101
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
102
|
Khanh DV, Choi YH, Moh SH, Kinyua AW, Kim KW. Leptin and insulin signaling in dopaminergic neurons: relationship between energy balance and reward system. Front Psychol 2014; 5:846. [PMID: 25147530 PMCID: PMC4124796 DOI: 10.3389/fpsyg.2014.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/16/2014] [Indexed: 01/28/2023] Open
Abstract
The central actions of leptin and insulin are essential for the regulation of energy and glucose homeostasis. In addition to the crucial effects on the hypothalamus, emerging evidence suggests that the leptin and insulin signaling can act on other brain regions to mediate the reward value of nutrients. Recent studies have indicated the midbrain dopaminergic neurons as a potential site for leptin' and insulin's actions on mediating the feeding behaviors and therefore affecting the energy balance. Although molecular details about the integrative roles of leptin and insulin in this subset of neurons remain to be investigated, substantial body of evidence by far imply that the signaling pathways regulated by leptin and insulin may play an essential role in the regulation of energy balance through the control of food-associated reward. This review therefore describes the convergence of energy regulation and reward system, particularly focusing on leptin and insulin signaling in the midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Doan V. Khanh
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| | - Yun-Hee Choi
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Antiaging Research Institute of BIO-FD&C Co. Ltd.Incheon, South Korea
| | - Sang Hyun Moh
- Antiaging Research Institute of BIO-FD&C Co. Ltd.Incheon, South Korea
| | - Ann W. Kinyua
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| | - Ki Woo Kim
- Departments of Pharmacology and Global Biomedical Science, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
- Institute of Lifestyle Medicine and Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei UniversityWonju, South Korea
| |
Collapse
|
103
|
Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav 2014; 37:175-83. [PMID: 25050777 DOI: 10.1016/j.yebeh.2014.06.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Damage to the amygdala is often linked to Ammon's horn sclerosis (AHS) in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). Moreover, amygdalar pathology is thought to contribute to the development of anxiety symptoms frequently found in TLE. The neuropeptide Y (NPY) Y1 receptor is critical in the regulation of anxiety-related behavior and epileptiform activity in TLE. Therefore, intrahippocampal kainate (KA) injection was performed to induce AHS-associated TLE and to investigate behavioral and cytoarchitectural changes that occur in the amygdala related to Y1 receptor expression. Status epilepticus was induced by intrahippocampal KA injection in C57BL/6J mice. Anxiety-like behavior was assessed using the elevated plus maze (EPM). Pathology of hippocampus and amygdala (volume loss and gliosis) was examined in KA-injected and saline-injected controls. Y1 receptor expression was measured using immunohistochemistry and ELISA. Animal injected with KA showed increased anxiety-like behaviors and reduced risk assessment in the EPM test compared with saline-injected controls. In the ipsilateral hippocampus of KA-injected animals, CA1 ablation, granule cell dispersion, and volume reduction were accompanied by astrogliosis indicating the development of AHS. In the amygdala, a significant decrease in the volume of nuclei and numbers of neurons was observed in the ipsilateral lateral, basolateral, and central amygdalar nuclei, which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor-expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsilateral and contralateral granule cell layer of the dentate gyrus, and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. Our results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Moreover, intrahippocampal KA injection can induce amygdalar damage suggesting that AHS-associated amygdala damage may contribute to behavioral alterations seen in patients with TLE.
Collapse
|
104
|
Kim W, Fiori JL, Shin YK, Okun E, Kim JS, Rapp PR, Egan JM. Pancreatic polypeptide inhibits somatostatin secretion. FEBS Lett 2014; 588:3233-9. [PMID: 25019573 DOI: 10.1016/j.febslet.2014.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/14/2014] [Accepted: 07/03/2014] [Indexed: 01/30/2023]
Abstract
Pancreatic polypeptide (PP) is a major agonist for neuropeptide Y4 receptors (NPY4R). While NPY4R has been identified in various tissues, the cells on which it is expressed and its function in those cells has not been clearly delineated. Here we report that NPY4R is present in all somatostatin-containing cells of tissues that we tested, including pancreatic islets, duodenum, hippocampus, and hypothalamus. Its agonism by PP decreases somatostatin secretion from human islets. Mouse embryonic hippocampal (mHippo E18) cells expressed NPY4Rs and their activation by PP consistently decreased somatostatin secretion. Furthermore, central injection of PP in mice induced c-Fos immunoreactivity in somatostatin-containing cells in the hippocampus compared with PBS-injected mice. In sum, our results identify PP as a pivotal modulator of somatostatin secretion.
Collapse
Affiliation(s)
- Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Jennifer L Fiori
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yu-Kyong Shin
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jung Seok Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
105
|
Verschueren S, Janssen P, Van Oudenhove L, Hultin L, Tack J. Effect of pancreatic polypeptide on gastric accommodation and gastric emptying in conscious rats. Am J Physiol Gastrointest Liver Physiol 2014; 307:G122-8. [PMID: 24742985 DOI: 10.1152/ajpgi.00043.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic polypeptide (PP) is an anorexigenic hormone released from pancreatic F cells upon food intake. We aimed to determine the effect of PP on gastric accommodation and gastric emptying in conscious Wistar HAN rats to investigate whether effects on motor function could contribute to its anorexigenic effects. Intragastric pressure (IGP) was measured through a chronically implanted gastric fistula during the infusion of a nutrient meal (Nutridrink; 0.5 ml/min). Rats were treated with PP (0, 33 and 100 pmol·kg(-1)·min(-1)) in combination with N(G)-nitro-L-arginine methyl ester (L-NAME; 180 mg·kg(-1)·h(-1)), atropine (3 mg·kg(-1)·h(-1)), or vehicle. Furthermore, the effect of PP was tested after subdiaphragmal vagotomy of the stomach. Gastric emptying of a noncaloric and a caloric meal after treatment with 100 pmol·kg(-1)·min(-1) PP or vehicle was compared using X-rays. PP significantly increased IGP during nutrient infusion compared with vehicle (P < 0.01). L-NAME and atropine significantly increased IGP during nutrient infusion compared with vehicle treatment (P < 0.005 and 0.01, respectively). The effect of PP on IGP during nutrient infusion was abolished in the presence of L-NAME and in the presence of atropine. In vagotomized rats, PP increased IGP compared with intact controls (P < 0.05). PP significantly delayed gastric emptying of both a noncaloric (P < 0.05) and a caloric (P < 0.005) meal. PP inhibits gastric accommodation and delays gastric emptying, probably through inhibition of nitric oxide release. These results indicate that, besides the well-known centrally mediated effects, PP might decrease food intake through peripheral mechanisms.
