101
|
Corraliza I. Recruiting specialized macrophages across the borders to restore brain functions. Front Cell Neurosci 2014; 8:262. [PMID: 25228859 PMCID: PMC4151038 DOI: 10.3389/fncel.2014.00262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/14/2014] [Indexed: 12/23/2022] Open
Abstract
Although is well accepted that the central nervous system has an immune privilege protected by the blood–brain barrier (BBB) and maintained by the glia, it is also known that in homeostatic conditions, peripheral immune cells are able to penetrate to the deepest regions of brain without altering the structural integrity of the BBB. Nearly all neurological diseases, including degenerative, autoimmune or infectious ones, compromising brain functions, develop with a common pattern of inflammation in which macrophages and microglia activation have been regarded often as the “bad guys.” However, recognizing the huge heterogeneity of macrophage populations and also the different expression properties of microglia, there is increasing evidence of alternative conditions in which these cells, if primed and addressed in the correct direction, could be essential for reparative and regenerative functions. The main proposal of this review is to integrate studies about macrophage’s biology at the brain borders where the ultimate challenge is to penetrate through the BBB and contribute to change or even stop the course of disease. Thanks to the efforts made in the last century, this special wall is currently recognized as a highly regulated cooperative structure, in which their components form neurovascular units. This new scenario prompted us to review the precise cross-talk between the mind and body modes of immune response.
Collapse
Affiliation(s)
- Inés Corraliza
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University of Extremadura Cáceres, Spain
| |
Collapse
|
102
|
Petrosyan HA, Alessi V, Singh V, Hunanyan AS, Levine JM, Arvanian VL. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury. Gene Ther 2014; 21:991-1000. [DOI: 10.1038/gt.2014.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
|
103
|
Zhang B, Gensel J. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 2014; 258:112-20. [DOI: 10.1016/j.expneurol.2014.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
|
104
|
|
105
|
Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014; 4:115-24. [PMID: 25019643 DOI: 10.1089/ther.2014.0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Local and general hypothermia are used to treat spinal cord injury (SCI), as well as other neurological traumas. While hypothermia is known to provide significant therapeutic benefits due to its neuroprotective nature, it is unclear how the treatment may affect healthy tissues or whether it may cause undesired temperature changes in areas of the body that are not the targets of treatment. We performed 2-hour moderate general hypothermia (32°C core) or local hypothermia (30°C spinal cord) on rats that had received either a moderate contusive SCI or laminectomy (control) while monitoring temperatures at three sites: the core, spinal cord, and cortex. First, we identified that injured rats that received general hypothermia exhibited larger temperature drops at the spinal cord (-3.65°C, 95% confidence intervals [CIs] -3.72, -3.58) and cortex (-3.64°C, CIs -3.73, -3.55) than uninjured rats (spinal cord: -3.17°C, CIs -3.24, -3.10; cortex: -3.26°C, CIs -3.34, -3.17). This was found due to elevated baseline temperatures in the injured group, which could be due to inflammation. Second, both general hypothermia and local hypothermia caused a significant reduction in the cortical temperature (-3.64°C and -1.18°C, respectively), although local hypothermia caused a significantly lower drop in cortical temperature than general hypothermia (p<0.001). Lastly, the rates of rewarming of the cord were not significantly different among the methods or injury groups that were tested; the mean rate of rewarming was 0.13±0.1°C/min. In conclusion, local hypothermia may be more suitable for longer durations of hypothermia treatment for SCI to reduce temperature changes in healthy tissues, including the cortex.
Collapse
Affiliation(s)
- Faith A Bazley
- 1 Singapore Institute for Neurotechnology, National University of Singapore , Singapore
| | | | | | | |
Collapse
|
106
|
Kim RY, Hoffman AS, Itoh N, Ao Y, Spence R, Sofroniew MV, Voskuhl RR. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 274:53-61. [PMID: 25005117 DOI: 10.1016/j.jneuroim.2014.06.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 02/09/2023]
Abstract
Chemokine (C-C motif) ligand 2 (CCL2), initially identified as monocyte chemoattractant protein-1 (MCP-1), recruits immune cells to the central nervous system (CNS) during autoimmune inflammation. CCL2 can be expressed by multiple cell types, but which cells are responsible for CCL2 function during acute and chronic phases of autoimmune disease is not known. We determined the role of CCL2 in astrocytes in vivo during experimental autoimmune encephalomyelitis (EAE) by using Cre-loxP gene deletion. Mice with a conditional gene deletion of CCL2 from astrocytes had less severe EAE late in disease while having a similar incidence and severity of disease at onset as compared to wild type (WT) control littermates. EAE mice devoid of CCL2 in astrocytes had less macrophage and T cell inflammation in the white matter of the spinal cord and less diffuse activation of astrocytes and microglia in both white and gray matter as well as less axonal loss and demyelination, compared to WT littermates. These findings demonstrate that CCL2 in astrocytes plays an important role in the continued recruitment of immune cells and activation of glial cells in the CNS during chronic EAE, thereby suggesting a novel cell specific target for neuroprotective treatments of chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roy Y Kim
- Molecular Cellular and Integrative Physiology Interdepartmental Ph.D. Program, University of California, Los Angeles; Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Alexandria S Hoffman
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Noriko Itoh
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles
| | - Rory Spence
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | | | - Rhonda R Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles.
