101
|
Botulinum toxin type a (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction. Neuroscience 2009; 159:1422-9. [DOI: 10.1016/j.neuroscience.2009.01.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/28/2009] [Accepted: 01/29/2009] [Indexed: 11/18/2022]
|
102
|
Calcium-permeable acid-sensing ion channel in nociceptive plasticity: A new target for pain control. Prog Neurobiol 2009; 87:171-80. [DOI: 10.1016/j.pneurobio.2009.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
103
|
Li J, Lu J, Gao Z, Koba S, Xing J, King N, Sinoway L. Spinal P2X receptor modulates muscle pressor reflex via glutamate. J Appl Physiol (1985) 2009; 106:865-70. [PMID: 19131479 DOI: 10.1152/japplphysiol.90879.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Static contraction of skeletal muscle evokes reflex increases in blood pressure and heart rate. Previous studies showed that P2X receptors located at the dorsal horn of the spinal cord play a role in modulating the muscle pressor reflex. P2X stimulation can alter release of the excitatory amino acid, glutamate (Glu). In this report, we tested the hypothesis that stimulation of P2X receptors enhances the concentrations of Glu ([Glu]) in the dorsal horn, and that blocking P2X receptors attenuates contraction-induced Glu increases and the resultant reflex pressor response. Contraction was elicited by electrical stimulation of the L(7) and S(1) ventral roots of 14 cats. Glu samples were collected from microdialysis probes inserted in the L(7) level of the dorsal horn of the spinal cord, and dialysate [Glu] was determined using the HPLC method. First, microdialyzing alpha,beta-methylene ATP (0.4 mM) into the dorsal horn significantly increased [Glu]. In addition, contraction elevated [Glu] from baseline of 536 +/- 53 to 1,179 +/- 192 nM (P < 0.05 vs. baseline), and mean arterial pressure by 39 +/- 8 mmHg in the control experiment. Microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (10 mM) into the dorsal horn attenuated the contraction induced-Glu increase (610 +/- 128 to 759 +/- 147 nM; P > 0.05) and pressor response (16 +/- 3 mmHg, P < 0.05 vs. control). Our findings demonstrate that P2X modulates the cardiovascular responses to static muscle contraction by affecting the release of Glu in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Medicine, Heart and Vascular Institute, Penn State College of Medicine, Milton S Hershey MedicalCenter, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
The afferent innervation of the urinary bladder consists primarily of small myelinated (Adelta) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology, University of Pittsburgh School of Medicine, West 1352 Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
105
|
Adult dorsal root ganglia sensory neurons express the early neuronal fate marker doublecortin. J Comp Neurol 2008; 511:318-28. [DOI: 10.1002/cne.21845] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
106
|
Xiang Z, Xiong Y, Yan N, Li X, Mao Y, Ni X, He C, LaMotte RH, Burnstock G, Sun J. Functional up-regulation of P2X 3 receptors in the chronically compressed dorsal root ganglion. Pain 2008; 140:23-34. [PMID: 18715715 DOI: 10.1016/j.pain.2008.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/03/2008] [Accepted: 07/07/2008] [Indexed: 12/20/2022]
Abstract
P2X receptors on dorsal root ganglion (DRG) neurons have been strongly implicated in pathological nociception after peripheral nerve injuries or inflammation. However, nothing is known of a role for purinergic receptors in neuropathic pain produced by a chronic compression of DRG (CCD) - an injury that may accompany an intraforaminal stenosis, a laterally herniated disc or other disorders of the spine leading to radicular pain. In a rat model of DRG compression, hyperexcitable neurons retain functioning axonal connections with their peripheral targets. It is unknown whether such hyperexcitability might enhance chemically mediated nociceptive stimulation of the skin. In this study, CCD facilitated the nocifensive behavior and mechanical hyperalgesia-induced by the P2X 3 agonist, alpha,beta-methylene ATP (alpha,beta-meATP). An injection of alpha,beta-meATP into the hind paw of CCD rats resulted in a significantly greater decrease in the mean threshold to von Frey stimuli and a greater duration of paw lifts than in sham-operated control rats. CCD also increased the levels of P2X 3 receptor protein and the number of P2X 3 immunoreactive, small diameter DRG neurons in the compressed ganglion. P2X 3 receptors were co-labeled with the isolectin IB4, consistent with a role in nociception. In addition, a alpha,beta-meATP induced significantly larger fast-inactivating currents in CCD- than in sham-operated acutely dissociated DRG neurons. These currents were accompanied by the generation of action potentials - but only in the CCD neurons. U0126, a specific inhibitor of the MEK1/2, greatly down-regulated the enhanced current. Taken together, these observations suggest that enhanced purinergic responses after CCD are mediated by P2X 3 receptors.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China Department of Neurobiology, Second Military Medical University, Shanghai 200433, PR China Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, PR China Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Willcockson H, Valtschanoff J. AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat. Cell Tissue Res 2008; 334:17-23. [PMID: 18679721 DOI: 10.1007/s00441-008-0662-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/06/2008] [Indexed: 12/19/2022]
Abstract
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X(3)- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.
Collapse
Affiliation(s)
- Helen Willcockson
- Department of Cell and Developmental Biology, University of North Carolina, CB# 7090, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
108
|
Young RL, Cooper NJ, Blackshaw LA. Chemical coding and central projections of gastric vagal afferent neurons. Neurogastroenterol Motil 2008; 20:708-18. [PMID: 18266614 DOI: 10.1111/j.1365-2982.2007.01071.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vagal afferents that innervate gastric muscle or mucosa transmit distinct sensory information from their endings to the nucleus of the tractus solitarius (NTS). While these afferent subtypes are functionally distinct, no neurochemical correlate has been described and it is unknown whether they terminate in different central locations. This study aimed to identify gastric vagal afferent subtypes in the nodose ganglion (NG) of ferrets, their terminal areas in NTS and neurochemistry for isolectin-B4 (IB4) and calcitonin gene-related peptide (CGRP). Vagal afferents were traced from gastric muscle or mucosa and IB4 and CGRP labelling assessed in NG and NTS. 7 +/- 1% and 6 +/- 1% of NG neurons were traced from gastric muscle or mucosa respectively; these were more likely to label for CGRP or for both CGRP and IB4 than other NG neurons (P < 0.01). Muscular afferents were also less likely than others to label with IB4 (P < 0.001). Less than 1% of NG neurons were traced from both muscle and mucosa. Central terminals of both afferent subtypes occurred in the subnucleus gelatinosus of the NTS, but did not overlap completely. This region also labelled for CGRP and IB4. We conclude that while vagal afferents from gastric muscle and mucosa differ little in their chemical coding for CGRP and IB4, they can be traced selectively from their peripheral endings to NG and to overlapping and distinct regions of NTS. Thus, there is an anatomical substrate for convergent NTS integration for both types of afferent input.
