101
|
Scarzello AJ, Jiang Q, Back T, Dang H, Hodge D, Hanson C, Subleski J, Weiss JM, Stauffer JK, Chaisaingmongkol J, Rabibhadana S, Ruchirawat M, Ortaldo J, Wang XW, Norris PS, Ware CF, Wiltrout RH. LTβR signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 2016; 65. [PMID: 26206664 PMCID: PMC5036232 DOI: 10.1136/gutjnl-2014-308810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer. DESIGN Pathologically distinct liver tumours were initiated by hydrodynamic transfection of oncogenic V-Akt Murine Thymoma Viral Oncogene Homolog 1 (AKT)/β-catenin or AKT/Notch expressing plasmids. To investigate the relationship of LTβR signalling and specific oncogenic pathways, LTβR antagonist (LTβR-Fc) or agonist (anti-LTβR) were administered post oncogene transfection. Initiated livers/tumours were investigated for changes in oncogene expression, tumour proliferation, progression, latency and pathology. Moreover, specific LTβR-mediated molecular events were investigated in human liver cancer cell lines and through transcriptional analyses of samples from patients with intrahepatic cholangiocarcinoma (ICC). RESULTS AKT/β-catenin-transfected livers displayed increased expression of LTβ and LTβR, with antagonism of LTβR signalling reducing tumour progression and enhancing survival. Conversely, enforced LTβR-activation of AKT/β-catenin-initiated tumours induced robust increases in proliferation and progression of hepatic tumour phenotypes in an AKT-dependent manner. LTβR-activation also rapidly accelerated ICC progression initiated by AKT/Notch, but not Notch alone. Moreover, LTβR-accelerated development coincides with increases of Notch, Hes1, c-MYC, pAKT and β-catenin. We further demonstrate LTβR signalling in human liver cancer cell lines to be a regulator of Notch, pAKTser473 and β-catenin. Transcriptome analysis of samples from patients with ICC links increased LTβR network expression with poor patient survival, increased Notch1 expression and Notch and AKT/PI3K signalling. CONCLUSIONS Our findings link LTβR and oncogenic AKT signalling in the development of ICC.
Collapse
Affiliation(s)
- Anthony J Scarzello
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Qun Jiang
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Timothy Back
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Hodge
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Charlotte Hanson
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jeffrey Subleski
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jimmy K Stauffer
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | | - John Ortaldo
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paula S Norris
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Medical Research Institute, La Jolla, California, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Medical Research Institute, La Jolla, California, USA
| | - Robert H Wiltrout
- Cancer and Inflamation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
102
|
Cabillic F, Corlu A. Regulation of Transdifferentiation and Retrodifferentiation by Inflammatory Cytokines in Hepatocellular Carcinoma. Gastroenterology 2016; 151:607-15. [PMID: 27443822 DOI: 10.1053/j.gastro.2016.06.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 01/02/2023]
Abstract
Liver cancers are typically inflammation-associated cancers characterized by close communication between the tumor cells and the tumor environment. This supportive inflammatory environment contributes to the establishment of a pathologic niche consisting of transformed epithelial cells, tumor-educated fibroblasts, endothelial cells, and immunosuppressive immature myeloid cells. Stromal and infiltrated immune cells help determine tumor fate, but the tumor cells themselves, including cancer stem cells, also influence the surrounding cells. This bidirectional communication generates an intricate network of signals that promotes tumor growth. Cell plasticity, which includes transdifferentiation and retrodifferentiation of differentiated cells, increases tumor heterogeneity. Plasticity allows non-cancer stem cells to replenish the cancer stem cell pool, initiate tumorigenesis, and escape the effects of therapeutic agents; it also promotes tumor aggressiveness. There is increasing evidence that an inflammatory environment promotes the retrodifferentiation of tumor cells into stem or progenitor cells; this could account for the low efficacies of some chemotherapies and the high rates of cancer recurrence. Increasing our understanding of the signaling network that connects inflammation with retrodifferentiation could identify new therapeutic targets, and lead to combined therapies that are effective against highly heterogeneous tumors.
Collapse
Affiliation(s)
- Florian Cabillic
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France; Laboratoire de Cytogénétique et Biologie Cellulaire, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anne Corlu
- Institut National de la Santé et de la Recherche Médicale, UMR 991, Liver Metabolism and Cancer, Hôpital Pontchaillou, Rennes, France; Université de Rennes 1, Rennes, France.
| |
Collapse
|
103
|
Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology 2016; 64:645-51. [PMID: 26849406 DOI: 10.1002/hep.28485] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Liver and biliary tract cancers are highly aggressive, are heterogeneous in their phenotypic traits, and result in clinical outcomes that are difficult to manage. Cancers have subpopulations of cells termed "cancer stem cells" (CSCs) that share common intrinsic signaling pathways for self-renewal and differentiation with normal stem cells. These CSCs likely have the potential to evolve over time and to give rise to new genetically and functionally diverse subclones by accumulating genetic mutations. Extrinsic signaling from the tumor microenvironment, including the CSC niche, has been implicated in tumor initiation/progression and heterogeneity through dynamic crosstalk. CSCs have become recognized as pivotal sources of tumor initiation/progression, relapse/metastasis, and chemoresistance. CONCLUSION The origins of CSCs are hypothesized to derive from the transformation of normal stem/progenitors and/or from the reprogramming of adult cells that converts them to stem/progenitor traits; however, the precise mechanisms have not yet been fully elucidated. (Hepatology 2016;64:645-651).
