101
|
Jagannathan P, Chew KW, Giganti MJ, Hughes MD, Moser C, Main MJ, Monk PD, Javan AC, Li JZ, Fletcher CV, McCarthy C, Wohl DA, Daar ES, Eron JJ, Currier JS, Singh U, Smith DM, Fischer W. Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: a randomized, controlled, phase II trial. EClinicalMedicine 2023; 65:102250. [PMID: 37855026 PMCID: PMC10579289 DOI: 10.1016/j.eclinm.2023.102250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need. Methods Safety, clinical and antiviral efficacy of inhaled interferon-β1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.govNCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021. Findings The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm. Interpretation In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia. Funding The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark J. Main
- Synairgen Research Ltd, Southampton, United Kingdom
| | | | | | - Jonathan Z. Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William Fischer
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
102
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
103
|
Stewart DD. Can Nitazoxanide and/or other anti-viral medications be a solution to long COVID? Case report with a brief literature review. Clin Case Rep 2023; 11:e8162. [PMID: 38028066 PMCID: PMC10654558 DOI: 10.1002/ccr3.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Key Clinical Message Findings here imply lingering of virus, SARS-CoV-2, in the body for months. Thus, Nitazoxanide and/or other anti-viral medications might be potential options to combat long COVID. This could transform treatment for long COVID patients globally. Abstract Long COVID or post-acute sequelae of COVID-19 (PASC) continues to affect many people even after a relatively mild acute illness. Underlying causes of PASC are poorly understood. There is no particular treatment or management program developed yet. Thus, the possibility of well-known, safe anti-viral medications use against PASC is proposed here.
Collapse
|
104
|
Mustafa SS, Stern RA, Patel PC, Chu DK. COVID-19 Treatments: Then and Now. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3321-3333. [PMID: 37558163 DOI: 10.1016/j.jaip.2023.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has evolved over the past 3+ years, and strategies to prevent illness and treat infection have changed over time. As COVID-19 transitions from a pandemic to an endemic infection, widespread nonpharmaceutical interventions such as mask mandates and governmental policies requiring social distancing have given way to more selective strategies for risk mitigation. Monoclonal antibody therapies used for disease prevention and treatment lost utility owing to the emergence of resistant viral variants. Oral antiviral medications have become the mainstay of treatment in nonhospitalized individuals, whereas systemic corticosteroids remain the cornerstone of therapy in those requiring supplemental oxygen. Emerging literature also supports the use of additional immune-modulating therapies in select admitted patients. Importantly, the COVID-19 pandemic highlighted both unprecedented research and development of medical interventions while also drawing attention to significant pitfalls in the global response. This review provides a comprehensive update in prevention and management of COVID-19.
Collapse
Affiliation(s)
- S Shahzad Mustafa
- Department of Medicine, Rochester Regional Health, Rochester, NY; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Rebecca A Stern
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pratish C Patel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Derek K Chu
- Department of Medicine, Evidence in Allergy Group, Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ont, Canada
| |
Collapse
|
105
|
Mohan A, Iyer VA, Kumar D, Batra L, Dahiya P. Navigating the Post-COVID-19 Immunological Era: Understanding Long COVID-19 and Immune Response. Life (Basel) 2023; 13:2121. [PMID: 38004261 PMCID: PMC10672162 DOI: 10.3390/life13112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
The COVID-19 pandemic has affected the world unprecedentedly, with both positive and negative impacts. COVID-19 significantly impacted the immune system, and understanding the immunological consequences of COVID-19 is essential for developing effective treatment strategies. The purpose of this review is to comprehensively explore and provide insights into the immunological aspects of long COVID-19, a phenomenon where individuals continue to experience a range of symptoms and complications, even after the acute phase of COVID-19 infection has subsided. The immune system responds to the initial infection by producing various immune cells and molecules, including antibodies, T cells, and cytokines. However, in some patients, this immune response becomes dysregulated, leading to chronic inflammation and persistent symptoms. Long COVID-19 encompasses diverse persistent symptoms affecting multiple organ systems, including the respiratory, cardiovascular, neurological, and gastrointestinal systems. In the post-COVID-19 immunological era, long COVID-19 and its impact on immune response have become a significant concern. Post-COVID-19 immune pathology, including autoimmunity and immune-mediated disorders, has also been reported in some patients. This review provides an overview of the current understanding of long COVID-19, its relationship to immunological responses, and the impact of post-COVID-19 immune pathology on patient outcomes. Additionally, the review addresses the current and potential treatments for long COVID-19, including immunomodulatory therapies, rehabilitation programs, and mental health support, all of which aim to improve the quality of life for individuals with long COVID-19. Understanding the complex interplay between the immune system and long COVID-19 is crucial for developing targeted therapeutic strategies and providing optimal care in the post-COVID-19 era.
Collapse
Affiliation(s)
- Aditi Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida Sector-125, Noida 201313, Uttar Pradesh, India; (A.M.); (V.A.I.)
| | - Venkatesh Anand Iyer
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida Sector-125, Noida 201313, Uttar Pradesh, India; (A.M.); (V.A.I.)
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science &Technology, Murthal, Sonipat 131309, Haryana, India;
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY 40222, USA
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida Sector-125, Noida 201313, Uttar Pradesh, India; (A.M.); (V.A.I.)
| |
Collapse
|
106
|
Lécuyer D, Nardacci R, Tannous D, Gutierrez-Mateyron E, Deva Nathan A, Subra F, Di Primio C, Quaranta P, Petit V, Richetta C, Mostefa-Kara A, Del Nonno F, Falasca L, Marlin R, Maisonnasse P, Delahousse J, Pascaud J, Deprez E, Naigeon M, Chaput N, Paci A, Saada V, Ghez D, Mariette X, Costa M, Pistello M, Allouch A, Delelis O, Piacentini M, Le Grand R, Perfettini JL. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front Immunol 2023; 14:1270081. [PMID: 37920468 PMCID: PMC10619763 DOI: 10.3389/fimmu.2023.1270081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Purinergic receptors and NOD-like receptor protein 3 (NLRP3) inflammasome regulate inflammation and viral infection, but their effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain poorly understood. Here, we report that the purinergic receptor P2X7 and NLRP3 inflammasome are cellular host factors required for SARS-CoV-2 infection. Lung autopsies from patients with severe coronavirus disease 2019 (COVID-19) reveal that NLRP3 expression is increased in host cellular targets of SARS-CoV-2 including alveolar macrophages, type II pneumocytes and syncytia arising from the fusion of infected macrophages, thus suggesting a potential role of NLRP3 and associated signaling pathways to both inflammation and viral replication. In vitro studies demonstrate that NLRP3-dependent inflammasome activation is detected upon macrophage abortive infection. More importantly, a weak activation of NLRP3 inflammasome is also detected during the early steps of SARS-CoV-2 infection of epithelial cells and promotes the viral replication in these cells. Interestingly, the purinergic receptor P2X7, which is known to control NLRP3 inflammasome activation, also favors the replication of D614G and alpha SARS-CoV-2 variants. Altogether, our results reveal an unexpected relationship between the purinergic receptor P2X7, the NLRP3 inflammasome and the permissiveness to SARS-CoV-2 infection that offers novel opportunities for COVID-19 treatment.
Collapse
Affiliation(s)
- Déborah Lécuyer
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Roberta Nardacci
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
- UniCamillus - Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Désirée Tannous
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- NH TherAguix SAS, Meylan, France
| | - Emie Gutierrez-Mateyron
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Aurélia Deva Nathan
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Frédéric Subra
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Paola Quaranta
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Retrovirus Center, Department of Translational Research, Universita of Pisa, Pisa, Italy
| | - Vanessa Petit
- Université Paris-Saclay, Inserm U1274, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
| | - Clémence Richetta
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Ali Mostefa-Kara
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Franca Del Nonno
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Laura Falasca
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Julia Delahousse
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Juliette Pascaud
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Eric Deprez
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Marie Naigeon
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Inserm, CNRS, Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
| | - Nathalie Chaput
- Université Paris-Saclay, Inserm, CNRS, Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
- Université Paris-Saclay, Gustave Roussy Cancer Center, CNRS, Stabilité Génétique et Oncogenèse, Villejuif, France
| | - Angelo Paci
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
- Department of Biology and Pathology, Gustave Roussy Cancer Center, Villejuif, France
| | - Véronique Saada
- Department of Biology and Pathology, Gustave Roussy Cancer Center, Villejuif, France
| | - David Ghez
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Centro Pisano Ricerca e Implementazione Clinical Flash Radiotherapy "CPFR@CISUP", "S. Chiara" Hospital, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, Universita of Pisa, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, Pisa, Italy
| | - Awatef Allouch
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- NH TherAguix SAS, Meylan, France
| | - Olivier Delelis
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Jean-Luc Perfettini
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
107
|
Ochoa S, Abers MS, Rosen LB, Rump A, Howe K, Lieberman JA, Wright BL, Suez D, Krausz M, Grimbacher B, Lionakis MS, Uzel G. Management and outcome of COVID-19 in CTLA-4 insufficiency. Blood Adv 2023; 7:5743-5751. [PMID: 37406177 PMCID: PMC10539877 DOI: 10.1182/bloodadvances.2023010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Despite the high incidence of COVID-19 worldwide, clinical experience with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) in inborn errors of immunity remains limited. Recent studies have shown that patients with defects in type 1 interferon (IFN)-related pathways or those with autoantibodies against type 1 IFNs develop severe COVID-19. We reported the clinical course of 22 patients with CTLA-4 insufficiency and COVID-19 and retrospectively examined autoantibodies against type 1 IFNs at baseline. Data were obtained from the patient interviews and chart reviews. Screening for anti-IFN autoantibodies was performed using a multiplex particle-based assay. Student t test, Mann Whitney, analysis of variance, or χ2 tests were used where appropriate. Twenty-two patients aged from 8 months to 54 years, with genetically confirmed CLTA-4 insufficiency, developed COVID-19 from 2020 to 2022. The most common symptoms were fever, cough, and nasal congestion, and the median duration of illness was 7.5 days. Twenty patients (91%) developed mild COVID-19 and were treated as outpatients. Two patients were hospitalized because of COVID-19 pneumonia but did not require mechanical ventilation. Ten (45%) patients were vaccinated at the time of their first COVID-19 infection. Eleven patients received outpatient treatment with monoclonal antibodies against the SARS-CoV-2 spike protein. During the study period, 17 patients were vaccinated against SARS-CoV-2, with no severe vaccine-related adverse effects. Although median anti-S titers following vaccination or infection were lower in patients receiving immunoglobulin replacement therapy (IGRT) (349 IU/dL) than in those not receiving IGRT (2594 IU/dL; P = .15); 3 of 9 patients on IGRT developed titers >2000 IU/dL. All patients tested negative for autoantibodies against IFN-α, IFN-β, and IFN-ω at baseline. Most patients with CTLA-4 insufficiency and COVID-19 had nonsevere disease, lacked autoantibodies against type 1 IFNs, and tolerated messenger RNA vaccines with few adverse effects. Whether our findings can be extrapolated to patients receiving CTLA-4-targeting checkpoint inhibitors requires further studies.