Collapse
Affiliation(s)
- R L Young
- Nerve-Gut Research Laboratory, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA, Australia.
| | | | | |
Collapse
|
109
|
Belle MD, Pattison EF, Cheunsuang O, Stewart A, Kramer I, Sigrist M, Arber S, Morris R. Characterization of a thy1.2 GFP transgenic mouse reveals a tissue-specific organization of the spinal dorsal horn. Genesis 2008; 45:679-88. [PMID: 17987661 DOI: 10.1002/dvg.20331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, transgenic mice in which membrane-linked enhanced green fluorescent protein (mGFP) is expressed from the Thy1.2 promoter were used. In these mice, a subpopulation of small to medium sized DRG neurons double stained for IB4 but not for CGRP. Most of the peripheral terminals traversed the dermis and ramify within the epidermis and form superficial terminals. Within the spinal cord, these afferents terminated exclusively within the substantia gelatinosa (SG). A second fibre type in the skin also expressed mGFP, and formed club-shaped endings towards the bases of hairs. Injury to the sciatic nerve resulted in mGFP loss from the SG ipsilateral to the nerve injury, but also in the corresponding region contralaterally. Together, these findings reveal the specificity of connectivity of a defined subpopulation of DRG sensory neurons innervating the epidermis and this will facilitate analysis of their physiological functions.
Collapse
Affiliation(s)
- Mino D Belle
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Ueda H. Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain 2008; 4:11. [PMID: 18377664 PMCID: PMC2365930 DOI: 10.1186/1744-8069-4-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 01/23/2023] Open
Abstract
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications - decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanism of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Abeta- and noxious C- or Adelta-fibers to influence the molecular mechanisms of allodynia.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
111
|
Tsuda M, Hasegawa S, Inoue K. P2X receptors-mediated cytosolic phospholipase A2activation in primary afferent sensory neurons contributes to neuropathic pain. J Neurochem 2007; 103:1408-16. [PMID: 17725579 DOI: 10.1111/j.1471-4159.2007.04861.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of P2X(3) and P2X(2/3) receptors (P2X(3)R/P2X(2/3)R), ionotropic ATP receptor subtypes, in primary sensory neurons is involved in neuropathic pain, a debilitating chronic pain that occurs after peripheral nerve injury. However, the underlying mechanisms remain unknown. We investigated the role of cytosolic phospholipase A(2) (cPLA(2)) as a downstream molecule that mediates the P2X(3)R/P2X(2/3)R-dependent neuropathic pain. We found that applying ATP to cultured dorsal root ganglion (DRG) neurons increased the level of Ser505-phosphorylated cPLA(2) and caused translocation of Ser505-phosphorylated cPLA(2) to the plasma membrane. The ATP-induced cPLA(2) activation was inhibited by a selective antagonist of P2X(3)R/P2X(2/3)R and by a selective inhibitor of cPLA(2). In the DRG in vivo, the number of cPLA(2)-activated neurons was strikingly increased after peripheral nerve injury but not after peripheral inflammation produced by complete Freund's adjuvant. Pharmacological blockade of P2X(3)R/P2X(2/3)R reversed the nerve injury-induced cPLA(2) activation in DRG neurons. Moreover, administering the cPLA(2) inhibitor near the DRG suppressed nerve injury-induced tactile allodynia, a hallmark of neuropathic pain. Our results suggest that P2X(3)R/P2X(2/3)R-dependent cPLA(2) activity in primary sensory neurons is a key event in neuropathic pain and that cPLA(2) might be a potential target for treating neuropathic pain.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | |
Collapse
|
112
|
Runyan SA, Roy RR, Zhong H, Phelps PE. L1 cell adhesion molecule is not required for small-diameter primary afferent sprouting after deafferentation. Neuroscience 2007; 150:959-69. [PMID: 18022323 DOI: 10.1016/j.neuroscience.2007.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
L1 is a cell adhesion molecule associated with axonal outgrowth and fasciculation during spinal cord development and may reiterate its developmental role in adults following injury; L1 is upregulated on certain sprouting and regenerating axons in adults, but it is unclear if L1 expression is necessary for, or contributes to, regrowth of axons. This study asks if L1 is required for small-diameter primary afferents to sprout by conducting unilateral dorsal rhizotomies (six segments; T10-L2) on both wild-type and L1 mutant mice. First we determined that L1 co-localizes substantially with the peptidergic (calcitonin gene-related peptide; CGRP) but minimally with the nonpeptidergic (isolectin B4; IB4) primary afferents in intact wild-type and L1 mutant mice. However, we encountered a complication using IB4 to identify primary afferents post-rhizotomy; we detected extensive abnormal IB4 expression in the dorsal horn and dorsal columns. Much of this aberrant IB4 labeling is associated with fibrous astrocytes and microglia. Five days after dorsal rhizotomy a large decrease in peptidergic and nonpeptidergic afferents is evident on the deafferented side in both wild-type and L1 mutants. Three months after surgery the peptidergic primary afferents sprouted into the center of the denervated dorsal horn in both wild-type and mutant mice, and quantitative analyses confirmed a sprouting density of similar magnitude in both genotypes. In contrast, we did not detect sprouting in the nonpeptidergic primary afferents in either genotype. These results suggest that the absence of L1 neither diminishes nor enhances sprouting of peptidergic small-diameter primary afferent axons following a dorsal rhizotomy.
Collapse
Affiliation(s)
- S A Runyan
- Department of Physiological Science, UCLA, Box 951606, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
113
|
Tashiro A, Okamoto K, Milam SB, Bereiter DA. Differential effects of estradiol on encoding properties of TMJ units in laminae I and V at the spinomedullary junction in female rats. J Neurophysiol 2007; 98:3242-53. [PMID: 17928557 DOI: 10.1152/jn.00677.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether estrogen status modulated dorsal horn neural activity relevant to temporomandibular joint (TMJ) processing single units were recorded in superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C1-2) junction of ovariectomized (OvX) female rats under barbiturate anesthesia after 17beta-estradiol (E2) treatment for 2 days. E2 dose-dependently enhanced the response to intra-TMJ stimulation by adenosine triphosphate (ATP) of neurons classified as nociceptive specific (NS), but not wide dynamic range (WDR), in superficial laminae. ATP caused similar responses among NS and WDR neurons from deep laminae in all groups. By contrast, the cutaneous receptive field areas of WDR, but not NS, units in superficial and deep laminae were enlarged in high E2-treated (HE2) compared with low E2-treated (LE2) females. Units from untreated or vehicle-treated male rats displayed responses similar to those of LE2 females. TMJ units in superficial laminae from females were more likely to receive convergent cutaneous input and respond to jaw movement than males, independent of E2 treatment. Western blot analysis revealed similar levels of P2X2 and P2X3 receptor protein in Vc/C1-2 or trigeminal ganglion samples in all groups. Immunohistochemistry revealed dense terminal labeling for P2X3 receptors in superficial laminae and moderate labeling in deep laminae at the Vc/C1-2 junction. These data indicated a significant linkage between estrogen status and the magnitude of articular input evoked by ATP from TMJ neurons in the superficial laminae at the Vc/C1-2 junction, whereas estrogenic modulation of TMJ neurons in deep laminae affected only the convergent input from overlying facial skin.
