101
|
Dong S, Wang Z, Zhang JT, Yan B, Zhang C, Gao X, Sun H, Li YS, Yan HH, Tu HY, Liu SYM, Gong Y, Gao W, Huang J, Liao RQ, Lin JT, Ke EE, Xu Z, Zhang X, Xia X, Li AN, Liu SY, Pan Y, Yang JJ, Zhong WZ, Yi X, Zhou Q, Yang XN, Wu YL. Circulating Tumor DNA-Guided De-Escalation Targeted Therapy for Advanced Non-Small Cell Lung Cancer: A Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:932-940. [PMID: 38869865 DOI: 10.1001/jamaoncol.2024.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Importance Uninterrupted targeted therapy until disease progression or intolerable toxic effects is currently the routine therapy for advanced non-small cell lung cancer (NSCLC) involving driver gene variations. However, drug resistance is inevitable. Objective To assess the clinical feasibility of adaptive de-escalation tyrosine kinase inhibitor (TKI) treatment guided by circulating tumor DNA (ctDNA) for achieving complete remission after local consolidative therapy (LCT) in patients with advanced NSCLC. Design, Setting, and Participants This prospective nonrandomized controlled trial was conducted at a single center from June 3, 2020, to July 19, 2022, and included 60 patients with advanced NSCLC with driver variations without radiologically detectable disease after TKI and LCT. The median (range) follow-up time was 19.2 (3.8-29.7) months. Data analysis was conducted from December 15, 2022, to May 10, 2023. Intervention Cessation of TKI treatment and follow-up every 3 months. Treatment was restarted in patients with progressive disease (defined by the Response Evaluation Criteria in Solid Tumors 1.1 criteria), detectable ctDNA, or elevated carcinoembryonic antigen (CEA) levels, whichever manifested first, and treatment ceased if all indicators were negative during follow-up surveillance. Main Outcomes and Measures Progression-free survival (PFS). Secondary end points were objective response rate, time to next treatment, and overall survival. Results Among the total study sample of 60 participants (median [range] age, 55 [21-75] years; 33 [55%] were female), the median PFS was 18.4 (95% CI, 12.6-24.2) months and the median (range) total treatment break duration was 9.1 (1.5-28.1) months. Fourteen patients (group A) remained in TKI cessation with a median (range) treatment break duration of 20.3 (6.8-28.1) months; 31 patients (group B) received retreatment owing to detectable ctDNA and/or CEA and had a median PFS of 20.2 (95% CI, 12.9-27.4) months with a median (range) total treatment break duration of 8.8 (1.5-20.6) months; and 15 patients (group C) who underwent retreatment with TKIs due to progressive disease had a median PFS of 5.5 (95% CI, 1.5-7.2) months. For all participants, the TKI retreatment response rate was 96%, the median time to next treatment was 29.3 (95% CI, 25.3-35.2) months, and the data for overall survival were immature. Conclusions and Relevance The findings of this nonrandomized controlled trial suggest that this adaptive de-escalation TKI strategy for patients with NSCLC is feasible in those with no lesions after LCT and a negative ctDNA test result. This might provide a de-escalation treatment strategy guided by ctDNA for the subset of patients with advanced NSCLC. Trial Registration ClinicalTrials.gov Identifier: NCT03046316.
Collapse
Affiliation(s)
- Song Dong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingfa Yan
- Geneplus-Beijing Institute, Beijing, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Yang Maggie Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Chinese Thoracic Oncology Group, Guangzhou, Guangdong, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, Beijing, China
| | - Wei Gao
- Geneplus-Beijing Institute, Beijing, China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ri-Qiang Liao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - E-E Ke
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zelong Xu
- Geneplus-Beijing Institute, Beijing, China
| | - Xue Zhang
- Geneplus-Beijing Institute, Beijing, China
| | | | - An-Na Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Chinese Thoracic Oncology Group, Guangzhou, Guangdong, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Chinese Thoracic Oncology Group, Guangzhou, Guangdong, China
| |
Collapse
|
102
|
Lee SH, Jeong H, Kim DH, Jang SJ, Kim SW, Yoon S, Lee DH. Comparison of Clinicopathogenomic Features and Treatment Outcomes of EGFR and HER2 Exon 20 Insertion Mutations in Non-Small Cell Lung Cancer: Single-Institution Experience. Cancer Res Treat 2024; 56:774-784. [PMID: 38291744 PMCID: PMC11261192 DOI: 10.4143/crt.2023.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/28/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Exon 20 insertion mutations (E20ins) in epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) in non-small cell lung cancer (NSCLC) patients has become more important with emergence of novel agents targeting E20ins. MATERIALS AND METHODS Advanced/Metastatic NSCLC patients with E20ins were included. EGFR E20ins was identified by two methods, next-generation sequencing (NGS) or real-time polymerase chain reaction (PCR), while HER2 E20ins was done by NGS only. RESULTS Between December 2013 and July 2021, E20ins were identified in 107 patients at Asan Medical Center; 67 EGFR E20ins and 40 HER2 E20ins. Out of 32 patients with EGFR E20ins who had tested both PCR and NGS, 17 were identified only through NGS and the other 15 through both tests, giving a discordance rate of 53.1%. There was no clinically significant difference in clinicopathologic features between EGFR and HER2 E20ins; both were observed more frequently in adenocarcinoma, female and never-smokers. Brain metastases were evident at diagnosis in 31.8% of EGFR E20ins and 27.5% of HER2 E20ins, respectively. Platinum-based doublets demonstrated objective response rates (ORR) of 13.3% with a median progression-free survival (PFS) of 4.2 months for EGFR E20ins and 35.3% with 4.7 months for HER2 E20ins, respectively. In contrast, novel EGFR E20ins-targeted agents exhibited an ORR of 46.2% with a median PFS of 5.4 months, while HER2-targeted agents showed an ORR of 50% with that of 7.0 months. CONCLUSION Identification of EGFR and HER2 E20ins is more important as their targeted therapies improved outcomes. Upfront NGS test as a comprehensive molecular approach is strongly warranted.
Collapse
Affiliation(s)
- So Heun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyehyun Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok Hoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
103
|
Combarel D, Dousset L, Bouchet S, Ferrer F, Tetu P, Lebbe C, Ciccolini J, Meyer N, Paci A. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part I. Crit Rev Oncol Hematol 2024; 199:104384. [PMID: 38762217 DOI: 10.1016/j.critrevonc.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
A multitude of TKI has been developed and approved targeting various oncogenetic alterations. While these have provided improvements in efficacy compared with conventional chemotherapies, resistance to targeted therapies occurs. Mutations in the kinase domain result in the inability of TKI to inactivate the protein kinase. Also, gene amplification, increased protein expression and downstream activation or bypassing of signalling pathways are commonly reported mechanisms of resistance. Improved understanding of mechanisms involved in TKI resistance has resulted in the development of new generations of targeted agents. In a race against time, the search for new, more potent and efficient drugs, and/or combinations of drugs, remains necessary as new resistance mechanisms to the latest generation of TKI emerge. This review examines the various generations of TKI approved to date and their common mechanisms of resistance, focusing on TKI targeting BCR-ABL, epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF/MEK tyrosine kinases.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Bouchet
- Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Nicolas Meyer
- Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037-CRCT, Toulouse, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France.
| |
Collapse
|
104
|
Solomon BJ, Dagogo-Jack I, Lee SH, Boyer MJ, Ramalingam SS, Carcereny E, Felip E, Han JY, Hida T, Hughes BG, Kim SW, Nishio M, Seto T, Okamoto T, Zhang X, Martini JF, Wang E, De Beukelaer S, Bauer TM. Avelumab in Combination With Lorlatinib or Crizotinib in Patients With Previously Treated Advanced NSCLC: Phase 1b/2 Results From the JAVELIN Lung 101 Trial. JTO Clin Res Rep 2024; 5:100685. [PMID: 39034968 PMCID: PMC11260014 DOI: 10.1016/j.jtocrr.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction The JAVELIN Lung 101 phase 1b/2 trial evaluated avelumab (immune checkpoint inhibitor) combined with lorlatinib or crizotinib (tyrosine kinase inhibitors) in ALK-positive or ALK-negative advanced NSCLC, respectively. Methods Starting doses of lorlatinib 100 mg once daily or crizotinib 250 mg twice daily were administered with avelumab 10 mg/kg every 2 weeks. Primary objectives were assessment of maximum tolerated dose (MTD) and recommended phase 2 dose in phase 1 and objective response rate in phase 2. Primary end points were dose-limiting toxicity (DLT) and confirmed objective response per Response Evaluation Criteria in Solid Tumors, version 1.1. Results In the avelumab plus lorlatinib group (ALK-positive; n = 31; 28 in phase 1b; three in phase 2), two of 28 assessable patients (7%) had DLT, and the MTD and recommended phase 2 dose was avelumab 10 mg/kg every 2 weeks plus lorlatinib 100 mg once daily. In the avelumab plus crizotinib group (ALK-negative; n = 12; all phase 1b), five of 12 assessable patients (42%) had DLT, and the MTD was exceeded with avelumab 10 mg/kg every 2 weeks plus crizotinib 250 mg twice daily; alternative crizotinib doses were not assessed. Objective response rate was 52% (95% confidence interval, 33%-70%) with avelumab plus lorlatinib (complete response, 3%; partial response, 48%) and 25% (95% confidence interval, 6%-57%) with avelumab plus crizotinib (all partial responses). Conclusions Avelumab plus lorlatinib treatment in ALK-positive NSCLC was feasible, but avelumab plus crizotinib treatment in ALK-negative NSCLC could not be administered at the doses tested. No evidence of increased antitumor activity was observed in either group. ClinicalTrialsgov identifier NCT02584634.
Collapse
Affiliation(s)
| | - Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Se-Hoon Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | - Enric Carcereny
- Institut Català d'Oncologia de Badalona, Servicio de Oncología Médica, Badalona, Spain
| | - Enriqueta Felip
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology, Centro Cellex, Barcelona, Spain
| | - Ji-Youn Han
- National Cancer Center, Gyeonggi-do, South Korea
| | - Toyoaki Hida
- Aichi Cancer Center Central Hospital, Nagoya, Japan
| | - Brett G.M. Hughes
- The Prince Charles Hospital, Cancer Care Services, Chermside, Queensland, Australia
| | - Sang-We Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Makoto Nishio
- The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Seto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | - Erjian Wang
- Pfizer, San Diego, California
- Present address: IDEAYA Biosciences, South San Francisco, California
| | - Steven De Beukelaer
- Pfizer, Zurich, Switzerland
- Present address: Monte Rosa Therapeutics, Basel, Switzerland
| | | |
Collapse
|
105
|
Wang K, Fu Z, Sun G, Ran Y, Lv N, Wang E, Ding H. Systemic treatment options for non-small cell lung cancer after failure of previous immune checkpoint inhibitors: a bayesian network meta-analysis based on randomized controlled trials. BMC Immunol 2024; 25:37. [PMID: 38937711 PMCID: PMC11212373 DOI: 10.1186/s12865-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have brought survival benefits to non-small cell lung cancer (NSCLC), disease progression still occurs, and there is no consensus on the treatment options for these patients. We designed a network meta-analysis (NMA) to evaluate systemic treatment options for NSCLC after failure of ICIs. METHODS PubMed, Embase, Web of Science and Cochrane Library databases were searched, then literature screening was followed by NMA. We included all Phase II and III randomized controlled trials (RCTs). Progression-free survival (PFS) and overall survival (OS) used hazard ratio (HR) for evaluation. Objective response rate (ORR) and adverse events (AEs) used odds ratio (OR) and relative risk (RR) effect sizes, respectively. R software was applied to compare the Bayesian NMA results. RESULTS We finally included 6 studies. 1322 patients received ICI plus Chemotherapy (ICI + Chemo), ICI plus Anti-angiogenic monoclonal antibody (ICI + Antiangio-Ab), ICI plus Tyrosine kinase inhibitor (ICI + TKI), Tyrosine kinase inhibitor plus Chemotherapy (TKI + Chemo), Standard of Care (SOC), Chemotherapy (Chemo). TKI + Chemo is associated with longer PFS, higher ORR (surface under cumulative ranking curve [SUCRA], 99.7%, 88.2%), ICI + TKI achieved the longest OS (SUCRA, 82.7%). ICI + Antiangio-Ab was granted the highest safety rating for adverse events (AEs) of any grade, AEs greater than or equal to grade 3 and AEs of any grade leading to discontinuation of treatment (SUCRA, 95%, 82%, 93%). CONCLUSIONS For NSCLC after failure of ICIs, TKI + Chemo was associated with longer PFS and higher ORR, while ICI + TKI was associated with the longest OS. In terms of safety, ICI + Antiangio-Ab was the highest.