Collapse
Affiliation(s)
- Sebastian Ochoa
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy Rump
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Howe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jay A. Lieberman
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN
| | - Benjamin L. Wright
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
- Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children’s Hospital, Phoenix, AZ
| | - Daniel Suez
- Allergy, Asthma & Immunology Clinic, PA, Irving, TX
| | - Máté Krausz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
108
|
Yu SY, Choi M, Cheong C, Ryoo S, Huh K, Yoon YK, Choi J, Kim SB. Clinical efficacy and safety of SARS-CoV-2-neutralizing monoclonal antibody in patients with COVID-19: A living systematic review and meta-analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:909-920. [PMID: 37598054 DOI: 10.1016/j.jmii.2023.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
This study evaluated the efficacy and safety of neutralizing monoclonal antibodies (mAbs) with usual care in patients with coronavirus disease 2019 (COVID-19). Randomized controlled trials comparing the efficacy and safety of neutralizing mAb treatment in patients with COVID-19 were identified using electronic database searches through March 10, 2023. This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Overall, 13 trials (23 articles) involving 25,646 patients were included in this systematic review. Compared with usual care, neutralizing mAbs were associated with significantly reduced all-cause mortality in outpatients with COVID-19 (pooled risk ratios [RR], 0.41; 95% confidence interval (CI), 0.20-0.83; 12 studies), but not in inpatients. In the subgroup analysis, only outpatients infected prior to the emergence of Delta variant or those with mAb-VOC match had significantly reduced mortality, while no significant benefit was observed in patients infected with Delta and post-Delta variants or mAb-VOC mismatch. Moreover, the rate of hospitalization and number of hospital visits had significantly reduced only in outpatients infected prior to the emergence of the Delta variant and those with mAb-VOC match. Our systematic review used majority of the high-certainty evidence. Our study found neutralizing mAbs were beneficial for outpatients infected prior to Delta variant or mAb-VOC match. In the face of the continuous emergence of new COVID-19 variants, additional clinical data are needed to determine whether neutralizing mAb treatment will be effective for the newly emerging variants.
Collapse
Affiliation(s)
- Su-Yeon Yu
- Department of Medical Information, College of Nursing and Health, Kongju National University, Kongju, Republic of Korea
| | - Miyoung Choi
- Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Chelim Cheong
- Health-Care Insight Research, Seoul, Republic of Korea
| | - Seungeun Ryoo
- Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Republic of Korea; Department of Public Health, Korea University Graduate School, Seoul, Republic of Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Kyung Yoon
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungwoo Choi
- Division for Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, Republic of Korea
| | - Sun Bean Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
109
|
Maruyama K, Sekiya K, Yanagida N, Nakayama K, Kushida Y, Yasuda S, Fukumoto D, Hosoya S, Moriya H, Katsumi M. Analysis of the Factors That Affect the Detection Duration of SARS-CoV-2 in Loop Mediated Isothermal Amplification among COVID-19 Inpatients. Jpn J Infect Dis 2023; 76:282-288. [PMID: 37258175 DOI: 10.7883/yoken.jjid.2023.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In COVID-19 patients who are immunocompromised or have severe COVID-19, the duration of infectious viral shedding may be longer, and a longer isolation duration is recommended. At the National Sagamihara Hospital, a decline in the viral load to end the isolation of hospitalized patients with COVID-19 was confirmed using loop-mediated isothermal amplification (LAMP). However, a subset of patients displayed LAMP positivity for more than 20 days after symptom onset. Therefore, we conducted a retrospective observational study to investigate the factors that affect the persistence of LAMP positivity. This study included a total of 102 participants. The severity of COVID-19 was mild (25.5%), moderate (67.6%), or severe (6.9%). The median number (interquartile range) of days until negative LAMP results from symptom onset were 16 (14-19) days. Multivariate logistic regression analysis showed that patients ≥55 years and/or those with the delta variant were correlated with persistent LAMP positivity for more than 20 days after symptom onset. This study identified age, the delta variant, and oxygen requirement as factors that contribute to persistently positive LAMP results. Therefore, it is posited that in these patients, the implementation of LAMP for deisolation would result in a prolonged isolation duration.
Collapse
Affiliation(s)
- Kohei Maruyama
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Pharmacy, National Hospital Organization Sagamihara National Hospital, Japan
| | - Kiyoshi Sekiya
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Japan
| | - Noriyuki Yanagida
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Pediatrics, National Hospital Organization Sagamihara National Hospital, Japan
| | - Kanae Nakayama
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Clinical Laboratory, National Hospital Organization Sagamihara National Hospital, Japan
| | - Yusuke Kushida
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Pharmacy, National Hospital Organization Sagamihara National Hospital, Japan
| | - Shuhei Yasuda
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Clinical Laboratory, National Hospital Organization Sagamihara National Hospital, Japan
| | - Daisuke Fukumoto
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Nursing, National Hospital Organization Sagamihara National Hospital, Japan
| | - Satoshi Hosoya
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Emergency and Critical Care Medicine, National Hospital Organization Sagamihara National Hospital, Japan
| | - Hiromitsu Moriya
- Department of Infection Control and Prevention, National Hospital Organization Sagamihara National Hospital, Japan
- Department of Surgery, National Hospital Organization Sagamihara National Hospital, Japan
| | - Manabu Katsumi
- Department of Pharmacy, National Hospital Organization Sagamihara National Hospital, Japan
| |
Collapse
|
110
|
Madi K, Flumian C, Olivier P, Sommet A, Montastruc F. Quality of reporting of adverse events in clinical trials of covid-19 drugs: systematic review. BMJ MEDICINE 2023; 2:e000352. [PMID: 37779893 PMCID: PMC10537984 DOI: 10.1136/bmjmed-2022-000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/27/2023] [Indexed: 10/03/2023]
Abstract
Objective To assess the quality of reporting of adverse events in clinical trials of covid-19 drugs based on the CONSORT (Consolidated Standards of Reporting Trials) harms extension and according to clinical trial design, and to examine reporting of serious adverse events in drug trials published on PubMed versus clinical trial summaries on ClinicalTrials.gov. Design Systematic review. Data sources PubMed and ClinicalTrials.gov registries were searched from 1 December 2019 to 17 February 2022. Eligibility criteria for selecting studies Randomised clinical trials evaluating the efficacy and safety of drugs used to treat covid-19 disease in participants of all ages with suspected, probable, or confirmed SARS-CoV-2 infection were included. Clinical trials were screened on title, abstract, and text by two authors independently. Only articles published in French and English were selected. The Cochrane risk of bias tool for randomised trials (RoB 2) was used to assess risk of bias. Results The search strategy identified 1962 randomised clinical trials assessing the efficacy and safety of drugs used to treat covid-19, published in the PubMed database; 1906 articles were excluded after screening and 56 clinical trials were included in the review. Among the 56 clinical trials, no study had a high score for quality of reporting of adverse events, 60.7% had a moderate score, 33.9% had a low score, and 5.4% had a very low score. All clinical trials with a very low score for quality of reporting of adverse events were randomised open label trials. For reporting of serious adverse events, journal articles published on PubMed under-reported 51% of serious adverse events compared with clinical trial summaries published on ClinicalTrials.gov. Conclusions In one in three published clinical trials on covid-19 drugs, the quality of reporting of adverse events was low or very low. Differences were found in the number of serious adverse events reported in journal articles versus clinical trial summaries. During the covid-19 pandemic, risk assessment of drugs in clinical trials of covid-19 drugs did not comply with good practice recommendations for publication of results. Systematic review registration European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) EUPAS45959.
Collapse
Affiliation(s)
- Karima Madi
- CIC 1436, Team PEPSS (Pharmacologie En Population cohorteS et biobanqueS), Toulouse University Hospital, Toulouse, France
| | - Clara Flumian
- CIC 1436, Team PEPSS (Pharmacologie En Population cohorteS et biobanqueS), Toulouse University Hospital, Toulouse, France
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Faculty of Medicine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pascale Olivier
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Faculty of Medicine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Agnès Sommet
- CIC 1436, Team PEPSS (Pharmacologie En Population cohorteS et biobanqueS), Toulouse University Hospital, Toulouse, France
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Faculty of Medicine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - François Montastruc
- CIC 1436, Team PEPSS (Pharmacologie En Population cohorteS et biobanqueS), Toulouse University Hospital, Toulouse, France
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Faculty of Medicine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
111
|
Hirai J, Mori N, Sakanashi D, Ohashi W, Shibata Y, Asai N, Kato H, Hagihara M, Mikamo H. Real-World Experience of the Comparative Effectiveness and Safety of Combination Therapy with Remdesivir and Monoclonal Antibodies versus Remdesivir Alone for Patients with Mild-to-Moderate COVID-19 and Immunosuppression: A Retrospective Single-Center Study in Aichi, Japan. Viruses 2023; 15:1952. [PMID: 37766358 PMCID: PMC10538070 DOI: 10.3390/v15091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The coronavirus disease (COVID-19) pandemic continues to threaten global public health. Remdesivir and monoclonal antibodies have shown promise for COVID-19 treatment of patients who are immunocompromised, including those with cancer, transplant recipients, and those with autoimmune disorder. However, the effectiveness and safety of this combination therapy for patients who are immunosuppressed remain unclear. We compared the efficacy and safety of combination therapy and remdesivir monotherapy for patients with mild-to-moderate COVID-19 who were immunosuppressed. Eighty-six patients treated in July 2021-March 2023 were analyzed. The combination therapy group (CTG) showed a statistically significant reduction in viral load compared with the monotherapy group (MTG) (p < 0.01). Patients in the CTG also experienced earlier resolution of fever than those in the MTG (p = 0.02), although this difference was not significant in the multivariate analysis (p = 0.21). Additionally, the CTG had significantly higher discharge rates on days 7, 14, and 28 than the MTG (p < 0.01, p < 0.01, and p = 0.04, respectively). No serious adverse events were observed with combination therapy. These findings suggest that combination therapy may improve the clinical outcomes of immunosuppressed COVID-19 patients by reducing the viral load and hastening recovery. Further studies are required to fully understand the benefits of this combination therapy for immunocompromised COVID-19 patients.
Collapse
Affiliation(s)
- Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| | - Nobuaki Mori
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| | - Daisuke Sakanashi
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| | - Wataru Ohashi
- Division of Biostatistics, Clinical Research Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan;
| | - Yuichi Shibata
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, 2-174 Edobashi, Tsu-shi 514-8507, Mie, Japan;
| | - Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan;
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (J.H.); (N.M.); (N.A.)
- Department of Infection, Prevention and Control, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute-shi 480-1195, Aichi, Japan; (D.S.); (Y.S.)
| |
Collapse
|
112
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557679. [PMID: 37745410 PMCID: PMC10515893 DOI: 10.1101/2023.09.14.557679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has led to over 760 million cases and 6.9 million deaths worldwide. To mitigate the loss of lives, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with susceptible variants. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response anti-viral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, CA, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | |
Collapse
|
113
|
Liu Y, Ye Q. The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines (Basel) 2023; 11:1472. [PMID: 37766148 PMCID: PMC10537874 DOI: 10.3390/vaccines11091472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide public health and economic threat, and virus variation amplifies the difficulty in epidemic prevention and control. The structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been studied extensively and is now well defined. The S protein is the most distinguishing feature in terms of infection and immunity, mediating virus entrance and inducing neutralizing antibodies. The S protein and its essential components are also the most promising target to develop vaccines and antibody-based drugs. Therefore, the key site mutation in the S gene is of high interest. Among them, RBD, NTD, and furin cleavage sites are the most mutable regions with the most mutation sites and the most serious consequences for SARS-CoV-2 biological characteristics, including infectivity, pathogenicity, natural immunity, vaccine efficacy, and antibody therapeutics. We are also aware that this outbreak may not be the last. Therefore, in this narrative review, we summarized viral variation and prevalence condition, discussed specific amino acid replacement and associated immune challenges and attempted to sum up some prevention and control strategies by reviewing the literature on previously published research about SARS-CoV-2 variation to assist in clarifying the mutation pathway and consequences of SARS-CoV-2 for developing countermeasures against such viruses as soon as possible.