Collapse
Affiliation(s)
- A Tashiro
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
114
|
Heine C, Wegner A, Grosche J, Allgaier C, Illes P, Franke H. P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 2007; 149:165-81. [PMID: 17869006 DOI: 10.1016/j.neuroscience.2007.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/13/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Extracellular ATP facilitates the release of dopamine via P2 receptor activation in parts of the mesolimbic system. To characterize P2X/Y receptor subtypes in the developing dopaminergic system, their expression in organotypic slice co-cultures including the ventral tegmental area/substantia nigra (VTA/SN) complex and the prefrontal cortex (PFC) was studied in comparison to the receptor expression in 3-5 day-old and adult rats. Reverse transcriptase-polymerase chain reaction (RT-PCR) with specific primers for the P2X(1,2,3,4,6,7) and P2Y(1) receptors in the tissue extracts of organotypic co-cultures revealed the presence of the P2X and P2Y receptor mRNAs investigated. Multiple immunofluorescence labeling of the P2X/Y receptor protein indicated differences in the regional expression in the organotypic co-cultures after 10 days of cultivation (VTA/SN, P2X(1,2,3,4,6,7), P2Y(1,6,12); PFC, P2X(1,3,4,6,7), P2Y(1,2,4,6,12)). At postnatal days 3-5, an immunofluorescence mostly comparable to that of adult rats was observed (VTA/SN and PFC: P2X(1,2,3,4,6,7), P2Y(1,2,4,6,12)). There was one important exception: the P2X(7) receptor immunocytochemistry was not found in adult tissue, suggesting a potential role of this receptor in the development. Only few P2 receptors (e.g. P2X(1), P2Y(1)) were expressed at fibers interconnecting the dopaminergic VTA/SN with the PFC in the organotypic co-cultures. The treatment of the cultures with the ATP analogues 2-methylthio-ATP and alpha,beta-methylene-ATP induced an increase in axonal outgrowth and fiber density, which could be inhibited by pre-treatment with the P2X/Y receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid. The co-localization of the dopamine-(D1) receptor with the P2X(1) receptor in organotypic slice cultures was evident. In the PFC of the co-cultures, and that of young but not adult rats, a number of tyrosine hydroxylase (TH)-positive cells also possessed P2Y(1)-immunoreactivity (IR). Additionally, a strong P2Y(1)-IR was observed on astrocytes. The present results show a time-, region- and cell type-dependent in vitro and in vivo expression pattern of different P2 receptor subtypes in the dopaminergic system indicating the involvement of ATP and its receptors in neuronal development and growth.
Collapse
Affiliation(s)
- C Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
115
|
Zhang CP, Xu CS, Liang SD, Li GL, Gao Y, Wang YX, Zhang AX, Wan F. The involvement of P2X3 receptors of rat sympathetic ganglia in cardiac nociceptive transmission. J Physiol Biochem 2007; 63:249-57. [DOI: 10.1007/bf03165788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
116
|
Moreira THV, Gover TD, Weinreich D. Electrophysiological properties and chemosensitivity of acutely dissociated trigeminal somata innervating the cornea. Neuroscience 2007; 148:766-74. [PMID: 17706884 PMCID: PMC3390199 DOI: 10.1016/j.neuroscience.2007.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 03/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Adult rat sensory trigeminal ganglion neurons innervating the cornea (cTGNs) were isolated and identified following retrograde dye labeling with FM1-43. Using standard whole-cell patch clamp recording techniques, cTGNs could be subdivided by their action potential (AP) duration. Fast cTGNs had AP durations <1 ms (40%) while slow cTGNs had AP durations >1 ms and an inflection on the repolarization phase of the AP. With the exception of membrane input resistance, the passive membrane properties of fast cTGNs were different from those of slow cTGNs (capacitance: 61+/-4.5 pF vs. 42+/-2.6 pF, resting membrane potential: -59+/-0.7 mV vs. -53+/-0.9 mV, for fast and slow cTGNs respectively). Active membrane properties also differed between fast and slow cTGNs. Slow cTGNs had a higher AP threshold (-25+/-1.6 mV vs. -38+/-0.8 mV), a larger rheobase (14+/-1.9 pA/pF vs. 6.8+/-1.0 pA/pF), and a smaller AP undershoot (-56+/-1.7 mV vs. -67+/-2.5 mV). The AP overshoot, however was similar between the two types of neurons (46+/-3.1 mV vs. 48+/-4 mV). Slow cTGNs were depolarized by capsaicin (1 microM, 80%) and 60% of their APs were blocked by tetrodotoxin (TTX) (100 nM). Fast cTGNs were unaffected by capsaicin and 100% of their APs were blocked by TTX. Similarly, cTGNs were also heterogeneous with respect to their responses to exogenous ATP and 5-HT. The current work shows that cTGNs have distinctive electrophysiological properties and chemosensitivity profiles. These characteristics may mirror the distinct properties of corneal sensory nerve terminals. The availability of isolated identified cTGNs constitutes a tractable model system to investigate the biophysical and pharmacological properties of corneal sensory nerve terminals.
Collapse
Affiliation(s)
- Thaís Helena Veiga Moreira
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tony D Gover
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Daniel Weinreich
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
117
|
Wang C, Li GW, Huang LYM. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons. Mol Pain 2007; 3:22. [PMID: 17692121 PMCID: PMC2063498 DOI: 10.1186/1744-8069-3-22] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/10/2007] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a well-known inflammatory mediator that enhances the
excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are
abundantly expressed in dorsal root ganglia (DRG) neurons and participate in the
transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors
has not been well delineated. We studied the actions of PGE2 on ATP-activated
currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no
effects on P2X2/3 receptor-mediated responses, but significantly potentiated
fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its
action by activating EP3 receptors. To study the mechanism underlying the action of
PGE2, we found that the adenylyl cyclase activator, forskolin and the
membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the
effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The
protein kinase A (PKA) inhibitors, H89 and PKA-I blocked the PGE2 effect. In
contrast, the PKC inhibitor, bisindolymaleimide (Bis) did not change the potentiating
action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced
allodynia and hyperalgesia and the enhancement was blocked by H89. These observations
suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA
signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated
ATP responses in DRG neurons.
Collapse
Affiliation(s)
- Congying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Guang-Wen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| |
Collapse
|
118
|
Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol 2007; 36:165-83. [PMID: 17952660 DOI: 10.1007/s12035-007-0033-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X(3) and P2X(2/3) receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain-relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X(3) receptor in different states of pain.
Collapse
Affiliation(s)
- Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
119
|
Maximyuk O, Khmyz V, Krishtal O. Increased temperature and acidosis effectively accelerate the recovery of P2X3 receptors from desensitization. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Ulmann L, Rodeau JL, Danoux L, Contet-Audonneau JL, Pauly G, Schlichter R. Trophic effects of keratinocytes on the axonal development of sensory neurons in a coculture model. Eur J Neurosci 2007; 26:113-25. [PMID: 17596190 DOI: 10.1111/j.1460-9568.2007.05649.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epidermis, the outermost structure of the skin, fulfils important roles as a physical barrier between the organism and its environment and as a neuroendocrine, immune and sensory organ. It is innervated by unmyelinated sensory fibres conveying nociceptive and thermoceptive information. Little is known concerning the functional interactions between these sensory fibres and the keratinocytes, which constitute 95% of the epidermal cells. We have developed a coculture model of primary rat sensory neurons and keratinocytes, as well as of equivalent cell-lines: ND7-23 neurons and A431 keratinocytes. We show that primary dorsal root ganglion neurons survive well in a standard keratinocyte reference medium containing a low concentration of calcium, but fail to extend axons. However, when neurons are cocultured with keratinocytes, axonal outgrowth is strongly stimulated. The use of a Transwell culture system indicated that the stimulation of axonal growth depends on a soluble factor secreted by keratinocytes. Axon outgrowth was also induced by nerve growth factor or brain-derived neurotrophic factor, but not by neurotrophin 3 or glial cell-derived neurotrophic factor. Neurons cocultured with keratinocytes did not change their responses to ATP, capsaicin or high potassium solution, as measured by calcium imaging. The trophic effect of keratinocytes concerned essentially a population of medium-sized (17-25 microm) neurons, some of which expressed substance P-like immunoreactivity and responded to capsaicin. Our preparation, in which cells are maintained at low external calcium concentration, could represent a useful in vitro model for characterizing the effect of skin-derived guidance and trophic factors.