Collapse
Affiliation(s)
- Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
104
|
Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology 2016; 64:4-7. [PMID: 27102721 DOI: 10.1002/hep.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
105
|
Thorgeirsson SS. Stemness and reprogramming in liver cancer. Hepatology 2016; 63:1068-70. [PMID: 26600290 DOI: 10.1002/hep.28362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Snorri S Thorgeirsson
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
106
|
Affiliation(s)
- Nicolai Juul Birkbak
- The Francis Crick Institute, London, United Kingdom; University College London Cancer Institute, London, United Kingdom
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
107
|
Evidence of Hepatitis B Virus Infection in Cancer and Noncancer Stem Cells Associated with Human Hepatocellular Carcinoma. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:8931591. [PMID: 27366184 PMCID: PMC4904564 DOI: 10.1155/2016/8931591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/06/2015] [Indexed: 12/14/2022]
Abstract
Both the hepatitis B virus (HBV) and cancer stem cells (CSCs) have been independently implicated in the pathogenesis of hepatocellular carcinoma (HCC). To date, there have been no reports describing HBV infection within CSCs. In this report we describe HBV core (HBcAg) and HBx protein expression within CSCs associated with human HCC. HBV markers were also identified in nonmalignant stem cells present in adjacent nontumor tissue. These findings provide new insights into the pathogenesis of HBV-induced HCC and are potentially relevant to the treatment of both HCC and chronic HBV.
Collapse
|
108
|
Han H, Li W, Shen H, Zhang J, Zhu Y, Li Y. microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. J Mol Cell Biol 2016; 8:400-410. [PMID: 27001970 DOI: 10.1093/jmcb/mjw010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/03/2015] [Accepted: 12/25/2015] [Indexed: 01/09/2023] Open
Abstract
Deregulation of microRNAs (miRNAs) and c-Myc (Myc) contributes to hepatocellular carcinoma (HCC) progression, but how miRNAs and Myc regulate each other in hepatocarcinogenesis is still poorly understood. Using a functional screen, we identified miR-129-5p as a miRNA that inhibits HCC cell growth. miR-129-5p targets the mitochondrial matrix protein pyruvate dehydrogenase kinase 4 (PDK4), which leads to decreased phosphorylation of the E1α subunit of pyruvate dehyrogenase (PDH) complex, inhibition of glycolysis, retarded tumor growth, and impaired lung colonization. Enforced expression of PDK4 refractory to inhibition by miR-129-5p rescued all of these phenotypes. Targeting PDK4 by shRNA recapitulated the effects caused by miR-129-5p. miR-129-5p is transcriptionally repressed by a complex comprised of Myc, histone deacetylase 3 (HDAC3), and enhancer of zeste 2 polycomb repressive complex 2 (EZH2). Levels of miR-129-5p negatively correlated with clinical stages in human HCC. Restoring miR-129-5p expression suppressed the diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. Thus, we concluded that miR-129-5p, which is a negative target of Myc, blocks glycolysis to retard hepatocarcinogenesis via targeting PDK4. The critical link between miR-129-5p and PDK4 in the progression of HCC suggests potential points of therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Han Han
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Wenjuan Li
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Hongxing Shen
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Yahui Zhu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
109
|
Wei M, Lü L, Lin P, Chen Z, Quan Z, Tang Z. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma. Cancer Lett 2016; 379:253-61. [PMID: 26940139 DOI: 10.1016/j.canlet.2016.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients.
Collapse
Affiliation(s)
- Miaoyan Wei
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisheng Lü
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiyi Lin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhisheng Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
110
|
Govaere O, Wouters J, Petz M, Vandewynckel YP, Van den Eynde K, Van den Broeck A, Verhulst S, Dollé L, Gremeaux L, Ceulemans A, Nevens F, van Grunsven LA, Topal B, Vankelecom H, Giannelli G, Van Vlierberghe H, Mikulits W, Komuta M, Roskams T. Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J Hepatol 2016; 64:609-17. [PMID: 26592953 DOI: 10.1016/j.jhep.2015.11.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/21/2015] [Accepted: 11/10/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Cancer stem cells (CSCs) are thought to be persistent in tumours due to their chemoresistance and to cause relapse and metastasis. Hepatic carcinomas displaying hepatic progenitor cell (HPC) features have been associated with a poor prognosis, though it remains unclear how CSCs relate to these different histological subtypes. METHODS Candidate CSCs were isolated using the side population (SP) technique from primary tissue samples diagnosed as keratin(K)19-negative or -positive hepatocellular carcinoma (HCC) or as combined hepatocellular/cholangiocarcinoma and analysed for gene and protein expression. The effect of laminin-332 was analysed in vitro by using HCC cell lines and in vivo using a xenograft mouse model. RESULTS The size of the SP correlated with the degree of HPC features found in human hepatic cancer, and also showed an elevated mRNA expression of biliary/HPC markers and the extracellular matrix marker LAMC2, the gene encoding the laminin γ2-chain. Immunopositivity for the γ2-chain of laminin-332 was seen in the extracellular matrix surrounding small HPC-like tumour cells with a low proliferation rate. In vitro, laminin-332 increased K19 expression, phosphorylated mTOR and decreased phospho-histone H3 expression, indicating reduced cell mitosis. The effect of laminin-332 was enhanced upon mTORC1 inhibition and diminished when inhibiting mTORC1+C2. Resistance to doxorubicin and sorafenib treatment, and the SP fraction increased in the coated condition. In vivo, laminin-332 reduced tumour growth and sustained K19 expression. CONCLUSIONS In this study we identified a prominent role for laminin-332 as part of the specialised CSC niche in maintaining and supporting cell 'stemness', which leads to chemoresistance and quiescence.