Collapse
Affiliation(s)
| | - Qing Ye
- Department of ‘A’, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
| |
Collapse
|
114
|
Liu M, Liang Z, Cheng ZJ, Liu L, Liu Q, Mai Y, Chen H, Lei B, Yu S, Chen H, Zheng P, Sun B. SARS-CoV-2 neutralising antibody therapies: Recent advances and future challenges. Rev Med Virol 2023; 33:e2464. [PMID: 37322826 DOI: 10.1002/rmv.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic represents an unparalleled global public health crisis. Despite concerted research endeavours, the repertoire of effective treatment options remains limited. However, neutralising-antibody-based therapies hold promise across an array of practices, encompassing the prophylaxis and management of acute infectious diseases. Presently, numerous investigations into COVID-19-neutralising antibodies are underway around the world, with some studies reaching clinical application stages. The advent of COVID-19-neutralising antibodies signifies the dawn of an innovative and promising strategy for treatment against SARS-CoV-2 variants. Comprehensively, our objective is to amalgamate contemporary understanding concerning antibodies targeting various regions, including receptor-binding domain (RBD), non-RBD, host cell targets, and cross-neutralising antibodies. Furthermore, we critically examine the prevailing scientific literature supporting neutralising antibody-based interventions, and also delve into the functional evaluation of antibodies, with a particular focus on in vitro (vivo) assays. Lastly, we identify and consider several pertinent challenges inherent to the realm of COVID-19-neutralising antibody-based treatments, offering insights into potential future directions for research and development.
Collapse
Affiliation(s)
- Mingtao Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiman Liang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Guangzhou Medical University, Guangzhou, China
| | - Qiwen Liu
- Guangzhou Medical University, Guangzhou, China
| | - Yiyin Mai
- Guangzhou Medical University, Guangzhou, China
| | | | - Baoying Lei
- Guangzhou Medical University, Guangzhou, China
| | - Shangwei Yu
- Guangzhou Medical University, Guangzhou, China
| | - Huihui Chen
- Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
115
|
DeSilva KE, Paras AT, Goolsby TA, Chan BJ, Epstein LH, Harris NM, Cartwright EJ, Moanna A, Oliver NT. Using Active Surveillance to Identify Monoclonal Antibody Candidates Among COVID-19-Positive Veterans in the Atlanta VA Health Care System. Fed Pract 2023; 40:304-308. [PMID: 38562159 PMCID: PMC10984692 DOI: 10.12788/fp.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Strategies for optimizing identification and outreach to potential candidates for monoclonal antibody (Mab) therapy for COVID-19 are not clear. Using a centralized, active surveillance system, the Atlanta Veterans Affairs Health Care System (AVAHCS) infectious disease (ID) team identified candidates for Mab infusion and provided treatment. Observations As part of a quality improvement project from December 28, 2020, to August 31, 2021, a clinical team consisting of ID pharmacists and physicians reviewed each outpatient with a positive COVID-19 polymerase chain reaction test daily at the AVAHCS. The clinical team used Emergency Use Authorization (EUA) criteria to determine eligibility. Eligible patients were contacted on the same day of review via telephone to confirm eligibility and obtain verbal consent. Telehealth follow-up occurred on day 1 and day 7 postinfusion to assess for adverse events. In total, 2028 patients with COVID-19 were identified; 289 patients (14%) were eligible, and 132 (46%) received Mab therapy. Similar to AVAHCS demographics, a majority of those who received Mab therapy were non-Hispanic Black patients (65%). The most common comorbidities were hypertension (59%) and diabetes (37%). The median time from symptom onset to positive COVID-19 polymerase chain reaction (PCR) test result was 6 days (range, 0-9), and the median time from positive COVID-19 PCR test result to Mab infusion was 2 days (range, 0-8). Twelve patients (9%) required hospitalization for worsening COVID-19 symptoms postinfusion. No deaths occurred. Conclusions Combining laboratory surveillance and active screening led to high uptake of Mab therapy and minimized delay from symptom onset to Mab infusion, thereby optimizing outpatient treatment of COVID-19. This approach also successfully screened and treated Black patients in the AVAHCS population.
Collapse
Affiliation(s)
| | | | | | - Bonnie J Chan
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| | - Lauren H Epstein
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Emory University School of Medicine, Atlanta, Georgia
| | - Nadine M Harris
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Emory University School of Medicine, Atlanta, Georgia
| | - Emily J Cartwright
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Emory University School of Medicine, Atlanta, Georgia
| | - Abeer Moanna
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Emory University School of Medicine, Atlanta, Georgia
| | - Nora T Oliver
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
116
|
Huaman MA, Raval JS, Paxton JH, Mosnaim GS, Patel B, Anjan S, Meisenberg BR, Levine AC, Marshall CE, Yarava A, Shenoy AG, Heath SL, Currier JS, Fukuta Y, Blair JE, Spivak ES, Petrini JR, Broderick PB, Rausch W, Cordisco M, Hammel J, Greenblatt B, Cluzet VC, Cruser D, Oei K, Abinante M, Hammitt LL, Sutcliffe CG, Forthal DN, Zand MS, Cachay ER, Kassaye SG, Ram M, Wang Y, Das P, Lane K, McBee NA, Gawad AL, Karlen N, Ford DE, Laeyendecker O, Pekosz A, Klein SL, Ehrhardt S, Lau B, Baksh SN, Shade DM, Casadevall A, Hanley DF, Ou J, Gniadek TJ, Ziman A, Shoham S, Gebo KA, Bloch EM, Tobian AAR, Sullivan DJ, Gerber JM. Transfusion reactions associated with COVID-19 convalescent plasma in outpatient clinical trials. Transfusion 2023; 63:1639-1648. [PMID: 37534607 PMCID: PMC10720768 DOI: 10.1111/trf.17485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) is an important therapeutic option for outpatients at high risk of hospitalization from SARS-CoV-2 infection. We assessed the safety of outpatient CCP transfusions administered during clinical trials. STUDY DESIGN AND METHODS We analyzed data pertaining to transfusion-related reactions from two randomized controlled trials in the U.S. that evaluated the efficacy of CCP versus control plasma in various ambulatory settings. Multivariable logistic regression was used to assess whether CCP was associated with transfusion reactions, after adjusting for potential confounders. RESULTS The combined study reported 79/1351 (5.9%) adverse events during the transfusion visit, with the majority 62/1351 (4.6%) characterized by mild, allergic-type findings of urticaria, and/or pruritus consistent with minor allergic transfusion reactions; the other reported events were attributed to the patients' underlying disease, COVID-19, or vasovagal in nature. We found no difference in the likelihood of allergic transfusion reactions between those receiving CCP versus control plasma (adjusted odds ratio [AOR], 0.75; 95% CI, 0.43-1.31). Risk of urticaria and/or pruritus increased with a pre-existing diagnosis of asthma (AOR, 2.33; 95% CI, 1.16-4.67). We did not observe any CCP-attributed antibody disease enhancement in participants with COVID-19 or increased risk of infection. There were no life-threatening severe transfusion reactions and no patients required hospitalization related to transfusion-associated complications. DISCUSSION Outpatient plasma administration was safely performed for nearly 1400 participants. CCP is a safe therapeutic option for outpatients at risk of hospitalization from COVID-19.
Collapse
Affiliation(s)
- Moises A Huaman
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, USA
| | - Giselle S Mosnaim
- Department of Medicine, Division of Allergy and Immunology, NorthShore University Health System, Evanston, Illinois, USA
| | - Bela Patel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Adam C Levine
- Department of Emergency Medicine, Rhode Island Hospital & Brown University, Providence, Rhode Island, USA
| | - Christi E Marshall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anusha Yarava
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aarthi G Shenoy
- Department of Medicine, Division of Hematology and Oncology, MedStar Washington Hospital Center, DC, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | - Emily S Spivak
- Department of Medicine, Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | - Jean Hammel
- Nuvance Health Norwalk Hospital, Norwalk, Connecticut, USA
| | | | - Valerie C Cluzet
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Daniel Cruser
- Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, New York, USA
| | - Kevin Oei
- Ascada Research, Fullerton, California, USA
| | | | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Catherine G Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, California, USA
| | - Martin S Zand
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, California, USA
| | - Seble G Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center, DC, USA
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ying Wang
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piyali Das
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nichol A McBee
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy L Gawad
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicky Karlen
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel E Ford
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- The Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sheriza N Baksh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - David M Shade
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel F Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangda Ou
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas J Gniadek
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, Illinois, USA
| | - Alyssa Ziman
- Department of Pathology and Laboratory Medicine, Wing-Kwai and Alice Lee-Tsing Chung Transfusion Service, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
117
|
Baudouin A, Guillemin MD, Rioufol C, Ranchon F, Parat S. [SARS-COV-2 pandemic: Involvement of the hospital pharmacist in securing patient care]. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:900-908. [PMID: 37086966 PMCID: PMC10118052 DOI: 10.1016/j.pharma.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
OBJECTIVES In the context of the SARS-CoV-2 pandemic, hospital pharmacists supported the implementation of recommendations and ensured the safety of patient medication management. The aim of this study is to establish the interest of the involvement of the hospital pharmacist in this context by describing and comparing the activities carried out with patients with COVID-19 and those without. METHODS During the study period, data on clinical pharmacy activities with hospitalized patients were collected and analyzed: pharmaceutical analysis of prescriptions, participation in multi-professional consultation meetings (RCP) dedicated to COVID-19, and monitoring of adverse events. RESULTS The activities concerned 1483 patients, including 444 with COVID-19, resulting in 575 pharmaceutical interventions (PI). The main problems identified were overdoses, untreated indications, and drug-drug interactions (DDI). AMIs were significantly more common in patients with COVID-19, with 73.3% involving disease-specific therapies. Eleven PIs had a life-threatening impact, 189 a major impact. During the PCRs, 36 PIs were performed for 59% of the patients presented. A pharmacovigilance report was performed for a quarter of patients treated with hydroxychloroquine and 33% of patients treated with lopinavir/ritonavir. CONCLUSIONS This study demonstrates the value of involving hospital pharmacists in the drug management of patients with COVID-19, particularly with the evolution of available therapies and the implementation of vaccination, in order to reduce the spread of SARS-COV2 and limit the appearance of resistance.