Collapse
Affiliation(s)
- Lauriane Ulmann
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UMR7168 Centre National de la Recherche Scientifique, Université Louis Pasteur, F-67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
121
|
Ikeda H, Tsuda M, Inoue K, Murase K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur J Neurosci 2007; 25:1297-306. [PMID: 17425556 DOI: 10.1111/j.1460-9568.2007.05386.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By imaging neuronal excitation in rat spinal cord slices with a voltage-sensitive dye, we examined the role of glial cells in the P2X receptor agonist alphabeta-methylene ATP (alphabetameATP)-triggered long-term potentiation (LTP) in the dorsal horn. Bath application of alphabetameATP potentiated neuronal excitation in the superficial dorsal horn. The potentiation was inhibited in the presence of the P2X receptor antagonists TNP-ATP, PPADS and A-317491, and was not induced in slices taken from rats neonatally treated with capsaicin. These results suggest that alphabetameATP acts on P2X receptors, possibly P2X(3) and/or P2X(2/3), in capsaicin-sensitive primary afferent terminals. Furthermore, the potentiation was inhibited by treatment with the glial metabolism inhibitor monofluoroacetic acid. Results obtained with the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6, and antibodies to TNF-alpha and IL-6, as well as by double immunolabelling of activated p38 MAPK with markers of astrocytes and microglia, demonstrated that alphabetameATP activated p38 MAPK in astrocytes, and that the presence of proinflammatory cytokines and p38 MAPK activation were necessary for the induction of alphabetameATP-triggered LTP. These findings indicate that glial cells contribute to the alphabetameATP-induced LTP, which might be part of a cellular mechanism for the induction of persistent pain.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, and Research and Education Program for Life Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | | | | | | |
Collapse
|
122
|
Abstract
Many decades have passed since the pain-producing properties of ATP were demonstrated in both animals and humans. However, the more recent discovery of a family of ion channels for which ATP is a ligand and which are expressed by nociceptive neurons, has led to a resurgence of interest into the physiological and pathophysiological actions of ATP. This article considers the extent to which available evidence supports the notion that ATP receptors might be important novel analgesic targets. The hypothesis that ATP is a pain mediator is considered in terms of: the distribution of ATP receptors (specifically the P2X ion channel family); whether ATP release occurs under appropriate conditions; the evidence that ATP is capable of initiating pain in humans and pain-related behaviour in animals; and, lastly, the analgesic effects of pharmacological or molecular block of ATP receptors.
Collapse
Affiliation(s)
- Sara G Hamilton
- Neuroscience Research Centre, Guy's King's and Thomas' School of Biomedical Sciences, London, SE1 1UL, United Kingdom.
| |
Collapse
|
123
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
124
|
Toulmé E, Blais D, Léger C, Landry M, Garret M, Séguéla P, Boué-Grabot E. An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons. J Neurochem 2007; 102:1357-68. [PMID: 17498217 DOI: 10.1111/j.1471-4159.2007.04640.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.
Collapse
|
125
|
Fullmer JM, Riedl M, Williams FG, Sandrin M, Elde R. Enzymes that synthesize the IB4 epitope are not sufficient to impart IB4 binding in dorsal root ganglia of rat. J Comp Neurol 2007; 501:70-82. [PMID: 17206613 DOI: 10.1002/cne.21233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The isolectin B4 (IB4) stains a subset of small and medium-sized dorsal root ganglion (DRG) neurons by binding to terminal alpha-galactose on glycoproteins and glycolipids. The enzymes alpha(1,3)galactosyltransferase (1,3GT) and isoglobotriaosylceramide synthase (iGb3S) synthesize the galactose-alpha(1,3)-galactose group, which is the most common carbohydrate containing terminal alpha-galactose. 1,3GT preferentially glycosylates proteins whereas iGb3S glycosylates lipids. We generated antibodies against rat 1,3GT and iGb3S that were used for immunohistochemical staining of DRG cells. Virtually all neurons that bound IB4 expressed both enzymes, suggesting that IB4 binds to both glycoproteins and glycolipids in IB4-positive neurons. 1,3GT immunoreactivity was observed in small and medium-sized neurons and satellite cells. iGb3S immunoreactivity was observed in neurons of varying sizes. Many neurons that expressed these enzymes did not bind IB4. Additionally, the majority of neurons that expressed substance P expressed both enzymes but did not bind IB4. Ultrastructual studies revealed that 1,3GT was predominantly associated with the Golgi apparatus, whereas iGb3S was found near the Golgi apparatus and in large, clear vesicles throughout the soma. These data suggest that, although expression of 1,3GT and/or iGb3S appears to be necessary for IB4 binding, expression of these enzymes is not sufficient to impart IB4 binding.
Collapse
Affiliation(s)
- Joseph M Fullmer
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
126
|
Shao LJ, Liang SD, Li GL, Xu CS, Zhang CP. Exploration of P2X3 in the rat stellate ganglia after myocardial ischemia. Acta Histochem 2007; 109:330-7. [PMID: 17462717 DOI: 10.1016/j.acthis.2007.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
ATP is implicated in peripheral pain signaling by actions on P2X receptors, especially P2X(3) receptor. Cardiac primary afferents running in the sympathetic nerves are considered to be essential pathways for transmission of cardiac nociception to the central nervous system. Because little is known about P2X(3) involvement in cardiac nociception, this study observed the difference in P2X(3) localization and expression in stellate ganglia (SG) from naive rats and in a pathological model of myocardial ischemic injury induced by repeated subcutaneous isoprenaline injections. Distribution of P2X(3) and morphometry of neurons in SG were investigated by immunohistochemistry, Western blotting, in situ hybridization (ISH) and by sterological study. Diffuse cytoplasmic P2X(3) immunolabelling was observed by light microsocopy. No nuclear labeling was detected. The intensity of P2X(3) labeling in the experimental myocardial ischemic injury group was increased in relation to that of the control group. Numerical densities of stellate ganglion neurons in the experimental group were higher than those of the control group. By Western blotting and ISH, the signals of P2X(3) protein and its mRNA in the myocardial ischemic group were higher than those of the control group. The P2X(3) labeling intensity and the numerical density in SG of the experimental myocardial ischemic injury group were enhanced, suggesting the involvement of P2X(3) receptor for the transmission of pain after myocardial ischemic injury.
