capacity of AI-based mathematical models to interpret complex clinical data frequently leads to data bias and reporting of erroneous results based on patient data. In order to improve the reliability of computational approaches in clinical diagnostics, strategies to reduce data bias and analyzing real-life patient data need to be further refined.
Collapse
Affiliation(s)
- Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
136
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
137
|
Pantel JT, Hajjir N, Danyel M, Elsner J, Abad-Perez AT, Hansen P, Mundlos S, Spielmann M, Horn D, Ott CE, Mensah MA. Efficiency of Computer-Aided Facial Phenotyping (DeepGestalt) in Individuals With and Without a Genetic Syndrome: Diagnostic Accuracy Study. J Med Internet Res 2020; 22:e19263. [PMID: 33090109 PMCID: PMC7644377 DOI: 10.2196/19263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Collectively, an estimated 5% of the population have a genetic disease. Many of them feature characteristics that can be detected by facial phenotyping. Face2Gene CLINIC is an online app for facial phenotyping of patients with genetic syndromes. DeepGestalt, the neural network driving Face2Gene, automatically prioritizes syndrome suggestions based on ordinary patient photographs, potentially improving the diagnostic process. Hitherto, studies on DeepGestalt’s quality highlighted its sensitivity in syndromic patients. However, determining the accuracy of a diagnostic methodology also requires testing of negative controls. Objective The aim of this study was to evaluate DeepGestalt's accuracy with photos of individuals with and without a genetic syndrome. Moreover, we aimed to propose a machine learning–based framework for the automated differentiation of DeepGestalt’s output on such images. Methods Frontal facial images of individuals with a diagnosis of a genetic syndrome (established clinically or molecularly) from a convenience sample were reanalyzed. Each photo was matched by age, sex, and ethnicity to a picture featuring an individual without a genetic syndrome. Absence of a facial gestalt suggestive of a genetic syndrome was determined by physicians working in medical genetics. Photos were selected from online reports or were taken by us for the purpose of this study. Facial phenotype was analyzed by DeepGestalt version 19.1.7, accessed via Face2Gene CLINIC. Furthermore, we designed linear support vector machines (SVMs) using Python 3.7 to automatically differentiate between the 2 classes of photographs based on DeepGestalt's result lists. Results We included photos of 323 patients diagnosed with 17 different genetic syndromes and matched those with an equal number of facial images without a genetic syndrome, analyzing a total of 646 pictures. We confirm DeepGestalt’s high sensitivity (top 10 sensitivity: 295/323, 91%). DeepGestalt’s syndrome suggestions in individuals without a craniofacially dysmorphic syndrome followed a nonrandom distribution. A total of 17 syndromes appeared in the top 30 suggestions of more than 50% of nondysmorphic images. DeepGestalt’s top scores differed between the syndromic and control images (area under the receiver operating characteristic [AUROC] curve 0.72, 95% CI 0.68-0.76; P<.001). A linear SVM running on DeepGestalt’s result vectors showed stronger differences (AUROC 0.89, 95% CI 0.87-0.92; P<.001). Conclusions DeepGestalt fairly separates images of individuals with and without a genetic syndrome. This separation can be significantly improved by SVMs running on top of DeepGestalt, thus supporting the diagnostic process of patients with a genetic syndrome. Our findings facilitate the critical interpretation of DeepGestalt’s results and may help enhance it and similar computer-aided facial phenotyping tools.
Collapse
Affiliation(s)
- Jean Tori Pantel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Nurulhuda Hajjir
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Klinik für Pädiatrie mit Schwerpunkt Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Magdalena Danyel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Center for Rare Diseases, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jonas Elsner
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Angela Teresa Abad-Perez
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Hansen
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Malte Spielmann
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martin Atta Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
138
|
Yazar M, Özbek P. In Silico Tools and Approaches for the Prediction of Functional and Structural Effects of Single-Nucleotide Polymorphisms on Proteins: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:23-37. [PMID: 33058752 DOI: 10.1089/omi.2020.0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) are single-base variants that contribute to human biological variation and pathogenesis of many human diseases. Among all SNP types, nonsynonymous single-nucleotide polymorphisms (nsSNPs) can alter many structural, biochemical, and functional features of a protein such as folding characteristics, charge distribution, stability, dynamics, and interactions with other proteins/nucleotides. These modifications in the protein structure can lead nsSNPs to be closely associated with many multifactorial diseases such as cancer, diabetes, and neurodegenerative diseases. Predicting structural and functional effects of nsSNPs with experimental approaches can be time-consuming and costly; hence, computational prediction tools and algorithms are being widely and increasingly utilized in biology and medical research. This expert review examines the in silico tools and algorithms for the prediction of functional or structural effects of SNP variants, in addition to the description of the phenotypic effects of nsSNPs on protein structure, association between pathogenicity of variants, and functional or structural features of disease-associated variants. Finally, case studies investigating the functional and structural effects of nsSNPs on selected protein structures are highlighted. We conclude that creating a consistent workflow with a combination of in silico approaches or tools should be considered to increase the performance, accuracy, and precision of the biological and clinical predictions made in silico.