| |
Collapse
|
107
|
Xiang M, Wang L, Guo S, Lu YY, Lei H, Jiang DS, Zhang Y, Liu Y, Zhou Y, Zhang XD, Li H. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. J Neurochem 2014; 129:988-1001. [PMID: 24528256 DOI: 10.1111/jnc.12682] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/26/2022]
Abstract
Interferon regulatory factor 8 (IRF8), a transcriptional regulator in the IRF family, has been implicated in innate immunity, immune cell differentiation and tumour cell apoptosis. In the present study, we found that IRF8 is constitutively expressed in the brain and suppressed after cerebral ischaemia in a time-dependent manner. IRF8 knockout (IRF8-KO) mice, wild type (WT) mice, neuron-specific IRF8 transgenic (TG) mice and non-transgenic mice were used in a transient cerebral ischaemic model. The IRF8 knockout mice exhibited aggravated apoptosis, inflammation and oxidative injury in the ischaemic brain, eventually leading to poorer stroke outcomes, whereas neuron-specific IRF8 transgenic mice showed a marked inhibition of apoptosis and improved stroke outcomes. To model ischaemia/reperfusion conditions in vitro, primary cortical neurons were cultured and subjected to transient oxygen and glucose deprivation for 60 min. Similar to the in vivo study, IRF8 knockdown by Ad-shIRF8 resulted in increased apoptosis, whereas IRF8 over-expression by Ad-IRF8 significantly decreased neuronal apoptosis. These data indicate that IRF8 is strongly protective in ischaemic stroke by regulating neuronal apoptosis, the inflammatory response and oxidative stress. In the present study, we found that the transcriptional factor IRF8 plays a protective role in the cerebral ischaemic-reperfusion injury by attenuating neuronal apoptosis, oxidative stress and inflammation. Besides the known function of IRF8 in regulating the inflammatory gene expression, we first demonstrated that IRF8 can directly modulate apoptosis and oxidative stress by controlling the relative genes expression.
Collapse
Affiliation(s)
- Mei Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Affiliation(s)
- Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| |
Collapse
|
109
|
Losey P, Young C, Krimholtz E, Bordet R, Anthony DC. The role of hemorrhage following spinal-cord injury. Brain Res 2014; 1569:9-18. [PMID: 24792308 DOI: 10.1016/j.brainres.2014.04.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/29/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023]
Abstract
Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated.
Collapse
Affiliation(s)
- Patrick Losey
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Christopher Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Emily Krimholtz
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Régis Bordet
- EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Daniel C Anthony
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| |
Collapse
|
110
|
Ohtake Y, Park D, Muneer PMA, Li H, Xu B, Sharma K, Smith GM, Selzer ME, Li S. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials 2014; 35:4610-26. [PMID: 24630093 PMCID: PMC4195449 DOI: 10.1016/j.biomaterials.2014.02.037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Knockout studies suggest that PTEN limits the regenerative capacities of CNS axons as a dominant antagonist of PI3 kinase, but the transgenic approach is not feasible for treating patients. Although application of bisperoxovanadium may block PTEN function, it is a general inhibitor of phosphotyrosine phosphatases and may target enzymes other than PTEN, causing side effects and preventing firm conclusions about PTEN inhibition on regulating neuronal growth. A pharmacological method to selectively suppress PTEN post-injury could be a valuable strategy for promoting CNS axon regeneration. We identified PTEN antagonist peptides (PAPs) by targeting PTEN critical functional domains and evaluated their efficacy for promoting axon growth. Four PAPs (PAP 1-4) bound to PTEN protein expressed in COS7 cells and blocked PTEN signaling in vivo. Subcutaneous administration of PAPs initiated two days after dorsal over-hemisection injury significantly stimulated growth of descending serotonergic fibers in the caudal spinal cord of adult mice. Systemic PAPs induce significant sprouting of corticospinal fibers in the rostral spinal cord and limited growth of corticospinal axons in the caudal spinal cord. More importantly, PAP treatment enhanced recovery of locomotor function in adult rodents with spinal cord injury. This study may facilitate development of effective therapeutic agents for CNS injuries.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dongsun Park
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - P M Abdul Muneer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hui Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Bin Xu
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Kartavya Sharma
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390-8813, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
111
|
Oliveira GB, Fontes EDA, de Carvalho S, da Silva JB, Fernandes LMP, Oliveira MCSP, Prediger RD, Gomes-Leal W, Lima RR, Maia CSF. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence. Brain Res 2014; 1561:23-34. [PMID: 24637259 DOI: 10.1016/j.brainres.2014.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022]
Abstract
Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.
Collapse
Affiliation(s)
- Gedeão Batista Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Enéas de Andrade Fontes
- Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Sabrina de Carvalho
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Josiane Batista da Silva
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Maria Cristina Souza Pereira Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | - Walace Gomes-Leal
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil.
| |
Collapse
|
112
|
Pajoohesh-Ganji A, Burns MP, Pal-Ghosh S, Tadvalkar G, Hokenbury NG, Stepp MA, Faden AI. Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 2014; 1560:73-82. [PMID: 24630972 DOI: 10.1016/j.brainres.2014.02.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) is produced through the enzymatic cleavage of amyloid precursor protein (APP) by β (Bace1) and γ-secretases. The accumulation and aggregation of Aβ as amyloid plaques is the hallmark pathology of Alzheimer׳s disease and has been found in other neurological disorders, such as traumatic brain injury and multiple sclerosis. Although the role of Aβ after injury is not well understood, several studies have reported a negative correlation between Aβ formation and functional outcome. In this study we show that levels of APP, the enzymes cleaving APP (Bace1 and γ-secretase), and Aβ are significantly increased from 1 to 3 days after impact spinal cord injury (SCI) in mice. To determine the role of Aβ after SCI, we reduced or inhibited Aβ in vivo through pharmacological (using DAPT) or genetic (Bace1 knockout mice) approaches. We found that these interventions significantly impaired functional recovery as evaluated by white matter sparing and behavioral testing. These data are consistent with a beneficial role for Aβ after SCI.