Collapse
Affiliation(s)
- Li-Jian Shao
- Department of Anatomy, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | |
Collapse
|
127
|
Gerevich Z, Zadori Z, Müller C, Wirkner K, Schröder W, Rubini P, Illes P. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br J Pharmacol 2007; 151:226-36. [PMID: 17351651 PMCID: PMC2013946 DOI: 10.1038/sj.bjp.0707217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to investigate whether the endogenous metabotropic P2Y receptors modulate ionotropic P2X(3) receptor-channels. EXPERIMENTAL APPROACH Whole-cell patch-clamp experiments were carried out on HEK293 cells permanently transfected with human P2X(3) receptors (HEK293-hP2X(3) cells) and rat dorsal root ganglion (DRG) neurons. KEY RESULTS In both cell types, the P2Y(1,12,13) receptor agonist, ADP-beta-S, inhibited P2X(3) currents evoked by the selective agonist, alpha,beta-methylene ATP (alpha,beta-meATP). This inhibition could be markedly counteracted by replacing in the pipette solution the usual GTP with GDP-beta-S, a procedure known to block all G protein heterotrimers. P2X(3) currents evoked by ATP, activating both P2Y and P2X receptors, caused a smaller peak amplitude and desensitized faster than those currents evoked by the selective P2X(3) receptor agonist alpha,beta-meATP. In the presence of intracellular GDP-beta-S, ATP- and alpha,beta-meATP-induced currents were identical. Recovery from P2X(3) receptor desensitization induced by repetitive ATP application was slower than the recovery from alpha,beta-meATP-induced desensitization. When G proteins were blocked by intracellular GDP-beta-S, the recovery from the ATP- and alpha,beta-meATP-induced desensitization were of comparable speed. CONCLUSIONS AND IMPLICATIONS Our results suggest that the activation of P2Y receptors G protein-dependently facilitates the desensitization of P2X(3) receptors and suppresses the recovery from the desensitized state. Hence, the concomitant stimulation of P2X(3) and P2Y receptors of DRG neurons by ATP may result both in an algesic effect and a partly counterbalancing analgesic activity.
Collapse
Affiliation(s)
- Z Gerevich
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| |
Collapse
|
129
|
Kim YS, Paik SK, Cho YS, Shin HS, Bae JY, Moritani M, Yoshida A, Ahn DK, Valtschanoff J, Hwang SJ, Moon C, Bae YC. Expression of P2X3 receptor in the trigeminal sensory nuclei of the rat. J Comp Neurol 2007; 506:627-39. [DOI: 10.1002/cne.21544] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
130
|
Ford APDW, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP, Cockayne DA. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol 2006; 147 Suppl 2:S132-43. [PMID: 16465177 PMCID: PMC1751490 DOI: 10.1038/sj.bjp.0706637] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lower urinary tract symptoms (LUTS) are present in many common urological syndromes. However, their current suboptimal management by muscarinic and alpha(1)-adrenoceptor antagonists leaves a significant opportunity for the discovery and development of superior medicines. As potential targets for such therapeutics, purinoceptors have emerged over the last two decades from investigations that have established a prominent role for ATP in the regulation of urinary bladder function under normal and pathophysiological conditions. In particular, evidence suggests that ATP signaling via P2X(1) receptors participates in the efferent control of detrusor smooth muscle excitability, and that this function may be heightened in disease and aging. ATP also appears to be involved in bladder sensation, via activation of P2X(3) and P2X(2/3) receptors on sensory afferent neurons, both within the bladder itself and possibly at central synapses. Such findings are based on results from classical pharmacological and localization studies in non-human and human tissues, knockout mice, and studies using recently identified pharmacological antagonists--some of which possess attributes that offer the potential for optimization into candidate drug molecules. Based on recent advances in this field, it is clearly possible that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of sensory and motor symptoms for patients, while minimizing the systemic side effects that limit current medicines.
Collapse
Affiliation(s)
- Anthony P D W Ford
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
- Department of Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Joel R Gever
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Philip A Nunn
- Department of Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Yu Zhong
- Department of Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Joseph S Cefalu
- Department of Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Michael P Dillon
- Department of Medicinal Chemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
| | - Debra A Cockayne
- Department of Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A
- Neuroscience, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, U.S.A. E-mail:
| |
Collapse
|
131
|
Price TJ, Flores CM. Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. THE JOURNAL OF PAIN 2006; 8:263-72. [PMID: 17113352 PMCID: PMC1899162 DOI: 10.1016/j.jpain.2006.09.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 08/10/2006] [Accepted: 09/09/2006] [Indexed: 01/30/2023]
Abstract
UNLABELLED Calcitonin gene-related peptide (CGRP) and/or substance P (SP) immunoreactivity as well as isolectin B(4) (IB(4)) binding are commonly used to define peptidergic and non-peptidergic nociceptor populations, respectively. Although this demarcation is well supported in the mouse, there is accumulating evidence to suggest it is not so in the rat. Hence, this investigation was undertaken to evaluate and quantify the colocalization of the neuropeptides CGRP and SP with IB(4) binding sites and the transient receptor potential vanilloid subfamily type 1 (TRPV1) channel and to compare this colocalization between trigeminal (TG) and dorsal root ganglia (DRG) in adult rats. These findings illustrate that there is a substantial overlap ( approximately 45% in the DRG and approximately 30% in the TG) between peptidergic neurons (ie, CGRP- and SP-expressing) and neurons that bind IB(4) in rat sensory ganglia. However, there were also significant differences in the colocalization of these markers between the DRG and TG. For instance, in the DRG, significantly more CGRP-immunoreactive neurons also expressed IB(4) binding sites (44.5%) compared with the TG (27.5%). In contrast, significantly fewer CGRP-immunoreactive neurons in the DRG colocalized TRPV1 immunoreactivity (49.2%) compared with the TG (70%). Moreover, we directly assessed the colocalization of CGRP and IB(4) in the TG of rats and mice using a CGRP antibody that recognizes this peptide in both species. Thus, whereas only an approximately 10% overlap was observed in TG neurons of mouse, significantly greater overlap (approximately 35%) was observed in those of rat. PERSPECTIVE These data indicate that in adult rat sensory ganglia, there is not a clear distinction between the peptidergic and non-peptidergic nociceptor subclasses as a function of IB(4) binding. Furthermore, there are significant differences between the TG and DRG in the degree to which commonly utilized nociceptive neuronal markers are co-expressed. Taken together, the present findings dictate prudence when extrapolating experimental conclusions about the neurochemical classification of neurons between sensory ganglia or between species, including humans.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio San Antonio, TX, USA.
| | | |
Collapse
|
132
|
Lu SG, Zhang X, Gold MS. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons. J Physiol 2006; 577:169-90. [PMID: 16945973 PMCID: PMC2000672 DOI: 10.1113/jphysiol.2006.116418] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/24/2006] [Indexed: 11/08/2022] Open
Abstract
Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca(2+) ([Ca(2+)](i)), the magnitude and decay of evoked Ca(2+) transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca(2+) transients among subpopulations of DRG neurons reflected differences in the contribution of Ca(2+) regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB(4) and responsiveness to the algogenic compound capsaicin (CAP). Ca(2+) transients were evoked with 30 mm K(+) or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca(2+) transient, with the largest and most slowly decaying Ca(2+) transients in small-diameter, IB(4)-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB(4)-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca(2+) currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca(2+)-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes.
Collapse
Affiliation(s)
- Shao-Gang Lu
- Department of Biomedical Sciences, University of Maryland Dental School, 666 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
133
|
Staikopoulos V, Sessle BJ, Furness JB, Jennings EA. Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 2006; 144:208-16. [PMID: 17110047 PMCID: PMC1861813 DOI: 10.1016/j.neuroscience.2006.09.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/23/2006] [Accepted: 09/10/2006] [Indexed: 11/18/2022]
Abstract
Purine receptors have been implicated in central neurotransmission from nociceptive primary afferent neurons, and ATP-mediated currents in sensory neurons have been shown to be mediated by both P2X3 and P2X2/3 receptors. The aim of the present study was to quantitatively examine the distribution of P2X2 and P2X3 receptors in primary afferent cell bodies in the rat trigeminal ganglion, including those innervating the dura. In order to determine the classes of neurons that express these receptor subtypes, purine receptor immunoreactivity was examined for colocalization with markers of myelinated (neurofilament 200; NF200) or mostly unmyelinated, non-peptidergic fibers (Bandeiraea simplicifolia isolectin B4; IB4). Forty percent of P2X2 and 64% of P2X3 receptor-expressing cells were IB4 positive, and 33% of P2X2 and 31% of P2X3 receptor-expressing cells were NF200 positive. Approximately 40% of cells expressing P2X2 receptors also expressed P2X3 receptors and vice versa. Trigeminal ganglion neurons innervating the dura mater were retrogradely labeled and 52% of these neurons expressed either P2X2 or P2X3 or both receptors. These results are consistent with electrophysiological findings that P2X receptors exist on the central terminals of trigeminal afferent neurons, and provide evidence that afferents supplying the dura express both receptors. In addition, the data suggest specific differences exist in P2X receptor expression between the spinal and trigeminal nociceptive systems.