Collapse
Affiliation(s)
- Sofie Verschueren
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | - Pieter Janssen
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Leuven, Belgium; and
| |
Collapse
|
106
|
Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci 2014; 57:2-10. [DOI: 10.1016/j.ejps.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/19/2014] [Indexed: 12/22/2022]
|
107
|
The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. GASTROENTEROLOGY REVIEW 2014; 9:69-76. [PMID: 25061485 PMCID: PMC4108747 DOI: 10.5114/pg.2014.42498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/05/2012] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Obesity, influencing the increase of incidence of type 2 diabetes, cardiovascular complications and cancer is a growing medical problem worldwide. The feelings of hunger and satiety are stimulated by the “gut-brain axis”, where a crucial role is played by gastrointestinal hormones: glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, pancreatic polypeptide, peptide YY, oxyntomodulin, cholecystokinin and ghrelin. These hormones affect not only the functioning of the digestive tract, but also might have effects on insulin secretion and are mediators which affect brain areas involved in the regulation of food intake. The effect of their actions can be antagonistic as well as an additive or synergistic, and their secretion is dependent on many factors, such as dietary nutrients or the energy state of the body. Changes in circulating gut hormones concentrations result in activation of various pathways primarily within the hypothalamus and brain stem areas, which modulate feeding behaviour and a number of metabolic processes.
Collapse
|
108
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
109
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
110
|
Xu X, Guo F, He Q, Cai X, Min D, Wang Q, Wang S, Tian L, Cai J, Zhao Y. Altered expression of neuropeptide Y, Y1 and Y2 receptors, but not Y5 receptor, within hippocampus and temporal lobe cortex of tremor rats. Neuropeptides 2014; 48:97-105. [PMID: 24444822 DOI: 10.1016/j.npep.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 01/24/2023]
Abstract
As an endogenous inhibitor of glutamate-mediated synaptic transmission in mammalian central nervous system, neuropeptide Y (NPY) plays a crucial role in regulating homeostasis of neuron excitability. Loss of balance between excitatory and inhibitory neurotransmission is thought to be a chief mechanism of epileptogenesis. The abnormal expression of NPY and its receptors observed following seizures have been demonstrated to be related to the production of epilepsy. The tremor rat (TRM) is a hereditary epileptic animal model. So far, there is no report concerning whether NPY and its receptors may be involved in TRM pathogenesis. In this study, we focused on the expression of NPY and its three receptor subtypes: Y1R, Y2R and Y5R in the TRM brain. We first found the expression of NPY in TRM hippocampus and temporal lobe cortex was increased compared with control (Wistar) rats. The mRNA and protein expression of Y1R was down-regulated in hippocampus but up-regulated in temporal lobe cortex, whereas Y2R expression was significantly increased in both areas. There was no significant change of Y5R expression in either area. The immunohistochemistry data showed that Y1R, Y2R, Y5R were present throughout CA1, CA3, dentate gyrus (DG) and the entorhinal cortex which is included in the temporal lobe cortex of TRM. In conclusion, our results showed the altered expression of NPY, Y1R and Y2R but not Y5R in hippocampus and temporal lobe cortex of TRM brain. This abnormal expression may be associated with the generation of epileptiform activity and provide a candidate target for treatment of genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China; Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Qun He
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Xinze Cai
- Central Lab, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dongyu Min
- Experiment Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Qianhui Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Shaocheng Wang
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Liu Tian
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China
| | - Jiqun Cai
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Yujie Zhao
- Biochip Center, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| |
Collapse
|
111
|
Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis 2014; 5:4-14. [PMID: 24381724 PMCID: PMC3871274 DOI: 10.1177/2040622313506730] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The obesity pandemic presents a significant burden, both in terms of healthcare and economic outcomes, and current medical therapies are inadequate to deal with this challenge. Bariatric surgery is currently the only therapy available for obesity which results in long-term, sustained weight loss. The favourable effects of this surgery are thought, at least in part, to be mediated via the changes of gut hormones such as GLP-1, PYY, PP and oxyntomodulin seen following the procedure. These hormones have subsequently become attractive novel targets for the development of obesity therapies. Here, we review the development of these gut peptides as current and emerging therapies in the treatment of obesity.
Collapse
Affiliation(s)
- Rachel C Troke
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M Tan
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Steve R Bloom
- Department of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 6th Floor, Commonwealth Building, London W12 0HS, UK
| |
Collapse
|
112
|
McCall NM, Sprow GM, Delpire E, Thiele TE, Kash TL, Pleil KE. Effects of sex and deletion of neuropeptide Y2 receptors from GABAergic neurons on affective and alcohol drinking behaviors in mice. Front Integr Neurosci 2013; 7:100. [PMID: 24399943 PMCID: PMC3872329 DOI: 10.3389/fnint.2013.00100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
A large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion. Further, numerous human and rodent studies have reported that females display higher levels of anxiety, depression, and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on GABAergic transmission in these behaviors using a novel transgenic mouse that lacks Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout). First, we confirmed our genetic manipulation by demonstrating that Y2R protein expression was decreased and that a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors, using immunofluorescence and slice electrophysiology. Then, we tested male and female VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear, anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety, higher levels of ethanol consumption, and faster fear conditioning than males, and that knockout mice exhibited enhanced depressive-like behavior in the forced swim test. Together, these results confirm previous studies that demonstrate higher expression of negative affective and alcohol drinking behaviors in females than males, and they highlight the importance of Y2R function in GABAergic systems in the expression of depressive-like behavior.