Collapse
Affiliation(s)
| | - Mark P Burns
- Georgetown University, Washington, DC, United States
| | | | - Gauri Tadvalkar
- The George Washington University, Washington, DC, United States
| | - Nicole G Hokenbury
- The George Washington University, Washington, DC, United States; Georgetown University, Washington, DC, United States; University of Maryland, Baltimore, United States
| | - Mary Ann Stepp
- The George Washington University, Washington, DC, United States
| | - Alan I Faden
- University of Maryland, Baltimore, United States
| |
Collapse
|
113
|
Dose-effects of aorta-infused clenbuterol on spinal cord ischemia-reperfusion injury in rabbits. PLoS One 2013; 8:e84095. [PMID: 24391890 PMCID: PMC3877193 DOI: 10.1371/journal.pone.0084095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Background The β2 adrenergic receptor (β2AR) plays an important role in ischemia-reperfusion (I/R) injury in various organs. Recently, a selective β2AR agonist clenbuterol was suggested to protect against cerebral I/R injury. This study was designed to investigate changes of β2ARs after spinal cord I/R injury and dose-effects of aorta-infused clenbuterol on spinal cord I/R injury in rabbits. Methods Spinal cord ischemia was induced in New Zealand white rabbits by infrarenal abdominal aortic occlusion with a balloon catheter for 30 minutes except the sham group. During occlusion, nothing (I/R group), normal saline (NS group) or clenbuterol at different doses of 0.005, 0.01, 0.05, 0.1, 0.5, or 1 mg/kg (C0.005, C0.01, C0.05, C0.1, C0.5, and C1 groups) was infused into the occluded aortic segments. The hemodynamic data, blood glucose and serum electrolytes were measured during experimental period. Neurological function was assessed according to the modified Tarlov scales until 48 hours after reperfusion. After that, the lumbar spinal cord was harvested for β2AR immunohistochemistry and histopathologic evaluation in the anterior horns. Results The β2AR expression in the anterior horns of the spinal cord was significantly higher in the I/R group than in the sham group. Tarlov scores and the number of viable α-motor neurons were higher in C0.01-C0.5 groups than in the NS group, C0.005 and C1 groups and were highest in the C0.1 group. Hypotension and hyperglycemia were found in the C1 group. Conclusion β2ARs in the anterior horn were upregulated after spinal cord I/R injury. Aortic-infused clenbuterol (0.01–0.5 mg/kg) can attenuate spinal cord I/R injury dose-dependently during the ischemic period. The Optimal dosage was 0.1 mg/kg. Activation of β2AR could be a new therapeutic strategy for the treatment of spinal cord I/R injury.
Collapse
|
114
|
Wu Y, Yang L, Mei X, Yu Y. Selective inhibition of STAT1 reduces spinal cord injury in mice. Neurosci Lett 2013; 580:7-11. [PMID: 24321405 DOI: 10.1016/j.neulet.2013.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/15/2013] [Accepted: 11/30/2013] [Indexed: 12/15/2022]
Abstract
The signal transducer and activator of transcription 1 (STAT1) is associated with neuronal cell death after cerebral ischemia. However, the role of STAT1 in the spinal cord injury (SCI) remains unclear. Here, we examined whether STAT1 blockade reduces neural tissue damage and locomotor impairment after SCI in mice. The small interfering RNA against STAT1 (STAT1 siRNA) or control non-targeting siRNA was injected intraperitoneally into SCI mice. Histological damage and locomotor function were evaluated. Inflammatory markers and apoptosis were determined. STAT1 siRNA treatment significantly decreased the histological damage following SCI. STAT1 siRNA-treated mice showed significantly improved locomotor function compared with the controls. Furthermore, TNF-α, IL-1β, and IL-6 levels at the injured site from the STAT1 siRNA-treated group were significantly reduced and IL-10 increased, in comparison with controls. The NF-κB activation and apoptosis in SCI were also inhibited. These results reveal that selective STAT1 inhibition reduced neural tissue damage and locomotor impairment by regulating inflammatory response and possibly apoptosis. STAT1 represents a novel therapeutic target after SCI.
Collapse
Affiliation(s)
- Yuexin Wu
- Department of Hand Surgery, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| | - Limin Yang
- Department of Hand Surgery, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China.
| | - Xifan Mei
- Department of Spine, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| | - Yang Yu
- Department of Spine, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| |
Collapse
|
115
|
Abstract
Although neurons are normally unable to regenerate their axons after injury to the CNS, this situation can be partially reversed by activating the innate immune system. In a widely studied instance of this phenomenon, proinflammatory agents have been shown to cause retinal ganglion cells, the projection neurons of the eye, to regenerate lengthy axons through the injured optic nerve. However, the role of different molecules and cell populations in mediating this phenomenon remains unclear. We show here that neutrophils, the first responders of the innate immune system, play a central role in inflammation-induced regeneration. Numerous neutrophils enter the mouse eye within a few hours of inducing an inflammatory reaction and express high levels of the atypical growth factor oncomodulin (Ocm). Immunodepletion of neutrophils diminished Ocm levels in the eye without altering levels of CNTF, leukemia inhibitory factor, or IL-6, and suppressed the proregenerative effects of inflammation. A peptide antagonist of Ocm suppressed regeneration as effectively as neutrophil depletion. Macrophages enter the eye later in the inflammatory process but appear to be insufficient to stimulate extensive regeneration in the absence of neutrophils. These data provide the first evidence that neutrophils are a major source of Ocm and can promote axon regeneration in the CNS.