Collapse
Affiliation(s)
- Metin Yazar
- Department of Bioengineering, Marmara University, Göztepe, İstanbul, Turkey.,Department of Genetics and Bioengineering, Istanbul Okan University, Tuzla, Istanbul, Turkey
| | - Pemra Özbek
- Department of Bioengineering, Marmara University, Göztepe, İstanbul, Turkey
| |
Collapse
|
139
|
Sarkar S, Singh PC. Sequence specific hydrogen bond of DNA with denaturants affects its stability: Spectroscopic and simulation studies. Biochim Biophys Acta Gen Subj 2020; 1865:129735. [PMID: 32946929 DOI: 10.1016/j.bbagen.2020.129735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several different small molecules have been used to target the DNA helix in order to treat the diseases caused by its mutation. Guanidinium(Gdm+) and urea based drugs have been used for the diseases related to central nervous system, also as the anti-inflammatory and chemotherapeutic agent. However, the role of Gdm+ and urea in the stabilization/destabilization of DNA is not well understood. METHODS Spectroscopic techniques along with molecular dynamics (MD) simulation have been performed on different sequences of DNA in the presence of guanidinium chloride (GdmCl) and urea to decode the binding of denaturants with DNA and the role of hydrogen bond with the different regions of DNA in its stability/destability. RESULTS AND CONCLUSION Our study reveals that, Gdm+ of GdmCl and urea both intrudes into the groove region of DNA along with the interaction with its phosphate backbone. However, interaction of Gdm+ and urea with the nucleobases in the groove region is different. Gdm+ forms the intra-strand hydrogen bond with the central region of the both sequences of DNA whereas inter-strand hydrogen bond along with water assisted hydrogen bond takes place in the case of urea. The intra-strand hydrogen bond formation capability of Gdm+ with the nucleobases in the minor groove of DNA decreases its groove width which probably causes the stabilization of B-DNA in GdmCl. In contrast, the propensity of the formation of inter-strand hydrogen bond of urea with the nucleobases in the groove region of DNA without affecting the groove width destabilizes B-DNA as compared to GdmCl. This study depicts that the opposite effect of GdmCl and urea on the stability is a general property of B-DNA. However, the extent of stabilization/destabilization of DNA in Gdm+ and urea depend on its sequence probably due to the difference in the intra/inter-strand hydrogen bonding with different bases present in both the sequences of DNA. GENERAL SIGNIFICANCE The information obtained from this study will be useful for the designing of Gdm+ based drug molecule which can target the DNA more specifically and selectively.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 70032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 70032, India.