Collapse
Affiliation(s)
- Amandine Baudouin
- Pharmacie à usage intérieur, hôpital Lyon Sud, hospices civils de Lyon, groupement hospitalier Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France.
| | - Marie-Delphine Guillemin
- Pharmacie à usage intérieur, hôpital Lyon Sud, hospices civils de Lyon, groupement hospitalier Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - Catherine Rioufol
- Pharmacie à usage intérieur, hôpital Lyon Sud, hospices civils de Lyon, groupement hospitalier Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France; EMR3738, université de Lyon, Lyon, France
| | - Florence Ranchon
- Pharmacie à usage intérieur, hôpital Lyon Sud, hospices civils de Lyon, groupement hospitalier Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France; EMR3738, université de Lyon, Lyon, France
| | - Stéphanie Parat
- Pharmacie à usage intérieur, hôpital Lyon Sud, hospices civils de Lyon, groupement hospitalier Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| |
Collapse
|
118
|
Giganti MJ, Chew KW, Eron JJ, Li JZ, Pinilla M, Moser C, Javan AC, Fischer WA, Klekotka P, Margolis D, Wohl DA, Coombs RW, Daar ES, Smith DM, Currier JS, Hughes MD. Association Between Anterior Nasal and Plasma SARS-CoV-2 RNA Levels and Hospitalization or Death in Nonhospitalized Adults With Mild-to-Moderate COVID-19. J Infect Dis 2023; 228:S117-S125. [PMID: 37650230 PMCID: PMC10469105 DOI: 10.1093/infdis/jiad287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND There is little information regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as a predictor for clinical outcomes in outpatients with mild-to-moderate coronavirus disease 2019 (COVID-19). METHODS Anterior nasal (AN) and plasma SARS-CoV-2 RNA data from 2115 nonhospitalized adults who received monoclonal antibodies (mAbs) or placebo in the ACTIV-2/A5401 trial were analyzed for associations with hospitalization or death. RESULTS One hundred two participants were hospitalized or died through 28 days of follow-up. Higher day 0 (pretreatment) AN RNA was associated with increasing risk of hospitalization/death (risk ratio [RR], 1.24 per log10 copies/mL [95% confidence interval {CI}, 1.04-1.49]) among placebo recipients, ranging from 3% to 16% for <2 to ≥6 log10 copies/mL. Although only 1% had quantifiable levels, there was a similar trend across day 0 plasma RNA categories. Higher day 3 AN RNA was associated with subsequent hospitalization/death among placebo recipients (RR, 1.42 per log10 copies/mL [95% CI, 1.00-2.03]), but not mAb recipients (RR, 1.02 per log10 copies/mL [95% CI, 0.68-1.56]). The proportion of treatment effect (reduction in hospitalizations/deaths after day 3 for mAb vs placebo) explained by day 3 AN RNA was 8%. CONCLUSIONS SARS-CoV-2 RNA levels are predictive of hospitalization/death in the natural history setting, but AN RNA levels may not be a reliable surrogate marker of mAb treatment effect in COVID-19 trials. Clinical Trials Registration. NCT04518410.
Collapse
Affiliation(s)
- Mark J Giganti
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Joseph J Eron
- Department of Medicine, University of North Carolina, Chapel Hill
| | - Jonathan Z Li
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mauricio Pinilla
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Arzhang Cyrus Javan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | | | | | - David Alain Wohl
- Department of Medicine, University of North Carolina, Chapel Hill
| | - Robert W Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
| | - Eric S Daar
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
119
|
Wang Y, Gao T, Li W, Tai C, Xie Y, Chen D, Liu S, Huang F, Wang W, Chen Y, Wang B. Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies. Cell Biosci 2023; 13:160. [PMID: 37653459 PMCID: PMC10470189 DOI: 10.1186/s13578-023-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The emergence of SARS-CoV-2 becomes life-threatening for the older and immunocompromised individuals, whereas limited treatment is available on these populations. Mesenchymal stromal cells (MSCs) have been reported to be useful in SARS-CoV-2 treatment and reduce SARS-CoV-2-related sequelae. RESULTS In this study, we developed an autonomous cellular machine to secret neutralizing antibody in vivo constantly based on the clinical-grade MSCs, to combat SARS-CoV-2 infections. First, various modified recombinant plasmids were constructed and transfected into clinical-grade MSCs by electroporation, for assembly and expression of neutralizing anti-SARS-CoV-2 antibodies. Second, the stable antibody secreting MSCs clones were screened through pseudovirus neutralization assay. Finally, we investigated the pharmacokinetics and biodistribution of neutralizing antibody secreted by engineered MSCs in vivo. The stable clinical-grade MSCs clones, expressing XGv347-10 and LY-CoV1404-5 neutralizing antibodies, exhibited their feasibility and protective efficacy against SARS-CoV-2 infection. Transplanted engineered clinical-grade MSCs effectively delivered the SARS-CoV-2 antibodies to the lung, and the immune hyperresponsiveness caused by COVID-19 was coordinated by MSC clones through inhibiting the differentiation of CD4 + T cells into Th1 and Th17 subpopulations. CONCLUSIONS Our data suggested that engineered clinical-grade MSCs secreting effective neutralizing antibodies as cellular production machines had the potential to combat SARS-CoV-2 infection, which provided a new avenue for effectively treating the older and immunocompromised COVID-19 patients.
Collapse
Affiliation(s)
- Yanning Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - WanTing Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 21000, China
| | - Chenxu Tai
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Dong Chen
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Shuo Liu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Feifei Huang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Wenqing Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 21000, China.
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210000, China.
| |
Collapse
|
120
|
Chew KW, Moser C, Yeh E, Wohl DA, Daar ES, Ritz J, Javan AC, Eron JJ, Currier JS, Smith DM, Hughes MD. Validity and Characterization of Time to Symptom Resolution Outcome Measures in the ACTIV-2/A5401 Outpatient COVID-19 Treatment Trial. J Infect Dis 2023; 228:S83-S91. [PMID: 37650237 PMCID: PMC10469584 DOI: 10.1093/infdis/jiad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Time to symptom resolution measures were used in outpatient coronavirus disease 2019 (COVID-19) treatment trials without prior validation. METHODS ACTIV-2/A5401 trial participants completed a COVID-19 diary assessing 13 targeted symptoms and global experience (overall COVID-19 symptoms, return to pre-COVID-19 health) daily for 29 days. We evaluated concordance of time to sustained (2 days) resolution of all targeted symptoms (TSR) with resolution of overall symptoms and return to health in participants receiving placebo. RESULTS The analysis included 77 high-risk and 81 standard-risk participants with overall median 6 days of symptoms at entry and median age 47 years, 50% female, 82% white, and 31% Hispanic/Latino. Correlation between TSR and resolution of overall symptoms was 0.80 and 0.68, and TSR and return to health, 0.66 and 0.57 for high- and standard-risk groups, respectively. Of the high- and standard-risk participants, 61% and 79%, respectively, achieved targeted symptom resolution, of which 47% and 43%, respectively, reported symptom recurrence. Requiring >2 days to define sustained resolution reduced the frequency of recurrences. CONCLUSIONS There was good internal consistency between TSR and COVID-19-specific global outcomes, supporting TSR as a trial end point. Requiring >2 days of symptom resolution better addresses natural symptom fluctuations but must be balanced against the potential influence of non-COVID-19 symptoms. CLINICAL TRIALS REGISTRATION NCT04518410.
Collapse
Affiliation(s)
- Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Carlee Moser
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eunice Yeh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David A Wohl
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eric S Daar
- Division of HIV Medicine, The Lundquist Institute, Harbor-University of California, Los Angeles Medical Center, Torrance, California, USA
| | - Justin Ritz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Arzhang Cyrus Javan
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Joseph J Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael D Hughes
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
121
|
Evering TH, Moser CB, Jilg N, Yeh E, Sanusi B, Wohl DA, Daar ES, Li JZ, Klekotka P, Javan AC, Eron JJ, Currier JS, Hughes MD, Smith DM, Chew KW. Long COVID After Bamlanivimab Treatment. J Infect Dis 2023; 228:S126-S135. [PMID: 37650236 PMCID: PMC10686694 DOI: 10.1093/infdis/jiad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Prospective evaluations of long COVID in outpatients with coronavirus disease 2019 (COVID-19) are lacking. We aimed to determine the frequency and predictors of long COVID after treatment with the monoclonal antibody bamlanivimab in ACTIV-2/A5401. METHODS Data were analyzed from participants who received bamlanivimab 700 mg in ACTIV-2 from October 2020 to February 2021. Long COVID was defined as the presence of self-assessed COVID symptoms at week 24. Self-assessed return to pre-COVID health was also examined. Associations were assessed by regression models. RESULTS Among 506 participants, median age was 51 years. Half were female, 5% Black/African American, and 36% Hispanic/Latino. At 24 weeks, 18% reported long COVID and 15% had not returned to pre-COVID health. Smoking (adjusted risk ratio [aRR], 2.41 [95% confidence interval {CI}, 1.34- 4.32]), female sex (aRR, 1.91 [95% CI, 1.28-2.85]), non-Hispanic ethnicity (aRR, 1.92 [95% CI, 1.19-3.13]), and presence of symptoms 22-28 days posttreatment (aRR, 2.70 [95% CI, 1.63-4.46]) were associated with long COVID, but nasal severe acute respiratory syndrome coronavirus 2 RNA was not. CONCLUSIONS Long COVID occurred despite early, effective monoclonal antibody therapy and was associated with smoking, female sex, and non-Hispanic ethnicity, but not viral burden. The strong association between symptoms 22-28 days after treatment and long COVID suggests that processes of long COVID start early and may need early intervention. CLINICAL TRIALS REGISTRATION NCT04518410.
Collapse
Affiliation(s)
- Teresa H Evering
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Carlee B Moser
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health
| | - Nikolaus Jilg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eunice Yeh
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health
| | - Busola Sanusi
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health
| | - David A Wohl
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Eric S Daar
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Joseph J Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
122
|
Iwahori K, Nii T, Yamaguchi N, Kawasaki T, Okamura S, Hashimoto K, Matsuki T, Tsujino K, Miki K, Osa A, Goya S, Abe K, Mori M, Takeda Y, Yamada T, Kida H, Kumanogoh A. A randomized phase 2 study on demeclocycline in patients with mild-to-moderate COVID-19. Sci Rep 2023; 13:13809. [PMID: 37612352 PMCID: PMC10447520 DOI: 10.1038/s41598-023-41051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
Tetracyclines exhibit anti-viral, anti-inflammatory, and immunomodulatory activities via various mechanisms. The present study investigated the efficacy and safety of demeclocycline in patients hospitalized with mild-to-moderate COVID-19 via an open-label, multicenter, parallel-group, randomized controlled phase 2 trial. Primary and secondary outcomes included changes from baseline (day 1, before the study treatment) in lymphocytes, cytokines, and SARS-CoV-2 RNA on day 8. Seven, seven, and six patients in the control, demeclocycline 150 mg daily, and demeclocycline 300 mg daily groups, respectively, were included in the modified intention-to-treat population that was followed until day 29. A significant change of 191.3/μL in the number of CD4+ T cells from day 1 to day 8 was observed in the demeclocycline 150 mg group (95% CI 5.1/μL-377.6/μL) (p = 0.023), whereas that in the control group was 47.8/μL (95% CI - 151.2/μL to 246.8/μL), which was not significant (p = 0.271). The change rates of CD4+ T cells negatively correlated with those of IL-6 in the demeclocycline-treated groups (R = - 0.807, p = 0.009). All treatment-emergent adverse events were of mild-to-moderate severity. The present results indicate that the treatment of mild-to-moderate COVID-19 patients with demeclocycline elicits immune responses conducive to recovery from COVID-19 with good tolerability.Trial registration: This study was registered with the Japan Registry of Clinical Trials (Trial registration number: jRCTs051200049; Date of the first registration: 26/08/2020).