Collapse
Affiliation(s)
- Nora M McCall
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Nashville, TN, USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University Nashville, TN, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| |
Collapse
|
113
|
Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett 2013; 24:430-41. [PMID: 24365162 DOI: 10.1016/j.bmcl.2013.11.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 01/30/2023]
Abstract
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This Letter reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure-activity relationships.
Collapse
|
114
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
115
|
Zaben MJ, Gray WP. Neuropeptides and hippocampal neurogenesis. Neuropeptides 2013; 47:431-8. [PMID: 24215800 DOI: 10.1016/j.npep.2013.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.
Collapse
Affiliation(s)
- M J Zaben
- Neuroscience and Mental Health Research Institute, Cardiff University, Institute of Psychological Medicine and Clinical Neurosciences, 3rd Floor, Room 3.33, The Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | | |
Collapse
|
116
|
Teubner BJ, Bartness TJ. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides 2013; 47:20-8. [PMID: 23816798 PMCID: PMC3759582 DOI: 10.1016/j.peptides.2013.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/17/2022]
Abstract
Central administration of neuropeptide Y (NPY) increases food intake in laboratory rats and mice, as well as food foraging and hoarding in Siberian hamsters. The NPY-Y1 and Y5 receptors (Rs) within the hypothalamus appear sufficient to account for these increases in ingestive behaviors. Stimulation of NPY-Y2Rs in the Arcuate nucleus (Arc) has an anorexigenic effect as shown by central or peripheral administration of its natural ligand peptide YY (3-36) and pharmacological NPY-Y2R antagonism by BIIE0246 increases food intake. Both effects on food intake by NPY-Y2R agonism and antagonism are relatively short-lived lasting ∼4h. The role of NPY-Y2Rs in appetitive ingestive behaviors (food foraging/hoarding) is untested, however. Therefore, Siberians hamsters, a natural food hoarder, were housed in a semi-natural burrow/foraging system that had (a) foraging requirement (10 revolutions/pellet), no free food (true foraging group), (b) no running wheel access, free food (general malaise control) or (c) running wheel access, free food (exercise control). We microinjected BIIE0246 (antagonist) and PYY(3-36) (agonist) into the Arc to test the role of NPY-Y2Rs there on ingestive behaviors. Food foraging, hoarding, and intake were not affected by Arc BIIE0246 microinjection in fed hamsters 1, 2, 4, and 24h post injection. Stimulation of NPY-Y2Rs by PYY(3-36) inhibited food intake at 0-1 and 1-2h and food hoarding at 1-2h without causing general malaise or affecting foraging. Collectively, these results implicate a sufficiency, but not necessity, of the Arc NPY-Y2R in the inhibition of food intake and food hoarding by Siberian hamsters.
Collapse
Affiliation(s)
- Brett J.W. Teubner
- Department of Biology and Obesity Reversal Center, Georgia State University, Atlanta, GA 30302-4010 USA
| | - Timothy J. Bartness
- Department of Biology and Obesity Reversal Center, Georgia State University, Atlanta, GA 30302-4010 USA
- To whom all correspondence should be addressed. Dr. Timothy J. Bartness, Department of Biology, 24 Peachtree Center Ave. NE, Georgia State University, Atlanta, GA 30302-4010, Phone: (404) 413-5334, FAX: (404) 413-5301,
| |
Collapse
|
117
|
Patterson ZR, Abizaid A. Stress induced obesity: lessons from rodent models of stress. Front Neurosci 2013; 7:130. [PMID: 23898237 PMCID: PMC3721047 DOI: 10.3389/fnins.2013.00130] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 11/15/2022] Open
Abstract
Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further extend our understanding of stress-induced obesity.
Collapse
|
118
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
119
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
120
|
Matic I, Matthews BG, Kizivat T, Igwe JC, Marijanovic I, Ruohonen ST, Savontaus E, Adams DJ, Kalajzic I. Bone-specific overexpression of NPY modulates osteogenesis. KLIN NEUROPHYSIOL 2013. [PMID: 23196263 DOI: 10.1055/s-0032-1305278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Neuropeptide Y (NPY) is a peptide involved in the regulation of appetite and energy homeostasis. Genetic data indicates that NPY decreases bone formation via central and peripheral activities. NPY is produced by various cell types including osteocytes and osteoblasts and there is evidence suggesting that peripheral NPY is important for regulation of bone formation. We sought to investigate the role of bone-derived NPY in bone metabolism. METHODS We generated a mouse where NPY was over-expressed specifically in mature osteoblasts and osteocytes (Col2.3NPY) and characterized the bone phenotype of these mice in vivo and in vitro. RESULTS Trabecular and cortical bone volume was reduced in 3-month-old animals, however bone formation rate and osteoclast activity were not significantly changed. Calvarial osteoblast cultures from Col2.3NPY mice also showed reduced mineralization and expression of osteogenic marker genes. CONCLUSIONS Our data suggest that osteoblast/osteocyte-derived NPY is capable of altering osteogenesis in vivo and in vitro and may represent an important source of NPY for regulation of bone formation. However, it is possible that other peripheral sources of NPY such as the sympathetic nervous system and vasculature also contribute to peripheral regulation of bone turnover.
Collapse
Affiliation(s)
- I Matic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ide S, Hara T, Ohno A, Tamano R, Koseki K, Naka T, Maruyama C, Kaneda K, Yoshioka M, Minami M. Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats. J Neurosci 2013; 33:5881-94. [PMID: 23554470 PMCID: PMC6618927 DOI: 10.1523/jneurosci.4278-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022] Open
Abstract
Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST.