Collapse
Affiliation(s)
- V Staikopoulos
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
134
|
Matsuka Y, Edmonds B, Mitrirattanakul S, Schweizer FE, Spigelman I. Two types of neurotransmitter release patterns in isolectin B4-positive and negative trigeminal ganglion neurons. Neuroscience 2006; 144:665-74. [PMID: 17101230 PMCID: PMC4166549 DOI: 10.1016/j.neuroscience.2006.09.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/28/2006] [Accepted: 09/29/2006] [Indexed: 12/23/2022]
Abstract
Mammalian nociceptors have been classified into subclasses based on differential neurotrophin sensitivity and binding of the plant isolectin B4 (IB4). Most of the nerve growth factor-responsive IB4-negative (IB4 (-)) nociceptors contain neuropeptides such as substance P and calcitonin gene-related peptide, whereas the glial-derived neurotrophic factor-responsive IB4-positive (IB4 (+)) neurons predominantly lack such neuropeptides. We hypothesized that the differences in neuropeptide content between IB4 (+) and (-) neurons might be reflected in differences in stimulated exocytosis and/or endocytosis. To address this, we monitored the secretory activity of acutely dissociated neurons from adult rat trigeminal ganglia (TRG) using cell membrane capacitance (Cm) measurements and the fluorescent membrane-uptake marker N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64). Cm measurements were performed under whole-cell voltage clamp and neurons were depolarized from -75 mV to +10 mV to elicit exocytosis. Both types of TRG neurons showed similarly-sized, calcium-dependent increases in Cm, demonstrating that both IB4 (+) and (-) TRG neurons are capable of stimulated exocytosis. However, the peak Cm of IB4 (+) neurons decayed faster toward baseline than that of IB4 (-) neurons. Also, IB4 (+) neurons had stable Cm responses to repeated stimuli whereas IB4 (-) neurons loss their secretory response during repeated stimulation. These data suggested that the IB4 (+) neurons possess a faster rate of endocytosis and vesicle replenishment than IB4 (-) neurons. To test this, we measured vesicle trafficking with the fluorescent membrane dye FM4-64. FM4-64 staining showed that IB4 (-) neurons exhibit a larger pool of endocytosed vesicles than IB4 (+) neurons because the peak fluorescence increases in IB4 (-) neurons were larger but slower than in IB4 (+) neurons. However, the recycled vesicles were released faster in IB4 (+) compared with IB4 (-) neurons. Taken together these data suggest that the IB4 (+) TRG neurons have faster exocytosis and endocytosis than the IB4 (-) neurons.
Collapse
Affiliation(s)
- Yoshizo Matsuka
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, CA 90095
| | - Brian Edmonds
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | | | - Felix E. Schweizer
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095
- Dental Research Institute, UCLA, Los Angeles, CA 90095
| |
Collapse
|
135
|
Nagamine K, Ozaki N, Shinoda M, Asai H, Nishiguchi H, Mitsudo K, Tohnai I, Ueda M, Sugiura Y. Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. THE JOURNAL OF PAIN 2006; 7:659-70. [PMID: 16942952 DOI: 10.1016/j.jpain.2006.02.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/27/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED We developed a rat model of oral cancer pain by inoculating cancer cells into the lower gingiva. A squamous cell carcinoma (SCC) derived from Fisher rats, SCC-158, was inoculated into the subperiosteal tissue on the lateral side of the lower gingiva in male Fisher rats. Inoculation of cancer cells induced marked mechanical allodynia and thermal hyperalgesia in the ipsilateral maxillary and mandibular nerve area. Infiltration of the tumor cells into the mandible and the completely encompassed inferior alveolar nerve was observed. Calcitonin gene-related peptide (CGRP)-, substance P (SP)-, ATP receptor (P2X(3))-, and capsaicin receptor (TRPV1)-immunoreactive cells strikingly increased in the small-cell group of trigeminal ganglia (TGs) after tumor cell inoculation. The TRPV1-immunoreactive cells also increased in the medium- and large-cell groups. Retrograde tracing combined with immunofluorescence techniques revealed the increased expression of peptides and the receptors in maxillary nerve afferent neurons. These results suggest that inoculation of SCC cells into the lower gingiva produces mechanical allodynia and thermal hyperalgesia, indicating the establishment of a novel rat model of oral cancer pain. Increased expression of CGRP, SP, P2X(3), and TRPV1 in the TG may be involved in the behavioral changes in this model. PERSPECTIVE To clarify the mechanisms of oral cancer pain, we examined the expression of calcitonin gene-related peptide, substance P, ATP receptor P2X(3), and capsaicin receptor TRPV1 in trigeminal ganglia. Characterizations of these molecular systems which mediate pain perception are important to develop novel clinical tools for promoting relief of oral cancer pain.
Collapse
Affiliation(s)
- Kenjiro Nagamine
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Sah DY, Porreca F, Ossipov MH. Modulation of neurotrophic growth factors as a therapeutic strategy for neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
137
|
Ma B, Wynn G, Dunn PM, Burnstock G. Increased 5-HT(3)-mediated signalling in pelvic afferent neurons from mice deficient in P2X(2) and/or P2X (3) receptor subunits. Purinergic Signal 2006; 2:481-9. [PMID: 18404485 PMCID: PMC2096651 DOI: 10.1007/s11302-006-9017-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 10/25/2005] [Indexed: 01/18/2023] Open
Abstract
Extracellular ATP and 5-hydroxytryptamine (5-HT) are both involved in visceral sensory pathways by interacting with P2X and 5-HT3 receptors, respectively. We have investigated the changes in P2X and 5-HT3-mediated signalling in pelvic afferent neurons in mice deficient in P2X2 and/or P2X3 subunits by whole-cell recording of L6–S2 dorsal root ganglion (DRG) neurons and by multi-unit recording of pelvic afferents of the colorectum. In wildtype DRG neurons, ATP evoked transient, sustained or mixed (biphasic) inward currents. Transient currents were absent in P2X3−/− neurons, whereas sustained currents were absent in P2X2−/− DRG neurons. Neither transient nor sustained currents were observed following application of ATP or α,β-methylene ATP (α,β-meATP) in P2X2/P2X3Dbl−/− DRG neurons. 5-HT was found to induce a fast inward current in 63% of DRG neurons from wildtype mice, which was blocked by tropisetron, a 5-HT3 receptor antagonist. The percentage of DRG neurons responding to 5-HT was significantly increased in P2X 2−/−, P2X3−/− and P2X2/P2X3Dbl−/− mice, and the amplitude of 5-HT response was significantly increased in P2X2/P2X3Dbl−/− mice. The pelvic afferent response to colorectal distension was attenuated in P2X2/P2X3Dbl−/− mice, but the response to serosal application of 5-HT was enhanced. Furthermore, tropisetron resulted in a greater reduction in pelvic afferent responses to colorectal distension in the P2X2/P2X3Dbl−/− preparations. These data suggest that P2X receptors containing the P2X2 and/or P2X3 subunits mediate purinergic activation of colorectal afferents and that 5-HT signalling in pelvic afferent neurons is up-regulated in mice lacking P2X2 or P2X3 receptor genes. This effect is more pronounced when both subunits are absent.