Collapse
Affiliation(s)
- Kang Wang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Zhenxue Fu
- Department of Respiratory Medicine, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Guanxing Sun
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Yancui Ran
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Nannan Lv
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Enbo Wang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Huan Ding
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China.
| |
Collapse
|
106
|
Boldig C, Boldig K, Mokhtari S, Etame AB. A Review of the Molecular Determinants of Therapeutic Response in Non-Small Cell Lung Cancer Brain Metastases. Int J Mol Sci 2024; 25:6961. [PMID: 39000069 PMCID: PMC11241836 DOI: 10.3390/ijms25136961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related morbidity and mortality worldwide. Metastases in the brain are a common hallmark of advanced stages of the disease, contributing to a dismal prognosis. Lung cancer can be broadly classified as either small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). NSCLC represents the most predominant histology subtype of lung cancer, accounting for the majority of lung cancer cases. Recent advances in molecular genetics, coupled with innovations in small molecule drug discovery strategies, have facilitated both the molecular classification and precision targeting of NSCLC based on oncogenic driver mutations. Furthermore, these precision-based strategies have demonstrable efficacy across the blood-brain barrier, leading to positive outcomes in patients with brain metastases. This review provides an overview of the clinical features of lung cancer brain metastases, as well as the molecular mechanisms that drive NSCLC oncogenesis. We also explore how precision medicine-based strategies can be leveraged to improve NSCLC brain metastases.
Collapse
Affiliation(s)
- Catherine Boldig
- Department of Neurology, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Kimberly Boldig
- Department of Internal Medicine, University of Florida Jacksonville, 655 W. 8th St., Jacksonville, FL 32209, USA
| | - Sepideh Mokhtari
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B Etame
- Moffitt Cancer Center, Department of Neuro-Oncology, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
107
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
108
|
Huang CY, Jiang N, Shen M, Lai GG, Tan AC, Jain A, Saw SP, Ang MK, Ng QS, Lim DW, Kanesvaran R, Tan EH, Tan WL, Ong BH, Chua KL, Anantham D, Takano AM, Lim KH, Tam WL, Sim NL, Skanderup AJ, Tan DS, Rozen SG. Oncogene-Driven Non-Small Cell Lung Cancers in Patients with a History of Smoking Lack Smoking-Induced Mutations. Cancer Res 2024; 84:2009-2020. [PMID: 38587551 DOI: 10.1158/0008-5472.can-23-2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell lung cancers (NSCLC) in nonsmokers are mostly driven by mutations in the oncogenes EGFR, ERBB2, and MET and fusions involving ALK and RET. In addition to occurring in nonsmokers, alterations in these "nonsmoking-related oncogenes" (NSRO) also occur in smokers. To better understand the clonal architecture and genomic landscape of NSRO-driven tumors in smokers compared with typical-smoking NSCLCs, we investigated genomic and transcriptomic alterations in 173 tumor sectors from 48 NSCLC patients. NSRO-driven NSCLCs in smokers and nonsmokers had similar genomic landscapes. Surprisingly, even in patients with prominent smoking histories, the mutational signature caused by tobacco smoking was essentially absent in NSRO-driven NSCLCs, which was confirmed in two large NSCLC data sets from other geographic regions. However, NSRO-driven NSCLCs in smokers had higher transcriptomic activities related to the regulation of the cell cycle. These findings suggest that, whereas the genomic landscape is similar between NSRO-driven NSCLC in smokers and nonsmokers, smoking still affects the tumor phenotype independently of genomic alterations. SIGNIFICANCE Non-small cell lung cancers driven by nonsmoking-related oncogenes do not harbor genomic scars caused by smoking regardless of smoking history, indicating that the impact of smoking on these tumors is mainly nongenomic.
Collapse
Affiliation(s)
- Chen-Yang Huang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Nanhai Jiang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meixin Shen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillianne G Lai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Stephanie P Saw
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Darren W Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Eng Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wan Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore, Singapore
| | - Kevin L Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Devanand Anantham
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Angela M Takano
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ngak Leng Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anders J Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel S Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
109
|
Ilié M, Goffinet S, Rignol G, Lespinet-Fabre V, Lalvée S, Bordone O, Zahaf K, Bonnetaud C, Washetine K, Lassalle S, Long-Mira E, Heeke S, Hofman V, Hofman P. Shifting from Immunohistochemistry to Screen for ALK Rearrangements: Real-World Experience in a Large Single-Center Cohort of Patients with Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:2219. [PMID: 38927925 PMCID: PMC11201761 DOI: 10.3390/cancers16122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The identification of ALK fusions in advanced non-small-cell lung carcinoma (aNSCLC) is mandatory for targeted therapy. The current diagnostic approach employs an algorithm using ALK immunohistochemistry (IHC) screening, followed by confirmation through ALK FISH and/or next-generation sequencing (NGS). Challenges arise due to the infrequency of ALK fusions (3-7% of aNSCLC), the suboptimal specificity of ALK IHC and ALK FISH, and the growing molecular demands placed on small tissue samples, leading to interpretative, tissue availability, and time-related issues. This study investigates the effectiveness of RNA NGS as a reflex test for identifying ALK fusions in NSCLC, with the goal of replacing ALK IHC in the systematic screening process. The evaluation included 1246 NSCLC cases using paired techniques: ALK IHC, ALK FISH, and ALK NGS. ALK IHC identified 51 positive cases (4%), while RNA NGS detected ALK alterations in 59 cases (4.8%). Of the 59 ALK-positive cases identified via NGS, 53 (89.8%) were confirmed to be positive. This included 51 cases detected via both FISH and IHC, and 2 cases detected only via FISH, as they were completely negative according to IHC. The combined reporting time for ALK IHC and ALK FISH averaged 13 days, whereas ALK IHC and RNA NGS reports were obtained in an average of 4 days. These results emphasize the advantage of replacing systematic ALK IHC screening with RNA NGS reflex testing for a more comprehensive and accurate assessment of ALK status.
Collapse
Affiliation(s)
- Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Samantha Goffinet
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Olivier Bordone
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Kevin Washetine
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France; (M.I.); (S.G.); (G.R.); (V.L.-F.); (S.L.); (K.Z.); (C.B.); (K.W.); (S.L.); (E.L.-M.); (V.H.)
- Hospital-Integrated Biobank (BB-0033-00025), Pasteur Hospital, Nice University Hospital, FHU OncoAge, IHU RespirERA, 06000 Nice, France;
| |
Collapse
|
110
|
Fabiani I, Chianca M, Aimo A, Emdin M, Dent S, Fedele A, Cipolla CM, Cardinale DM. Use of new and emerging cancer drugs: what the cardiologist needs to know. Eur Heart J 2024; 45:1971-1987. [PMID: 38591670 DOI: 10.1093/eurheartj/ehae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
The last decade has witnessed a paradigm shift in cancer therapy, from non-specific cytotoxic chemotherapies to agents targeting specific molecular mechanisms. Nonetheless, cardiovascular toxicity of cancer therapies remains an important concern. This is particularly relevant given the significant improvement in survival of solid and haematological cancers achieved in the last decades. Cardio-oncology is a subspecialty of medicine focusing on the identification and prevention of cancer therapy-related cardiovascular toxicity (CTR-CVT). This review will examine the new definition of CTR-CVT and guiding principles for baseline cardiovascular assessment and risk stratification before cancer therapy, providing take-home messages for non-specialized cardiologists.
Collapse
Affiliation(s)
- Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Michela Chianca
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
- Interdisciplinary Center for Health Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| |
Collapse
|
111
|
Shi Y, Chen J, Yang R, Wu H, Wang Z, Yang W, Cui J, Zhang Y, Liu C, Cheng Y, Liu Y, Shan J, Wang D, Yang L, Hu C, Zhao J, Cao R, Tan B, Xu K, Si M, Li H, Mao R, Li L, Kang X, Wang L. Iruplinalkib (WX-0593) Versus Crizotinib in ALK TKI-Naive Locally Advanced or Metastatic ALK-Positive NSCLC: Interim Analysis of a Randomized, Open-Label, Phase 3 Study (INSPIRE). J Thorac Oncol 2024; 19:912-927. [PMID: 38280448 DOI: 10.1016/j.jtho.2024.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Iruplinalkib (WX-0593) is a new-generation, potent ALK tyrosine kinase inhibitor (TKI) that has been found to have systemic and central nervous system (CNS) efficacy in ALK-positive NSCLC. We compared the efficacy and safety of iruplinalkib with crizotinib in patients with ALK TKI-naive, locally advanced or metastatic ALK-positive NSCLC. METHODS In this open-label, randomized, multicenter, phase 3 study, patients with ALK-positive NSCLC were randomly assigned to receive iruplinalkib 180 mg once daily (7-d run-in at 60 mg once daily) or crizotinib 250 mg twice daily. The primary end point was progression-free survival (PFS) assessed by Independent Review Committee (IRC) per Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included PFS by investigator, objective response rate (ORR), time to response, duration of response, intracranial ORR and time to CNS progression by IRC and investigator, overall survival, and safety. An interim analysis was planned after approximately 70% (134 events) of all 192 expected PFS events assessed by IRC were observed. Efficacy was analyzed in the intention-to-treat population. Safety was assessed in the safety population, which included all randomized patients who received at least one dose of the study drugs. This study is registered with Center for Drug Evaluation of China National Medical Products Administration (CTR20191231) and Clinicaltrials.gov (NCT04632758). RESULTS From September 4, 2019, to December 2, 2020, a total of 292 patients were randomized and treated; 143 with iruplinalkib and 149 with crizotinib. At this interim analysis (145 events), the median follow-up time was 26.7 months (range: 3.7-37.7) in the iruplinalkib group and 25.9 months (range: 0.5-35.9) in the crizotinib group. The PFS assessed by IRC was significantly longer among patients in the iruplinalkib group (median PFS, 27.7 mo [95% confidence interval (CI): 26.3-not estimable] versus 14.6 mo [95% CI: 11.1-16.5] in the crizotinib group; hazard ratio, 0.34 [98.02% CI: 0.23-0.52], p < 0.0001). The ORR assessed by IRC was 93.0% (95% CI: 87.5-96.6) in the iruplinalkib group and 89.3% (95% CI: 83.1-93.7) in the crizotinib group. The intracranial ORR was 90.9% (10 of 11, 95% CI: 58.7-99.8) in the iruplinalkib group and 60.0% (nine of 15, 95% CI: 32.3-83.7) in the crizotinib group for patients with measurable baseline CNS metastases. Incidence of grade 3 or 4 treatment-related adverse events was 51.7% in the iruplinalkib group and 49.7% in the crizotinib group. CONCLUSIONS Iruplinalkib was found to have significantly improved PFS and improved intracranial antitumor activity versus crizotinib. Iruplinalkib may be a new treatment option for patients with advanced ALK-positive and ALK TKI-naive NSCLC. FUNDING This study was funded by Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China, and partly supported by the National Science and Technology Major Project for Key New Drug Development (2017ZX09304015).