Collapse
|
116
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
117
|
Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 2013; 8:e73422. [PMID: 23967343 PMCID: PMC3742532 DOI: 10.1371/journal.pone.0073422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/28/2022] Open
Abstract
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
118
|
Li HY, Führmann T, Zhou Y, Dalton PD. Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2001-2011. [PMID: 23702616 DOI: 10.1007/s10856-013-4956-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Tissue engineered scaffolds and matrices have been investigated over the past decade for their potential in spinal cord repair. They provide a 3-D substrate that can be permissive for nerve regeneration yet have other roles including neuroprotection, altering the inflammatory cascade and mechanically stabilizing spinal cord tissue after injury. In this study we investigated very small lesions (approx. 0.25 μL in volume) of the dorsal column into which a phase-separated poly(2-hydroxyethyl methacrylate) hydrogel scaffold is implanted. Using fluorescent immunohistochemistry to quantify glial scarring, the poly(2-hydroxyethyl methacrylate) scaffold group showed reduced intensity compared to lesion controls for GFAP and the chondroitin sulfate proteoglycan neurocan after 6 days. However, the scaffold and tissue was also pushed dorsally after 6 days while the scaffold was not integrated into the spinal cord after 28 days. Overall, this small-lesion spinal cord injury model provided information on the host tissue reaction of a TE scaffold while reducing animal discomfort and care.
Collapse
Affiliation(s)
- Hong Ying Li
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai, 200030, China
| | | | | | | |
Collapse
|
119
|
Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma 2013; 30:1311-24. [PMID: 23731227 DOI: 10.1089/neu.2012.2651] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting 270,000 people in the United States. A potential treatment for decreasing the secondary inflammation, excitotoxic damage, and neuronal apoptosis associated with SCI, is the anti-inflammatory cytokine interleukin-10. The best characterized effects of IL-10 are anti-inflammatory-it downregulates pro-inflammatory species interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor-α, interferon-γ, matrix metalloproteinase-9, nitric oxide synthase, myeloperoxidase, and reactive oxygen species. Pro-apoptotic factors cytochrome c, caspase 3, and Bax are downregulated by IL-10, whereas anti-apoptotic factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X, B-cell lymphoma-extra large (Bcl-xl) are upregulated by IL-10. IL-10 also provides trophic support to neurons through the IL-10 receptor. Increased tissue sparing, functional recovery, and neuroprotection are seen with an immediate post-SCI systemic administration of IL-10. Treatment of SCI with IL-10 has been used successfully in combination with Schwann cell and olfactory glial cell grafts, as well as methylprednisolone. Minocycline, tetramethylpyrazine, and hyperbaric oxygen treatment all increase IL-10 levels in a SCI models and result in increased tissue sparing and functional recovery. A chronic systemic administration of IL-10 does not appear to be beneficial to SCI recovery and causes increased susceptibility to septicemia, pneumonia, and peripheral neuropathy. However, a localized upregulation of IL-10 has been shown to be beneficial and can be achieved by herpes simplex virus gene therapy, injection of poliovirus replicons, or surgical placement of a slow-release compound. IL-10 shows promise as a treatment for SCI, although research on local IL-10 delivery timeline and dosage needs to be expanded.
Collapse
Affiliation(s)
- Colton D Thompson
- Department of Neurological Surgery, University of Wisconsin , Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
120
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
121
|
Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J. Spinal cord regeneration: Lessons for mammals from non-mammalian vertebrates. Genesis 2013; 51:529-44. [DOI: 10.1002/dvg.22406] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Dasfne Lee-Liu
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Gabriela Edwards-Faret
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Víctor S. Tapia
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| | - Juan Larraín
- Center for Aging and Regeneration; Millennium Nucleus in Regenerative Biology; Department of Cell and Molecular Biology; Faculty of Biological Sciences; Pontificia Universidad Católica de Chile; Alameda 340 Santiago Chile
| |
Collapse
|
122
|
Thomas AM, Shea LD. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J Control Release 2013; 170:421-9. [PMID: 23791981 DOI: 10.1016/j.jconrel.2013.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Gene delivering biomaterials have increasingly been employed to modulate the cellular microenvironment to promote tissue regeneration, yet low transduction efficiency has been a persistent challenge for in vivo applications. In this report, we investigated the surface modification of poly(lactide-co-glycolide) (PLG) scaffolds with polysaccharides, which have been implicated in binding lentivirus but have not been used for delivery. Chitosan was directly conjugated onto PLG scaffolds, whereas heparin and hyaluronan were indirectly conjugated onto PLG scaffolds with multi-amine crosslinkers. The addition of chitosan and heparin onto PLG promoted the association of lentivirus to these scaffolds and enhanced their transduction efficiency in vitro relative to hyaluronan-conjugated and control scaffolds that had limited lentivirus association and transduction. Transduction efficiency in vitro was increased partly due to an enhanced retention of virus on the scaffold as well as an extended half-life of viral activity. Transduction efficiency was also evaluated in vivo using porous, multiple channel PLG bridges that delivered lentivirus to the injured mouse spinal cord. Transgene expression persisted for weeks after implantation, and was able to enhance axon growth and myelination. These studies support gene-delivering PLG scaffolds for in vivo regenerative medicine applications.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
123
|
Bharne AP, Upadhya MA, Shelkar GP, Singru PS, Subhedar NK, Kokare DM. Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology 2013; 67:126-35. [DOI: 10.1016/j.neuropharm.2012.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 10/13/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
|
124
|
Johannssen HC, Helmchen F. Two-photon imaging of spinal cord cellular networks. Exp Neurol 2013; 242:18-26. [DOI: 10.1016/j.expneurol.2012.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 03/27/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
|
125
|
Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P, Lira SA, Jung S, Schwartz M. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 2013; 38:555-69. [PMID: 23477737 DOI: 10.1016/j.immuni.2013.02.012] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023]
Abstract
Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.