Collapse
Affiliation(s)
- Bei Ma
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | | | | | | |
Collapse
|
138
|
Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006; 51:69-78. [PMID: 16444814 DOI: 10.1016/j.archoralbio.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most pulpal afferent neurons have cytochemical features in common with the class of nociceptors that express neuropeptides and respond to NGF, while very few bind the plant lectin IB4, a widely used marker for the class of nociceptors that respond to the GDNF family of neurotrophic factors. The present study was undertaken to determine whether the GDNF receptor, GFRalpha-1, is expressed by pulpal afferents, and, further, to determine whether tooth injury evokes changes in expression of the GDNF and NGF receptors among pulpal afferents. The tracer, fluoro-gold (FG), was applied to shallow cavities in dentin of first and second maxillary molars. After 4 weeks, the molars of one side received a test injury consisting of a deeper cavity that exposed pulp horns. Animals were perfusion fixed 2 days later, and sections of the trigeminal ganglia were double immunostained with combinations of antibodies against GFRalpha-1, and TrkA. Under control conditions, GFRalpha-1 immunostaining was observed in 72% of neurons that projected to the molar pulp, TrkA in 78%, and immunostaining for both receptors was observed in 65% of pulpal afferents. Tooth injury evoked up-regulation of GFRalpha-1 expression (to 93%) and a slight down-regulation of TrkA expression (67%) among tooth afferents, while there was no discernable change in the proportion of pulpal afferents that expressed both TrkA and GFRalpha-1 (to 61%).
Collapse
Affiliation(s)
- Hong Yang
- Department of Anatomy, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | |
Collapse
|
139
|
Fukui M, Nakagawa T, Minami M, Satoh M, Kaneko S. Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats. Mol Pain 2006; 2:19. [PMID: 16753051 PMCID: PMC1557483 DOI: 10.1186/1744-8069-2-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 06/05/2006] [Indexed: 11/20/2022] Open
Abstract
Extracellular ATP is known to mediate synaptic transmission as a neurotransmitter or a neuromodulator via ionotropic P2X and metabotropic P2Y receptors. Several lines of evidence have suggested that ATP facilitates pain transmission at peripheral and spinal sites via the P2X receptors, in which the P2X3 subtype is considered as an important candidate for the effect. Conversely, we previously found that the activation of supraspinal P2X receptors evoked antinociception. However, the subtypes responsible for the antinociception via supraspinal P2X receptors remain unclear. In the present study, we showed that intracerebroventricular (i.c.v.) pretreatment with A-317491 (1 nmol), the novel non-nucleotide antagonist selective for P2X3 and P2X2/3 receptors, attenuated the antinociceptive effect produced by i.c.v. administered α,β-methylene-ATP (10 nmol), the P2X receptor agonist, in rats. Similarly, the abolishment of the P2X3 receptor mRNA in the brainstem by repeated i.c.v. pretreatments with antisense oligodeoxynucleotide for P2X3 gene once a day for 5 consecutive days diminished the antinociceptive effect of α,β-methylene-ATP. Furthermore, i.c.v. administration of A-317491 (1 and 10 nmol) significantly enhanced the inflammatory nociceptive behaviors induced by the intraplantar injection of formalin and intraperitoneal injection of acetic acid. Taken together, these results suggest that supraspinal P2X3/P2X2/3 receptors play an inhibitory role in pain transmission.
Collapse
Affiliation(s)
- Masato Fukui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
140
|
Larsson M, Broman J. Pathway-specific bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II at spinal nociceptive synapses after acute noxious stimulation. J Neurosci 2006; 26:4198-205. [PMID: 16624940 PMCID: PMC6674005 DOI: 10.1523/jneurosci.0352-06.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An intensely painful stimulus may lead to hyperalgesia, the enhanced sensation of subsequent painful stimuli. This is commonly believed to involve facilitated transmission of sensory signals in the spinal cord, possibly by a long-term potentiation-like mechanism. However, plasticity of identified synapses in intact hyperalgesic animals has not been reported. Here, we show, using neuronal tracing and postembedding immunogold labeling, that after acute noxious stimulation (hindpaw capsaicin injections), immunolabeling of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and of CaMKII phosphorylated at Thr(286/287) (pCaMKII) are upregulated postsynaptically at synapses established by peptidergic primary afferent fibers in the superficial dorsal horn of intact rats. In contrast, postsynaptic pCaMKII immunoreactivity was instead downregulated at synapses of nonpeptidergic primary afferent C-fibers; this loss of pCaMKII immunolabel occurred selectively at distances greater than approximately 20 nm from the postsynaptic membrane and was accompanied by a smaller reduction in total CaMKII contents of these synapses. Both pCaMKII and CaMKII immunogold labeling were unaffected at synapses formed by presumed low-threshold mechanosensitive afferent fibers. Thus, distinct molecular modifications, likely indicative of plasticity of synaptic strength, are induced at different populations of presumed nociceptive primary afferent synapse by intense noxious stimulation, suggesting a complex modulation of parallel nociceptive pathways in inflammatory hyperalgesia. Furthermore, the activity-induced loss of certain postsynaptic pools of autophosphorylated CaMKII at previously unmanipulated synapses supports a role for the kinase in basal postsynaptic function.
Collapse
Affiliation(s)
- Max Larsson
- Division of Neuroscience, Department of Experimental Medical Science, Pain Research Center, Lund University, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
141
|
|
142
|
Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW. Pharmacology of P2X channels. Pflugers Arch 2006; 452:513-37. [PMID: 16649055 DOI: 10.1007/s00424-006-0070-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 02/07/2023]
Abstract
Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.
Collapse
Affiliation(s)
- Joel R Gever
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
143
|
Nakatsuka T, Gu JG. P2X purinoceptors and sensory transmission. Pflugers Arch 2006; 452:598-607. [PMID: 16547751 DOI: 10.1007/s00424-006-0057-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 02/13/2006] [Indexed: 01/26/2023]
Abstract
The involvement of P2X purinoreceptors (P2X receptors) in somatosensory transmission is herein reviewed with a focus on those receptors that are expressed on sensory neurons to elucidate their roles in the initiation of sensory excitation from primary afferent neurons, in modulating synaptic transmission at the first sensory synapses formed between primary afferent central terminals and dorsal horn neurons, in directly mediating sensory synaptic transmission to the spinal cord dorsal horn, and in modulating synaptic transmission among spinal cord dorsal horn neurons. Research on P2X receptors has indicated that these receptors play a significant role in both physiological and pathological pain states. As a result, P2X receptors may serve as therapeutic targets for the treatment of pathological pain conditions associated with nerve injury, tissue inflammation, cancer, and other diseases.