| |
Collapse
|
140
|
Holuka C, Merz MP, Fernandes SB, Charalambous EG, Seal SV, Grova N, Turner JD. The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity? Int J Mol Sci 2020; 21:E5094. [PMID: 32707661 PMCID: PMC7404093 DOI: 10.3390/ijms21145094] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
A poor socioeconomic environment and social adversity are fundamental determinants of human life span, well-being and health. Previous influenza pandemics showed that socioeconomic factors may determine both disease detection rates and overall outcomes, and preliminary data from the ongoing coronavirus disease (COVID-19) pandemic suggests that this is still true. Over the past years it has become clear that early-life adversity (ELA) plays a critical role biasing the immune system towards a pro-inflammatory and senescent phenotype many years later. Cytotoxic T-lymphocytes (CTL) appear to be particularly sensitive to the early life social environment. As we understand more about the immune response to SARS-CoV-2 it appears that a functional CTL (CD8+) response is required to clear the infection and COVID-19 severity is increased as the CD8+ response becomes somehow diminished or exhausted. This raises the hypothesis that the ELA-induced pro-inflammatory and senescent phenotype may play a role in determining the clinical course of COVID-19, and the convergence of ELA-induced senescence and COVID-19 induced exhaustion represents the worst-case scenario with the least effective T-cell response. If the correct data is collected, it may be possible to separate the early life elements that have made people particularly vulnerable to COVID-19 many years later. This will, naturally, then help us identify those that are most at risk from developing the severest forms of COVID-19. In order to do this, we need to recognize socioeconomic and early-life factors as genuine medically and clinically relevant data that urgently need to be collected. Finally, many biological samples have been collected in the ongoing studies. The mechanisms linking the early life environment with a defined later-life phenotype are starting to be elucidated, and perhaps hold the key to understanding inequalities and differences in the severity of COVID-19.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Myriam P Merz
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Sara B Fernandes
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Eleftheria G Charalambous
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Snehaa V Seal
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
- Calbinotox, Faculty of Science and Technology, Lorraine University, 54506 Nancy, France
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
141
|
Michaud M, Mauhin W, Belmatoug N, Garnotel R, Bedreddine N, Catros F, Ancellin S, Lidove O, Gaches F. When and How to Diagnose Fabry Disease in Clinical Pratice. Am J Med Sci 2020; 360:641-649. [PMID: 32723516 DOI: 10.1016/j.amjms.2020.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 01/27/2023]
Abstract
Fabry disease is a frequent lysosomal storage disorder secondary to the deficiency of alpha-galactosidase A enzyme. This X-linked genetic disease realizes progressive and systemic manifestations that affect both male and female. Fabry disease may present as "classical", as "late-onset" or "non-classical" forms. Symptoms and organ involvements of classical Fabry disease are acral pain crisis, cornea verticillata, hypertrophic cardiomyopathy, stroke and chronic kidney disease with proteinuria. Other common symptoms are often poorly recognized, such as gastrointestinal or ear involvements. In classical Fabry disease, symptoms first appear during childhood or during teenage years in males, but later in females. Patients with non-classical or late-onset Fabry disease have delayed manifestations or a single-organ involvement. Diagnosis is therefore difficult when classical organ involvements are missing, in paucisymptomatic patients or in late-onset forms. Recognition of Fabry disease is important because effective treatments are available. They have to be prescribed early. In male, diagnosis is made with alpha-galactosidase A enzyme activity dosage in leukocyte, that is very low or null in classical forms and under 30 percent in late-onset forms. Diagnosis is more challenging in females who may express normal residual enzyme activity. Other plasmatic biomarkers, such as lyso-globotriaosylceramide are interesting, especially in females. In this review, we aimed to summarize main clinical manifestations of Fabry disease to know when to evoke Fabry disease and propose a practical diagnosis algorithm to know how to diagnose.
Collapse
Affiliation(s)
- Martin Michaud
- Department of Internal Medicine, Hopital Joseph Ducuing, Toulouse, France; Competence Center for Lysosomal Storage Diseases, Hopital Joseph Ducuing, Toulouse, France.