Collapse
Affiliation(s)
- Ravid Shechter
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Lu WH, Wang CY, Chen PS, Wang JW, Chuang DM, Yang CS, Tzeng SF. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013; 91:694-705. [PMID: 23404572 DOI: 10.1002/jnr.23200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
Abstract
Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
127
|
David BT, Ratnayake A, Amarante MA, Reddy NP, Dong W, Sampath S, Heary RF, Elkabes S. A toll-like receptor 9 antagonist reduces pain hypersensitivity and the inflammatory response in spinal cord injury. Neurobiol Dis 2013; 54:194-205. [PMID: 23313320 DOI: 10.1016/j.nbd.2012.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/11/2012] [Accepted: 12/28/2012] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are mediators of the innate immune response to exogenous pathogens. They have also been implicated in sterile inflammation associated with systemic injury and non-infectious diseases via binding of endogenous ligands, possibly released by damaged cells. Emerging evidence indicates that some TLRs play a role in nervous system injury and especially in injury-elicited pain and sterile inflammation. However, no information is available about the contribution of TLR9, a member of the TLR family, to traumatic spinal cord injury (SCI). Moreover, the therapeutic potential of TLR9 ligands in the functional outcomes of SCI, including pain, has not been explored. We report, for the first time, that the intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe contusion SCI, diminishes injury-induced heat hypersensitivity. Investigations on the potential mechanisms underlying the reduction in pain sensitivity indicated an attenuation of the inflammatory reaction manifested by a decrease in the number of CD11b-, CD45- and CD3-immunoreactive cells and a reduction in tumor necrosis factor-α (TNF-α) expression at the epicenter. Conversely, intrathecal delivery of a TLR9 agonist, CpG ODN 1826, increased inflammatory cell numbers and TNF-α expression in the epicenter. The CpG ODN 2088 treatment did not appear to induce systemic adverse effects as shown by spleen histology and serum cytokine levels. We propose that CpG ODN 2088 dampens injury-induced heat hypersensitivity by suppressing the inflammatory response and TNF-α expression. This investigation defines a previously unreported therapeutic role for CpG ODN 2088 in SCI-induced pain.
Collapse
Affiliation(s)
- Brian T David
- Department of Neurological Surgery, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull 2012; 29:94-102. [PMID: 23124646 DOI: 10.1007/s12264-012-1277-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area. Despite this, the present treatment and care levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also assess the resources available and national research projects carried out on SCI in China in recent years, as well as making recommendations for the future allocation of funds in this area.
Collapse
Affiliation(s)
- He-Qi Cao
- Division of Neurological Disorders and Mental Health, Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China.
| | | |
Collapse
|
129
|
Yuan Y, Su Z, Pu Y, Liu X, Chen J, Zhu F, Zhu Y, Zhang H, He C. Ethyl pyruvate promotes spinal cord repair by ameliorating the glial microenvironment. Br J Pharmacol 2012; 166:749-63. [PMID: 22142175 DOI: 10.1111/j.1476-5381.2011.01804.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) triggers a series of endogenous processes, including neuroinflammation and reactive astrogliosis, which may contribute to the failure of neural regeneration and functional recovery. In the present study, the effect of ethyl pyruvate on spinal cord repair was explored. EXPERIMENTAL APPROACH Functional assessment and histological analyses of astrogliosis, neuroinflammation, neuronal survival and axonal regeneration were performed to investigate the effects of ethyl pyruvate (0.086, 0.215, 0.431 or 0.646 mmol·kg(-1) ·day(-1) ) on spinal cord repair in a rat model of SCI. The effect of ethyl pyruvate (5, 10 or 15 mM) on astrocytic activation was also evaluated in an in vitro'scratch-wound' model. KEY RESULTS Functional assessment showed evident improvement of behavioural functions in the ethyl pyruvate-treated rats. Reactive astrogliosis was significantly inhibited in vivo, after injection of ethyl pyruvate (0.431 mmol·kg(-1) day(-1) ), and in vitro'scratch-wound' model in the presence of 10 or 15 mM ethyl pyruvate. The difference between effective concentration in vitro and in vivo suggests that the inhibitory effect of ethyl pyruvate on astrogliosis in damaged spinal cord is indirect. In addition, ethyl pyruvate (0.431 mmol·kg(-1) day(-1) ) attenuated SCI-induced neuroinflammation; it decreased the Iba-1-, ED-1- and CD11b-positive cells at the lesion site. Importantly, histological analyses showed a significantly greater number of surviving neurons and regenerative axons in the ethyl pyruvate-treated rats. CONCLUSIONS AND IMPLICATIONS Ethyl pyruvate was shown to inhibit astrogliosis and neuroinflammation, promote neuron survival and neural regeneration, and improve the functional recovery of spinal cord, indicating a potential neuroprotective effect of ethyl pyruvate against SCI.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Borgens RB, Liu-Snyder P. Understanding secondary injury. QUARTERLY REVIEW OF BIOLOGY 2012; 87:89-127. [PMID: 22696939 DOI: 10.1086/665457] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Secondary injury is a term applied to the destructive and self-propagating biological changes in cells and tissues that lead to their dysfunction or death over hours to weeks after the initial insult (the "primary injury"). In most contexts, the initial injury is usually mechanical. The more destructive phase of secondary injury is, however, more responsible for cell death and functional deficits. This subject is described and reviewed differently in the literature. To biomedical researchers, systemic and tissue-level changes such as hemorrhage, edema, and ischemia usually define this subject. To cell and molecular biologists, "secondary injury" refers to a series of predominately molecular events and an increasingly restricted set of aberrant biochemical pathways and products. These biochemical and ionic changes are seen to lead to death of the initially compromised cells and "healthy" cells nearby through necrosis or apoptosis. This latter process is called "bystander damage." These viewpoints have largely dominated the recent literature, especially in studies of the central nervous system (CNS), often without attempts to place the molecular events in the context of progressive systemic and tissue-level changes. Here we provide a more comprehensive and inclusive discussion of this topic.