Collapse
Affiliation(s)
- Terumasa Nakatsuka
- Department of Physiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | | |
Collapse
|
144
|
Kamei J, Takahashi Y, Yoshikawa Y, Saitoh A. Involvement of P2X receptor subtypes in ATP-induced enhancement of the cough reflex sensitivity. Eur J Pharmacol 2006; 528:158-61. [PMID: 16321375 DOI: 10.1016/j.ejphar.2005.10.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/20/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
We examined the effect of inhaled ATP on the chemical irritant-induced coughs to clarify the roles of ionotropic purinergic receptors in these modulations. Although inhalation of 0.1 M citric acid by itself produced only a few coughs in guinea pigs, exposure to ATP, at concentrations of 3-10 microM, for 2 min concentration-dependently increased the number of 0.1 M citric acid-induced coughs. ATP-induced enhancement of the number of citric acid-induced coughs was abolished when animals were pretreated with 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP), an antagonist of P2X receptor subtypes P2X1-4, at a concentration of 50 microM, for 2 min. However, exposure to pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), an antagonist of P2X receptor subtypes P2X1,2,3,5,7, but not of P2X4 receptors, at a concentration of 50 microM, for 2 min, had no effect on the ATP-induced enhancement of the number of citric acid-induced coughs. Furthermore, exposure to reactive blue 2 (RB2, 30 microM, 2 min), an antagonist of P2Y receptors, had no effect on the ATP-induced enhancement of the number of citric acid-induced coughs. Exposure to ATP, at a concentration of 10 microM, for 2 min significantly increased the number of citric acid-induced coughs in capsaicin-pretreated guinea pigs. Furthermore, ATP had no effect on the number of capsaicin-induced coughs in naive animals. These results suggest that although ATP, by itself, does not elicit spontaneous coughs, it likely enhances the cough reflex sensitivity. Furthermore, stimulation of P2X receptors, especially P2X4 receptors, on rapidly adapting receptors may be required for the ATP-induced enhancement of the cough reflex sensitivity.
Collapse
Affiliation(s)
- Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
145
|
Dang K, Bielefeldt K, Gebhart GF. Differential responses of bladder lumbosacral and thoracolumbar dorsal root ganglion neurons to purinergic agonists, protons, and capsaicin. J Neurosci 2006; 25:3973-84. [PMID: 15829649 PMCID: PMC6724937 DOI: 10.1523/jneurosci.5239-04.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study explored differences in sensitivity to purinergic agonists, protons, and capsaicin in lumbosacral (LS) and thoracolumbar (TL) sensory neurons that innervate the rat urinary bladder. The majority of LS neurons (93%) were sensitive to alpha,beta-methyleneATP (alpha,beta-metATP) compared with 50% of TL neurons. Based on inactivation kinetics, a slowly desensitizing current evoked by alpha,beta-metATP predominated in LS neurons (86%) compared with mixed components that characterized TL neuron responses (58%). The density of the slowly desensitizing current was greater in LS than in TL neurons (LS, 34.4 +/- 5.3 pA/pF; TL, 2.5 +/- 0.8 pA/pF). Almost all neurons in both ganglia responded to protons and to capsaicin (LS, 100%; TL, 98%). Proton-activated currents in bladder sensory neurons exhibited distinct inactivation kinetics as fast, intermediate, slowly desensitizing, and sustained components. More than one component was expressed in every cell. Although there was no difference in the percentage of neurons expressing more than one component, the density of the sustained current was significantly greater in LS than in TL neurons (LS, 86.1 +/- 16 pA/pF; TL, 30.3 +/- 7 pA/pF). Similarly, the capsaicin-evoked current was greater in LS than in TL neurons (LS, 129.6 +/- 17 pA/pF; TL, 86.9 +/- 11 pA/pF). Finally, a greater percentage of TL neurons bound isolectin B4 than LS neurons (LS, 61%; TL, 85%). The greater degree of alpha,beta-metATP, proton, and capsaicin responsiveness, in addition to differences in current type and current densities, in LS and TL neurons suggests that bladder pelvic and hypogastric/lumbar splanchnic afferents are functionally distinct and likely mediate different sensations arising from the urinary bladder.
Collapse
Affiliation(s)
- Khoa Dang
- Department of Pharmacology, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
146
|
Inoue K, Tsuda M. [The role of microglia and ATP receptors in a mechanism of neuropathic pain]. Nihon Yakurigaku Zasshi 2006; 127:14-7. [PMID: 16508218 DOI: 10.1254/fpj.127.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
147
|
Ueda H. Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms. Pharmacol Ther 2006; 109:57-77. [PMID: 16023729 DOI: 10.1016/j.pharmthera.2005.06.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 12/29/2022]
Abstract
Many known painkillers are not always effective in the therapy of chronic neuropathic pain manifested by hyperalgesia and tactile allodynia. The mechanisms underlying neuropathic pain appear to be complicated and to differ from acute and inflammatory pain. Recent advances in pain research provide us with a clear picture for the molecular mechanisms of acute pain, and substantial information is available concerning the plasticity that occurs under conditions of neuropathic pain. The most important changes responsible for the mechanisms of neuropathic pain are found in the altered gene/protein expression in primary sensory neurons. After damage to peripheral sensory fibers, up-regulated expression of the Ca(v)alpha(2)delta-(1) channel subunit, the Na(v)1.3 sodium channel, and bradykinin (BK) B1 and capsaicin TRPV1 receptors in myelinated neurons contribute to hyperalgesia; while the down-regulation of the Na(v)1.8 sodium channel, B2 receptor, substance P (SP), and even mu-opioid receptors in unmyelinated neurons is responsible for the phenotypic switch in pain transmission. Clarification of the molecular mechanisms for such complicated plasticity would be extremely valuable when considering the therapeutic design of pain relieving drugs. Although many reports deal with the changes in expression of key molecules related to neuropathic pain, the initiation and the mechanisms that follow remain to be determined. The current study using lysophosphatidic acid (LPA) receptor knockout mice revealed that LPA produced by nerve injury initiates neuropathic pain and demyelination following partial sciatic nerve ligation (PSNL). A single injection of LPA was found to mimic PSNL in terms of neuropathic pain and its underlying mechanisms. This discovery may lead to the subsequent discovery of LPA-induced secondary genes, which would be therapeutic targets for neuropathic pain.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
148
|
Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:61-76. [PMID: 18808828 DOI: 10.1016/s0072-9752(06)80010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
149
|
|
150
|
Lucifora S, Willcockson HH, Lu CR, Darstein M, Phend KD, Valtschanoff JG, Rustioni A. Presynaptic low- and high-affinity kainate receptors in nociceptive spinal afferents. Pain 2006; 120:97-105. [PMID: 16360275 DOI: 10.1016/j.pain.2005.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/26/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG. Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord. J Comp Neurol 2001; 436: pp. 275-289). We show here that, although all such subunits may be expressed in these terminals, GluR5 is the subunit most readily detectable at presynaptic sites in sections processed for immunocytochemistry. We also show that the high-affinity kainate receptor subunits KA1 and KA2 are expressed in central terminals of DRG neurons and are co-expressed with low-affinity receptor subunits in the same terminals. Quantitative data show that kainate-expressing DRG neurons are about six times more likely to express the P2X(3) subunit of the purinergic receptor than to express substance P. Thus, nociceptive afferents that express presynaptic kainate receptors are predominantly non-peptidergic, suggesting a role for these receptors in the modulation of neuropathic rather than inflammatory pain.
Collapse
Affiliation(s)
- Simona Lucifora
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Department of Physiological Sciences, University of Catania, Italy Institute of Anatomy and Cell Biology I, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|