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China.
| | - Jianhua Chen
- Thoracic Medicine Department I, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Runxiang Yang
- The Second Department of Medical Oncology, Yunnan Cancer Hospital, Kunming, People's Republic of China
| | - Hongbo Wu
- Respiratory Intervention Department, Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Zhehai Wang
- Respiratory Medical Oncology Ward II, Shandong Cancer Hospital & Institute, Jinan, People's Republic of China
| | - Weihua Yang
- Department of Respiratory, Shanxi Provincial Cancer Hospital, Taiyuan, People's Republic of China
| | - Jiuwei Cui
- Oncology Department, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yiping Zhang
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Chunling Liu
- Pulmonary Medicine Ward II, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Ying Cheng
- Thoracic Oncology Department, Jilin Cancer Hospital, Changchun, People's Republic of China
| | - Yunpeng Liu
- Department of Internal Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jinlu Shan
- Oncology Department, Army Medical Center of PLA, Chongqing, People's Republic of China
| | - Donglin Wang
- Department of Internal Medical Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Lei Yang
- Department of Respiratory Oncology, Gansu Province Cancer Hospital, Lanzhou, People's Republic of China
| | - Changlu Hu
- Ward 4 of Department of Oncology, Anhui Provincial Cancer Hospital, Hefei, People's Republic of China
| | - Jian Zhao
- Thoracic Surgery Department 1, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ranhua Cao
- Department of Internal Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China
| | - Ke Xu
- Department of Respiratory, Anhui Provincial Cancer Hospital, Hefei, People's Republic of China
| | - Meimei Si
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Hui Li
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Ruifeng Mao
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Lingyan Li
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Xiaoyan Kang
- Clinical Research Center, Qilu Pharmaceutical Co., Ltd., Jinan, People's Republic of China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| |
Collapse
|
112
|
Kong AW, Engelmann AR, Hosseini M, Bonelli L. Bilateral optic neuropathy associated with lorlatinib monotherapy for ALK-positive metastatic lung adenocarcinoma. Am J Ophthalmol Case Rep 2024; 34:102063. [PMID: 38707952 PMCID: PMC11066590 DOI: 10.1016/j.ajoc.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose This report details the characteristics of a case of bilateral optic neuropathy during treatment with oral lorlatinib for ALK-positive metastatic adenocarcinoma of the lung. Observations A 57-year-old woman with metastatic adenocarcinoma of the lung receiving treatment with lorlatinib presented to the ophthalmology urgent care with bilateral loss of vision that had progressed to no light perception over the previous 2 weeks. She was hospitalized for an extensive autoimmune, infectious, neoplastic, and paraneoplastic workup, which revealed enhancement of both optic nerves extending up to the optic chiasm and an area of restricted diffusion in the splenium of the corpus callosum on MRI. Lorlatinib was discontinued by her oncologist and she received treatment with five days of pulse-dose intravenous solumedrol as well as five days of plasmapheresis with gradual improvement in her vision. In follow-up, her vision had improved to 20/40 and 20/30. Conclusion and importance There have been few reports describing vision loss associated with lorlatinib, an ALK/ROS1 targeted tyrosine kinase inhibitor used to treat metastatic lung adenocarcinoma. This report details the characteristics of a case of bilateral retrobulbar optic neuropathy as well as the treatment and recovery of such a case. Further exploration is needed in order to improve our understanding of the pathogenesis of this rare but potentially devastating adverse effect.
Collapse
Affiliation(s)
- Alan W. Kong
- University of California Los Angeles, Stein Eye Institute, Department of Ophthalmology, Los Angeles, CA, USA
| | - Alexander R. Engelmann
- University of California Los Angeles, Stein Eye Institute, Department of Ophthalmology, Los Angeles, CA, USA
| | - Mahdieh Hosseini
- University of California Los Angeles, Department of Neurology, Los Angeles, CA, USA
| | - Laura Bonelli
- University of California Los Angeles, Stein Eye Institute, Department of Ophthalmology, Los Angeles, CA, USA
| |
Collapse
|
113
|
Xu J, Tian L, Qi W, Lv Q, Wang T. Advancements in NSCLC: From Pathophysiological Insights to Targeted Treatments. Am J Clin Oncol 2024; 47:291-303. [PMID: 38375734 PMCID: PMC11107893 DOI: 10.1097/coc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.
Collapse
Affiliation(s)
- Jianan Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine
| | - Lin Tian
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Wenlong Qi
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Qingguo Lv
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Tan Wang
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
114
|
Borczuk AC. Molecular Testing in Lung Cancer: Recommendations and Update. Surg Pathol Clin 2024; 17:307-320. [PMID: 38692813 DOI: 10.1016/j.path.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Adoption of molecular testing in lung cancer is increasing. Molecular testing for staging and prediction of response for targeted therapy remain the main indications, and although utilization of blood-based testing for tumor is growing, the use of the diagnostic cytology and tissue specimens is equally important. The pathologist needs to optimize reflex testing, incorporate stage-based algorithms, and understand types of tests for timely and complete assessment in the majority of cases. When tissue is limited, testing should capture the most frequent alterations to maximize the yield of what are largely mutually exclusive alterations, avoiding the need for repeat biopsy.
Collapse
Affiliation(s)
- Alain C Borczuk
- Anatomic Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
115
|
Gemelli M, Albini A, Catalano G, Incarbone M, Cannone M, Balladore E, Ricotta R, Pelosi G. Navigating resistance to ALK inhibitors in the lorlatinib era: a comprehensive perspective on NSCLC. Expert Rev Anticancer Ther 2024; 24:347-361. [PMID: 38630549 DOI: 10.1080/14737140.2024.2344648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION The emergence of anaplastic lymphoma kinase (ALK) rearrangements in non-small cell lung cancer (NSCLC) has revolutionized targeted therapy. This dynamic landscape, featuring novel ALK inhibitors and combination therapies, necessitates a profound understanding of resistance mechanisms for effective treatment strategies. Recognizing two primary categories - on-target and off-target resistance - underscores the need for comprehensive assessment. AREAS COVERED This review delves into the intricacies of resistance to ALK inhibitors, exploring complexities in identification and management. Molecular testing, pivotal for early detection and accurate diagnosis, forms the foundation for patient stratification and resistance management. The literature search methodology involved comprehensive exploration of Pubmed and Embase. The multifaceted perspective encompasses new therapeutic horizons, ongoing clinical trials, and their clinical implications post the recent approval of lorlatinib. EXPERT OPINION Our expert opinion encapsulates the critical importance of understanding resistance mechanisms in the context of ALK inhibitors for shaping successful treatment approaches. With a focus on molecular testing and comprehensive assessment, this review contributes valuable insights to the evolving landscape of NSCLC therapy.
Collapse
Affiliation(s)
- Maria Gemelli
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Adriana Albini
- Departement of Scientific Directorate, European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gianpiero Catalano
- Radiation Oncology Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Matteo Incarbone
- Department of Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Maria Cannone
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Emanuela Balladore
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Riccardo Ricotta
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Giuseppe Pelosi
- Inter-Hospital Division of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
116
|
Zhang M, Zheng B, Yang W, Jiang H, Sun X, Zhao Z, Li G, Dong H. Cost-Effectiveness Analysis of 6 Tyrosine Kinase Inhibitors as First-Line Treatment for ALK-Positive NSCLC in China. Clin Med Insights Oncol 2024; 18:11795549241257234. [PMID: 38827520 PMCID: PMC11143872 DOI: 10.1177/11795549241257234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Background Lung cancer ranks first in both cancer incidence and mortality in China. The emergence of novel treatments for ALK-positive NSCLC led to an improvement in survival and quality of life for patients with advanced ALK mutation-positive non-small cell lung cancer (NSCLC). This study sought to assess the cost-effectiveness of 6 tyrosine kinase inhibitors (TKIs)-crizotinib, alectinib, ceritinib, brigatinib, ensartinib, and lorlatinib-as first-line treatments for ALK-positive NSCLC from the perspective of the Chinese health care system. Methods A Markov model was developed to estimate the cost-effectiveness of these 6 TKIs. In this model, ALK-positive NSCLC patients were initially simulated to receive 1 of the 6 TKIs as first-line therapy, followed by different TKIs as subsequent treatment and salvage chemotherapy as last-line treatment. Survival data were sourced from the latest published clinical trials. Costs were derived from recent national health insurance negotiations and hospital information systems of selected health care facilities. Utilities for healthy states and adverse events were obtained from the literature. One-way and probabilistic sensitivity analysis as well as scenario analysis was conducted to assess the robustness of the results. Results Compared to ensartinib, crizotinib, alectinib, ceritinib, brigatinib, and lorlatinib demonstrated incremental quality-adjusted life years (QALYs) of -1.13, 0.39, -0.58, -0.09, and 0.35, respectively. The corresponding incremental costs were $10 677, $33 501, -$6426, $2672, and $24 358. This resulted in ICERs of -$9449/QALY, $85 900/QALY, $11 079/QALY, $29 689/QALY and $69 594/QALY, respectively. Conclusion Crizotinib was considered to be absolutely dominated by ensartinib. Under a willingness-to-pay threshold of $38 223/QALY, ceritinib and brigatinib were cost-effective compared with ensartinib, while lorlatinib and alectinib were not cost-effective when compared with ensartinib. Overall, brigatinib emerged as the most cost-effective treatment among all the options considered.
Collapse
Affiliation(s)
- Meiling Zhang
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bei Zheng
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenjuan Yang
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hong Jiang
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xueshan Sun
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixuan Zhao
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghua Li
- Key Laboratory of Research and Development of Chinese Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hengjin Dong
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
117
|
Yamashita H, Nakayama K, Kanno K, Ishibashi T, Ishikawa M, Iida K, Razia S, Kiyono T, Kyo S. Evaluation of ARID1A as a Potential Biomarker for Predicting Response to Immune Checkpoint Inhibitors in Patients with Endometrial Cancer. Cancers (Basel) 2024; 16:1999. [PMID: 38893118 PMCID: PMC11171230 DOI: 10.3390/cancers16111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AT-rich interaction domain 1A (ARID1A) has been proposed as a new biomarker for predicting response to immune checkpoint inhibitors (ICIs). The predictive value of ARID1A for predicting ICI effectiveness has not been reported for endometrial cancer. Therefore, we investigated whether ARID1A negativity predicts ICI effectiveness for endometrial cancer treatment. METHODS We evaluated ARID1A expression, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1/PD-1) by immunostaining endometrial samples from patients with endometrial cancer. Samples in which any of the four mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) were determined to be negative via immunostaining were excluded. In the ARID1A-negative group, microsatellite instability (MSI) status was confirmed via MSI analysis. RESULTS Of the 102 samples investigated, 25 (24.5%) were ARID1A-negative. CD8 and PD-1 expression did not differ significantly between the ARID1A-negative group and the ARID1A-positive group; however, the ARID1A-negative group showed significantly lower PD-L1 expression. Only three samples (14.2%) in the ARID1A-negative group showed high MSI. Sanger sequencing detected three cases of pathological mutation in the MSH2-binding regions. We also established an ARID1A-knockout human ovarian endometriotic epithelial cell line (HMOsisEC7 ARID1A KO), which remained microsatellite-stable after passage. CONCLUSION ARID1A negativity is not suitable as a biomarker for ICI effectiveness in treating endometrial cancer.