Collapse
Affiliation(s)
- Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Takuro Nii
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Norihiko Yamaguchi
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satomi Okamura
- Department of Medical Innovation, Osaka University Hospital, Suita, Osaka, Japan
| | - Kazuki Hashimoto
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Takanori Matsuki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kazuyuki Tsujino
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Keisuke Miki
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Akio Osa
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Sho Goya
- Department of Respiratory Medicine, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami, Hyogo, Japan
| | - Kinya Abe
- Department of Internal Medicine, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomomi Yamada
- Department of Medical Innovation, Osaka University Hospital, Suita, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
123
|
Zhu Y, Sharma L, Chang D. Pathophysiology and clinical management of coronavirus disease (COVID-19): a mini-review. Front Immunol 2023; 14:1116131. [PMID: 37646038 PMCID: PMC10461092 DOI: 10.3389/fimmu.2023.1116131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
An unprecedented global pandemic caused by a novel coronavirus named SARS-CoV-2 has created a severe healthcare threat and become one of the biggest challenges to human health and the global economy. As of July 2023, over 767 million confirmed cases of COVID-19 have been diagnosed, including more than 6.95 million deaths. The S protein of this novel coronavirus binds to the ACE2 receptor to enter the host cells with the help of another transmembrane protease TMPRSS2. Infected subjects that can mount an appropriate host immune response can quickly inhibit the spread of infection into the lower respiratory system and the disease may remain asymptomatic or a mild infection. The inability to mount a strong initial response can allow the virus to replicate unchecked and manifest as severe acute pneumonia or prolonged disease that may manifest as systemic disease manifested as viremia, excessive inflammation, multiple organ failure, and secondary bacterial infection among others, leading to delayed recovery, hospitalization, and even life-threatening consequences. The clinical management should be targeted to specific pathogenic mechanisms present at the specific phase of the disease. Here we summarize distinct phases of COVID-19 pathogenesis and appropriate therapeutic paradigms associated with the specific phase of COVID-19.
Collapse
Affiliation(s)
- Ying Zhu
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - De Chang
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
124
|
Griffin D, McNeil C, Okusa J, Berrent D, Guo Y, Daugherty SE. Does monoclonal antibody treatment for COVID-19 impact short and long-term outcomes in a large generalisable population? A retrospective cohort study in the USA. BMJ Open 2023; 13:e069247. [PMID: 37553188 PMCID: PMC10414114 DOI: 10.1136/bmjopen-2022-069247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVES To explore whether monoclonal antibodies (MAb) administered to high-risk patients with COVID-19 during the first week of illness prevent postacute sequelae of SARS-CoV-2 infection. DESIGN Retrospective cohort study. SETTING USA. PARTICIPANTS A sample of 3809 individuals who received MAbs and a matched one-to-one comparison group from a set of 327 079 eligible patients who did not receive MAb treatment were selected from a deidentified administrative data set from commercial and Medicare Advantage health plan enrollees in the USA, including claims and outpatient laboratory data. RESULTS Individuals who received MAb were 28% less likely to be hospitalised (HR=0.72, 95% CI 0.58 to 0.89) and 41% less likely to be admitted to the intensive care unit (HR=0.59, 95% CI 0.38 to 0.89) 30 days from SARS-CoV-2 diagnosis compared with individuals who did not receive MAb. A higher proportion of individuals given MAb therapy received care for clinical sequelae in the postacute phase (p=0.018). CONCLUSIONS While MAb therapy was associated with benefits in the acute period, the benefit of therapy did not extend into the postacute period and did not reduce risk for clinical sequelae.
Collapse
Affiliation(s)
- Daniel Griffin
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
- Department of Medicine, Optum Health, Eden Prairie, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
125
|
Barrios MH, Nicholson S, Bull RA, Martinello M, Rawlinson W, Mina M, Post JJ, Hudson B, Gilroy N, Lloyd AR, Konecny P, Mordant F, Catton M, Subbarao K, Caly L, Druce J, Netter HJ. Comparative Longitudinal Serological Study of Anti-SARS-CoV-2 Antibody Profiles in People with COVID-19. Microorganisms 2023; 11:1985. [PMID: 37630545 PMCID: PMC10458948 DOI: 10.3390/microorganisms11081985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Serological diagnostic assays are essential tools for determining an individual's protection against viruses like SARS-CoV-2, tracking the spread of the virus in the community, and evaluating population immunity. To assess the diversity and quality of the anti-SARS-CoV-2 antibody response, we have compared the antibody profiles of people with mild, moderate, and severe COVID-19 using a dot blot assay. The test targeted the four major structural proteins of SARS-CoV-2, namely the nucleocapsid (N), spike (S) protein domains S1 and S2, and receptor-binding domain (RBD). Serum samples were collected from 63 participants at various time points for up to 300 days after disease onset. The dot blot assay revealed patient-specific differences in the anti-SARS-CoV-2 antibody profiles. Out of the 63 participants with confirmed SARS-CoV-2 infections and clinical COVID-19, 35/63 participants exhibited diverse and robust responses against the tested antigens, while 14/63 participants displayed either limited responses to a subset of antigens or no detectable antibody response to any of the antigens. Anti-N-specific antibody levels decreased within 300 days after disease onset, whereas anti-S-specific antibodies persisted. The dynamics of the antibody response did not change during the test period, indicating stable antibody profiles. Among the participants, 28/63 patients with restricted anti-S antibody profiles or undetectable anti-S antibody levels in the dot blot assay also exhibited weak neutralization activity, as measured by a surrogate virus neutralization test (sVNT) and a microneutralization test. These results indicate that in some cases, natural infections do not lead to the production of neutralizing antibodies. Furthermore, the study revealed significant serological variability among patients, regardless of the severity of their COVID-19 illness. These differences need to be carefully considered when evaluating the protective antibody status of individuals who have experienced primary SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Marilou H. Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
| | - Rowena A. Bull
- The Kirby Institute, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (R.A.B.); (M.M.); (A.R.L.)
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marianne Martinello
- The Kirby Institute, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (R.A.B.); (M.M.); (A.R.L.)
| | - William Rawlinson
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
- Serology and Virology Division, Department of Microbiology, New South Wales Health Pathology, Randwick, Sydney, NSW 2031, Australia
- Prince of Wales Hospital, Sydney, NSW 2031, Australia;
| | - Michael Mina
- Northern Beaches Hospital, Frenchs Forest, NSW 2086, Australia;
| | - Jeffrey J. Post
- Prince of Wales Hospital, Sydney, NSW 2031, Australia;
- School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Bernard Hudson
- Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | | | - Andrew R. Lloyd
- The Kirby Institute, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; (R.A.B.); (M.M.); (A.R.L.)
| | - Pamela Konecny
- School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
- St. George Hospital, Sydney, NSW 2217, Australia
| | - Francesca Mordant
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mike Catton
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
| | - Kanta Subbarao
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute, Melbourne, VIC 3000, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
| | - Hans J. Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (M.H.B.); (S.N.); (M.C.); (L.C.); (J.D.)
- Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; (F.M.); (K.S.)
- School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC 3001, Australia
| |
Collapse
|
126
|
Shapiro AE, Sarkis E, Acloque J, Free A, Gonzalez-Rojas Y, Hussain R, Juarez E, Moya J, Parikh N, Inman D, Cebrik D, Nader A, Noormohamed N, Wang Q, Skingsley A, Austin D, Peppercorn A, Agostini ML, Parra S, Chow S, Mogalian E, Pang PS, Hong DK, Sager JE, Yeh WW, Alexander EL, Gaffney LA, Kohli A. Intramuscular vs Intravenous SARS-CoV-2 Neutralizing Antibody Sotrovimab for Treatment of COVID-19 (COMET-TAIL): A Randomized Noninferiority Clinical Trial. Open Forum Infect Dis 2023; 10:ofad354. [PMID: 37577112 PMCID: PMC10414803 DOI: 10.1093/ofid/ofad354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background Convenient administration of coronavirus disease 2019 (COVID-19) treatment in community settings is desirable. Sotrovimab is a pan-sarbecovirus dual-action monoclonal antibody formulated for intravenous (IV) or intramuscular (IM) administration for early treatment of mild/moderate COVID-19. Method This multicenter phase 3 study based on a randomized open-label design tested the noninferiority of IM to IV administration according to an absolute noninferiority margin of 3.5%. From June to August 2021, patients aged ≥12 years with COVID-19, who were neither hospitalized nor receiving supplemental oxygen but were at high risk for progression, were randomized 1:1:1 to receive sotrovimab as a single 500-mg IV infusion or a 500- or 250-mg IM injection. The primary composite endpoint was progression to (1) all-cause hospitalization for >24 hours for acute management of illness or (2) all-cause death through day 29. Results Sotrovimab 500 mg IM was noninferior to 500 mg IV: 10 (2.7%) of 376 participants vs 5 (1.3%) of 378 met the primary endpoint, respectively (absolute adjusted risk difference, 1.06%; 95% CI, -1.15% to 3.26%). The 95% CI upper limit was lower than the prespecified noninferiority margin of 3.5%. The 250-mg IM group was discontinued early because of the greater proportion of hospitalizations vs the 500-mg groups. Serious adverse events occurred in <1% to 2% of participants across groups. Four participants experienced serious disease-related events and died (500 mg IM, 2/393, <1%; 250 mg IM, 2/195, 1%). Conclusions Sotrovimab 500-mg IM injection was well tolerated and noninferior to IV administration. IM administration could expand outpatient treatment access for COVID-19. Clinical Trials Registration ClinicalTrials.gov: NCT04913675.
Collapse
Affiliation(s)
- Adrienne E Shapiro
- Departments of Global Health and Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elias Sarkis
- Sarkis Clinical Trials, Gainesville, Florida, USA
| | - Jude Acloque
- BioClinical Research Alliance, Miami, Florida, USA
| | - Almena Free
- Pinnacle Research Group, Anniston, Alabama, USA
| | | | | | - Erick Juarez
- Florida International Medical Research, Miami, Florida, USA
| | - Jaynier Moya
- Pines Care Research Center, Pembroke Pines, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | - Sergio Parra
- Vir Biotechnology, Inc., San Francisco, California, USA
| | - Sophia Chow
- Vir Biotechnology, Inc., San Francisco, California, USA
| | - Erik Mogalian
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - David K Hong
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - Wendy W Yeh
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | | | - Anita Kohli
- Arizona Liver Health, Chandler, Arizona, USA
- Arizona Clinical Trials, Tucson, Arizona, USA
| |
Collapse
|
127
|
Knopp BW, Weiss HZ, Fahmy S, Goldstein E, Parmar J. A Comparison of the Adverse Effects and Utility of Different Monoclonal Antibodies for SARS-CoV-2: A Retrospective Cohort Study. Cureus 2023; 15:e43094. [PMID: 37680398 PMCID: PMC10482545 DOI: 10.7759/cureus.43094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/06/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Multiple monoclonal antibody (mAb) treatments have been developed to combat the growing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains. These treatments have been shown to be effective in reducing the risk of hospitalization and death from SARS-CoV-2 infection with a low risk of adverse effects; however, more data is required to evaluate the comparative efficacy of mAbs. The primary objective of this study is to describe the hospitalization rate, length of stay (LOS), and mortality rate in SARS-CoV-2 patients treated with four different mAb treatments, including bamlanivimab plus etesevimab, casirivimab plus imdevimab, sotrovimab, and bebtelovimab. Methods A retrospective chart review and prospective phone surveys of SARS-CoV-2 patients treated with mAbs in a 400-bed tertiary, suburban medical center were conducted between June 2020 and April 2022. Eligibility criteria for mAbs included non-hospitalized patients over the age of 18 with less than 10 days of SARS-CoV-2 symptoms and no oxygen requirement on emergency department (ED) admission. Data were collected from the retrospective chart review and subjective patient surveys. A chi-squared test was used. Significance was assessed at p < 0.05. Results The study population included 3249 patients, with 1537 males and 1712 females and an average age of 62.48 ± 17.54 years. Five hundred forty-two patients received bamlanivimab plus etesevimab; 849 received bebtelovimab; 1577 received casirivimab plus imdevimab; and 281 received sotrovimab. The overall hospitalization rate was 1.0%, and the mortality rate was 0.2% following mAb treatment. The hospitalization rate was greatest among patients administered Sotrovimab (2.1%) and least among patients administered Bebtelovimab (0.1%) (p = 0.010). 2.4% of patients who were discharged from the ED after receiving one of the four mAbs returned within 30 days with SARS-CoV-2 symptoms. The average length of stay was 4.75 ± 4.56 days, with no significant differences between the mAbs. The provider-reported adverse event rate was 2.2%, with significant differences in adverse event rates between mAbs. Bamlanivimab-etesevimab was associated with the highest adverse event rate (4.6%), and sotrovimab was associated with the lowest adverse event rate (1.4%) (p < 0.001). Conclusion This study shows a low hospitalization and mortality rate following mAb infusion in patients with mild and moderate COVID-19. However, there were significant differences in hospitalization and mortality among patients receiving each of the four mAb treatments. There was a high degree of patient-reported symptom improvement, and adverse reactions were reported in only 2.2% of patients with no severe reactions. Multiple monoclonal antibody treatments are not effective as monotherapy; however, this study shows the potential benefits of including a mAb infusion as part of a SARS-CoV-2 treatment plan.