| | - Wladimir Mauhin
- Internal Medicine and Rheumatology Department, Diaconesses-Croix Saint Simon Hospital Group, Paris, France; Referral Center for Lysosomal Diseases, site Avron, Paris, France
| | - Nadia Belmatoug
- Department of Internal Medicine, University Hospital Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, Clichy, France; Referral Center for Lysosomal Diseases, University Hospital Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Roselyne Garnotel
- Biochemistry Laboratory, American Memorial Hospital Reims, Reims, France
| | - Naiya Bedreddine
- Association des patients de la maladie de Fabry, Marsannay La Cote, France
| | - Florian Catros
- Department of Internal Medicine, Hopital Joseph Ducuing, Toulouse, France; Competence Center for Lysosomal Storage Diseases, Hopital Joseph Ducuing, Toulouse, France
| | - Sophie Ancellin
- Department of Internal Medicine, Hopital Joseph Ducuing, Toulouse, France; Competence Center for Lysosomal Storage Diseases, Hopital Joseph Ducuing, Toulouse, France
| | - Olivier Lidove
- Internal Medicine and Rheumatology Department, Diaconesses-Croix Saint Simon Hospital Group, Paris, France; Referral Center for Lysosomal Diseases, site Avron, Paris, France
| | - Francis Gaches
- Department of Internal Medicine, Hopital Joseph Ducuing, Toulouse, France; Competence Center for Lysosomal Storage Diseases, Hopital Joseph Ducuing, Toulouse, France
| |
Collapse
|
142
|
Su X, Chen W, Cai Q, Liang P, Chen Y, Cong P, Huang J. Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. SCIENCE CHINA. LIFE SCIENCES 2020; 63:996-1005. [PMID: 31974864 DOI: 10.1007/s11427-019-1611-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023]
Abstract
Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the conversion of C→T (C>T) or A→G (A>G) in the target site through a single guide RNA. Injection of base editors into the zygote cytoplasm can result in the production of offspring with precise point mutations, but most F0 are mosaic, and breeding of F1 heterozygous pigs is time-intensive. Here, we developed a method called germinal vesicle oocyte base editing (GVBE) to produce point mutant F0 porcine embryos by editing the maternal alleles during the GV to MII transition. Injection of cytosine base editor 3 (BE3) mRNA and X-linked Dmd-specific guide RNAs into GVoocytes efficiently edited maternal Dmd during in vitro maturation and did not affect the maturation potential of the oocytes. The edited MII oocytes developed into blastocysts after parthenogenetic activation (PA) or in vitro fertilization (IVF). However, BE3 may reduce the developmental potential of IVF blastocysts from 31.5%±0.8% to 20.4% ±2.1%. There 40%-78.3% diploid PA blastocysts had no more than two different alleles, including up to 10% embryos that had only C>T mutation alleles. Genotyping of IVF blastocysts indicated that over 70% of the edited embryos had one allele or two different alleles of Dmd. Since the male embryos had only a copy of Dmd allele, all five (5/19) F0 male embryos are homozygous and three of them were Dmd precise C>T mutation. Nine (9/19) female IVF embryos had two different alleles including a WT and a C>T mutation. DNA sequencing showed that some of them might be heterozygous embryos. In conclusion, the GVBE method is a valuable method for generating F0 embryos with maternal point mutated alleles in a single step.
Collapse
Affiliation(s)
- Xiaohu Su
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qingqing Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Puping Liang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaosheng Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peiqing Cong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
143
|
Konkova MS, Ershova ES, Savinova EA, Malinovskaya EM, Shmarina GV, Martynov AV, Veiko RV, Zakharova NV, Umriukhin P, Kostyuk GP, Izhevskaya VL, Kutsev SI, Veiko NN, Kostyuk SV. 1Q12 Loci Movement in the Interphase Nucleus Under the Action of ROS Is an Important Component of the Mechanism That Determines Copy Number Variation of Satellite III (1q12) in Health and Schizophrenia. Front Cell Dev Biol 2020; 8:386. [PMID: 32714923 PMCID: PMC7346584 DOI: 10.3389/fcell.2020.00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Genome repeat cluster sizes can affect the chromatin spatial configuration and function. Low-dose ionizing radiation (IR) induces an adaptive response (AR) in human cells. AR includes the change in chromatin spatial configuration that is necessary to change the expression profile of the genome in response to stress. The 1q12 heterochromatin loci movement from the periphery to the center of the nucleus is a marker of the chromatin configuration change. We hypothesized that a large 1q12 domain could affect chromatin movement, thereby inhibiting the AR. Materials and Methods: 2D fluorescent in situ hybridization (FISH) method was used for the satellite III fragment from the 1q12 region (f-SatIII) localization analysis in the interphase nuclei of healthy control (HC) lymphocytes, schizophrenia (SZ) patients, and in cultured mesenchymal stem cells (MSCs). The localization of the nucleolus was analyzed by the nucleolus Ag staining. The non-radioactive quantitative hybridization (NQH) technique was used for the f-SatIII fragment content in DNA analysis. Satellite III fragments transcription was analyzed by reverse transcriptase quantitative PCR (RT-qPCR). Results: Low-dose IR induces the small-area 1q12 domains movement from the periphery to the central regions of the nucleus in HC lymphocytes and MSCs. Simultaneously, nucleolus moves from the nucleus center toward the nuclear envelope. The nucleolus in that period increases. The distance between the 1q12 domain and the nucleolus in irradiated cells is significantly reduced. The large-area 1q12 domains do not move in response to stress. During prolonged cultivation, the irradiated cells with a large f-SatIII amount die, and the population is enriched with the cells with low f-SatIII content. IR induces satellite III transcription in HC lymphocytes. Intact SZ patients' lymphocytes have the same signs of nuclei activation as irradiated HC cells. Conclusion: When a cell population responds to stress, cells are selected according to the size of the 1q12 domain (the f-SatIII content). The low content of the f-SatIII repeat in SZ patients may be a consequence of the chronic oxidative stress and of a large copies number of the ribosomal repeats.