Collapse
Affiliation(s)
- Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Jasper Wouters
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Michaela Petz
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Kathleen Van den Eynde
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Anke Van den Broeck
- Department of Abdominal Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Stefaan Verhulst
- Department of Biomedical Sciences, Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Department of Biomedical Sciences, Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lies Gremeaux
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Ceulemans
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Leo A van Grunsven
- Department of Biomedical Sciences, Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gianluigi Giannelli
- Department of Medical Biosciences and Human Oncology, Padiglione Semeiotica Medica, Bari, Italy
| | | | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Mina Komuta
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
111
|
Müller M, Hermann PC, Liebau S, Weidgang C, Seufferlein T, Kleger A, Perkhofer L. The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Res 2016; 16:349-57. [PMID: 26896855 DOI: 10.1016/j.scr.2016.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022] Open
Abstract
A better molecular understanding of gastrointestinal cancers arising either from the stomach, the pancreas, the intestine, or the liver has led to the identification of a variety of potential new molecular therapeutic targets. However, in most cases surgery remains the only curative option. The intratumoral cellular heterogeneity of cancer stem cells, bulk tumor cells, and stromal cells further limits straightforward targeting approaches. Accumulating evidence reveals an intimate link between embryonic development, stem cells, and cancer formation. In line, a growing number of oncofetal proteins are found to play common roles within these processes. Cancer stem cells share features with true stem cells by having the capacity to self-renew in a de-differentiated state, to generate heterogeneous types of differentiated progeny, and to give rise to the bulk tumor. Further, various studies identified genes in cancer stem cells, which were previously shown to regulate the pluripotency circuitry, particularly the so-called "Yamanaka-Factors" (OCT4, KLF4, SOX2, and c-MYC). However, the true stemness potential of cancer stem cells and the role and expression pattern of such pluripotency genes in various tumor cell types remain to be explored. Here, we summarize recent findings and discuss the potential mechanisms involved, and link them to clinical significance with a particular focus on gastrointestinal cancers.
Collapse
Affiliation(s)
- Martin Müller
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Clair Weidgang
- Department of Anesthesiology, Ulm University Hospital, Ulm, Germany
| | | | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| |
Collapse
|
112
|
Baiting for Cancer: Using the Zebrafish as a Model in Liver and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:391-410. [DOI: 10.1007/978-3-319-30654-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Zhu CP, Wang AQ, Zhang HH, Wan XS, Yang XB, Chen SG, Zhao HT. Research progress and prospects of markers for liver cancer stem cells. World J Gastroenterol 2015; 21:12190-12196. [PMID: 26576103 PMCID: PMC4641136 DOI: 10.3748/wjg.v21.i42.12190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is a common malignancy and surgery is the main treatment strategy. However, the prognosis is still poor because of high frequencies of postoperative recurrence and metastasis. In recent years, cancer stem cell (CSC) theory has evolved with the concept of stem cells, and has been applied to oncological research. According to cancer stem cell theory, liver cancer can be radically cured only by eradication of liver cancer stem cells (LCSCs). This notion has lead to the isolation and identification of LCSCs, which has become a highly researched area. Analysis of LCSC markers is considered to be the primary method for identification of LCSCs. Here, we provide an overview of the current research progress and prospects of surface markers for LCSCs.
Collapse
|
114
|
Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer 2015; 15:653-67. [PMID: 26493646 DOI: 10.1038/nrc4017] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past decade, research on primary liver cancers has particularly highlighted the uncommon plasticity of differentiated parenchymal liver cells (that is, hepatocytes and cholangiocytes (also known as biliary epithelial cells)), the role of liver progenitor cells in malignant transformation, the importance of the tumour microenvironment and the molecular complexity of liver tumours. Whereas other reviews have focused on the landscape of genetic alterations that promote development and progression of primary liver cancers and the role of the tumour microenvironment, the crucial importance of the cellular origin of liver cancer has been much less explored. Therefore, in this Review, we emphasize the importance and complexity of the cellular origin in tumour initiation and progression, and attempt to integrate this aspect with recent discoveries in tumour genomics and the contribution of the disrupted hepatic microenvironment to liver carcinogenesis.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
115
|
Abstract
Neil Theise speaks to Georgia Patey, Commissioning Editor: Neil Theise is a diagnostic liver pathologist, adult stem cell researcher and complexity theorist in New York City, where he is a Professor of Pathology at the Mount Sinai Beth Israel Medical Center of Icahn School of Medicine at Mount Sinai. He received his medical degree from Columbia University College of Physicians and Surgeons, where he also received his training in Anatomic Pathology. Subspecialty training was pursued in gastrointestinal (NYU), liver (Royal Free Hospital) and liver transplant (Mount Sinai, NYC) pathology. His earliest research focus was on defining the premalignant dysplastic nodules in human chronic liver disease. He revised understandings of human liver microanatomy, which in turn, led directly to identification of possible liver stem cell niches and the marrow-to-liver regeneration pathway. He is considered a pioneer of multiorgan adult stem cell plasticity. His publications on these topics in model systems and human liver stem cells have been highlighted on a record five covers of Hepatology.