Collapse
Affiliation(s)
- Brandon W Knopp
- Department of Emergency Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Hannah Z Weiss
- Department of Emergency Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Samer Fahmy
- Department of Emergency Medicine, Boca Raton Regional Hospital, Boca Raton, USA
| | - Evan Goldstein
- Department of Emergency Medicine, Boca Raton Regional Hospital, Boca Raton, USA
| | - Jeniel Parmar
- Department of Emergency Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| |
Collapse
|
128
|
Dukes CW, Rossetti RAM, Hensel JA, Snedal S, Cubitt CL, Schell MJ, Abrahamsen M, Isaacs-Soriano K, Kennedy K, Mangual LN, Whiting J, Martinez-Brockhus V, Islam JY, Rathwell J, Beatty M, Hall AM, Abate-Daga D, Giuliano AR, Pilon-Thomas S. SARS-CoV-2 antibody response duration and neutralization following natural infection. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100158. [PMID: 37654784 PMCID: PMC10470471 DOI: 10.1016/j.jcvp.2023.100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background The role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralizing antibody response from natural infection and vaccination, and the potential determinants of this response are poorly understood. Characterizing this antibody response and the factors associated with neutralization can help inform future prevention efforts and improve clinical outcomes in those infected. Objectives The goals of this study were to prospectively evaluate SARS-CoV-2 antibody levels and the neutralizing antibody responses among naturally infected adults and to determine demographic and behavioral factors independently associated with these responses. Methods Serum was collected from seropositive individuals at baseline, four-weeks, and three-months following their first study visit to be evaluated for antibody levels. Detection of neutralizing antibodies was performed at baseline. Participant demographic and behavioral information was collected via web questionnaire prior to their first visit. Results At baseline, higher antibody levels were associated with better neutralization capacity, with 83% of participants having detectable neutralizing antibodies. We found an age-dependent effect on antibody level and neutralization capacity with participants over 65 years having significantly higher levels. Ethnicity, heart disease, autoimmune disease, and COVID symptoms were associated with higher antibody levels, but not with increased neutralization capacity. Work environment during the pandemic correlated with increased neutralization capacity, while kidney or liver disease and traveling out of state after February 2020 correlated with decreased neutralization capacity, however neither correlated with antibody levels. Conclusions Our data show that natural infection by SARS-CoV-2 can induce a humoral response reflected by high antibody levels and neutralization capacity.
Collapse
Affiliation(s)
- Christopher W Dukes
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Renata AM Rossetti
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Jonathan A Hensel
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Sebastian Snedal
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Christopher L Cubitt
- Immune Monitoring Core Facility, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Michael J Schell
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Martha Abrahamsen
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Kimberly Isaacs-Soriano
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Kayoko Kennedy
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Leslie N Mangual
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Junmin Whiting
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Veronica Martinez-Brockhus
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Jessica Y Islam
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Julie Rathwell
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Matthew Beatty
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Amy M Hall
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
| | - Daniel Abate-Daga
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| | - Shari Pilon-Thomas
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, United States of America
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida, 33612, United States of America
| |
Collapse
|
129
|
Dubbs SB, Falat C, Rosenblatt L. Immune-based Therapies-What the Emergency Physician Needs to Know. Immunol Allergy Clin North Am 2023; 43:569-582. [PMID: 37394260 DOI: 10.1016/j.iac.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Immunotherapy is a treatment modality that has a broad and rapidly growing range of applications to treat both chronic and acute diseases, including rheumatoid arthritis, Crohn disease, cancer, and COVID-19. Emergency physicians must be aware of the breadth of applications and be able to consider the effects of immunotherapies when patients on these treatments present to the hospital. This article provides a review of the mechanisms of action, indications for use, and potential complications of immunotherapy treatments that are relevant in the emergency care setting.
Collapse
Affiliation(s)
- Sarah B Dubbs
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA.
| | - Cheyenne Falat
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA
| | - Lauren Rosenblatt
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 South Paca Street, 6th Floor, Suite 200, Baltimore, MD 21201, USA
| |
Collapse
|
130
|
Hermet P, Delache B, Herate C, Wolf E, Kivi G, Juronen E, Mumm K, Žusinaite E, Kainov D, Sankovski E, Virumäe K, Planken A, Merits A, Besaw JE, Yee AW, Morizumi T, Kim K, Kuo A, Berriche A, Dereuddre-Bosquet N, Sconosciuti Q, Naninck T, Relouzat F, Cavarelli M, Ustav M, Wilson D, Ernst OP, Männik A, LeGrand R, Ustav M. Broadly neutralizing humanized SARS-CoV-2 antibody binds to a conserved epitope on Spike and provides antiviral protection through inhalation-based delivery in non-human primates. PLoS Pathog 2023; 19:e1011532. [PMID: 37531329 PMCID: PMC10395824 DOI: 10.1371/journal.ppat.1011532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.
Collapse
Affiliation(s)
| | - Benoît Delache
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Cecile Herate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | | | - Gaily Kivi
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Karl Mumm
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | | | | | | | | | | | - Jessica E Besaw
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Ai Woon Yee
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | | | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Anling Kuo
- Department of Biochemistry, University of Toronto; Toronto, Canada
| | - Asma Berriche
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Quentin Sconosciuti
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| | | | - Oliver P Ernst
- Department of Biochemistry, University of Toronto; Toronto, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, Canada
| | | | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT); Fontenay-aux-Roses, France
| | - Mart Ustav
- Icosagen Cell Factory OÜ; Tartu, Estonia
| |
Collapse
|
131
|
Stadler E, Burgess MT, Schlub TE, Khan SR, Chai KL, McQuilten ZK, Wood EM, Polizzotto MN, Kent SJ, Cromer D, Davenport MP, Khoury DS. Monoclonal antibody levels and protection from COVID-19. Nat Commun 2023; 14:4545. [PMID: 37507368 PMCID: PMC10382502 DOI: 10.1038/s41467-023-40204-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies (mAb) in preventing symptomatic SARS-CoV-2 infection. We use data on the in vivo concentration of mAb and the associated protection from COVID-19 over time to model the dose-response relationship of mAb for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a mAb concentration of 96-fold of the in vitro IC50 (95% CI: 32-285). This relationship provides a tool for predicting the prophylactic efficacy of new mAb and against SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either mAb treatment or vaccination. We find no significant difference between the 50% protective titer for mAb and vaccination, although sample sizes limited the power to detect a difference.
Collapse
Affiliation(s)
- Eva Stadler
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Martin T Burgess
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shanchita R Khan
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Zoe K McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Monash Health, Clayton, VIC, Australia
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Monash Health, Clayton, VIC, Australia
| | - Mark N Polizzotto
- Clinical Hub for Interventional Research, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Department of Clinical Haematology, Canberra Region Cancer Centre, The Canberra Hospital, Canberra, ACT, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
132
|
Flynn JM, Huang QYJ, Zvornicanin SN, Schneider-Nachum G, Shaqra AM, Yilmaz NK, Moquin SA, Dovala D, Schiffer CA, Bolon DN. Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease. ACS Infect Dis 2023; 9:1372-1386. [PMID: 37390404 PMCID: PMC11161032 DOI: 10.1021/acsinfecdis.3c00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Drugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qiu Yu J. Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah N. Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gila Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ala M. Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Dustin Dovala
- Novartis Institute for Biomedical Research, Emeryville, CA 94608, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
133
|
Walker TA, Truong AD, Summers A, Dixit AN, Goldstein FC, Hajjar I, Echols MR, Woodruff MC, Lee ED, Tekwani S, Carroll K, Sanz I, Lee FEH, Han JE. Mild antecedent COVID-19 associated with symptom-specific post-acute sequelae. PLoS One 2023; 18:e0288391. [PMID: 37428786 DOI: 10.1371/journal.pone.0288391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The impact of COVID-19 severity on development of long-term sequelae remains unclear, and symptom courses are not well defined. METHODS This ambidirectional cohort study recruited adults with new or worsening symptoms lasting ≥3 weeks from confirmed SARS-CoV-2 infection between August 2020-December 2021. COVID-19 severity was defined as severe for those requiring hospitalization and mild for those not. Symptoms were collected using standardized questionnaires. Multivariable logistical regression estimated odds ratios (OR) and 95% confidence intervals (CI) for associations between clinical variables and symptoms. RESULTS Of 332 participants enrolled, median age was 52 years (IQR 42-62), 233 (70%) were female, and 172 (52%) were African American. Antecedent COVID-19 was mild in 171 (52%) and severe in 161 (48%). In adjusted models relative to severe cases, mild COVID-19 was associated with greater odds of fatigue (OR:1.83, CI:1.01-3.31), subjective cognitive impairment (OR:2.76, CI:1.53-5.00), headaches (OR:2.15, CI:1.05-4.44), and dizziness (OR:2.41, CI:1.18-4.92). Remdesivir treatment was associated with less fatigue (OR:0.47, CI:0.26-0.86) and fewer participants scoring >1.5 SD on PROMIS Cognitive scales (OR:0.43, CI:0.20-0.92). Fatigue and subjective cognitive impairment prevalence was higher 3-6 months after COVID-19 and persisted (fatigue OR:3.29, CI:2.08-5.20; cognitive OR:2.62, CI:1.67-4.11). Headache was highest at 9-12 months (OR:5.80, CI:1.94-17.3). CONCLUSIONS Mild antecedent COVID-19 was associated with highly prevalent symptoms, and those treated with remdesivir developed less fatigue and cognitive impairment. Sequelae had a delayed peak, ranging 3-12 months post infection, and many did not improve over time, underscoring the importance of targeted preventative measures.