Collapse
Affiliation(s)
- Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Taiki Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Atsushi Ohno
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Ryuta Tamano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Kana Koseki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Tomonori Naka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Chikashi Maruyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| |
Collapse
|
122
|
Larhammar D, Bergqvist CA. Ancient Grandeur of the Vertebrate Neuropeptide Y System Shown by the Coelacanth Latimeria chalumnae. Front Neurosci 2013; 7:27. [PMID: 23483106 PMCID: PMC3591787 DOI: 10.3389/fnins.2013.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/15/2013] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide Y (NPY) family receptors and peptides have previously been characterized in several tetrapods, teleost fishes, and in a holocephalan cartilaginous fish. This has shown that the ancestral NPY system in the jawed vertebrates consisted of the peptides NPY and peptide YY (PYY) and seven G-protein-coupled receptors named Y1–Y8 (Y3 does not exist). The different vertebrate lineages have subsequently lost or gained a few receptor genes. For instance, the human genome has lost three of the seven receptors while the zebrafish has lost two and gained two receptor genes. Here we describe the NPY system of a representative of an early diverging lineage among the sarcopterygians, the West Indian Ocean coelacanth Latimeria chalumnae. The coelacanth was found to have retained all seven receptors from the ancestral jawed vertebrate. The receptors display the typical characteristics found in other vertebrates. Interestingly, the coelacanth was found to have the local duplicate of the PYY gene, called pancreatic polypeptide, previously only identified in tetrapods. Thus, this duplication took place very early in the sarcopterygian lineage, before the origin of tetrapods. These findings confirm the ancient complexity of the NPY system and show that mammals have lost more NPY receptors than any other vertebrate lineage. The coelacanth has all three peptides found in tetrapods and has retained the ancestral jawed vertebrate receptor repertoire with neither gains or losses.
Collapse
Affiliation(s)
- Dan Larhammar
- Unit of Pharmacology, Department of Neuroscience, Science for Life Laboratory - Uppsala University Uppsala, Sweden
| | | |
Collapse
|
123
|
dos Santos VV, Santos DB, Lach G, Rodrigues ALS, Farina M, De Lima TCM, Prediger RD. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1-40)) administration in mice. Behav Brain Res 2013; 244:107-15. [PMID: 23396168 DOI: 10.1016/j.bbr.2013.01.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/25/2022]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide widely distributed in the central nervous system (CNS) that has been associated with the modulation of several functions including food intake, learning and memory, mood and neuroprotection. There is great interest in understanding the role of NPY in the deleterious effects induced by the central accumulation of amyloid-β (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD). Herein, we evaluated the effects of a single intracerebroventricular (i.c.v.) administration of NPY (0.0234 μmol/μL) 15 min prior to the i.c.v. injection of aggregated Aβ1-40 peptide (400 pmol/mouse) in behavioral and neurochemical parameters related to oxidative stress in mice. Pretreatment with NPY prevented Aβ1-40-induced depressive-like responses and spatial memory impairments evaluated in the tail suspension and object location tasks, respectively. The protective effects of NPY on spatial memory of Aβ1-40-treated mice were abolished by the pretreatment with the selective Y2 receptor antagonist BIIE0246. On the other hand, the administration of NPY and Aβ1-40 did not alter the performance of the animals in the elevated plus-maze and open field arena, indicating lack of effects on anxiety state and locomotor function. Although Aβ1-40 infusion did not change hippocampal and cortical glutathione peroxidase (GPx) activity and glutathione (GSH) levels, Aβ1-40-infused animals showed an increased lipid peroxidation in hippocampus and prefrontal cortex that were blunted by NPY administration. These findings indicate that central administration of NPY prevents Aβ1-40-induced depressive-like behavior and spatial memory deficits in mice and that this response is mediated, at least in part, by the activation of Y2 receptors and prevention of oxidative stress.
Collapse
Affiliation(s)
- Vanessa V dos Santos
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, UFSC, Florianópolis-SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
124
|
Pérez-Fernández J, Megías M, Pombal MA. Distribution of a Y1 receptor mRNA in the brain of two Lamprey species, the sea lamprey (Petromyzon marinus) and the river Lamprey (Lampetra fluviatilis). J Comp Neurol 2013; 521:426-47. [PMID: 22740099 DOI: 10.1002/cne.23180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/23/2012] [Accepted: 06/22/2012] [Indexed: 11/09/2022]
Abstract
The neuropeptide Y system consists of several neuropeptides acting through a broad number of receptor subtypes, the NPY family of receptors. NPY receptors are divided into three subfamilies (Y1, Y2, and Y5) that display a complex evolutionary history due to local and large-scale gene duplication events and gene losses. Lampreys emerged from a basal branch of the tree of vertebrates and they are in a key position to shed light on the evolutionary history of the NPY system. One member of the Y1 subfamily has been reported in agnathans, but the phylogenetic tree of the Y1 subfamily is not yet clear. We cloned the sequences of the Y1-subtype receptor of Petromyzon marinus and Lampetra fluviatilis to study the expression pattern of this receptor in lampreys by in situ hybridization and to analyze the phylogeny of the Y1-subfamily receptors in vertebrates. The phylogenetic study showed that the Y1 receptor of lampreys is basal to the Y1/6 branch of the Y1-subfamily receptors. In situ hybridization showed that the Y1 receptor is widely expressed throughout the brain of lampreys, with some regions showing numerous positive neurons, as well as the presence of numerous cerebrospinal fluid-contacting cells in the spinal cord. This broad distribution of the lamprey Y1 receptor is more similar to that found in other vertebrates for the Y1 receptor than that of the other members of the Y1 subfamily: Y4, Y8, and Y6 receptors. Both phylogenetic relationship and expression pattern suggest that this receptor is a Y1 receptor.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | | | | |
Collapse
|
125
|
Roa J. Role of GnRH Neurons and Their Neuronal Afferents as Key Integrators between Food Intake Regulatory Signals and the Control of Reproduction. Int J Endocrinol 2013; 2013:518046. [PMID: 24101924 PMCID: PMC3786537 DOI: 10.1155/2013/518046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022] Open
Abstract