Collapse
Affiliation(s)
- Neil D Theise
- Departments of Pathology & Medicine (Division of Digestive Diseases), Mount Sinai Beth Israel Medical Center, First Avenue at 16th Street, New York, NY 10003, USA
| |
Collapse
|
116
|
Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015; 149:1226-1239.e4. [PMID: 26099527 DOI: 10.1053/j.gastro.2015.05.061] [Citation(s) in RCA: 940] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 12/02/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death. Its mortality has increased in Western populations, with a minority of patients diagnosed at early stages, when curative treatments are feasible. Only the multikinase inhibitor sorafenib is available for the management of advanced cases. During the last 10 years, there has been a clear delineation of the landscape of genetic alterations in HCC, including high-level DNA amplifications in chromosome 6p21 (VEGFA) and 11q13 (FGF19/CNND1), as well as homozygous deletions in chromosome 9 (CDKN2A). The most frequent mutations affect TERT promoter (60%), associated with an increased telomerase expression. TERT promoter can also be affected by copy number variations and hepatitis B DNA insertions, and it can be found mutated in preneoplastic lesions. TP53 and CTNNB1 are the next most prevalent mutations, affecting 25%-30% of HCC patients, that, in addition to low-frequency mutated genes (eg, AXIN1, ARID2, ARID1A, TSC1/TSC2, RPS6KA3, KEAP1, MLL2), help define some of the core deregulated pathways in HCC. Conceptually, some of these changes behave as prototypic oncogenic addiction loops, being ideal biomarkers for specific therapeutic approaches. Data from genomic profiling enabled a proposal of HCC in 2 major molecular clusters (proliferation and nonproliferation), with differential enrichment in prognostic signatures, pathway activation and tumor phenotype. Translation of these discoveries into specific therapeutic decisions is an unmet medical need in this field.
Collapse
Affiliation(s)
- Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Equipe Labellisée Ligue Contre le Cancer, Institut Universitaire d'Hematologie, Paris, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Université Paris 13, Sorbonne Paris Cité, Unité de Formation et de Recherche Santé, Médecine, Biologie Humaine, Bobigny, France; Université Paris Diderot, Paris.
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jean-Charles Nault
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Equipe Labellisée Ligue Contre le Cancer, Institut Universitaire d'Hematologie, Paris, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Service d'hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
117
|
Saha SK, Parachoniak CA, Bardeesy N. IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle 2015; 13:3176-82. [PMID: 25485496 DOI: 10.4161/15384101.2014.965054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer associated with the bile ducts within the liver. These tumors are characterized by frequent gain-of-function mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes-that are also common in subsets of neural, haematopoietic and bone tumors, but rare or absent in the other types of gastrointestinal malignancy. Mutant IDH acts through a novel mechanism of oncogenesis, producing high levels of the metabolite 2-hydroxyglutarate, which interferes with the function of α-ketoglutarate-dependent enzymes that regulate diverse cellular processes including histone demethylation and DNA modification. Recently, we used in vitro stem cell systems and genetically engineered mouse models (GEMMs) to demonstrate that mutant IDH promotes ICC formation by blocking hepatocyte differentiation and increasing pools of hepatic progenitors that are susceptible to additional oncogenic hits leading to ICC. We found that silencing of HNF4A-encoding a master transcriptional regulator of hepatocyte identity and quiescence-was critical to mutant IDH-mediated inhibition of liver differentiation. In line with these findings, human ICC with IDH mutations are characterized by a hepatic progenitor cell transcriptional signature suggesting that they are a distinct ICC subtype as compared to IDH wild type tumors. The role of mutant IDH in controlling hepatic differentiation state suggests the potential of newly developed inhibitors of the mutant enzyme as a form of differentiation therapy in a solid tumor.
Collapse
Affiliation(s)
- Supriya K Saha
- a Cancer Center and Center for Regenerative Medicine; Massachusetts General Hospital; Department of Medicine; Harvard Medical School , Boston , MA USA
| | | | | |
Collapse
|
118
|
Mu X, Español-Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, Lemaigre FP, Adili A, Yuan D, Weber A, Unger K, Heikenwälder M, Leclercq IA, Schwabe RF. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 2015; 125:3891-903. [PMID: 26348897 DOI: 10.1172/jci77995] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance. Previous studies suggest that both hepatocytes and facultative progenitor cells within the biliary compartment are capable of generating HCC. As HCCs with a progenitor signature carry a worse prognosis, understanding the origin of HCC is of clinical relevance. Here, we used complementary fate-tracing approaches to label the progenitor/biliary compartment and hepatocytes in murine hepatocarcinogenesis. In genotoxic and genetic models, HCCs arose exclusively from hepatocytes but never from the progenitor/biliary compartment. Cytokeratin 19-, A6- and α-fetoprotein-positive cells within tumors were hepatocyte derived. In summary, hepatocytes represent the cell of origin for HCC in mice, and a progenitor signature does not reflect progenitor origin, but dedifferentiation of hepatocyte-derived tumor cells.
Collapse
|
119
|
Anfuso B, El-Khobar KE, Sukowati CHC, Tiribelli C. The multiple origin of cancer stem cells in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S92-S97. [PMID: 26186879 DOI: 10.1016/j.clinre.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 6% of all new cancer cases diagnosed, and due to its aggressiveness, it is the second most common cause of cancer mortality worldwide. Based on different etiological factors, genetic backgrounds, and longtime development of the disease, HCC is characterized by a high phenotypic and functional heterogeneity. Tumor variability occurs both among patients (intertumoral heterogeneity) and within a single tumor (intratumoral heterogeneity). The intratumoral heterogeneity, in particular the variability of the markers of cancer stem cells (CSC) population may determine specific behavior and prognosis of the tumor. Understanding the cellular mechanisms originating CSC will provide an important hint in the management of HCC. The characterization of the cells of origin of cancer can have significant implication in early diagnosis, in the development of appropriate therapies and in the prevention of relapse. Here, we review recent evidences on the possible cellular origin of CSC that play a role in the heterogeneity of the HCC.