Collapse
Affiliation(s)
- Richard Ben Borgens
- Center for Paralysis Research, School of Veterinary Medicine, Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
131
|
Hart AD, Wyttenbach A, Hugh Perry V, Teeling JL. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 2012; 26:754-65. [PMID: 22155499 PMCID: PMC3381227 DOI: 10.1016/j.bbi.2011.11.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.
Collapse
Affiliation(s)
- Adam D. Hart
- Corresponding author. Address: Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK. Fax: +44(0) 2380 795332.
| | | | | | | |
Collapse
|
132
|
Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury. Neurobiol Dis 2012; 46:710-21. [DOI: 10.1016/j.nbd.2012.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/31/2012] [Accepted: 03/01/2012] [Indexed: 12/23/2022] Open
|
133
|
Adhesion molecules close homolog of L1 and tenascin-C affect blood–spinal cord barrier repair. Neuroreport 2012; 23:479-82. [DOI: 10.1097/wnr.0b013e3283531e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
134
|
Hall JCE, Priestley JV, Perry VH, Michael-Titus AT. Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J Neurochem 2012; 121:738-50. [DOI: 10.1111/j.1471-4159.2012.07726.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
135
|
Abstract
Brain and spinal cord traumas include blunt and penetrating trauma, disease, and required surgery. Such traumas trigger events such as inflammation, infiltration of inflammatory and other cells, oxidative stress, acidification, excitotoxicity, ischemia, and the loss of calcium homeostasis, all of which cause neurotoxicity and neuron death. To prevent trauma-induced neurological deficits and death, each of the many neurotoxic events that occur in parallel or sequentially must be minimized or prevented. Although neuroprotective techniques have been developed that block single neurotoxic events, most provide only limited neuroprotection and are only applied singly. However, because many neurotoxicity triggers arise from common events, an approach for invoking more effective neuroprotection is to apply multiple neuroprotective methods simultaneously before the many neurotoxic triggers and cascades are initiated and become irreversible. This paper first discusses some triggers of neurotoxicity and neuroprotective mechanisms that block them, including hypothermia, alkalinization, and the administration of adenosine. It then examines how the simultaneous application of these techniques provides significantly greater neuroprotection than is provided by any technique alone. The paper also stresses the importance of determining whether the neuroprotection provided by these techniques can be further enhanced by combining them with additional techniques, such as the systemic administration of glucocorticoids. Finally, the paper stresses the absolute critical importance of applying these techniques within the "golden hour" following trauma, before the many neurotoxic events and cascades are manifest and before the neurotoxic cascades become irreversible.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
136
|
Franco ECS, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neurosci Res 2012; 73:122-32. [PMID: 22465414 DOI: 10.1016/j.neures.2012.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/24/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Activated microglia may exacerbate damage in neural disorders; however, it is unknown how they affect stem cells transplanted after stroke. Focal ischemia was induced by microinjections of 40 pmol of endothelin-1 into the motor cortex of adult rats. Ischemic animals were treated with sterile saline (n = 5), bone marrow mononuclear cells (BMMCs, n = 8), minocycline (n = 5) or concomitantly with minocycline and BMMCs (n = 5). BMMC-treated animals received 5 × 10(6)BMMCs through the caudal vein 24h post-ischemia. Behavioral tests were performed to evaluate functional recovery. Morphometric and histological analyses were performed to assess infarct area, neuronal loss and microglia/macrophage activation up to 21 days post-ischemia. Treatments with minocycline, BMMCs or minocycline-BMMCs reduced infarct area, increased neuronal survival and decreased the number of caspase-3+ and ED-1+ cells, but these effects were more prominent in the minocycline-BMMC group. Behavioral analyses using the modified sticky-tape and open-field tests showed that ischemic rats concomitantly treated with BMMCs and minocycline showed better motor performance than rats treated with BMMCs or minocycline only. The results suggest that proper modulation of the inflammatory response through the blockage of microglia activation enhances neuroprotection and functional recovery induced by intravenous transplantation of BMMCs after motor cortex ischemia.