Reproductive function is regulated by a plethora of signals that integrate physiological and environmental information. Among others, metabolic factors are key components of this circuit since they inform about the propitious timing for reproduction depending on energy availability. This information is processed mainly at the hypothalamus that, in turn, modulates gonadotropin release from the pituitary and, thereby, gonadal activity. Metabolic hormones, such as leptin, insulin, and ghrelin, act as indicators of the energy status and convey this information to the reproductive axis regulating its activity. In this review, we will analyse the central mechanisms involved in the integration of this metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of GnRH, Kiss1, NPY, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
- *Juan Roa:
| |
Collapse
|
126
|
Xu B, Sundström G, Kuraku S, Lundell I, Larhammar D. Cloning and pharmacological characterization of the neuropeptide Y receptor Y5 in the sea lamprey, Petromyzon marinus. Peptides 2013. [PMID: 23178200 DOI: 10.1016/j.peptides.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropeptide Y system is known to have expanded in early vertebrate evolution. Three neuropeptide Y receptors have been proposed to have existed before the two basal vertebrate tetraploidizations, namely a Y1-like, a Y2-like, and a Y5-like receptor, with their genes in the same chromosomal region. Previously we have described a Y1-subfamily and a Y2-subfamily receptor in the river lamprey, Lampetra fluviatilis. Here we report the identification of a Y5 receptor in the genome of the sea lamprey, Petromyzon marinus. In phylogenetic analyses, the Y5 receptor clusters together with gnathostome Y5 receptors with high bootstrap value and shares the long intracellular loop 3. This lamprey receptor has an even longer loop 3 than the gnathostome Y5 receptors described so far, with the expansion of amino acid repeats. Functional expression in a human cell line, co-transfected with a modified human G-protein, resulted in inositol phosphate turnover in response to the three lamprey NPY-family peptides NPY, PYY and PMY at nanomolar concentrations. Our results confirm that the Y1-Y2-Y5 receptor gene triplet arose before the cyclostome-gnathostome divergence. However, it is not clear from the NPY receptors whether cyclostomes diverged from the gnathostome lineage after the first or the second tetraploidization. Duplicates resulting from the tetraploidizations exist for both Y1 and Y2 in gnathostomes, but only a single copy of Y5 has survived in all vertebrates characterized to date, making the physiological roles of Y5 interesting to explore.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
127
|
Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 2012; 107:699-710. [PMID: 22429904 PMCID: PMC3532931 DOI: 10.1016/j.physbeh.2012.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.
Collapse
Affiliation(s)
- Mallory E Bowers
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | | | | |
Collapse
|
128
|
Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides 2012; 46:253-9. [PMID: 22938859 PMCID: PMC3508396 DOI: 10.1016/j.npep.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 08/03/2012] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
129
|
Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP. Multifaces of neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. Neuropeptides 2012; 46:299-308. [PMID: 23116540 DOI: 10.1016/j.npep.2012.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in the modulation of important features of neuronal physiology, including calcium homeostasis, neurotransmitter release and excitability. Moreover, NPY has been involved as an important modulator of hippocampal and thalamic circuits, receiving particular attention as an endogenous antiepileptic peptide and as a potential master regulator of feeding behavior. NPY not only inhibits excessive glutamate release (decreasing circuitry hyperexcitability) but also protects neurons from excitotoxic cell death. Furthermore, NPY has been involved in the modulation of the dynamics of dentate gyrus and subventricular zone neural stem cell niches. In both regions, NPY is part of the chemical resource of the neurogenic niche and acts through NPY Y1 receptors to promote neuronal differentiation. Interestingly, NPY is also considered a neuroimmune messenger. In this review, we highlight recent evidences concerning paracrine/autocrine actions of NPY involved in neuroprotection, neurogenesis and neuroinflammation. In summary, the three faces of NPY, discussed in the present review, may contribute to better understand the dynamics and cell fate decision in the brain parenchyma and in restricted areas of neurogenic niches, in health and disease.
Collapse
Affiliation(s)
- J O Malva
- Laboratory of Biochemistry and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
130
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
131
|
Hurtado MD, Acosta A, Riveros PP, Baum BJ, Ukhanov K, Brown AR, Dotson CD, Herzog H, Zolotukhin S. Distribution of Y-receptors in murine lingual epithelia. PLoS One 2012; 7:e46358. [PMID: 23050020 PMCID: PMC3458857 DOI: 10.1371/journal.pone.0046358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Peptide hormones and their cognate receptors belonging to neuropeptide Y (NPY) family mediate diverse biological functions in a number of tissues. Recently, we discovered the presence of the gut satiation peptide YY (PYY) in saliva of mice and humans and defined its role in the regulation of food intake and body weight maintenance. Here we report the systematic analysis of expression patterns of all NPY receptors (Rs), Y1R, Y2R, Y4R, and Y5R in lingual epithelia in mice. Using four independent assays, immunohistochemistry, in situ hybridization, immunocytochemistry and RT PCR, we show that the morphologically different layers of the keratinized stratified epithelium of the dorsal layer of the tongue express Y receptors in a very distinctive yet overlapping pattern. In particular, the monolayer of basal progenitor cells expresses both Y1 and Y2 receptors. Y1Rs are present in the parabasal prickle cell layer and the granular layer, while differentiated keratinocytes display abundant Y5Rs. Y4Rs are expressed substantially in the neuronal fibers innervating the lamina propria and mechanoreceptors. Basal epithelial cells positive for Y2Rs respond robustly to PYY(3-36) by increasing intracellular Ca(2+) suggesting their possible functional interaction with salivary PYY. In taste buds of the circumvallate papillae, some taste receptor cells (TRCs) express YRs localized primarily at the apical domain, indicative of their potential role in taste perception. Some of the YR-positive TRCs are co-localized with neuronal cell adhesion molecule (NCAM), suggesting that these TRCs may have synaptic contacts with nerve terminals. In summary, we show that all YRs are abundantly expressed in multiple lingual cell types, including epithelial progenitors, keratinocytes, neuronal dendrites and TRCs. These results suggest that these receptors may be involved in the mediation of a wide variety of functions, including proliferation, differentiation, motility, taste perception and satiation.