Collapse
Affiliation(s)
- Beatrice Anfuso
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy.
| | - Korri E El-Khobar
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10310 Jakarta, Indonesia; Storr Liver Centre, Westmead Millennium Institute, University of Sydney and Westmead Hospital, NSW 2145, Sydney, Australia
| | - Caecilia H C Sukowati
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy; Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, SS14km 163.5, 34149 Trieste, Italy; Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
120
|
Cheng Z, Li X, Ding J. Characteristics of liver cancer stem cells and clinical correlations. Cancer Lett 2015; 379:230-8. [PMID: 26272183 DOI: 10.1016/j.canlet.2015.07.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 02/07/2023]
Abstract
Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.
Collapse
Affiliation(s)
- Zhuo Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Xiaofeng Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
121
|
Brunt EM, Paradis V, Sempoux C, Theise ND. Biphenotypic (hepatobiliary) primary liver carcinomas: the work in progress. Hepat Oncol 2015; 2:255-273. [PMID: 30191007 PMCID: PMC6095308 DOI: 10.2217/hep.15.8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent WHO classification for combined hepatocellular-cholangiocarcinoma and recognized stem cell subtypes has increased attention to such tumors; however, the resulting burst of reporting and research indicates that this classification, while provocative, is incomplete for description of the full array of primary liver carcinomas with biphenotypic (hepatobiliary) differentiation. We review the history of such lesions and consider the wider array of such tumors previously described. Mixed hepatobiliary phenotypes and immunophenotypes are found in individual tumors at the tissue level - with architectural and cytologic features supportive of both differentiation states - and at the cellular level, with individual cells that display cytology of one cell type, but immunophenotypically showing mixed expression. Pathobiologic and clinical questions to be answered by future research are suggested.
Collapse
Affiliation(s)
- Elizabeth M Brunt
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valerie Paradis
- Department of Pathology, Beaujon Hospital, 92118 Clichy, France
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Neil D Theise
- Departments of Pathology & Medicine, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY 10002, USA
| |
Collapse
|
122
|
Jörs S, Jeliazkova P, Ringelhan M, Thalhammer J, Dürl S, Ferrer J, Sander M, Heikenwalder M, Schmid RM, Siveke JT, Geisler F. Lineage fate of ductular reactions in liver injury and carcinogenesis. J Clin Invest 2015; 125:2445-57. [PMID: 25915586 DOI: 10.1172/jci78585] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.
Collapse
|
123
|
Kongpetch S, Jusakul A, Ong CK, Lim WK, Rozen SG, Tan P, Teh BT. Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways. Best Pract Res Clin Gastroenterol 2015; 29:233-44. [PMID: 25966424 DOI: 10.1016/j.bpg.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 01/31/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour of bile duct epithelial cells with dismal prognosis and rising incidence. Chronic inflammation resulting from liver fluke infection, hepatitis and other inflammatory bowel diseases is a major contributing factor to cholangiocarcinogenesis, likely through accumulation of serial genetic and epigenetic alterations resulting in aberration of oncogenes and tumour suppressors. Recent studies making use of advances in high-throughput genomics have revealed the genetic landscape of CCA, greatly increasing our understanding of its underlying biology. A series of highly recurrent mutations in genes such as TP53, KRAS, SMAD4, BRAF, MLL3, ARID1A, PBRM1 and BAP1, which are known to be involved in cell cycle control, cell signalling pathways and chromatin dynamics, have led to investigations of their roles, through molecular to mouse modelling studies, in cholangiocarcinogenesis. This review focuses on the landscape genetic alterations in CCA and its functional relevance to the formation and progression of CCA.
Collapse
Affiliation(s)
- Sarinya Kongpetch
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Department of Pharmacology, Faculty of Medicine and Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Apinya Jusakul
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Choon Kiat Ong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Weng Khong Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Steven G Rozen
- Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore.
| | - Patrick Tan
- Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Genome Institute of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
124
|
Chan LH, Luk ST, Ma S. Turning hepatic cancer stem cells inside out--a deeper understanding through multiple perspectives. Mol Cells 2015; 38:202-9. [PMID: 25666349 PMCID: PMC4363719 DOI: 10.14348/molcells.2015.2356] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.
Collapse
Affiliation(s)
- Lok-Hei Chan
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Steve T. Luk
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Stephanie Ma
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
125
|
Elevated CA19-9 Is Associated With Increased Mortality In A Prospective Cohort Of Hepatocellular Carcinoma Patients. Clin Transl Gastroenterol 2015; 6:e74. [PMID: 25651978 PMCID: PMC4418494 DOI: 10.1038/ctg.2014.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
Objectives: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. CA19-9 is a glycoprotein that predicts poor prognosis in pancreatic and biliary malignancies. We evaluated it as a prognostic biomarker for patients with HCC. Methods: We prospectively enrolled 145 patients with HCC, diagnosed using American Association for Study of Liver Diseases criteria, between October 2008 and November 2012. We examined whether baseline serum CA19-9 levels predicted overall survival. We also examined immunostains of hepatic resections and explants of patients with elevated and normal serum CA19-9. Results: In a cohort of predominantly hepatitis C and B patients, CA19-9 ≥100 U/ml was associated with a 2.7-fold increased mortality (hazard ratio (HR): 2.72; 95% confidence interval (CI): 1.52–4.88, P<0.001). It remained a significant predictor (HR: 2.58; 95% CI: 1.41–4.72, P=0.002) in a multivariable model adjusted for Child–Pugh score, alpha-fetoprotein, Barcelona Clinic Liver Cancer stage, and Model for End-Stage Liver Disease. CA19-9 immunohistochemistry performed on a subset of liver resection and explant specimens showed increased CA19-9 immunostaining of non-tumor liver parenchyma in patients with elevated serum CA19-9. It also showed staining of native and reactive bile ducts, and of progenitor-like cells at the periphery of cirrhotic nodules. Conclusions: Elevated serum CA19-9 ≥100 U/ml is an independent predictor of poor overall survival in this hypothesis-generating study. The unfavorable prognosis seen with elevated serum levels may be related to progenitor-like cells in the non-tumor liver.