Collapse
Affiliation(s)
- Edna C S Franco
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Brazil
| | | | | | | | | |
Collapse
|
137
|
Boekhoff TMA, Ensinger EM, Carlson R, Bock P, Baumgärtner W, Rohn K, Tipold A, Stein VM. Microglial Contribution to Secondary Injury Evaluated in a Large Animal Model of Human Spinal Cord Trauma. J Neurotrauma 2012; 29:1000-11. [DOI: 10.1089/neu.2011.1821] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Theda Marie Anne Boekhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Eva-Maria Ensinger
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Patricia Bock
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information Processing, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika Maria Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
138
|
Herder V, Hansmann F, Stangel M, Skripuletz T, Baumgärtner W, Beineke A. Lack of cuprizone-induced demyelination in the murine spinal cord despite oligodendroglial alterations substantiates the concept of site-specific susceptibilities of the central nervous system. Neuropathol Appl Neurobiol 2012; 37:676-84. [PMID: 21366663 DOI: 10.1111/j.1365-2990.2011.01168.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
139
|
|
140
|
|
141
|
Geremia NM, Bao F, Rosenzweig TE, Hryciw T, Weaver L, Dekaban GA, Brown A. CD11d Antibody Treatment Improves Recovery in Spinal Cord-Injured Mice. J Neurotrauma 2011; 29:539-50. [PMID: 22044160 DOI: 10.1089/neu.2011.1976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. These disparate results could be due to different mechanisms of action utilized by the two antibodies, or due to differences in the inflammatory responses between mouse and rat that are triggered by SCI. To address whether the anti-CD11d treatment would be effective in mice, a CD11d mAb (205C) or a control mAb (1B7) was administered intravenously at 2, 24, and 48 h after an 8-g clip compression injury at the fourth thoracic spinal segment. The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI.
Collapse
Affiliation(s)
- Nicole M Geremia
- The Spinal Cord Injury Team, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
142
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|
143
|
Wong JK, Steward O. One day of motor training with amphetamine impairs motor recovery following spinal cord injury. Exp Neurol 2011; 233:693-707. [PMID: 22078754 DOI: 10.1016/j.expneurol.2011.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 11/15/2022]
Abstract
It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury because early training with amphetamine increases lesion severity.
Collapse
Affiliation(s)
- Jamie K Wong
- Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
144
|
Fernández-Martos CM, González-Fernández C, González P, Maqueda A, Arenas E, Rodríguez FJ. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 2011; 6:e27000. [PMID: 22073235 PMCID: PMC3206916 DOI: 10.1371/journal.pone.0027000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.
Collapse
Affiliation(s)
| | | | - Pau González
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Alfredo Maqueda
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Ernest Arenas
- Molecular Neurobiology Unit, MBB, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
145
|
Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 2011; 34:43-62. [PMID: 22037947 DOI: 10.1007/s00281-011-0290-8] [Citation(s) in RCA: 666] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/03/2011] [Indexed: 12/11/2022]
Abstract
The interaction of coagulation factors with the perivascular environment affects the development of disease in ways that extend beyond their traditional roles in the acute hemostatic cascade. Key molecular players of the coagulation cascade like tissue factor, thrombin, and fibrinogen are epidemiologically and mechanistically linked with diseases with an inflammatory component. Moreover, the identification of novel molecular mechanisms linking coagulation and inflammation has highlighted factors of the coagulation cascade as new targets for therapeutic intervention in a wide range of inflammatory human diseases. In particular, a proinflammatory role for fibrinogen has been reported in vascular wall disease, stroke, spinal cord injury, brain trauma, multiple sclerosis, Alzheimer's disease, rheumatoid arthritis, bacterial infection, colitis, lung and kidney fibrosis, Duchenne muscular dystrophy, and several types of cancer. Genetic and pharmacologic studies have unraveled pivotal roles for fibrinogen in determining the extent of local or systemic inflammation. As cellular and molecular mechanisms for fibrinogen functions in tissues are identified, the role of fibrinogen is evolving from a marker of vascular rapture to a multi-faceted signaling molecule with a wide spectrum of functions that can tip the balance between hemostasis and thrombosis, coagulation and fibrosis, protection from infection and extensive inflammation, and eventually life and death. This review will discuss some of the main molecular links between coagulation and inflammation and will focus on the role of fibrinogen in inflammatory disease highlighting its unique structural properties, cellular targets, and signal transduction pathways that make it a potent proinflammatory mediator and a potential therapeutic target.