Collapse
Affiliation(s)
- Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Centre, Nagoya 464-8547, Japan;
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Centre, Nagoya 464-8547, Japan;
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Sultana Razia
- Department of Legal Medicine, Shimane University School of Medicine, Izumo 693-8501, Japan;
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa 277-8577, Japan;
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| |
Collapse
|
118
|
Poei D, Ali S, Ye S, Hsu R. ALK inhibitors in cancer: mechanisms of resistance and therapeutic management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:20. [PMID: 38835344 PMCID: PMC11149099 DOI: 10.20517/cdr.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified as potent oncogenic drivers in several malignancies, including non-small cell lung cancer (NSCLC). The discovery of ALK inhibition using a tyrosine kinase inhibitor (TKI) has dramatically improved the outcomes of patients with ALK-mutated NSCLC. However, the emergence of intrinsic and acquired resistance inevitably occurs with ALK TKI use. This review describes the molecular mechanisms of ALK TKI resistance and discusses management strategies to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Darin Poei
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sana Ali
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Shirley Ye
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Hsu
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
119
|
Andersen JL, Johansen JS, Urbanska EM, Meldgaard P, Hjorth-Hansen P, Kristiansen C, Stelmach M, Santoni-Rugiu E, Ulhøi MP, Højgaard B, Jensen MS, Dydensborg AB, Dünweber C, Hansen KH. Lung cancer patients with anaplastic lymphoma kinase rearrangement lose affiliation with labor market at diagnosis. Lung Cancer Manag 2024; 13:LMT68. [PMID: 38818369 PMCID: PMC11137781 DOI: 10.2217/lmt-2023-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
Aim: The main purpose of the present study was to investigate the labor market affiliation of ALK+ NSCLC patients in long-term treatment as well as overall survival and incidence/prevalence. Materials & methods: Nationwide retrospective study of all patients with ALK+ NSCLC in Denmark diagnosed between 2012 and 2018. Results: During the study period ALK+ NSCLC patients had a median overall survival of 44.0 months and a 7.8-fold increase in disease prevalence. Six months prior to diagnosis, 81% of ALK+ NSCLC patients ≤60 years of age were employed. At the end of the 18-month follow-up period, 36% were employed. Conclusion: ALK+ NSCLC patients have prolonged survival following diagnosis, but a large fraction of patients lose affiliation with the labor market.
Collapse
Affiliation(s)
| | - Jakob Sidenius Johansen
- Department of Oncology, Herlev & Gentofte University Hospital, DK-2730, Herlev, Denmark
- Present address: Employment with Dept. of Oncology, Herlev & Gentofte University hospital, DK-2730, Herlev, Denmark, Denmark ended during the writing of the article
| | - Edyta Maria Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100, Copenhagen, Denmark
| | - Peter Meldgaard
- Department of Oncology, Aarhus University Hospital, DK-8000, Aarhus, Denmark
| | - Peter Hjorth-Hansen
- Department of Oncology, Aalborg University Hospital, DK-9000, Aalborg, Denmark
| | - Charlotte Kristiansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, DK-7100, Vejle, Denmark
| | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100, Copenhagen, Denmark
| | - Maiken Parm Ulhøi
- Department of Oncology, Aarhus University Hospital, DK-8000, Aarhus, Denmark
| | - Betina Højgaard
- VIVE, Copenhagen, Denmark (The Danish Center for Social Science Research), DK-1052, Copenhagen, Denmark
- Present address: Steno Diabetes Center, DK-2730, Herlev, Denmark
| | - Morten Sall Jensen
- VIVE, Aarhus, Denmark (The Danish Center for Social Science Research), DK-8230, Åbyhøj, Denmark
- Present address: Novo Nordisk, Søborg, DK-2860, Denmark
| | | | | | | |
Collapse
|
120
|
Buyukbayram ME, Hannarici Z, Yilmaz A, Turhan A, Caglar AA, Esdur PC, Bilici M, Tekin SB. Inflammatory parameters in NSCLC with driver mutation. Lung Cancer Manag 2024; 13:LMT66. [PMID: 38818368 PMCID: PMC11137794 DOI: 10.2217/lmt-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 06/01/2024] Open
Abstract
Aim: The tumor microenvironment of NSCLC with driver mutations, such as EGFR, ALK and ROS, is less inflammatory. Materials & methods: This retrospective study included 38 patients with NSCLC driver mutations. The relationship between clinical and inflammatory markers concerning progression-free survival and overall survival was analyzed based on Kaplan-Meier curves. Results: The mean age of the patients was 59.8 ± 11.9. Progression-free survival and overall survival were significantly longer in patients under 65 years of age and with low neutrophil-lymphocyte ratio, low systemic immune-inflammation index and high lymphocyte count (p < 0.05). Conclusion: Unlike tumor biology, peripheral inflammatory parameters, such as neutrophil-lymphocyte ratio, systemic immune-inflammation index and lymphocyte count may be associated with survival in NSCLC patients with driver mutations.
Collapse
Affiliation(s)
- Mehmet Emin Buyukbayram
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| | | | - Ali Yilmaz
- Department of medical Oncology, Health Sciences University Yüksek İhtisas Training and Research Hospital, Bursa, 16350, Turkey
| | - Aykut Turhan
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| | - Alperen Akansel Caglar
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| | - Pınar Coban Esdur
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| | - Mehmet Bilici
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| | - Salim Basol Tekin
- Department of Medical Oncology, Atatürk University Faculty of Medicine, Erzurum, 25100, Turkey
| |
Collapse
|
121
|
Li ZJ, Pat Fong W, Zhang DS, Luo HY, Chen DL, Cai YY, Chen ZG, Duan JL, Huang ZY, Lu YT, Huang XX, Li YH, Wang DS. Exploring ALK fusion in colorectal cancer: a case series and comprehensive analysis. NPJ Precis Oncol 2024; 8:100. [PMID: 38740834 DOI: 10.1038/s41698-024-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion-positive colorectal cancer (CRC) is a rare and chemotherapy-refractory subtype that lacks established and effective treatment strategies. Additionally, the efficacy and safety of ALK inhibitors (ALKi) in CRC remain undetermined. Herein, we examined a series of ALK-positive CRC patients who underwent various lines of ALKi treatment. Notably, we detected an ALK 1196M resistance mutation in a CRC patient who received multiple lines of chemotherapy and ALKi treatment. Importantly, we found that Brigatinib and Lorlatinib demonstrated some efficacy in managing this patient, although the observed effectiveness was not as pronounced as in non-small cell lung cancer cases. Furthermore, based on our preliminary analyses, we surmise that ALK-positive CRC patients are likely to exhibit inner resistance to Cetuximab. Taken together, our findings have important implications for the treatment of ALK-positive CRC patients.
Collapse
Affiliation(s)
- Zi-Jing Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - William Pat Fong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Dong-Liang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Yan-Yu Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Zhi-Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Jian-Li Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Zi-Yao Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Yu-Ting Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Xiao-Xia Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China.
| | - De-Shen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China.
| |
Collapse
|
122
|
Yang TM, Fang YH, Lin CM, Chen MF, Lin CL. Spheroids Generated from Malignant Pleural Effusion as a Tool to Predict the Response of Non-Small Cell Lung Cancer to Treatment. Diagnostics (Basel) 2024; 14:998. [PMID: 38786296 PMCID: PMC11120547 DOI: 10.3390/diagnostics14100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Spheroids generated by tumor cells collected from malignant pleural effusion (MPE) were shown to retain the characteristics of the original tumors. This ex vivo model might be used to predict the response of non-small cell lung cancer (NSCLC) to anticancer treatments. METHODS The characteristics, epidermal growth factor receptor (EGFR) mutation status, and clinical response to EGFR-TKIs treatment of enrolled patients were recorded. The viability of the spheroids generated from MPE of enrolled patients were evaluated by visualization of the formazan product of the MTT assay. RESULTS Spheroids were generated from 14 patients with NSCLC-related MPE. Patients with EGFR L861Q, L858R, or Exon 19 deletion all received EGFR-TKIs, and five of these seven patients responded to treatment. The viability of the spheroids generated from MPE of these five patients who responded to EGFR-TKIs treatment was significantly reduced after gefitinib treatment. On the other hand, gefitinib treatment did not reduce the viability of the spheroids generated from MPE of patients with EGFR wild type, Exon 20 insertion, or patients with sensitive EGFR mutation but did not respond to EGFR-TKIs treatment. CONCLUSION Multicellular spheroids generated from NSCLC-related MPE might be used to predict the response of NSCLC to treatment.
Collapse
Affiliation(s)
- Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (T.-M.Y.)
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333423, Taiwan
| | - Yu-Hung Fang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (T.-M.Y.)
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chieh-Mo Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (T.-M.Y.)
| | - Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333423, Taiwan
| |
Collapse
|
123
|
Gou Q, Gou Q, Gan X, Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci Rep 2024; 14:10317. [PMID: 38705930 PMCID: PMC11070427 DOI: 10.1038/s41598-024-61087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 05/07/2024] Open
Abstract
Lung cancer is still the leading cause of cancer-related mortality. Over the past two decades, the management of non-small cell lung cancer (NSCLC) has undergone a significant revolution. Since the first identification of activating mutations in the epidermal growth factor receptor (EGFR) gene in 2004, several genetic aberrations, such as anaplastic lymphoma kinase rearrangements (ALK), neurotrophic tropomyosin receptor kinase (NTRK) and hepatocyte growth factor receptor (MET), have been found. With the development of gene sequencing technology, the development of targeted drugs for rare mutations, such as multikinase inhibitors, has provided new strategies for treating lung cancer patients with rare mutations. Patients who harbor this type of oncologic driver might acquire a greater survival benefit from the use of targeted therapy than from the use of chemotherapy and immunotherapy. To date, more new agents and regimens can achieve satisfactory results in patients with NSCLC. In this review, we focus on recent advances and highlight the new approval of molecular targeted therapy for NSCLC patients with rare oncologic drivers.
Collapse
Affiliation(s)
- Qitao Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaochuan Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Xie
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
124
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
125
|
Kumar A, Kapoor A, Noronha V, Patil V, Menon N, Singh AK, Joshi A, Janu A, Kaushal RK, Pai T, Chougule A, Shetty O, Prabhash K. Lorlatinib in the second line and beyond for ALK positive lung cancer: real-world data from resource-constrained settings. BJC REPORTS 2024; 2:35. [PMID: 39516655 PMCID: PMC11523971 DOI: 10.1038/s44276-024-00055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND ALK-positive lung cancers are known to have favorable responses with oral tyrosine kinase inhibitors. Lorlatinib is an approved treatment option post first and second-line ALK inhibitors and is now also in first line. We present a retrospective observational study of the safety and efficacy of patients receiving Lorlatinib in second-line and beyond. METHODS We conducted a retrospective observational study of ALK-positive patients who received Lorlatinib post-progression or intolerance to initial therapy at the Medical Oncology department. The patients who were started on Lorlatinib between January 2018 to December 2019 were included. The patients underwent routine blood and radiological evaluation every two to three months. RESULTS A total of 38 patients received Lorlatinib in the specified period. The median age was 48 years (range 23-68), with 53% of patients being male, 37% having comorbidities; the most common being hypertension and diabetes and 79% of patients were of ECOG-PS1. Twenty-two patients (58%) had received two prior TKIs. The most common sites of metastasis before starting Lorlatinib were brain (55%) and bone (53%). All patients except one received prior whole-brain radiotherapy with 4 receiving radiation twice. The median follow-up period was 49 months (95% CI: 46.4-51.6). Eighty-four percent showed disease control with median progression-free survival (PFS) and overall survival (OS) of 16 months (95% CI 5.4-26.6) and 22 months (95% CI 9.9-34.1) respectively. Twelve patients died without documented progression. Five out of twelve with documented progression had brain involvement while six had lung involvement. Twelve out of twenty-four patients who progressed received subsequent chemotherapy. The most common grade 3 and above toxicities were hypercholesterolemia and hypertriglyceridemia. Three (7.8%) patients required dose reduction. CONCLUSION This real-world data confirms the efficacy of Lorlatinib in the second line and beyond with adverse effects matching that of registration studies.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Medical Oncology, Homi Bhabha Cancer Hospital and Research Centre(A Unit of Tata Memorial Centre, Mumbai), Muzaffarpur-, 842001, Bihar, India
| | - Akhil Kapoor
- Department of Medical Oncology, Mahamana Pandit Madan Mohan Malviya Cancer Center and Homi Bhabha Cancer Hospital (A Unit of Tata Memorial Centre, Mumbai), Varanasi, 221005, Uttar Pradesh, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Ajay Kumar Singh
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Amit Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Amit Janu
- Department of Radiology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Rajiv Kumar Kaushal
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Trupti Pai
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Anuradha Chougule
- Department of Molecular Pathology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Omshree Shetty
- Department of Molecular Pathology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, 400012, Maharashtra, India.