Collapse
|
126
|
Ogasawara S, Akiba J, Nakayama M, Nakashima O, Torimura T, Yano H. Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development of combined hepatocellular-cholangiocarcinoma in mice. J Gastroenterol Hepatol 2015; 30:413-20. [PMID: 25087473 DOI: 10.1111/jgh.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Human combined hepatocellular-cholangiocarcinoma (CHC) expresses several hepatic stem/progenitor cell (HSPC) markers, suggesting this neoplasm originates from HSPCs. We examined the significance of HSPC marker in CHC using a human CHC cell line. METHODS We used a human CHC cell line (KMCH-1) previously established in our laboratory. The original tumor was classified as CHC, showing areas of typical hepatocellular carcinoma (HCC) and cholangiocarcinoma (ChC). We examined the expression of HSPC markers and hepatocyte markers in KMCH-1 by flow cytometry (FCM) and quantitative real-time polymerase chain reaction. EpCAM(+) and EpCAM(-) KMCH-1 cells were isolated. Subsequently, their morphological features, HSPC marker expression, and biological characteristics were examined in vitro and in vivo. RESULTS FCM showed expression of EpCAM, K7, K19, and ABCG2 in KMCH-1, with various degrees. EpCAM(+) cells expressed K19 mRNA, but did not express α-fetoprotein (AFP). In contrast, EpCAM(-) cells expressed AFP mRNA, but did not express K19. EpCAM(+) cells produced both EpCAM(+) and EpCAM(-) cells, but EpCAM(-) cells produced only EpCAM(-) cells in vitro. EpCAM(+) cells showed higher tumorigenicity and formed larger tumors than EpCAM(-) cells. Inoculation of EpCAM(+) and EpCAM(-) cells produced both ChC and HCC-like component and HCC-like component only, respectively. CONCLUSION It is speculated that some CHCs may originate from EpCAM(+) neoplastic cells, and that these cells may affect malignant behavior and progression in such CHCs.
Collapse
Affiliation(s)
- Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|
128
|
Eun JR. Cellular origin of liver cancer stem cells. Yeungnam Univ J Med 2015. [DOI: 10.12701/yujm.2015.32.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jong Ryeol Eun
- Department of Internal Medicine, Myongji Hospital, Seonam University College of Medicine, Goyang, Korea
| |
Collapse
|
129
|
Marquardt JU, Andersen JB. Liver cancer oncogenomics: opportunities and dilemmas for clinical applications. Hepat Oncol 2015; 2:79-93. [PMID: 26257864 DOI: 10.2217/hep.14.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancers are among the most rapidly evolving malignant tumors worldwide. An underlying chronic inflammatory liver disease, which precedes liver cancer development for several decades and frequently creates a pro-oncogenic microenvironment, impairs progress in therapeutic approaches. Molecular heterogeneity of liver cancer is potentiated by a crosstalk between epithelial tumor and stromal cells that complicate translational efforts to unravel molecular mechanisms of hepatocarcinogenesis with a drugable intend. Next-generation sequencing has greatly advanced our understanding of cancer development. With regards to liver cancer, the unprecedented coverage of next-generation sequencing has created a detailed map of genetic alterations and identified key somatic changes such as CTNNB1 and TP53 as well as several previously unrecognized recurrent disease-causing alterations that could contribute to new therapeutic approaches. Importantly, these investigations indicate that a classical oncogene addiction cannot be assumed for primary liver cancer. Therefore, hepatocarcinogenesis can be considered a paradigm suitable for individualized medicine.
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
130
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
131
|
Geisler F, Strazzabosco M. Emerging roles of Notch signaling in liver disease. Hepatology 2015; 61:382-92. [PMID: 24930574 PMCID: PMC4268103 DOI: 10.1002/hep.27268] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/13/2022]
Abstract
This review critically discusses the most recent advances in the role of Notch signaling in liver development, homeostasis, and disease. It is now clear that the significance of Notch in determining mammalian cell fates and functions extends beyond development, and Notch is a major regular of organ homeostasis. Moreover, Notch signaling is reactivated upon injury and regulates the complex interactions between the distinct liver cell types involved in the repair process. Notch is also involved in the regulation of liver metabolism, inflammation, and cancer. The net effects of Notch signaling are highly variable and finely regulated at multiple levels, but also depend on the specific cellular context in which Notch is activated. Persistent activation of Notch signaling is associated with liver malignancies, such as hepatocellular carcinoma with stem cell features and intrahepatic cholangiocarcinoma. The complexity of the pathway provides several possible targets for agents able to inhibit Notch. However, further cell- and context-specific in-depth understanding of Notch signaling in liver homeostasis and disease will be essential to translate these concepts into clinical practice and be able to predict benefits and risks of evolving therapies.