Collapse
Affiliation(s)
- Marina Sergeevna Konkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | - Roman Vladimirovich Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Pavel Umriukhin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | | | | | - Sergey Ivanovich Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Nikolaevna Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
144
|
Sevim Bayrak C, Itan Y. Identifying disease-causing mutations in genomes of single patients by computational approaches. Hum Genet 2020; 139:769-776. [PMID: 32405658 DOI: 10.1007/s00439-020-02179-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Over the last decade next generation sequencing (NGS) has been extensively used to identify new pathogenic mutations and genes causing rare genetic diseases. The efficient analyses of NGS data is not trivial and requires a technically and biologically rigorous pipeline that addresses data quality control, accurate variant filtration to minimize false positives and false negatives, and prioritization of the remaining genes based on disease genomics and physiological knowledge. This review provides a pipeline including all these steps, describes popular software for each step of the analysis, and proposes a general framework for the identification of causal mutations and genes in individual patients of rare genetic diseases.
Collapse
Affiliation(s)
- Cigdem Sevim Bayrak
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, US.
| | - Yuval Itan
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, US.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, US
| |
Collapse
|
145
|
Shademan B, Biray Avci C, Nikanfar M, Nourazarian A. Application of Next-Generation Sequencing in Neurodegenerative Diseases: Opportunities and Challenges. Neuromolecular Med 2020; 23:225-235. [PMID: 32399804 DOI: 10.1007/s12017-020-08601-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Genetic factors (gene mutations) lead to various rare and prevalent neurological diseases. Identification of underlying mutations in neurodegenerative diseases is of paramount importance due to the heterogeneous nature of the genome and different clinical manifestations. An early and accurate molecular diagnosis are cardinal for neurodegenerative patients to undergo proper therapeutic regimens. The next-generation sequencing (NGS) method examines up to millions of sequences at a time. As a result, the rare molecular diagnoses, previously presented with "unknown causes", are now possible in a short time. This method generates a large amount of data that can be utilized in patient management. Since each person has a unique genome, the NGS has transformed diagnostic and therapeutic strategies into sequencing and individual genomic mapping. However, this method has disadvantages like other diagnostic methods. Therefore, in this review, we aimed to briefly summarize the NGS method and correlated studies to unravel the genetic causes of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, epilepsy, and MS. Finally, we discuss the NGS challenges and opportunities in neurodegenerative diseases.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Medical Faculty, Ege University, 35100, Bornova, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St., 51666-16471, Tabriz, Iran. .,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
146
|
Recombinant DNA technology and DNA sequencing. Essays Biochem 2020; 63:457-468. [PMID: 31652313 DOI: 10.1042/ebc20180039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
DNA present in all our cells acts as a template by which cells are built. The human genome project, reading the code of the DNA within our cells, completed in 2003, is undoubtedly one of the great achievements of modern bioscience. Our ability to achieve this and to further understand and manipulate DNA has been tightly linked to our understanding of the bacterial and viral world. Outside of the science, the ability to understand and manipulate this code has far-reaching implications for society. In this article, we explore some of the basic techniques that enable us to read, copy and manipulate DNA sequences alongside a brief consideration of some of the implications for society.
Collapse
|
147
|
Abstract
Advances in molecular genetics have identified several species of RNA that fail to translate - hence the non-coding RNAs. The two major groups within this class of nucleic acids are microRNAs (miRNA) and long non-coding RNAs (lncRNA). There is growing body of evidence supporting the view that these molecules have regulatory effect on both DNA and RNA. The objective of this brief review is to explain the molecular genetic of these molecules, to summarize their potential as mediators of disease, and to highlight their value as diagnostic markers and as tools in disease management.