| |
Collapse
|
126
|
Leeneman B, Xander NSH, Fiets WE, de Jong WK, Uyl NEM, Wymenga ANM, Reyners AKL, Uyl-de Groot CA. Assessing the clinical benefit of systemic anti-cancer treatments in the Netherlands: The impact of different thresholds for effectiveness. Eur J Cancer 2024; 202:114002. [PMID: 38489860 DOI: 10.1016/j.ejca.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND In the Netherlands, the clinical benefit of systemic anti-cancer treatments (SACTs) is assessed by the Committee for the Evaluation of Oncological Agents (cieBOM). For non-curative SACTs, the assessment is based on the hazard ratio (HR) for progression-free survival and/or overall survival (OS), and the difference in median survival. We evaluated the impact of different thresholds for effectiveness by reassessing the clinical benefit of SACTs. METHODS We reassessed SACTs that were initially assessed by cieBOM between 2015 and 2017. Four scenarios were formulated: replacing an "OR" approach (initial assessment) by an "AND" approach (used in all scenarios), changing the HR threshold from < 0.70 (initial assessment) to < 0.60, changing the threshold for the difference in median survival from > 12 weeks (initial assessment) to > 16 weeks, and including thresholds for OS rates. The outcomes of these scenarios were compared to the outcomes of the initial assessment. RESULTS Reassessments were conducted for 41 treatments. Replacing the "OR" approach by an "AND" approach substantially decreased the number of positive assessments (from 33 to 22), predominantly affecting immunotherapies. This number further decreased (to 21 and 19, respectively) in case more restrictive thresholds for the HR and difference in median survival were used. Including thresholds for OS rates slightly mitigated the impact of applying an "AND" approach. CONCLUSIONS The scenario-specific thresholds had a substantial impact; the number of negative assessments more than doubled. Since this was not limited to treatments with marginal survival benefits, understanding the potential challenges that may arise from applying more restrictive thresholds is essential.
Collapse
Affiliation(s)
- Brenda Leeneman
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands.
| | - Nicolas S H Xander
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - W Edward Fiets
- Department of Medical Oncology, Medical Center Leeuwarden, Henri Dunantweg 2, 8934 AD Leeuwarden, the Netherlands
| | - Wouter K de Jong
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Nathalie E M Uyl
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - A N Machteld Wymenga
- Department of Medical Oncology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede the Netherlands
| | - An K L Reyners
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Carin A Uyl-de Groot
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| |
Collapse
|
127
|
Ishida M, Iwasaku M, Doi T, Ishikawa T, Tachibana Y, Sawada R, Ogura Y, Kawachi H, Katayama Y, Nishioka N, Morimoto K, Tokuda S, Yamada T, Takayama K. Nationwide data from comprehensive genomic profiling assays for detecting driver oncogenes in non-small cell lung cancer. Cancer Sci 2024; 115:1656-1664. [PMID: 38450844 DOI: 10.1111/cas.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.
Collapse
Affiliation(s)
- Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Doi
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuri Ogura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
128
|
Liu Y, Ouyang L, Jiang S, Liang L, Chen Y, Mao C, Jiang Y, Cong L. PPP2R1A silencing suppresses LUAD progression by sensitizing cells to nelfinavir-induced apoptosis and pyroptosis. Cancer Cell Int 2024; 24:145. [PMID: 38654331 DOI: 10.1186/s12935-024-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Lung adenocarcinoma is a major public health problem with the low 5-year survival rate (15%) among cancers. Aberrant alterations of meiotic genes, which have gained increased attention recently, might contribute to elevated tumor risks. However, systematic and comprehensive studies based on the relationship between meiotic genes and LUAD recurrence and treatment response are still lacking. In this manuscript, we first confirmed that the meiosis related prognostic model (MRPM) was strongly related to LUAD progression via LASSO-Cox regression analyses. Furthermore, we identified the role of PPP2R1A in LUAD, which showed more contributions to LUAD process compared with other meiotic genes in our prognostic model. Additionally, repression of PPP2R1A enhances cellular susceptibility to nelfinavir-induced apoptosis and pyroptosis. Collectively, our findings indicated that meiosis-related genes might be therapeutic targets in LUAD and provided crucial guidelines for LUAD clinical intervention.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lianlian Ouyang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China
| | - Yuanbing Chen
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
129
|
Miao L, Wu D, Zhao H, Xie A. TIMM17A overexpression in lung adenocarcinoma and its association with prognosis. Sci Rep 2024; 14:8840. [PMID: 38632467 PMCID: PMC11024209 DOI: 10.1038/s41598-024-59526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Lung adenocarcinoma (LUAD), a leading cause of cancer-related mortality worldwide, demands a deeper understanding of its molecular mechanisms and the identification of reliable biomarkers for better diagnosis and targeted therapy. Leveraging data from the Cancer Genome Atlas (TCGA), the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA), we investigated the mRNA and protein expression profiles of TIMM17A and assessed its prognostic significance through Kaplan-Meier survival curves and Cox regression analysis. Through Gene Set Enrichment Analysis, we explored the regulatory mechanisms of TIMM17A in LUAD progression and demonstrated its role in modulating the proliferative capacity of A549 cells, a type of LUAD cell, via in vitro experiments. Our results indicate that TIMM17A is significantly upregulated in LUAD tissues, correlating with clinical staging, lymph node metastasis, overall survival, and progression-free survival, thereby establishing it as a critical independent prognostic factor. The construction of a nomogram model further enhances our ability to predict patient outcomes. Knockdown of TIMM17A inhibited the growth of LUAD cells. The potential of TIMM17A as a biomarker and therapeutic target for LUAD presents a promising pathway for improving patient diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Lili Miao
- Department of Respiration, YiZheng People's Hospital, YiZheng, Jiangsu, China
| | - Dejun Wu
- Department of Respiration, YiZheng People's Hospital, YiZheng, Jiangsu, China
| | - Hongyu Zhao
- Department of Respiration, YiZheng People's Hospital, YiZheng, Jiangsu, China
| | - Aiwei Xie
- Department of Nephrology, YiZheng People's Hospital, YiZheng, Jiangsu, China.
| |
Collapse
|
130
|
Dai Z, Xu J, Chang F, Zhou W, Ren T, Qiu J, Lu Y, Lu Y. The cost-effectiveness of iruplinalkib versus alectinib in anaplastic lymphoma kinase-positive crizotinib-resistant advanced non-small-cell lung cancer patients in China. Front Public Health 2024; 12:1333487. [PMID: 38699428 PMCID: PMC11064164 DOI: 10.3389/fpubh.2024.1333487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Background Iruplinalkib is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) with efficacy in patients with ALK-positive crizotinib-resistant advanced non-small cell lung cancer (NSCLC), which is independently developed by a Chinese pharmaceutical company. This study examined the cost-effectiveness of iruplinalkib versus alectinib in the Chinese healthcare setting. Methods A partitioned survival model was developed to project the economic and health outcomes. Efficacy was derived using unanchored matching-adjusted indirect comparison (MAIC). Cost and utility values were obtained from the literature and experts' opinions. Deterministic and probabilistic sensitivity analyses (PSA) were carried out to evaluate the model's robustness. Results Treatment with iruplinalkib versus alectinib resulted in a gain of 0.843 quality-adjusted life years (QALYs) with incremental costs of $20,493.27, resulting in an incremental cost-effectiveness ratio (ICER) of $24,313.95/QALY. Parameters related to relative efficacy and drug costs were the main drivers of the model outcomes. From the PSA, iruplinalkib had a 90% probability of being cost-effective at a willingness-to-pay threshold of $37,863.56/QALY. Conclusion Compared to alectinib, iruplinalkib is a cost-effective therapy for patients with ALK-positive crizotinib-resistant advanced NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Lu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Yuqiong Lu
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
131
|
Zhang P, Xu J, Wu Q, Qian J, Wang S. Development of crizotinib-associated renal cyst in a non-small cell lung cancer patient with ALK fusion: a case report and review of the literature. Diagn Pathol 2024; 19:58. [PMID: 38616252 PMCID: PMC11016210 DOI: 10.1186/s13000-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Crizotinib, an oral first-generation tyrosine kinase inhibitor (TKI), is superior to systemic chemotherapy for the treatment of non-small cell lung cancer (NSCLC) with positive rearrangement of anaplastic lymphoma kinase (ALK). However, an increased incidence of renal and hepatic cysts has been reported in the patients on crizotinib treatment. CASE PRESENTATION Here, we describe a case of a 71-year-old Chinese women developed multiple cystic lesions in kidney and liver during crizotinib treatment for the primary and metastatic NSCLC. The renal and hepatic cysts were noted by CT scan 3 months after crizotinib treatment, which were spontaneously and significantly regressed after stopping crizotinib. CONCLUSIONS Based on literature review and our experience in this case report, we concluded that crizotinib-associated renal cyst (CARCs) has features of malignancy and abscess in radiographic imaging, and thus, pathological confirmation is necessary to avoid inappropriate treatment decision. In addition, to benefit the patients with progress-free survival (PFS), switching from crizotinib to alectinib is recommended for the treatment of NSCLC patients who developed CARCs.
Collapse
Affiliation(s)
- Peng Zhang
- Six Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - JiaHua Xu
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Wu
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianxin Qian
- Seven Departments of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Song Wang
- Department of Radiology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
132
|
Parera Roig M, Colomé DC, Colomer GB, Sardo EG, Tournour MA, Fernández SG, Ominetti AI, Juvanteny EP, Polo JLM, Jobal DB, Espejo-Herrera N. Evolution of Diagnoses, Survival, and Costs of Oncological Medical Treatment for Non-Small-Cell Lung Cancer over 20 Years in Osona, Catalonia. Curr Oncol 2024; 31:2145-2157. [PMID: 38668062 PMCID: PMC11049066 DOI: 10.3390/curroncol31040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) has experienced several diagnostic and therapeutic changes over the past two decades. However, there are few studies conducted with real-world data regarding the evolution of the cost of these new drugs and the corresponding changes in the survival of these patients. We collected data on patients diagnosed with NSCLC from the tumor registry of the University Hospital of Vic from 2002 to 2021. We analyzed the epidemiological and pathological characteristics of these patients, the diverse oncological treatments administered, and the survival outcomes extending at least 18 months post-diagnosis. We also collected data on pharmacological costs, aligning them with the treatments received by each patient to determine the cost associated with individualized treatments. Our study included 905 patients diagnosed with NSCLC. We observed a dynamic shift in histopathological subtypes from squamous carcinoma in the initial years to adenocarcinoma. Regarding the treatment approach, the use of chemotherapy declined over time, replaced by immunotherapy, while molecular therapy showed relative stability. An increase in survival at 18 months after diagnosis was observed in patients with advanced stages over the most recent years of this study, along with the advent of immunotherapy. Mean treatment costs per patient ranged from EUR 1413.16 to EUR 22,029.87 and reached a peak of EUR 48,283.80 in 2017 after the advent of immunotherapy. This retrospective study, based on real-world data, documents the evolution of pathological characteristics, survival rates, and medical treatment costs for NSCLC over the last two decades. After the introduction of immunotherapy, patients in advanced stages showed an improvement in survival at 18 months, coupled with an increase in treatment costs.