Collapse
Affiliation(s)
- Maria D. Hurtado
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Andres Acosta
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Paola P. Riveros
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Bruce J. Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kirill Ukhanov
- Departments of Neuroscience and Psychiatry, Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America
| | - Alicia R. Brown
- Departments of Neuroscience and Psychiatry, Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America
| | - Cedrick D. Dotson
- Departments of Neuroscience and Psychiatry, Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
132
|
Sørensen G, Jensen M, Weikop P, Dencker D, Christiansen SH, Loland CJ, Bengtsen CH, Petersen JH, Fink-Jensen A, Wörtwein G, Woldbye DPD. Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice. Psychopharmacology (Berl) 2012; 222:565-77. [PMID: 22367168 DOI: 10.1007/s00213-012-2651-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 01/23/2012] [Indexed: 11/27/2022]
Abstract
RATIONALE Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined. OBJECTIVES To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural effects. METHODS The Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular dopamine with microdialysis as well as dopamine transporter-mediated uptake of dopamine in vitro. Immunocytochemistry was used to determine whether dopamine neurons express Y5-like immunoreactivity. RESULTS In self-administration, L-152,804 prominently decreased nose-poking for the peak dose of cocaine and shifted the dose-response curve for cocaine downward. Y5-KO mice also showed modestly attenuated self-administration. Cocaine-induced hyperactivity was attenuated by L-152,804 and in Y5-KO mice. Cocaine failed to increase c-fos expression in the nucleus accumbens and striatum of L-152,804-treated mice, indicating that the Y5 antagonist could act by influencing neural activity in these regions. Accordingly, the cocaine-induced increase in accumbal extracellular dopamine was attenuated by L-152,804 and in Y5-KO mice, suggesting that Y5 antagonism influences cocaine-induced behaviour by regulating dopamine. Consistent with this concept, dopamine neurons in the ventral tegmental area appeared to contain Y5 receptors. In contrast, neither L-152,804 nor NPY influenced dopamine transporter-mediated dopamine uptake. CONCLUSIONS The present data indicate that Y5 antagonism may attenuate cocaine-induced behavioural effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction.
Collapse
Affiliation(s)
- Gunnar Sørensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen & Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
134
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
135
|
Nguyen AD, Mitchell NF, Lin S, Macia L, Yulyaningsih E, Baldock PA, Enriquez RF, Zhang L, Shi YC, Zolotukhin S, Herzog H, Sainsbury A. Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS One 2012; 7:e40191. [PMID: 22768253 PMCID: PMC3387009 DOI: 10.1371/journal.pone.0040191] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/02/2012] [Indexed: 01/30/2023] Open
Abstract
Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake.
Collapse
Affiliation(s)
- Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Serge Zolotukhin
- Division of Cell and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
136
|
Besing RC, Hablitz LM, Paul JR, Johnson RL, Prosser RA, Gamble KL. Neuropeptide Y-induced phase shifts of PER2::LUC rhythms are mediated by long-term suppression of neuronal excitability in a phase-specific manner. Chronobiol Int 2012; 29:91-102. [PMID: 22324550 DOI: 10.3109/07420528.2011.649382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel wheel-induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. The authors examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, it was found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0-6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6-7 h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of green fluorescent protein-positive (GFP+) cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5 mM K(+) 3 h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing.
Collapse
Affiliation(s)
- Rachel C Besing
- Department of Psychiatry and Behavioral Neurobiology , University of Alabama at Birmingham , Birmingham, AL 35294-0017, USA
| | | | | | | | | | | |
Collapse
|
137
|
Gilpin NW. Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): effects on inhibitory transmission in central amygdala, and anxiety- & alcohol-related behaviors. Alcohol 2012; 46:329-37. [PMID: 22560367 PMCID: PMC3613993 DOI: 10.1016/j.alcohol.2011.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/09/2011] [Accepted: 11/28/2011] [Indexed: 12/25/2022]
Abstract
The central amygdala (CeA) is uniquely situated to function as an interface between stress- and addiction-related processes. This brain region has long been attributed an important role in aversive (e.g., fear) conditioning, as well as the negative emotional states that define alcohol dependence and withdrawal. The CeA is the major output region of the amygdala and receives complex inputs from other amygdaloid nuclei as well as regions that integrate sensory information from the external environment (e.g., thalamus, cortex). The CeA is functionally and anatomically divided into lateral and medial subdivisions that themselves are interconnected and populated by inhibitory interneurons and projections neurons. Neuropeptides are highly expressed in the CeA, particularly in the lateral subdivision, and the role of many of these peptides in regulating anxiety- and alcohol-related behaviors has been localized to the CeA. This review focuses on two of these peptides, corticotropin-releasing factor (CRF) and neuropeptide Y (NPY), that exhibit a high degree of neuroanatomical overlap (e.g., in CeA) and largely opposite behavioral profiles (e.g., in regulating anxiety- and alcohol-related behavior). CRF and NPY systems in the CeA appear to be recruited and/or up-regulated during the transition to alcohol dependence. These and other neuropeptides may converge on GABA synapses in CeA to control projection neurons and downstream effector regions, thereby translating negative affective states into anxiety-like behavior and excessive alcohol consumption.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