Collapse
Affiliation(s)
- Dimitrios Davalos
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
146
|
Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011; 31:14051-66. [PMID: 21976490 PMCID: PMC3220601 DOI: 10.1523/jneurosci.1737-11.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a family of extracellular matrix molecules with various functions in regulating tissue morphogenesis, cell division, and axon guidance. A number of CSPGs are highly upregulated by reactive glial scar tissues after injuries and form a strong barrier for axonal regeneration in the adult vertebrate CNS. Although CSPGs may negatively regulate axonal growth via binding and altering activity of other growth-regulating factors, the molecular mechanisms by which CSPGs restrict axonal elongation are not well understood. Here, we identified a novel receptor mechanism whereby CSPGs inhibit axonal growth via interactions with neuronal transmembrane leukocyte common antigen-related phosphatase (LAR). CSPGs bind LAR with high affinity in transfected COS-7 cells and coimmunoprecipitate with LAR expressed in various tissues including the brain and spinal cord. CSPG stimulation enhances activity of LAR phosphatase in vitro. Deletion of LAR in knock-out mice or blockade of LAR with sequence-selective peptides significantly overcomes neurite growth restrictions of CSPGs in neuronal cultures. Intracellularly, CSPG-LAR interaction mediates axonal growth inhibition of neurons partially via inactivating Akt and activating RhoA signals. Systemic treatments with LAR-targeting peptides in mice with thoracic spinal cord transection injuries induce significant axon growth of descending serotonergic fibers in the vicinity of the lesion and beyond in the caudal spinal cord and promote locomotor functional recovery. Identification of LAR as a novel CSPG functional receptor provides a therapeutic basis for enhancing axonal regeneration and functional recovery after CNS injuries in adult mammals.
Collapse
Affiliation(s)
- Daniel Fisher
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Bin Xing
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - John Dill
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Hui Li
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Hai Hiep Hoang
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Zhenze Zhao
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Xiao-Li Yang
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Robert Bachoo
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Stephen Cannon
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Frank M. Longo
- Department of Neurology and Neurological Science, Stanford University, Stanford, California 94305
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN–Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shuxin Li
- Department of Neurology and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| |
Collapse
|
147
|
Adhikary S, Li H, Heller J, Skarica M, Zhang M, Ganea D, Tuma RF. Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury. J Neurotrauma 2011; 28:2417-27. [PMID: 21970496 DOI: 10.1089/neu.2011.1853] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The goal of the current investigation was to evaluate the mechanisms through which administration of a selective cannabinoid-2 (CB2) agonist (O-1966) modifies inflammatory responses and helps to improve function following spinal cord injury. A comparison of motor function, autonomic function, and inflammatory responses was made between animals treated with O-1966 (5 mg/kg IP) and animals treated with vehicle 1 h and 24 h following contusion injury to the spinal cord. Motor function was significantly improved in the treated animals at each time point during the 14 days of evaluation. The percentage of animals able to spontaneously void their bladder was also greater over the entire study period in the group treated with the selective CB2 agonist. Seven days following injury there was a significant reduction in both hematopoietic and myeloid cell invasion of the spinal cord, and a reduction in the number of immunoreactive microglia. The results of the evaluation of chemokine/cytokine expression and inflammatory cell invasion also demonstrated a significant effect of treatment on inflammatory reactions following injury. Two days after injury, animals treated with O-1966 had significant reductions in CXCL-9 and CXCL-11, and dramatic reductions in IL-23p19 expression and its receptor IL-23r. Treatment with O-1966 also caused inhibition of toll-like receptor expression (TLR1, TLR4, TLR6 and TLR7) following injury. These results demonstrate that the improvement in motor and autonomic function resulting from treatment with a selective CB2 agonist is associated with a significant effect on inflammatory responses in the spinal cord following injury.
Collapse
Affiliation(s)
- Sabina Adhikary
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell 2011; 8:468-75. [PMID: 21549321 DOI: 10.1016/j.stem.2011.04.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Geron recently announced that it had begun enrolling patients in the world's first-in-human clinical trial involving cells derived from human embryonic stem cells (hESCs). This trial raises important questions regarding the future of hESC-based therapies, especially in spinal cord injury (SCI) patients. We address some safety and efficacy concerns with this research, as well as the ethics of fair subject selection. We consider other populations that might be better for this research: chronic complete SCI patients for a safety trial, subacute incomplete SCI patients for an efficacy trial, and perhaps primary progressive multiple sclerosis (MS) patients for a combined safety and efficacy trial.
Collapse
|
149
|
Sriram S. Role of glial cells in innate immunity and their role in CNS demyelination. J Neuroimmunol 2011; 239:13-20. [PMID: 21907419 DOI: 10.1016/j.jneuroim.2011.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 12/11/2022]
Abstract
The adaptive and innate arms of the immune system are the two pillars of host defense against environmental pathogens. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS which is considered to be autoimmune and is thought to result from breakdown in the usual checks and balances of the adaptive immune response. The major pathological outcome of the disease is "the MS plaque" a unique feature of CNS demyelination characterized by the destruction of oligodendrocytes with loss of myelin and underlying axons. The MS plaque is not seen in other inflammatory disorders of the CNS. The prevailing opinion suggests that MS is mediated by the activation of an adaptive immune response which targets neural antigens. Currently, the role of an innate immune in the development of the lesions in MS has remained unclear. We explore the potential cellular elements of the innate immune system and in particular glial cells, which are likely candidates in inducing the specific pathological picture that is evident in MS. Activated microglia and the release of molecules which are detrimental to oligodendrocyte have been suggested as mechanisms by which innate immunity causes demyelination in MS. However a microglia/macrophage centric model does not explain the specificity of lesion development in MS. We propose that activation pathways of receptors of the innate immune system present on oligodendrocytes and astrocytes rather than microglia are central to the pathogenesis of demyelination seen in MS.
Collapse
Affiliation(s)
- Subramaniam Sriram
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, USA.
| |
Collapse
|
150
|
Prominent Microglial Activation in the Early Proinflammatory Immune Response in Naturally Occurring Canine Spinal Cord Injury. J Neuropathol Exp Neurol 2011; 70:703-14. [DOI: 10.1097/nen.0b013e3182270f8e] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|