Collapse
Affiliation(s)
- Marta Parera Roig
- Oncohematology Unit, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain; (E.G.S.); (M.A.T.); (S.G.F.); (A.I.O.)
- School of Medicine, University of Vic-Central University of Catalonia (UVIC-UCC), 08500 Vic, Spain; (D.B.J.); (N.E.-H.)
- Doctoral College, Medicine and Biomedical Sciences, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Mechanisms of Disease Laboratory Research Group (MoD Lab), IRIS-CC, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - David Compte Colomé
- Planning and Information Systems Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
| | - Gemma Basagaña Colomer
- Pharmacy Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
| | - Emilia Gabriela Sardo
- Oncohematology Unit, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain; (E.G.S.); (M.A.T.); (S.G.F.); (A.I.O.)
- School of Medicine, University of Vic-Central University of Catalonia (UVIC-UCC), 08500 Vic, Spain; (D.B.J.); (N.E.-H.)
| | - Mauricio Alejandro Tournour
- Oncohematology Unit, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain; (E.G.S.); (M.A.T.); (S.G.F.); (A.I.O.)
| | - Silvia Griñó Fernández
- Oncohematology Unit, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain; (E.G.S.); (M.A.T.); (S.G.F.); (A.I.O.)
| | - Arturo Ivan Ominetti
- Oncohematology Unit, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain; (E.G.S.); (M.A.T.); (S.G.F.); (A.I.O.)
| | - Emma Puigoriol Juvanteny
- Epidemiology Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
- Multidisciplinary Inflammation Research Group (MIRG), IRIS-CC, 08500 Vic, Spain
| | - José Luis Molinero Polo
- Pathology Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
| | - Daniel Badia Jobal
- School of Medicine, University of Vic-Central University of Catalonia (UVIC-UCC), 08500 Vic, Spain; (D.B.J.); (N.E.-H.)
- Pathology Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
| | - Nadia Espejo-Herrera
- School of Medicine, University of Vic-Central University of Catalonia (UVIC-UCC), 08500 Vic, Spain; (D.B.J.); (N.E.-H.)
- Multidisciplinary Inflammation Research Group (MIRG), IRIS-CC, 08500 Vic, Spain
- Pathology Department, Consorci Hospitalari de Vic (University Hospital of Vic), 08500 Vic, Spain;
| |
Collapse
|
133
|
Testa U, Castelli G, Pelosi E. Alk-rearranged lung adenocarcinoma: From molecular genetics to therapeutic targeting. TUMORI JOURNAL 2024; 110:88-95. [PMID: 37772924 PMCID: PMC11005315 DOI: 10.1177/03008916231202149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Anaplastic Lymphoma Kinase (ALK) is a potent oncogenic driver of lung adenocarcinoma (LUAD). ALK is constitutively activated by gene fusion events between the ALK and other gene fusion partners in about 2-3% of LUADs, characterized by few other gene alterations. ALK-fusions are a druggable target through potent pharmacological inhibitors of tyrosine kinase activity. Thus, several ALK-TKIs (Tyrosine Kinase Inhibitors) of first-, second- and third-generation have been developed that improved the outcomes of ALK-rearranged LUADs when used as first- or second-line agents. However, resistance mechanisms greatly limit the durability of the therapeutic effects elicited by these TKIs. The molecular mechanisms responsible for these resistance mechanisms have been in part elucidated, but overcoming acquired resistance to ALK-derived therapy remains a great challenge. Some new therapeutic strategies under investigation aim to induce long-term remission in ALK-fusion positive LUADs.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Italy
| | | | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Italy
| |
Collapse
|
134
|
Takahara Y, Abe R, Sumito N, Tanaka T, Ishige Y, Shionoya I, Yamamura K, Nishiki K, Nojiri M, Kato R, Shinomiya S, Oikawa T. Disease control in patients with non-small cell lung cancer using pemetrexed: Investigating the best treatment strategy. Thorac Cancer 2024; 15:987-993. [PMID: 38485287 PMCID: PMC11045330 DOI: 10.1111/1759-7714.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pemetrexed (PEM) is the primary chemotherapy for non-small cell lung cancer (NSCLC), showing potential for long-term disease stability in certain cases. However, studies examining disease control with PEM therapy are lacking. This study aimed to pinpoint clinical traits in patients with NSCLC responding well to PEM therapy, predict factors influencing disease control, and suggest optimal treatment approaches. METHODS A retrospective analysis of patients with NSCLC treated with PEM was performed to compare patients who achieved disease control after treatment with those who did not. RESULTS Of 73 patients, 56 (76.7%) achieved disease control with PEM therapy. In the disease control group, a significantly higher proportion of patients exhibited good performance status (PS) and received PEM doses without reduction after the second cycle. Multivariate analysis identified bevacizumab (Bev) noncompliance, PEM dose reduction, and thyroid transcription factor-1 (TTF-1) negativity as significant independent risk factors for disease progression during PEM therapy. Additionally, overall survival was significantly longer in the disease control group (p < 0.001). CONCLUSIONS Our findings indicated that maintaining the dose of PEM after the second treatment cycle in patients with NSCLC, along with concurrent use of Bev and the presence of TTF-1 positivity, could enhance disease control rates and extend survival.
Collapse
Affiliation(s)
- Yutaka Takahara
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Ryudai Abe
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Nagae Sumito
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Takuya Tanaka
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Yoko Ishige
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Ikuyo Shionoya
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Kouichi Yamamura
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Kazuaki Nishiki
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Masafumi Nojiri
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Ryo Kato
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Shohei Shinomiya
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| | - Taku Oikawa
- Department of Respiratory MedicineKanazawa Medical UniversityKahoku‐gunJapan
| |
Collapse
|
135
|
Bou-Samra P, Singhal S. Precision Oncology in Lung Cancer Surgery. Surg Oncol Clin N Am 2024; 33:311-320. [PMID: 38401912 DOI: 10.1016/j.soc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Precision in lung cancer surgery is our ability to use the most cutting edge and up to date information to provide personalized and targeted surgical care to our patients. It aims to tailor patient care to patient and tumor characteristics and susceptibilities as well as to optimize the ways treatments are administered. This may include specific perioperative medical treatment, changing operative techniques to more minimally invasive ones if the situation permits, performing sub-anatomical surgeries when possible, and using innovative tumor visualization methods to enhance detection of previously occult disease to ultimately decrease the extent of the planned resection.
Collapse
Affiliation(s)
- Patrick Bou-Samra
- The University of Pennsylvania - Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Sunil Singhal
- Department of Thoracic Surgery, Perelman School of Medicine, University of Pennsylvania, 14th Floor PCAM South Tower, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
136
|
Zheng J, Wang T, Yang Y, Huang J, Feng J, Zhuang W, Chen J, Zhao J, Zhong W, Zhao Y, Zhang Y, Song Y, Hu Y, Yu Z, Gong Y, Chen Y, Ye F, Zhang S, Cao L, Fan Y, Wu G, Guo Y, Zhou C, Ma K, Fang J, Feng W, Liu Y, Zheng Z, Li G, Wang H, Cang S, Wu N, Song W, Liu X, Zhao S, Ding L, Selvaggi G, Wang Y, Xiao S, Wang Q, Shen Z, Zhou J, Zhou J, Zhang L. Updated overall survival and circulating tumor DNA analysis of ensartinib for crizotinib-refractory ALK-positive NSCLC from a phase II study. Cancer Commun (Lond) 2024; 44:455-468. [PMID: 38421881 PMCID: PMC11024683 DOI: 10.1002/cac2.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/13/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The initial phase II stuty (NCT03215693) demonstrated that ensartinib has shown clinical activity in patients with advanced crizotinib-refractory, anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Herein, we reported the updated data on overall survival (OS) and molecular profiling from the initial phase II study. METHODS In this study, 180 patients received 225 mg of ensartinib orally once daily until disease progression, death or withdrawal. OS was estimated by Kaplan‒Meier methods with two-sided 95% confidence intervals (CIs). Next-generation sequencing was employed to explore prognostic biomarkers based on plasma samples collected at baseline and after initiating ensartinib. Circulating tumor DNA (ctDNA) was detected to dynamically monitor the genomic alternations during treatment and indicate the existence of molecular residual disease, facilitating improvement of clinical management. RESULTS At the data cut-off date (August 31, 2022), with a median follow-up time of 53.2 months, 97 of 180 (53.9%) patients had died. The median OS was 42.8 months (95% CI: 29.3-53.2 months). A total of 333 plasma samples from 168 patients were included for ctDNA analysis. An inferior OS correlated significantly with baseline ALK or tumor protein 53 (TP53) mutation. In addition, patients with concurrent TP53 mutations had shorter OS than those without concurrent TP53 mutations. High ctDNA levels evaluated by variant allele frequency (VAF) and haploid genome equivalents per milliliter of plasma (hGE/mL) at baseline were associated with poor OS. Additionally, patients with ctDNA clearance at 6 weeks and slow ascent growth had dramatically longer OS than those with ctDNA residual and fast ascent growth, respectively. Furthermore, patients who had a lower tumor burden, as evaluated by the diameter of target lesions, had a longer OS. Multivariate Cox regression analysis further uncovered the independent prognostic values of bone metastases, higher hGE, and elevated ALK mutation abundance at 6 weeks. CONCLUSION Ensartinib led to a favorable OS in patients with advanced, crizotinib-resistant, and ALK-positive NSCLC. Quantification of ctDNA levels also provided valuable prognostic information for risk stratification.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Tao Wang
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Yunpeng Yang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Jie Huang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Jifeng Feng
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Wu Zhuang
- Department of Thoracic OncologyFujian Provincial Cancer HospitalFujian Medical University Cancer HospitalFuzhouFujianP. R. China
| | - Jianhua Chen
- Department of Medical Oncology‐ChestHunan Cancer HospitalChangshaHunanP. R. China
| | - Jun Zhao
- Department of Thoracic OncologyBeijing Cancer HospitalBeijingP. R. China
| | - Wei Zhong
- Department of Pulmonary MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Yanqiu Zhao
- Respiratory Department of Internal MedicineHenan Provincial Cancer HospitalAffiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Yiping Zhang
- Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouZhejiangP. R. China
| | - Yong Song
- Division of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingJiangsuP. R. China
| | - Yi Hu
- Department of OncologyChinese People's Liberation Army (PLA) General HospitalBeijingP. R. China
| | - Zhuang Yu
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoShandongP. R. China
| | - Youling Gong
- Department of Thoracic OncologyCancer Center, West China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yuan Chen
- Department of OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Feng Ye
- Department of Medical OncologyCancer HospitalThe First Affiliated Hospital of Xiamen UniversitySchool of Medicine, Xiamen University, Teaching Hospital of Fujian Medical UniversityXiamenFujianP. R. China
| | - Shucai Zhang
- Department of Medical OncologyBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingP. R. China
| | - Lejie Cao
- Respiratory MedicineThe First Affiliated Hospital of the University of Science and Technology of ChinaAnhui Provincial HospitalHefeiAnhuiP. R. China
| | - Yun Fan
- Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouZhejiangP. R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Yubiao Guo
- Pulmonary & Critical Care Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Chengzhi Zhou
- Respiratory Medicine DepartmentState Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin UniversityChangchunJilinP. R. China
| | - Jian Fang
- Department of Thoracic OncologyBeijing Cancer HospitalBeijingP. R. China
| | - Weineng Feng
- Department of Head and Neck and Thoracic Medical OncologyThe First People's Hospital of FoshanFoshanGuangdongP. R. China
| | - Yunpeng Liu
- Oncology MedicineThe First Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhendong Zheng
- Oncology DepartmentGeneral Hospital of Northern Theater CommandShenyangLiaoningP. R. China
| | - Gaofeng Li
- 2nd Department of Thoracic SurgeryYunnan Cancer HospitalKunmingYunnanP. R. China
| | - Huijie Wang
- Medical OncologyFudan University Shanghai Cancer CenterShanghaiShanghaiP. R. China
| | - Shundong Cang
- Medical OncologyHenan Province Peoples HospitalZhengzhouHenanP. R. China
| | - Ning Wu
- PET‐CT Center & Department of Diagnostic RadiologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Wei Song
- Department of RadiologyPeking Union Medical College HospitalChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Xiaoqing Liu
- Department of Pulmonary OncologyThe Fifth Medical Centre Chinese PLA General HospitalBeijingP. R. China
| | - Shijun Zhao
- Department of Diagnostic RadiologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingP. R. China
| | - Lieming Ding
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | | | - Yang Wang
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | - Shanshan Xiao
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Qian Wang
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Zhilin Shen
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | - Jianya Zhou
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Jianying Zhou
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Li Zhang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| |
Collapse
|
137
|
Wallace ND, Alexander M, Xie J, Ball D, Hegi-Johnson F, Plumridge N, Siva S, Shaw M, Harden S, John T, Solomon B, Officer A, MacManus M. The impact of pre-treatment smoking status on survival after chemoradiotherapy for locally advanced non-small-cell lung cancer. Lung Cancer 2024; 190:107531. [PMID: 38513538 DOI: 10.1016/j.lungcan.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Smoking is a risk factor for the development of lung cancer and reduces life expectancy within the general population. Retrospective studies suggest that non-smokers have better outcomes after treatment for lung cancer. We used a prospective database to investigate relationships between pre-treatment smoking status and survival for a cohort of patients with stage III non-small-cell lung cancer (NSCLC) treated with curative-intent concurrent chemoradiotherapy (CRT). METHODS All patients treated with CRT for stage III NSCLC at a major metropolitan cancer centre were prospectively registered to a database. A detailed smoking history was routinely obtained at baseline. Kaplan-Meier statistics were used to assess overall survival and progression-free survival in never versus former versus current smokers. RESULTS Median overall survival for 265 eligible patients was 2.21 years (95 % Confidence Interval 1.78, 2.84). It was 5.5 years (95 % CI 2.1, not reached) for 25 never-smokers versus 1.9 years (95 % CI 1.5, 2.7) for 182 former smokers and 2.2 years (95 % CI 1.3, 2.7) for 58 current smokers. Hazard ratio for death was 2.43 (95 % CI 1.32-4.50) for former smokers and 2.75 (95 % CI 1.40, 5.40) for current smokers, p = 0.006. Actionable tumour mutations (EGFR, ALK, ROS1) were present in more never smokers (14/25) than former (9/182) or current (3/58) smokers. TKI use was also higher in never smokers but this was not significantly associated with superior survival (Hazard ratio 0.71, 95 % CI 0.41, 1.26). CONCLUSIONS Never smokers have substantially better overall survival than former or current smokers after undergoing CRT for NSCLC.