138
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
139
|
Han R, Li A, Li L, Kitlinska JB, Zukowska Z. Maternal low-protein diet up-regulates the neuropeptide Y system in visceral fat and leads to abdominal obesity and glucose intolerance in a sex- and time-specific manner. FASEB J 2012; 26:3528-36. [PMID: 22539639 DOI: 10.1096/fj.12-203943] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuropeptide Y (NPY) mediates stress-induced obesity in adult male mice by activating its Y2 receptor (Y2R) in visceral adipose tissue (VAT). Here, we studied whether the NPY-Y2R system is also activated by maternal low-protein diet (LPD) and linked to obesity in offspring. Prenatal LPD offspring had lower birth weights compared to normal-protein diet (NPD) offspring. Female prenatal and lactation stress (PLS) offspring from mothers fed an LPD developed abdominal adiposity and glucose intolerance associated with a 5-fold up-regulation of NPY mRNA and a 6-fold up-regulation of Y2R mRNA specifically in VAT, in addition to elevated platelet-rich-plasma (PRP) NPY, compared to control females fed a high-fat diet (HFD). Conversely, PLS male offspring showed lower NPY in PRP, a 10-fold decrease of Y2R mRNA in VAT, lower adiposity, and improved glucose tolerance compared to control males. Interestingly, prenatal LPD offspring cross-fostered to control lactating mothers had completely inverse metabolic and NPY phenotypes. Taken together, these findings suggested that maternal LPD activates the VAT NPY-Y2R system and increases abdominal adiposity and glucose intolerance in a sex- and time-specific fashion, suggesting that the peripheral NPY system is a potential mediator of programming for the offspring's vulnerability to obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ruijun Han
- Department of Integrative Biology and Physiology, Stress Physiology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
140
|
Rangani RJ, Upadhya MA, Nakhate KT, Kokare DM, Subhedar NK. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease. Peptides 2012; 33:317-28. [PMID: 22266216 DOI: 10.1016/j.peptides.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 02/05/2023]
Abstract
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.
Collapse
Affiliation(s)
- Ritesh J Rangani
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur 440 033, India
| | | | | | | | | |
Collapse
|
141
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
142
|
van Raay L, Jovanovska V, Morris MJ, O'Brien TJ. Focal administration of neuropeptide Y into the S2 somatosensory cortex maximally suppresses absence seizures in a genetic rat model. Epilepsia 2012; 53:477-84. [PMID: 22220638 DOI: 10.1111/j.1528-1167.2011.03370.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Neuropeptide Y (NPY) is an inhibitory neurotransmitter that suppresses focal and generalized seizures in animal models. In this study, we investigated the sites within the thalamocortical circuit that NPY acts to suppress seizures in genetic absence epilepsy rats from Strasbourg (GAERS). METHODS In conscious freely moving GAERS, NPY was administered via intracerebral microcannulae implanted bilaterally into one of the following regions: primary somatosensory cortex (S1), secondary somatosensory cortex (S2), the primary motor cortex (M1), caudal nucleus reticular thalamus (nRT), or ventrobasal thalamus (VB). Animals received vehicle and up to three doses of NPY, in a randomized order. Electroencephalography (EEG) recordings were carried out for 30 min prior to injection and 90 min after the injection of NPY or vehicle. KEY FINDINGS Focal microinjections of NPY into the S2 cortex suppressed seizures in a dose-dependent manner, with the response being significantly different at the highest dose (1.5 mm) compared to vehicle for total time in seizures postinjection (7.2 ± 3.0% of saline, p < 0.01) and average number of seizures (9.4 ± 4.9% of saline, p < 0.05). In contrast NPY microinjections into the VB resulted in an aggravation of seizures. SIGNIFICANCE NPY produces contrasting effects on absence-like seizures in GAERS depending on the site of injection within the thalamocortical circuit. The S2 is the site at which NPY most potently acts to suppress absence-like seizures in GAERS, whereas seizure-aggravating effects are seen in the VB. These results provide further evidence to support the proposition that these electroclinically "generalized" seizures are being driven by a topographically restricted region within the somatosensory cortex.
Collapse
Affiliation(s)
- Leena van Raay
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
143
|
Abstract
The control of food intake consists of neural and hormonal signals between the gut and central nervous system (CNS). Gut hormones such as CCK, PYY and PP signal to important areas in the CNS involved in appetite regulation to terminate a meal. These hormones can act directly via the circulation and activate their respective receptors in the hypothalamus and brainstem. In addition, gut vagal afferents also exist, providing an alternative pathway through which gut hormones can communicate with higher centres through the brainstem. Animal and human studies have demonstrated that peripheral administration of certain gut hormones reduces food intake and leads to weight loss. Gut hormones are therefore potential targets in the development of novel treatments for obesity and analogue therapies are currently under investigation.