Collapse
Affiliation(s)
- Fabian Geisler
- 2nd Department of Internal Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Mario Strazzabosco
- Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA,Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
132
|
Dubois-Pot-Schneider H, Fekir K, Coulouarn C, Glaise D, Aninat C, Jarnouen K, Le Guével R, Kubo T, Ishida S, Morel F, Corlu A. Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells. Hepatology 2014; 60:2077-2090. [PMID: 25098666 DOI: 10.1002/hep.27353] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Human hepatocellular carcinoma (HCC) heterogeneity promotes recurrence and resistance to therapies. Recent studies have reported that HCC may be derived not only from adult hepatocytes and hepatoblasts but also hepatic stem/progenitors. In this context, HepaRG cells may represent a suitable cellular model to study stem/progenitor cancer cells and the retrodifferentiation of tumor-derived hepatocyte-like cells. Indeed, they differentiate into hepatocyte- and biliary-like cells. Moreover, tumor-derived HepaRG hepatocyte-like cells (HepaRG-tdHep) differentiate into both hepatocyte- and biliary-like cells through a hepatic progenitor. In this study we report the mechanisms and molecular effectors involved in the retrodifferentiation of HepaRG-tdHep into bipotent progenitors. Gene expression profiling was used to identify genomic changes during the retrodifferentiation of HepaRG-tdHep into progenitors. We demonstrated that gene expression signatures related to a poor-prognosis HCC subclass, proliferative progenitors, or embryonic stem cells were significantly enriched in HepaRG progenitors derived from HepaRG-tdHep. HepaRG-tdHep retrodifferentiation is mediated by crosstalk between transforming growth factor beta 1 (TGFβ1) and inflammatory cytokine pathways (e.g., tumor necrosis factor alpha [TNFα] and interleukin 6 [IL6]). Signatures related to TNFα, IL6, and TGFβ activation pathways are induced within the first hour of retrodifferentiation. Moreover, specific activation or inhibition of these signaling pathways allowed us to determine that TNFα and IL6 contribute to the loss of hepatic-specific marker expression and that TGFβ1 induces an epithelial-to-mesenchymal transition of HepaRG-tdHep. Interestingly, the retrodifferentiation process is blocked by the histone deacetylase inhibitor trichostatin A, opening new therapeutic opportunities. CONCLUSION Cancer progenitor cells (or metastasis progenitors) may derive from tumor-derived hepatocyte-like cells in an inflammatory environment that is frequently associated with HCC.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- Inserm, UMR991, Liver Metabolisms and Cancer, F-35033, Rennes, France; Université de Rennes 1, F-35043, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Akita H, Marquardt JU, Durkin ME, Kitade M, Seo D, Conner EA, Andersen JB, Factor VM, Thorgeirsson SS. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism. Cancer Res 2014; 74:5903-13. [PMID: 25189530 DOI: 10.1158/0008-5472.can-14-0527] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of c-MYC is an oncogenic hallmark of many cancers, including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation for the biology of hepatic cancer stem cells (CSC) are undefined. Here, distinct levels of c-MYC overexpression were established by using two dose-dependent tetracycline-inducible systems in four hepatoma cell lines with different p53 mutational status. The CSCs were evaluated using side population (SP) approach as well as standard in vitro and in vivo assays. Functional repression of p53 was achieved by lentiviral shRNA transduction. The results show that c-MYC expression levels have a differential impact on liver CSC characteristics. At low levels, c-MYC activation led to increased proliferation and enhanced CSC properties including activation of reprogramming transcription factors and CSC marker expression (e.g., NANOG, OCT4, and EpCAM), expansion of SP, and acceleration of tumor growth upon subcutaneous transplantation into immunocompromised mice. However, when exceeding a threshold level, c-MYC induced a proapoptotic program and loss of CSC potential both in vitro and in vivo. Mechanistically, c-MYC-induced self-renewal capacity of liver cancer cells was exerted in a p53-dependent manner. Low c-MYC activation increased spheroid formation in p53-deficient tumor cells, whereas p53-dependent effects were blunted in the absence of c-MYC overexpression. Together, our results confirm the role of c-MYC as a master regulator during hepatocarcinogenesis and establish a new gatekeeper role for p53 in repressing c-MYC-induced CSC phenotype in liver cancer cells.
Collapse
Affiliation(s)
- Hirofumi Akita
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jens U Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | - Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mitsuteru Kitade
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Elizabeth A Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jesper B Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Valentina M Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
134
|
Andersen JB. Molecular pathogenesis of intrahepatic cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 22:101-13. [PMID: 25174625 DOI: 10.1002/jhbp.155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop with no apparent etiological background. The impact of the stromal compartment on tumor progression as well as resistance to therapy is in vogue, and the epithelial-stromal crosstalk may present a target for novel treatment strategies. As such, the complexity of tumor cellularity and the molecular mechanisms underlying the diversity of growth patterns of this malignancy remain a clinical concern. It is crucial to advance our present understanding of the molecular pathogenesis of CCA to improve current clinical strategies and patient outcome. This will facilitate the delineation of patient subsets and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may be the trigger of acquired drug resistance, and the cause of metastasis and disease recurrence. A complex issue that remains is to account for the heterogeneous pool of "backseat" aberrations, which in chromosomal proximity to the causative variant are likely to influence, for example, drug response. This review explores the recent advances in defining the molecular pathways implicated in the development of this devastating disease and, which present putative clinical strategies.
Collapse
Affiliation(s)
- Jesper B Andersen
- Andersen Group, Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
135
|
Yamashita T, Kaneko S. Orchestration of hepatocellular carcinoma development by diverse liver cancer stem cells. J Gastroenterol 2014; 49:1105-10. [PMID: 24647548 DOI: 10.1007/s00535-014-0951-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/09/2014] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the world's most aggressive diseases and carries a poor prognosis for patients. Recent evidence suggests that HCC is organized by cancer stem cells (CSCs), which are a subset of cells with stem cell-like features. CSCs are considered a pivotal target for the eradication of cancer, and liver CSCs have been investigated using various stem cell markers. Several hepatic stem/progenitor markers have been shown to be useful for isolating putative CSCs from HCC, although the expression patterns and phenotypic diversity of CSCs purified by these markers remain obscure. Recently, we found that liver CSCs defined by different markers show unique features of tumorigenicity and metastasis, with phenotypes closely associated with committed liver lineages. Furthermore, our data suggest that these distinct CSCs collaborate to orchestrate the tumorigenicity and metastasis of HCC. In this review article, we summarize the recent advances in understanding the pathogenesis and heterogeneity of liver CSCs.