Collapse
Affiliation(s)
- Neil D Wallace
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Marliese Alexander
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jing Xie
- Centre for Biostatistics and Clinical Trials (BaCT), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Nikki Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Mark Shaw
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Susan Harden
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tom John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ben Solomon
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ann Officer
- Research Project Coordinator, Peter MacCallum Cancer Centre, Melbourne Australia
| | - Michael MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
138
|
Moharana L, Panda SS, Devaraj S, Biswas G, Subudhi GC, Parida PK, Mishra SK, Pattnaik J, Mohanty S, Karunanidhi S, Singuluri SL, Saju SV, Rathnam KK, Sehrawat A, Mudgal S, Cyriac SL, Philips A, Jose AK, Ganesan P. Real-World Data on Treatment Outcome of ALK-Positive Non-Small Cell Lung Cancer from an Indian Multicentric Cancer Registry. South Asian J Cancer 2024; 13:114-120. [PMID: 38919656 PMCID: PMC11196141 DOI: 10.1055/s-0043-1776290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Lalatendu Moharana The Anaplastic lymphoma kinase inhibitors (ALKi) represent the standard of care for metastatic non-small cell lung cancer (NSCLC) patients with EML4-ALK rearrangements. Various ALKi agents are available; however, not all eligible patients receive treatment with them due to various reasons. Given the limited real-world data available in our country, we aimed to assess treatment outcomes through a multicenter collaboration. This retrospective, multi-institutional study was conducted under the Network of Oncology Clinical Trials India and included a total of 67 ALK-positive metastatic lung cancer patients from 10 institutes across India, with a median follow-up of 23 months. In the first line setting, the objective response rate (ORR) with ALKi was 63.6% (crizotinib: 60.7%, ceritinib: 70%, alectinib: 66.6%, p = 0.508), while with chemotherapy, it was 26.1%. The median progression-free survival (mPFS) for the first line ALKi group was significantly higher than that for chemotherapy (19 vs. 9 months, p = 0.00, hazard ratio [HR] = 0.30, 95% confidence interval [CI]: 0.17-0.54). The mPFS for crizotinib, alectinib, and ceritinib was 17, 22, and 19 months, respectively ( p = 0.48). Patients who received ALKi upfront or after 1 to 3 cycles of chemotherapy or after 4 or more cycles of chemotherapy had mPFS of 16, 22, and 23 months, respectively ( p = 0.47). ALKi showed superior mPFS compared to chemotherapy in the second line (14 vs. 5 months; p = 0.002) and the third line (20 vs. 4 months; p = 0.009). The median overall survival (OS) was significantly better in patients who received ALKi in any line of therapy (44 vs. 14 months, p < 0.001, HR = 0.10, 95% CI: 0.04-0.23). Brain progression was higher among those who did not receive ALKi (69.2 vs. 31.5%). In conclusion, the use of ALKi as first line treatment for ALK-positive metastatic NSCLC patients resulted in improved PFS. PFS and ORR did not significantly differ between patients who received ALKi upfront or after initiating chemotherapy. Notably, patients who received ALKi in second or later lines demonstrated significantly better outcomes compared to those receiving chemotherapy. The use of ALKi in any line of therapy was associated with significantly prolonged OS.
Collapse
Affiliation(s)
- Lalatendu Moharana
- Department of Medical Oncology, The Institute of Medical Sciences and SUM Hospital, Bhubaneswar, Odisha, India
| | - Soumya Surath Panda
- Department of Medical Oncology, The Institute of Medical Sciences and SUM Hospital, Bhubaneswar, Odisha, India
| | - Suma Devaraj
- Department of Medical Oncology, The Institute of Medical Sciences and SUM Hospital, Bhubaneswar, Odisha, India
| | - Ghanashyam Biswas
- Department of Medical Oncology, Sparsh Hospitals & Critical Care, Bhubaneswar, Odisha, India
| | - Ganesh Chandra Subudhi
- Department of Medical Oncology, Sparsh Hospitals & Critical Care, Bhubaneswar, Odisha, India
| | - Prasant Kumar Parida
- Department of Medical Oncology, Acharya Harihar Post Graduate Institute of Cancer, Cuttack, Odisha, India
| | - Sourav Kumar Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Jogamaya Pattnaik
- Department of Medical Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
- Department of Medical Oncology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sambit Mohanty
- Department of Pathology, Advanced Medicare & Research Institute, Bhubaneswar, Odisha, India
| | - Sukanya Karunanidhi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Sandhya Lakshmi Singuluri
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - S. V. Saju
- Department of Haematology and Medical Oncology, Meenakshi Mission Hospital and Research Centre, Madurai, Tamil Nadu, India
| | - Krishna Kumar Rathnam
- Department of Haematology and Medical Oncology, Meenakshi Mission Hospital and Research Centre, Madurai, Tamil Nadu, India
| | - Amit Sehrawat
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shikha Mudgal
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sunu Lazar Cyriac
- Department of Medical Oncology, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| | - Ashwin Philips
- Christian Medical College Hospital, Ludhiana, Punjab, India
| | - Anil Kumar Jose
- Department of Medical Oncology, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| | - Prasant Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| |
Collapse
|
139
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
140
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, Herrera A, Ivanova E, Cross M, Bossowski JP, Ding H, Hayashi M, Rajalingam S, Karakousi T, Sayin VI, Khanna KM, Wong KK, Wild R, Tsirigos A, Poirier JT, Rudin CM, Davidson SM, Koralov SB, Papagiannakopoulos T. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. SCIENCE ADVANCES 2024; 10:eadm9859. [PMID: 38536921 PMCID: PMC10971495 DOI: 10.1126/sciadv.adm9859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, NY 10016, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah E. LeBoeuf
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, New York University Langone Health, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Connie New
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenna L. E. Blum
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shih Ming Huang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian Bahamon
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Warren L. Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Burcu Karadal-Ferrena
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ellie Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cross
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jozef P. Bossowski
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hongyu Ding
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahith Rajalingam
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Triantafyllia Karakousi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Volkan I. Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41345 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Kamal M. Khanna
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Robert Wild
- Dracen Pharmaceuticals Inc., San Diego, CA 92121, USA
| | - Aristotelis Tsirigos
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10655, USA
| | - Shawn M. Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
141
|
Gálffy G, Morócz É, Korompay R, Hécz R, Bujdosó R, Puskás R, Lovas T, Gáspár E, Yahya K, Király P, Lohinai Z. Targeted therapeutic options in early and metastatic NSCLC-overview. Pathol Oncol Res 2024; 30:1611715. [PMID: 38605928 PMCID: PMC11006988 DOI: 10.3389/pore.2024.1611715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.
Collapse
|
142
|
Wu F, Rittberg R, Lim K, Ho C. Treating anaplastic lymphoma kinase (ALK) fusion-driven metastatic non-small cell lung cancer (NSCLC) with alectinib through pregnancy. BMJ Case Rep 2024; 17:e255575. [PMID: 38531551 PMCID: PMC10966728 DOI: 10.1136/bcr-2023-255575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Management of cancer during pregnancy requires careful consideration of risks and benefits from maternal and fetal perspectives. For advanced lung adenocarcinomas, with no targetable driver mutations, there is evidence-based guidance on the use of carboplatin-paclitaxel chemotherapy after first trimester. In contrast, for epidermal growth factor receptor (EGFR)-mutated or anaplastic lymphoma kinase (ALK)-rearranged metastatic lung adenocarcinomas, there is a paucity of clinical data on the safety of EGFR and ALK tyrosine kinase inhibitors to mother and fetus for official guidelines to recommend the use of these otherwise-first-line therapies in pregnancy. Considering this knowledge gap, we present a case of a young gravida 1 para 0 (G1P0) woman who continued alectinib 300 mg oral two times per day for ALK-rearranged metastatic lung adenocarcinoma throughout all 36 weeks of her pregnancy and delivered a healthy baby at term via caesarean section (C-section).