Collapse
Affiliation(s)
- Tiffany A Walker
- Department of Medicine, Division of General Internal Medicine, Emory University, Atlanta, GA, United States of America
- Grady Post-COVID Clinic, Grady Memorial Hospital, Atlanta, GA, United States of America
| | - Alex D Truong
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Aerica Summers
- Grady Post-COVID Clinic, Grady Memorial Hospital, Atlanta, GA, United States of America
| | - Adviteeya N Dixit
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Felicia C Goldstein
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ihab Hajjar
- Department of Medicine, Division of General Internal Medicine, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Melvin R Echols
- Department of Cardiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States of America
| | - Erica D Lee
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Seema Tekwani
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Kelley Carroll
- Grady Post-COVID Clinic, Grady Memorial Hospital, Atlanta, GA, United States of America
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States of America
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| | - Jenny E Han
- Grady Post-COVID Clinic, Grady Memorial Hospital, Atlanta, GA, United States of America
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
134
|
Labach DS, Kohio HP, Tse EA, Paparisto E, Friesen NJ, Pankovich J, Bazett M, Barr SD. The Metallodrug BOLD-100 Is a Potent Inhibitor of SARS-CoV-2 Replication and Has Broad-Acting Antiviral Activity. Biomolecules 2023; 13:1095. [PMID: 37509131 PMCID: PMC10377621 DOI: 10.3390/biom13071095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic has highlighted an urgent need to discover and test new drugs to treat patients. Metal-based drugs are known to interact with DNA and/or a variety of proteins such as enzymes and transcription factors, some of which have been shown to exhibit anticancer and antimicrobial effects. BOLD-100 (sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]dihydrate) is a novel ruthenium-based drug currently being evaluated in a Phase 1b/2a clinical trial for the treatment of advanced gastrointestinal cancer. Given that metal-based drugs are known to exhibit antimicrobial activities, we asked if BOLD-100 exhibits antiviral activity towards SARS-CoV-2. We demonstrated that BOLD-100 potently inhibits SARS-CoV-2 replication and cytopathic effects in vitro. An RNA sequencing analysis showed that BOLD-100 inhibits virus-induced transcriptional changes in infected cells. In addition, we showed that the antiviral activity of BOLD-100 is not specific for SARS-CoV-2, but also inhibits the replication of the evolutionarily divergent viruses Human Immunodeficiency Virus type 1 and Human Adenovirus type 5. This study identifies BOLD-100 as a potentially novel broad-acting antiviral drug.
Collapse
Affiliation(s)
- Daniel S Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Hinissan P Kohio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Edwin A Tse
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Nicole J Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Jim Pankovich
- Bold Therapeutics Inc., 422 Richards St, Suite 170, Vancouver, BC V6N 2Z4, Canada
| | - Mark Bazett
- Bold Therapeutics Inc., 422 Richards St, Suite 170, Vancouver, BC V6N 2Z4, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| |
Collapse
|
135
|
Rocha VPC, Quadros HC, Fernandes AMS, Gonçalves LP, Badaró RJDS, Soares MBP, Machado BAS. An Overview of the Conventional and Novel Methods Employed for SARS-CoV-2 Neutralizing Antibody Measurement. Viruses 2023; 15:1504. [PMID: 37515190 PMCID: PMC10383723 DOI: 10.3390/v15071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of the coronavirus disease-19 (COVID-19) and is responsible for the pandemic that started in 2020. The virus enters the host cell through the interaction of its spike glycoprotein with the angiotensin converting enzyme-2 (ACE2) on the host cell's surface. Antibodies present an important role during the infection and pathogenesis due to many reasons, including the neutralization of viruses by binding to different spike epitopes. Therefore, measuring the neutralizing antibody titers in the whole population is important for COVID-19's epidemiology. Different methods are described in the literature, and some have been used to validate the main vaccines used worldwide. In this review, we discuss the main methods used to quantify neutralizing antibody titers, their advantages and limitations, as well as new approaches to determineACE2/spike blockage by antibodies.
Collapse
Affiliation(s)
- Vinícius Pinto Costa Rocha
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Helenita Costa Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Antônio Márcio Santana Fernandes
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Luana Pereira Gonçalves
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Roberto José da Silva Badaró
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, Gonçalo Moniz Institute-Fiocruz, Salvador 40296-710, Bahia, Brazil
| | - Bruna Aparecida Souza Machado
- Institute of Health Technology, National Industrial Learning Service-Integrated Manufacturing and Technology Campus, SENAI CIMATEC, Salvador 41650-010, Bahia, Brazil
| |
Collapse
|
136
|
Huang L, Schibler A, Huang Y, Tai A, Chi H, Chieng C, Wang J, Goldbart A, Tang S, Huang Y, George S, Alabaz D, Bentur L, Su S, de Bruyne J, Karadag B, Gu F, Zou G, Toovey S, DeVincenzo JP, Wu JZ. Safety and efficacy of AK0529 in respiratory syncytial virus-infected infant patients: A phase 2 proof-of-concept trial. Influenza Other Respir Viruses 2023; 17:e13176. [PMID: 37502622 PMCID: PMC10368966 DOI: 10.1111/irv.13176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) infection is a cause of substantial morbidity and mortality in young children. There is currently no effective therapy available. Methods This was a Phase 2 study of the oral RSV fusion protein inhibitor AK0529 in infants aged 1-24 months, hospitalized with RSV infection. In Part 1, patients (n = 24) were randomized 2:1 to receive a single dose of AK0529 up to 4 mg/kg or placebo. In Part 2, patients (n = 48) were randomized 2:1 to receive AK0529 at 0.5, 1, or 2 mg/kg bid or placebo for 5 days. Sparse pharmacokinetic samples were assessed using population pharmacokinetics modelling. Safety, tolerability, viral load, and respiratory signs and symptoms were assessed daily during treatment. Results No safety or tolerability signals were detected for AK0529: grade ≥3 treatment-emergent adverse events occurring in 4.1% of patients in AK0529 and 4.2% in placebo groups, respectively, and none led to death or withdrawal from the study. In Part 2, targeted drug exposure was reached with 2 mg/kg bid. A numerically greater reduction in median viral load with 2 mg/kg bid AK0529 than with placebo at 96 h was observed. A -4.0 (95% CI: -4.51, -2.03) median reduction in Wang Respiratory Score from baseline to 96 h was observed in the 2 mg/kg group compared with -2.0 (95% CI: -3.42, -1.82) in the placebo group. Conclusions AK0529 was well tolerated in hospitalized RSV-infected infant patients. Treatment with AK0529 2 mg/kg bid was observed to reduce viral load and Wang Respiratory Score. Clinical Trials Registration NCT02654171.
Collapse
Affiliation(s)
- Li‐Min Huang
- Department of Pediatrics, National Taiwan University Children's HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Andreas Schibler
- Pediatric Intensive Care UnitQueensland Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Yi‐Chuan Huang
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Andrew Tai
- Department of Pediatric Respiratory and Sleep MedicineWomen's and Children's HospitalAdeladeSouth AustraliaAustralia
| | - Hsin Chi
- Department of PediatricsMacKay Children's Hospital and MacKay Memorial HospitalTaipeiTaiwan
| | | | - Jinn‐Li Wang
- Department of Pediatrics, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Aviv Goldbart
- Department of PediatricsSoroka University Medical CenterBeer‐ShevaIsrael
| | - Swee‐Ping Tang
- Department of PediatricsSelayang HospitalBatu CavesSelangorMalaysia
| | - Yhu‐Chering Huang
- Department of PediatricsChang Gung Children's Hospital, Linkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Shane George
- Departments of Emergency Medicine and Children's Critical CareGold Coast University HospitalGold CoastQueenslandAustralia
| | - Derya Alabaz
- Department of Pediatric Infectious DiseasesÇukurova University Faculty of MedicineBalcalıTurkey
| | - Lea Bentur
- Department of Pediatric PulmonologyRuth Rappaport Children's HospitalHaifaIsrael
| | - Siew‐Choo Su
- Department of PediatricsHospital Tengku Ampuan RahimahKlangSelangorMalaysia
| | - Jessie de Bruyne
- Department of PediatricsUniversity Malaya Medical CenterKuala LumpurMalaysia
| | - Bulent Karadag
- Division of Pediatric PulmonologyMarmara UniversityIstanbulTurkey
| | - Feng Gu
- Ark BiopharmaceuticalShanghaiChina
| | - Gang Zou
- Ark BiopharmaceuticalShanghaiChina
| | | | - John P. DeVincenzo
- Children's Foundation Research InstituteLe Bonheur Children's HospitalMemphisTennesseeUSA
| | | |
Collapse
|
137
|
Giron CC, Laaksonen A, Barroso da Silva FL. Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. J Biomol Struct Dyn 2023; 41:5707-5727. [PMID: 35815535 DOI: 10.1080/07391102.2022.2095305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 remains a health threat with the continuous emergence of new variants. This work aims to expand the knowledge about the SARS-CoV-2 receptor-binding domain (RBD) interactions with cell receptors and monoclonal antibodies (mAbs). By using constant-pH Monte Carlo simulations, the free energy of interactions between the RBD from different variants and several partners (Angiotensin-Converting Enzyme-2 (ACE2) polymorphisms and various mAbs) were predicted. Computed RBD-ACE2-binding affinities were higher for two ACE2 polymorphisms (rs142984500 and rs4646116) typically found in Europeans which indicates a genetic susceptibility. This is amplified for Omicron (BA.1) and its sublineages BA.2 and BA.3. The antibody landscape was computationally investigated with the largest set of mAbs so far in the literature. From the 32 studied binders, groups of mAbs were identified from weak to strong binding affinities (e.g. S2K146). These mAbs with strong binding capacity and especially their combination are amenable to experimentation and clinical trials because of their high predicted binding affinities and possible neutralization potential for current known virus mutations and a universal coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, PR China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
138
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
139
|
Su R, Zeng J, Marcink TC, Porotto M, Moscona A, O’Shaughnessy B. Host Cell Membrane Capture by the SARS-CoV-2 Spike Protein Fusion Intermediate. ACS CENTRAL SCIENCE 2023; 9:1213-1228. [PMID: 37396856 PMCID: PMC10255576 DOI: 10.1021/acscentsci.3c00158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 07/04/2023]
Abstract
Cell entry by SARS-CoV-2 is accomplished by the S2 subunit of the spike S protein on the virion surface by capture of the host cell membrane and fusion with the viral envelope. Capture and fusion require the prefusion S2 to transit to its potent fusogenic form, the fusion intermediate (FI). However, the FI structure is unknown, detailed computational models of the FI are unavailable, and the mechanisms and timing of membrane capture and fusion are not established. Here, we constructed a full-length model of the SARS-CoV-2 FI by extrapolating from known SARS-CoV-2 pre- and postfusion structures. In atomistic and coarse-grained molecular dynamics simulations the FI was remarkably flexible and executed giant bending and extensional fluctuations due to three hinges in the C-terminal base. The simulated configurations and their giant fluctuations are quantitatively consistent with SARS-CoV-2 FI configurations measured recently using cryo-electron tomography. Simulations suggested a host cell membrane capture time of ∼2 ms. Isolated fusion peptide simulations identified an N-terminal helix that directed and maintained binding to the membrane but grossly underestimated the binding time, showing that the fusion peptide environment is radically altered when attached to its host fusion protein. The large configurational fluctuations of the FI generated a substantial exploration volume that aided capture of the target membrane, and may set the waiting time for fluctuation-triggered refolding of the FI that draws the viral envelope and host cell membrane together for fusion. These results describe the FI as machinery that uses massive configurational fluctuations for efficient membrane capture and suggest novel potential drug targets.