Collapse
Affiliation(s)
- P Waller
- Department of Biomedical Sciences, University of Kingston, London, UK
| | - A D Blann
- Institute of Biomedical Science, London, UK
| |
Collapse
|
148
|
Murphy NM, Samarasekera TS, Macaskill L, Mullen J, Rombauts LJF. Genome sequencing of human in vitro fertilisation embryos for pathogenic variation screening. Sci Rep 2020; 10:3795. [PMID: 32123222 PMCID: PMC7052235 DOI: 10.1038/s41598-020-60704-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Whole-genome sequencing of preimplantation human embryos to detect and screen for genetic diseases is a technically challenging extension to preconception screening. Combining preconception genetic screening with preimplantation testing of human embryos facilitates the detection of de novo mutations and self-validates transmitted variant detection in both the reproductive couple and the embryo’s samples. Here we describe a trio testing workflow that involves whole-genome sequencing of amplified DNA from biopsied embryo trophectoderm cells and genomic DNA from both parents. Variant prediction software and annotation databases were used to assess variants of unknown significance and previously not described de novo variants in five single-gene preimplantation genetic testing couples and eleven of their embryos. Pathogenic variation, tandem repeat, copy number and structural variations were examined against variant calls for compound heterozygosity and predicted disease status was ascertained. Multiple trio testing showed complete concordance with known variants ascertained by single-nucleotide polymorphism array and uncovered de novo and transmitted pathogenic variants. This pilot study describes a method of whole-genome sequencing and analysis for embryo selection in high-risk couples to prevent early life fatal genetic conditions that adversely affect the quality of life of the individual and families.
Collapse
Affiliation(s)
- Nicholas M Murphy
- Genetic Technologies Ltd., Victoria, Australia. .,Monash IVF, Clayton, Victoria, Australia. .,GenEmbryomics Pty. Ltd., Victoria, Australia. .,Drug Delivery Disposition and Dynamics, Faculty of Pharmacy and Pharmaceutical Sciences, Parkville, Melbourne, Victoria, Australia.
| | | | | | | | - Luk J F Rombauts
- Monash IVF, Clayton, Victoria, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,Monash Women's & Newborn Program, Monash Health, Victoria, Australia
| |
Collapse
|
149
|
Mannucci PM. Hemophilia therapy: the future has begun. Haematologica 2020; 105:545-553. [PMID: 32060150 PMCID: PMC7049365 DOI: 10.3324/haematol.2019.232132] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
The success story of hemophilia care first began in the 1970s, when the availability of plasma-derived concentrates of coagulation factor VIII (FVIII) and factor IX (FIX) provided efficacious treatment of bleeding in patients with hemophilia A and B. This positive scenario was consolidated in terms of greater safety and availability in the 1990s, when the first recombinant coagulation factors were produced. This meant that, instead of only treating episodic bleeding events, prophylaxis regimens could be implemented as a preventive measure. Following the demonstration of its superiority in the frame of two randomized clinical trials, prophylaxis became evidence-based standard of care. In high-income countries, these achievements have led to a patients’ life expectancy being extended to close to that of the general male population. Alongside this, the last decade has witnessed further spectacular therapeutic progress, such as the availability of coagulation factors with a longer plasma half-life that allow for wider intervals between treatment. Moreover, new therapeutic products based on new mechanisms other than the replacement of the deficient factor, have become available (emicizumab) or are at an advanced stage of development. This review celebrates the success story of hemophilia care, while also discussing current limitations, issues and as yet unmet needs. The prospects of cure by means of gene therapy are also outlined.
Collapse
Affiliation(s)
- Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
150
|
Abstract
Gapmers are antisense oligonucleotides composed of a central DNA segment flanked by nucleotides of modified chemistry. Hybridizing with transcripts by sequence complementarity, gapmers recruit ribonuclease H and induce target RNA degradation. Since its concept first emerged in the 1980s, much work has gone into developing gapmers for use in basic research and therapy. These include improvements in gapmer chemistry, delivery, and therapeutic safety. Gapmers have also successfully entered clinical trials for various genetic disorders, with two already approved by the U.S. Food and Drug Administration for the treatment of familial hypercholesterolemia and transthyretin amyloidosis-associated polyneuropathy. Here, we review the events surrounding the early development of gapmers, from conception to their maturity, and briefly conclude with perspectives on their use in therapy.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|