Collapse
Affiliation(s)
- Taro Yamashita
- Departments of General Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan,
| | | |
Collapse
|
136
|
Dang HT, Budhu A, Wang XW. The origin of cancer stem cells. J Hepatol 2014; 60:1304-5. [PMID: 24631602 DOI: 10.1016/j.jhep.2014.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Hien T Dang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin W Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
137
|
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide. Advances in sequencing technologies have enabled the examination of liver cancer genomes at high resolution; somatic mutations, structural alterations, HBV integration, RNA editing and retrotransposon changes have been comprehensively identified. Furthermore, integrated analyses of trans-omics data (genome, transcriptome and methylome data) have identified multiple critical genes and pathways implicated in hepatocarcinogenesis. These analyses have uncovered potential therapeutic targets, including growth factor signalling, WNT signalling, the NFE2L2-mediated oxidative pathway and chromatin modifying factors, and paved the way for new molecular classifications for clinical application. The aetiological factors associated with liver cancer are well understood; however, their effects on the accumulation of somatic changes and the influence of ethnic variation in risk factors still remain unknown. The international collaborations of cancer genome sequencing projects are expected to contribute to an improved understanding of risk evaluation, diagnosis and therapy for this cancer.
Collapse
Affiliation(s)
- Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroyuki Aburatani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
138
|
Guest RV, Boulter L, Kendall TJ, Minnis-Lyons SE, Walker R, Wigmore SJ, Sansom OJ, Forbes SJ. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res 2014; 74:1005-10. [PMID: 24310400 PMCID: PMC3929349 DOI: 10.1158/0008-5472.can-13-1911] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrahepatic cholangiocarcinoma is a treatment refractory malignancy with a high mortality and an increasing incidence worldwide. Recent studies have observed that activation of Notch and AKT signaling within mature hepatocytes is able to induce the formation of tumors displaying biliary lineage markers, thereby raising the suggestion that it is hepatocytes, rather than cholangiocytes or hepatic progenitor cells that represent the cell of origin of this tumor. Here, we use a cholangiocyte-lineage tracing system to target p53 loss to biliary epithelia and observe the appearance of labeled biliary lineage tumors in response to chronic injury. Consequent to this, upregulation of native functional Notch signaling is observed to occur spontaneously within cholangiocytes and hepatocytes in this model as well as in human intrahepatic cholangiocarcinoma. These data prove that in the context of chronic inflammation and p53 loss, frequent occurrences in human disease, biliary epithelia are a target of transformation and an origin of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Rachel V Guest
- Authors' Affiliations: MRC Centre for Regenerative Medicine; Human Genetics Unit, University of Edinburgh; Department of Surgery and Transplantation Medicine, Royal Infirmary of Edinburgh, Edinburgh; and Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Ilyas SI, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145:1215-29. [PMID: 24140396 PMCID: PMC3862291 DOI: 10.1053/j.gastro.2013.10.013] [Citation(s) in RCA: 953] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinomas (CCAs) are hepatobiliary cancers with features of cholangiocyte differentiation; they can be classified anatomically as intrahepatic CCA (iCCA), perihilar CCA (pCCA), or distal CCA. These subtypes differ not only in their anatomic location, but in epidemiology, origin, etiology, pathogenesis, and treatment. The incidence and mortality of iCCA has been increasing over the past 3 decades, and only a low percentage of patients survive until 5 years after diagnosis. Geographic variations in the incidence of CCA are related to variations in risk factors. Changes in oncogene and inflammatory signaling pathways, as well as genetic and epigenetic alterations and chromosome aberrations, have been shown to contribute to the development of CCA. Furthermore, CCAs are surrounded by a dense stroma that contains many cancer-associated fibroblasts, which promotes their progression. We have gained a better understanding of the imaging characteristics of iCCAs and have developed advanced cytologic techniques to detect pCCAs. Patients with iCCAs usually are treated surgically, whereas liver transplantation after neoadjuvant chemoradiation is an option for a subset of patients with pCCAs. We review recent developments in our understanding of the epidemiology and pathogenesis of CCA, along with advances in classification, diagnosis, and treatment.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
140
|
Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target. Proc Natl Acad Sci U S A 2013; 110:19513-8. [PMID: 24154728 DOI: 10.1073/pnas.1311707110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer and responds poorly to existing therapies. Intrahepatic cholangiocarcinoma (ICC) likely originates from the biliary tree and develops within the hepatic parenchyma. We have generated a flexible orthotopic allograft mouse model of ICC that incorporates common genetic alterations identified in human ICC and histologically resembles the human disease. We examined the utility of this model to validate driver alterations in ICC and tested their suitability as therapeutic targets. Specifically, we showed that the fused-in-glioblastoma-c-ros-oncogene1 (FIG-ROS1(S); FIG-ROS) fusion gene dramatically accelerates ICC development and that its inactivation in established tumors has a potent antitumor effect. Our studies establish a versatile model of ICC that will be a useful preclinical tool and validate ROS1 fusions as potent oncoproteins and therapeutic targets in ICC and potentially other tumor types.
Collapse
|
141
|
Zucman-Rossi J, Nault JC, Zender L. Primary liver carcinomas can originate from different cell types: a new level of complexity in hepatocarcinogenesis. Gastroenterology 2013; 145:53-55. [PMID: 23726876 DOI: 10.1053/j.gastro.2013.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jessica Zucman-Rossi
- Inserm, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d'Hématologie and Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.
| | - Jean-Charles Nault
- Inserm, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d'Hématologie and Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|