Collapse
Affiliation(s)
- Florence Wu
- Medical Oncology, BC Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada
| | - Rebekah Rittberg
- Medical Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Kenneth Lim
- Maternal Fetal Medicine, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Cheryl Ho
- Medical Oncology, BC Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada
- Medical Oncology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
143
|
Rathbone M, O’Hagan C, Wong H, Khan A, Cook T, Rose S, Heseltine J, Escriu C. Intracranial Efficacy of Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel in Real-World Patients with Non-Small-Cell Lung Cancer and EGFR or ALK Alterations. Cancers (Basel) 2024; 16:1249. [PMID: 38610927 PMCID: PMC11011096 DOI: 10.3390/cancers16071249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Contrary to Pemetrexed-containing chemo-immunotherapy studies, Atezolizumab, Bevacizumab, Carboplatin, and Paclitaxel (ABCP) treatment has consistently shown clinical benefit in prospective studies in patients with lung cancer and actionable mutations, where intracranial metastases are common. Here, we aimed to describe the real-life population of patients fit to receive ABCP after targeted therapy and quantify its clinical effect in patients with brain metastases. Patients treated in Cheshire and Merseyside between 2019 and 2022 were identified. Data were collected retrospectively. A total of 34 patients with actionable EGFR or ALK alterations had treatment with a median age of 59 years (range 32-77). The disease control rate was 100% in patients with PDL1 ≥ 1% (n = 10). In total, 19 patients (56%) had brain metastases before starting ABCP, 17 (50%) had untreated CNS disease, and 4 (22%) had PDL1 ≥ 1%. The median time to symptom improvement was 12.5 days (range 4-21 days), with 74% intracranial disease control rates and 89.5% synchronous intracranial (IC) and extracranial (EC) responses. IC median Progression Free Survival (mPFS) was 6.48 months, EC mPFS was 10.75 months, and median Overall Survival 11.47 months. ABCP in real-life patients with brain metastases (treated or untreated) was feasible and showed similar efficacy to that described in patients without actionable mutations treated with upfront chemo-immunotherapy.
Collapse
Affiliation(s)
- Marcus Rathbone
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Conor O’Hagan
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
| | - Helen Wong
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Adeel Khan
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Timothy Cook
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Sarah Rose
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Jonathan Heseltine
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| | - Carles Escriu
- School of Medicine, University of Liverpool, Liverpool L69 3BX, UK; (M.R.); (C.O.)
- The Clatterbridge Cancer Centre, Liverpool L7 8YA, UK; (H.W.); (A.K.); (T.C.); (S.R.)
| |
Collapse
|
144
|
Zhu Y, Dai Z. HSP90: A promising target for NSCLC treatments. Eur J Pharmacol 2024; 967:176387. [PMID: 38311278 DOI: 10.1016/j.ejphar.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The emergence of targeted therapies and immunotherapies has improved the overall survival of patients with nonsmall cell lung cancer (NSCLC), but the 5-year survival rate remains low. New drugs are needed to overcome this dilemma. Moreover, the significant correlation between various client proteins of heat-shock protein (HSP) 90 and tumor occurrence, progression, and drug resistance suggests that HSP90 is a potential therapeutic target for NSCLC. However, the outcomes of clinical trials for HSP90 inhibitors have been disappointing, indicating significant toxicity of these drugs and that further screening of the beneficiary population is required. NSCLC patients with oncogenic-driven gene mutations or those at advanced stages who are resistant to multi-line treatments may benefit from HSP90 inhibitors. Enhancing the therapeutic efficacy and reducing the toxicity of HSP90 inhibitors can be achieved via the optimization of their drug structure, using them in combination therapies with low-dose HSP90 inhibitors and other drugs, and via targeted administration to tumor lesions. Here, we provide a review of the recent research on the role of HSP90 in NSCLC and summarize relevant studies of HSP90 inhibitors in NSCLC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China
| | - Zhaoxia Dai
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning Province, China.
| |
Collapse
|
145
|
Barr T, Ma S, Li Z, Yu J. Recent advances and remaining challenges in lung cancer therapy. Chin Med J (Engl) 2024; 137:533-546. [PMID: 38321811 DOI: 10.1097/cm9.0000000000002991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 02/08/2024] Open
Abstract
ABSTRACT Lung cancer remains the most common cause of cancer death. Given the continued research into new drugs and combination therapies, outcomes in lung cancer have been improved, and clinical benefits have been expanded to a broader patient population. However, the overall cure and survival rates for lung cancer patients remain low, especially in metastatic cases. Among the available lung cancer treatment options, such as surgery, radiation therapy, chemotherapy, targeted therapies, and alternative therapies, immunotherapy has shown to be the most promising. The exponential progress in immuno-oncology research and recent advancements made in the field of immunotherapy will further increase the survival and quality of life for lung cancer patients. Substantial progress has been made in targeted therapies using tyrosine kinase inhibitors and monoclonal antibody immune checkpoint inhibitors with many US Food And Drug Administration (FDA)-approved drugs targeting the programmed cell death ligand-1 protein (e.g., durvalumab, atezolizumab), the programmed cell death-1 receptor (e.g., nivolumab, pembrolizumab), and cytotoxic T-lymphocyte-associated antigen 4 (e.g., tremelimumab, ipilimumab). Cytokines, cancer vaccines, adoptive T cell therapies, and Natural killer cell mono- and combinational therapies are rapidly being studied, yet to date, there are currently none that are FDA-approved for the treatment of lung cancer. In this review, we discuss the current lung cancer therapies with an emphasis on immunotherapy, including the challenges for future research and clinical applications.
Collapse
Affiliation(s)
- Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, California 91010, USA
| | - Zhixin Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, California 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, California 91010, USA
| |
Collapse
|
146
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
147
|
La’ah AS, Chiou SH. Cutting-Edge Therapies for Lung Cancer. Cells 2024; 13:436. [PMID: 38474400 PMCID: PMC10930724 DOI: 10.3390/cells13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer remains a formidable global health challenge that necessitates inventive strategies to improve its therapeutic outcomes. The conventional treatments, including surgery, chemotherapy, and radiation, have demonstrated limitations in achieving sustained responses. Therefore, exploring novel approaches encompasses a range of interventions that show promise in enhancing the outcomes for patients with advanced or refractory cases of lung cancer. These groundbreaking interventions can potentially overcome cancer resistance and offer personalized solutions. Despite the rapid evolution of emerging lung cancer therapies, persistent challenges such as resistance, toxicity, and patient selection underscore the need for continued development. Consequently, the landscape of lung cancer therapy is transforming with the introduction of precision medicine, immunotherapy, and innovative therapeutic modalities. Additionally, a multifaceted approach involving combination therapies integrating targeted agents, immunotherapies, or traditional cytotoxic treatments addresses the heterogeneity of lung cancer while minimizing its adverse effects. This review provides a brief overview of the latest emerging therapies that are reshaping the landscape of lung cancer treatment. As these novel treatments progress through clinical trials are integrated into standard care, the potential for more effective, targeted, and personalized lung cancer therapies comes into focus, instilling renewed hope for patients facing challenging diagnoses.
Collapse
Affiliation(s)
- Anita Silas La’ah
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
148
|
Mersiades AJ, Solomon BJ, Thomas DM, Lee CK, Cummins MM, Sebastian L, Ballinger ML, Collignon E, Turnbull OM, Yip S, Morton RL, Brown C, Wheeler PJ, Itchins M, Simes RJ, Pavlakis N. ASPiRATION: Australian observational cohort study of comprehensive genomic profiling in metastatic lung cancer tissue. Future Oncol 2024; 20:361-371. [PMID: 37767626 DOI: 10.2217/fon-2023-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
ASPiRATION is a national prospective observational cohort study assessing the feasibility, clinical and economic value of up-front tissue-based comprehensive genomic profiling (CGP) to identify actionable genomic alterations in participants with newly diagnosed metastatic non-squamous non-small-cell lung cancer in Australia. This study will enrol 1000 participants with tumor available for CGP and standard of care molecular testing (EGFR/ALK/ROS1). Participants with actionable variants may receive novel targeted treatments through ASPiRATION-specific substudies, other trials/programs. Clinical outcome data will be collected for a minimum of 2 years. Study outcomes are descriptive, including the ability of CGP to identify additional actionable variants, leading to personalized treatment recommendations, and will describe the feasibility, efficiency, cost and utility of implementation of CGP nationally.
Collapse
Affiliation(s)
- Antony J Mersiades
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
- Department of Medical Oncology, Northern Beaches Hospital, Frenchs Forest, NSW, 2086, Australia
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3001, Australia
| | - David M Thomas
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Chee K Lee
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
- Department of Medical Oncology, St George Hospital, Kogarah, NSW, 2217, Australia
| | - Michelle M Cummins
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Lucille Sebastian
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mandy L Ballinger
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Emily Collignon
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Olivia Mh Turnbull
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Sonia Yip
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Rachael L Morton
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Chris Brown
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick J Wheeler
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Malinda Itchins
- Department of Medical Oncology, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, 2065, Australia
| | - R John Simes
- National Health & Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, 2065, Australia
| |
Collapse
|
149
|
Li Y, Zhu L, Mao J, Zheng H, Hu Z, Yang S, Mao T, Zhou T, Cao P, Wu H, Wang X, Wang J, Lin F, Shen H. Genome-scale CRISPR-Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer. MedComm (Beijing) 2024; 5:e483. [PMID: 38463398 PMCID: PMC10924642 DOI: 10.1002/mco2.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Epidermal growth factor receptor-targeted (EGFR-targeted) therapies show promise for non-small cell lung cancer (NSCLC), but they are ineffective in a third of patients who lack EGFR mutations. This underlines the need for personalized treatments for patients with EGFR wild-type NSCLC. A genome-wide CRISPR/Cas9 screen has identified the enzyme phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), which is vital in de novo purine biosynthesis and tumor development, as a potential drug target for EGFR wild-type NSCLC. We have further confirmed that PAICS expression is significantly increased in NSCLC tissues and correlates with poor patient prognosis. Knockdown of PAICS resulted in a marked reduction in both in vitro and in vivo proliferation of EGFR wild-type NSCLC cells. Additionally, PAICS silencing led to cell-cycle arrest in these cells, with genes involved in the cell cycle pathway being differentially expressed. Consistently, an increase in cell proliferation ability and colony number was observed in cells with upregulated PAICS in EGFR wild-type NSCLC. PAICS silencing also caused DNA damage and cell-cycle arrest by interacting with DNA repair genes. Moreover, decreased IMPDH2 activity and activated PI3K-AKT signaling were observed in NSCLC cells with EGFR mutations, which may compromise the effectiveness of PAICS knockdown. Therefore, PAICS plays an oncogenic role in EGFR wild-type NSCLC and represents a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Medical OncologyThe Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Lingyun Zhu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Jiaqi Mao
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongrui Zheng
- Department of OrthopedicsTaizhou Hospital of Zhejiang ProvinceAffiliated to Wenzhou Medical UniversityZhejiangChina
| | - Ziyi Hu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Suisui Yang
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Tianyu Mao
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Tingting Zhou
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Pingping Cao
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongshuai Wu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
- Department of PharmacologyNanjing Medical UniversityNanjingJiangsuChina
| | - Xuerong Wang
- Department of PharmacologyNanjing Medical UniversityNanjingJiangsuChina
| | - Jing Wang
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Fan Lin
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
- Institute for Brain Tumors & Key Laboratory of Rare Metabolic Diseases, Nanjing Medical UniversityNanjingJiangsuChina
- Department of GastroenterologyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyangHenanChina
| | - Hua Shen
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Medical OncologyThe Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
150
|
Odintsov I, Sholl LM. Prognostic and predictive biomarkers in non-small cell lung carcinoma. Pathology 2024; 56:192-204. [PMID: 38199926 DOI: 10.1016/j.pathol.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally, with the highest mortality rates among both men and women. Most lung cancers are diagnosed at late stages, necessitating systemic therapy. Modern clinical management of lung cancer relies heavily upon application of biomarkers, which guide the selection of systemic treatment. Here, we provide an overview of currently approved and emerging biomarkers of non-small cell lung cancer (NSCLC), including EGFR, ALK, ROS1, RET, NTRK1-3, KRAS, BRAF, MET, ERBB2/HER2, NRG1, PD-L1, TROP2, and CEACAM5. For practical purposes, we divide these biomarkers into genomic and protein markers, based on the tested substrate. We review the biology and epidemiology of the genomic and proteomic biomarkers, discuss optimal diagnostic assays for their detection, and highlight their contribution to the contemporary clinical management of NSCLC.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|