Collapse
Affiliation(s)
- K Simpson
- Department of Investigative Medicine, Imperial College London, UK
| | | | | | | |
Collapse
|
144
|
Weise CM, Thiyyagura P, Reiman EM, Chen K, Krakoff J. Postprandial plasma PYY concentrations are associated with increased regional gray matter volume and rCBF declines in caudate nuclei--a combined MRI and H2(15)O PET study. Neuroimage 2011; 60:592-600. [PMID: 22206963 DOI: 10.1016/j.neuroimage.2011.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/01/2023] Open
Abstract
The anorexigenic gastrointestinal hormone Peptide YY plays an important role in the communication between the gastrointestinal tract and the central nervous system. PYY has been shown to modulate brain activity in regions implicated in reward and food related behavior. Its effects on brain structure however, remain unknown. Voxel-based morphometry was used to investigate the relationship between fasting and postprandial plasma PYY concentrations and regional gray matter volume (GMV). For this analysis twenty adult, non diabetic Caucasians were included (18F/2M, age 31±9 y, percentage of body fat [PFAT] 32±8%) who had volumetric brain magnetic resonance images and underwent H(2)(15)O positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF), a marker of local neuronal activity, and measurements of plasma total PYY, prior to (fasting) and following a satiating liquid meal. Voxel-wise analysis revealed a regional positive association between postprandial PYY and gray matter volume bilaterally in the caudate nuclei. These associations remained significant (p<0.05) after small volume correction for multiple comparisons. Based on these findings we investigated whether postprandial PYY is associated with PET measured rCBF of the caudate nucleus. We found a significant negative association between average postprandial caudate rCBF and postprandial plasma PYY concentrations (r=-0.60, p<0.02, age, sex and PFAT adjusted). Average postprandial caudate rCBF was also negatively associated with rCBF in the right medial orbitofrontal cortex and the right hippocampal formation (p<0.05, corrected for multiple comparisons). Total PYY is positively associated with gray matter but negatively with postprandial activity in the caudate nuclei while caudate activity is negatively associated with rCBF in prefrontal and paralimbic regions implicated in reward behavior. Thus, PYY may act centrally to modulate eating behavior via striatal networks.
Collapse
Affiliation(s)
- Christopher M Weise
- Obesity and Diabetes Clinical Research Section, NIDDK-NIH, DHHS, Phoenix, AZ 85016, USA.
| | | | | | | | | |
Collapse
|
145
|
Pleil KE, Lopez A, McCall N, Jijon AM, Bravo JP, Kash TL. Chronic stress alters neuropeptide Y signaling in the bed nucleus of the stria terminalis in DBA/2J but not C57BL/6J mice. Neuropharmacology 2011; 62:1777-86. [PMID: 22182779 DOI: 10.1016/j.neuropharm.2011.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/24/2023]
Abstract
Numerous rodent and human studies have demonstrated that neuropeptide Y (NPY) is involved in the regulation of anxiety-related behaviors. In this study, we examined whether there were differences in NPY signaling between two inbred mouse strains (C57BL/6J and DBA/2J) that exhibit divergent basal and stress-induced anxiety phenotypes. We focused on the bed nucleus of the stria terminals (BNST), a structure in the extended amygdala that is important for the regulation of anxiety-like behavior and contains NPY receptors. While results from whole-cell voltage-clamp recordings and immunofluorescence histochemistry revealed no significant basal differences in NPY signaling or NPY and NPY Y2 receptor (Y2R) expression in the BNST, these measures were differentially altered by chronic restraint stress. Ten days of chronic restraint stress increased basal GABAergic transmission and decreased NPY's ability to inhibit evoked GABAergic transmission in the dorsolateral BNST (dlBNST) via Y2R in DBA/2J, but not C57BL/6J, mice. Additionally, restraint stress increased NPY and Y2R expression across subregions of the BNST of DBA/2J mice 24 h after the last stress exposure, but no changes were observed in C57BL/6J mice. Together, these results suggest that chronic restraint stress engages the NPY system and alters NPY modulation of inhibitory transmission in the dlBNST of DBA/2J mice, but not C57BL/6J mice, which may be related to increased expression of anxiety-related behaviors in this strain.
Collapse
Affiliation(s)
- Kristen E Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina Chapel Hill, 104 Manning Driv, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
146
|
A role for neuropeptide Y Y5 but not the Y1-receptor subtype in food deprivation-induced reinstatement of heroin seeking in the rat. Psychopharmacology (Berl) 2011; 218:693-701. [PMID: 21629996 DOI: 10.1007/s00213-011-2362-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 05/17/2011] [Indexed: 12/17/2022]
Abstract
RATIONAL AND OBJECTIVES Neuropeptide Y (NPY), an orexigenic peptide that is released during periods of food restriction, has been shown to have a significant modulatory impact on drug-related behaviors. We have previously reported that both acute food deprivation (FD) and NPY injections can reinstate extinguished drug-seeking behavior, a proposed animal model of relapse to drug abuse. However, it is not clear whether the FD effect on drug seeking is dependent on NPY transmission. Here, we used the reinstatement model to assess the role of NPY Y1 and Y5-receptor-mediated transmission in FD-induced reinstatement of heroin seeking. METHODS Rats were trained to self-administer heroin for 10-12 days (0.1 mg/kg/infusion/intravenous). Animals then underwent extinction training followed by drug-seeking reinstatement tests under 21 h of FD and sated conditions. RESULTS Injections of a novel NPY Y5-receptor antagonist, Lu AA33810 (0.0, 1.0, or 30.0 mg/kg/IP), resulted in a significant attenuation of FD-induced reinstatement of extinguished heroin seeking. However, no significant effects on reinstatement were found for the Y1-receptor antagonist, BIBO 3304 (0.0, 5.0, or 10.0 nmol/intracerebroventricular). CONCLUSIONS These results suggest that while signals mediated through NPY Y1 receptors play a modest role in reinstatement, activation of Y5 receptors has a critical function in FD-induced reinstatement of heroin-seeking behavior.
Collapse
|
147
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
148
|
Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology 2011; 63:46-56. [PMID: 22037149 DOI: 10.1016/j.neuropharm.2011.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 12/12/2022]
Abstract
Peptide hormones released from the gastrointestinal tract communicate information about the current state of energy balance to the brain. These hormones regulate appetite and energy expenditure via the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake. Research in this area has provided novel targets for the pharmacological treatment of obesity. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- Amir H Sam
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
149
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
150
|
Suzuki K, Jayasena CN, Bloom SR. The gut hormones in appetite regulation. J Obes 2011; 2011:528401. [PMID: 21949903 PMCID: PMC3178198 DOI: 10.1155/2011/528401] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/25/2011] [Indexed: 12/12/2022] Open
Abstract
Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|