Collapse
Affiliation(s)
- Rui Su
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jin Zeng
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Tara C. Marcink
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
| | - Matteo Porotto
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Anne Moscona
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Microbiology & Immunology, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Physiology, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
| | - Ben O’Shaughnessy
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
140
|
Chen G, Zhang Y, Wu K, Jin T, Peng C, Jiang Q, Tian W, Chen Z, Shen Z, Sheng G. Safety, tolerability, pharmacokinetics, and immunogenicity of JMB2002-an antibody against COVID-19: a phase 1 clinical trial in healthy Chinese adults. BMC Infect Dis 2023; 23:437. [PMID: 37370000 DOI: 10.1186/s12879-023-08341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and subsequent Coronavirus Disease 2019 (COVID-19) pandemic has resulted in a significant global public health burden, leading to an urgent need for effective therapeutic strategies. Monoclonal antibodies (mAbs) are a potentially effective therapeutic option. We identified a potent antibody JMB2002 against the SARS-CoV-2 receptor binding domain. JMB2002 has demonstrated therapeutic efficacy in a SARS-CoV-2 infected rhesus macaque model. METHODS We conducted a randomized, double-blind, phase 1 trial to evaluate the JMB2002's safety, tolerability, pharmacokinetics, and immunogenicity in healthy Chinese adults. Participants were randomly assigned to one of four cohorts with sequential dose, administrated intravenously with JMB2002 or placebo, and followed up for 85 ± 5 days. RESULTS 40 participants were recruited and completed in the study. Eight (25.0%) participants experienced 13 treatment emergent adverse events (TEAEs) that were drug-related. No serious adverse events (SAEs), dose limiting events (DLTs), or adverse events of special interest (AESIs), such as infusion related/allergic reactions, were observed, and no drop out due to adverse events (AEs) occurred. There was no significant safety difference observed between JMB2002 and the placebo, suggesting it was well tolerated. The AUC0-∞, AUC0 - t of JMB2002 infusion increased dose-dependently from 5 mg/kg to 50 mg/kg while there is also a linear trend between doses and Cmax. CONCLUSION Therefore, JMB2002 was well tolerated after administration of a single dose in the range of 5 mg/kg to 50 mg/kg in healthy Chinese adults. TRIAL REGISTRATION ChiCTR2100042150 at https://www.chictr.org.cn/searchproj.aspx (14/01/2021).
Collapse
Affiliation(s)
- Guiling Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ying Zhang
- Shanghai Jemincare Pharmaceutical Co., Ltd., Shanghai, China
| | - Kaiqi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Tinghan Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Conggao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Wenjuan Tian
- Shanghai Jemincare Pharmaceutical Co., Ltd., Shanghai, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | | | - Guoping Sheng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| |
Collapse
|
141
|
Sullivan DJ, Focosi D, Hanley DF, Cruciani M, Franchini M, Ou J, Casadevall A, Paneth N. Outpatient regimens to reduce COVID-19 hospitalisations: a systematic review and meta-analysis of randomized controlled trials. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.05.24.22275478. [PMID: 35665014 PMCID: PMC9164452 DOI: 10.1101/2022.05.24.22275478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background During pandemics, early outpatient treatments reduce the health system burden. Randomized controlled trials (RCTs) in COVID-19 outpatients have tested therapeutic agents, but no RCT or systematic review has been conducted comparing the efficacy of the main outpatient treatment classes to each other. We aimed in this systematic review of outpatient RCTs in COVID-19 to compare hospitalisation rate reductions with four classes of treatment: convalescent plasma, monoclonal antibodies, small molecule antivirals and repurposed drugs. Methods We conducted a systematic review and meta-analysis of all COVID-19 outpatient RCTs that included the endpoint of progression to hospitalisation. We assembled, from multiple published and preprint databases, participant characteristics, hospitalisations, resolution of symptoms and mortality from January 2020 to May 21, 2023. The risk of bias from COVID-NMA was incorporated into the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. We measured heterogeneity with I 2 . Meta-analysis by a random or fixed effect model dependent on significant heterogeneity (I 2 >50%) was performed. The protocol was registered in PROSPERO, CRD42022369181. Findings The search identified 281 studies of which 54 RCTs for 30 diverse interventions were included in the final analysis. These trials, performed largely in unvaccinated cohorts during pre-Omicron waves, focused on populations with at least one COVID-19 hospitalisation risk factor. Grouping by class, monoclonal antibodies (OR=0.31 [95% CI=0.24-0.40]) had highest efficacy, followed by COVID-19 convalescent plasma (CCP) (OR=0.69 [95% CI=0.53 to 0.90]) and small molecule antivirals (OR=0.78 [95% CI=0.48-1.33]) for hospital reduction. Repurposed drugs (OR=0.82 [95% CI-0.72-0.93]) had lower efficacy. Interpretation Inasmuch as omicron sublineages (XBB and BQ.1.1) are now resistant to monoclonal antibodies, oral antivirals are the preferred treatment in outpatients where available, but intravenous interventions from convalescent plasma to remdesivir are also effective and necessary in constrained medical resource settings or for acute and chronic COVID-19 in the immunocompromised. Funding US Department of Defense and National Institute of Health. Research in context Evidence before this study: We systematically searched the published and preprint data bases for outpatient randomized clinical trials of treatment of COVID-19 disease with hospitalisation as an endpoint. Previous systematic reviews and meta-analyses have confined the reviews to specific classes such as convalescent plasma, monoclonal antibodies, small molecule antivirals or repurposed drugs. Few comparisons have been made between these therapeutic classes. The trials took place both in the pre-vaccination and the vaccination era, spanning periods with dominance of different COVID variants. We sought to compare efficacy between the four classes of treatments listed above when used in outpatient COVID-19 patients as shown in randomized, placebo-controlled trials. Added value of this study This systematic review and meta-analysis brings together trials that assessed hospitalisation rates in diverse COVID-19 outpatient populations varying in age and comorbidities, permitting us to assess the efficacy of interventions both within and across therapeutic classes. While heterogeneity exists within and between these intervention classes, the meta-analysis can be placed in context of trial diverse populations over variant time periods of the pandemic. At present most of the world population has either had COVID-19 or been vaccinated with a high seropositivity rate, indicating that future placebo-controlled trials will be limited because of the sample sizes required to document hospitalisation outcomes. Implications of all the available evidence Numerous diverse therapeutic tools need to be ready for a resilient response to changing SARS-CoV-2 variants in both immunocompetent and immunocompromised COVID-19 outpatient populations. To date few head-to-head randomized controlled trials (RCTs) has compared treatment options for COVID-19 outpatients, making comparisons and treatment choices difficult. This systematic review compares outcomes among RCTs of outpatient therapy for COVID-19, taking into account time between onset of symptoms and treatment administration. We found that small-chemical antivirals, convalescent plasma and monoclonal antibodies had comparable efficacy between classes and amongst interventions within the four classes. Monoclonals have lost efficacy with viral mutation, and chemical antivirals have contraindications and adverse events, while intravenous interventions like convalescent plasma or remdesivir remain resilient options for the immunocompromised, and, in the case of CCP, in resource constrained settings with limited availability of oral drugs.
Collapse
|
142
|
Bukur T, Riesgo-Ferreiro P, Sorn P, Gudimella R, Hausmann J, Rösler T, Löwer M, Schrörs B, Sahin U. CoVigator-A Knowledge Base for Navigating SARS-CoV-2 Genomic Variants. Viruses 2023; 15:1391. [PMID: 37376690 DOI: 10.3390/v15061391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the global COVID-19 pandemic. The urgency for an effective SARS-CoV-2 vaccine has led to the development of the first series of vaccines at unprecedented speed. The discovery of SARS-CoV-2 spike-glycoprotein mutants, however, and consequentially the potential to escape vaccine-induced protection and increased infectivity, demonstrates the persisting importance of monitoring SARS-CoV-2 mutations to enable early detection and tracking of genomic variants of concern. RESULTS We developed the CoVigator tool with three components: (1) a knowledge base that collects new SARS-CoV-2 genomic data, processes it and stores its results; (2) a comprehensive variant calling pipeline; (3) an interactive dashboard highlighting the most relevant findings. The knowledge base routinely downloads and processes virus genome assemblies or raw sequencing data from the COVID-19 Data Portal (C19DP) and the European Nucleotide Archive (ENA), respectively. The results of variant calling are visualized through the dashboard in the form of tables and customizable graphs, making it a versatile tool for tracking SARS-CoV-2 variants. We put a special emphasis on the identification of intrahost mutations and make available to the community what is, to the best of our knowledge, the largest dataset on SARS-CoV-2 intrahost mutations. In the spirit of open data, all CoVigator results are available for download. The CoVigator dashboard is accessible via covigator.tron-mainz.de. CONCLUSIONS With increasing demand worldwide in genome surveillance for tracking the spread of SARS-CoV-2, CoVigator will be a valuable resource of an up-to-date list of mutations, which can be incorporated into global efforts.
Collapse
Affiliation(s)
- Thomas Bukur
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Pablo Riesgo-Ferreiro
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Patrick Sorn
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Ranganath Gudimella
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Johannes Hausmann
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Thomas Rösler
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Martin Löwer
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Barbara Schrörs
- TRON-Translational Oncology at the Medical Center of the Johannes Gutenberg-University Mainz Gemeinnützige GmbH, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech SE, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
143
|
Wu X, Manske MK, Ruan GJ, Witter TL, Nowakowski KE, Abeykoon JP, Tang X, Yu Y, Gwin KA, Wu A, Taupin V, Bhardwaj V, Paludo J, Dasari S, Dong H, Ansell SM, Badley AD, Schellenberg MJ, Witzig TE. Secreted ORF8 induces monocytic pro-inflammatory cytokines through NLRP3 pathways in patients with severe COVID-19. iScience 2023; 26:106929. [PMID: 37260746 PMCID: PMC10193824 DOI: 10.1016/j.isci.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein in vitro and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14+ monocytes to induce inflammasomal cytokine/chemokine responses including IL1β, IL8, and CCL2. Levels of ORF8 protein in the blood correlate with severity and disease-specific mortality in patients with acute SARS-CoV-2 infection. Furthermore, the ORF8-induced inflammasome response was readily inhibited by the NLRP3 inhibitor MCC950 in vitro. Our study identifies a dominant cause of pathogenesis, its underlying mechanism, and a potential new treatment strategy for severe COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Wu
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle K Manske
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gordon J Ruan
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Taylor L Witter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin E Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jithma P Abeykoon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Kimberly A Gwin
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Annie Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vanessa Taupin
- Electron Microscopy Core, University of California San Diego, La Jolla, CA, USA
| | - Vaishali Bhardwaj
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
144
|
Levine AC, Fukuta Y, Huaman MA, Ou J, Meisenberg BR, Patel B, Paxton JH, Hanley DF, Rijnders BJA, Gharbharan A, Rokx C, Zwaginga JJ, Alemany A, Mitjà O, Ouchi D, Millat-Martinez P, Durkalski-Mauldin V, Korley FK, Dumont LJ, Callaway CW, Libster R, Marc GP, Wappner D, Esteban I, Polack F, Sullivan DJ. Coronavirus Disease 2019 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-Analysis of Individual Participant Data From 5 Randomized Trials. Clin Infect Dis 2023; 76:2077-2086. [PMID: 36809473 PMCID: PMC10273382 DOI: 10.1093/cid/ciad088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Outpatient monoclonal antibodies are no longer effective and antiviral treatments for coronavirus disease 2019 (COVID-19) disease remain largely unavailable in many countries worldwide. Although treatment with COVID-19 convalescent plasma (CCP) is promising, clinical trials among outpatients have shown mixed results. METHODS We conducted an individual participant data meta-analysis from outpatient trials to assess the overall risk reduction for all-cause hospitalizations by day 28 in transfused participants. Relevant trials were identified by searching Medline, Embase, medRxiv, World Health Organization COVID-19 Research Database, Cochrane Library, and Web of Science from January 2020 to September 2022. RESULTS Five included studies from 4 countries enrolled and transfused 2620 adult patients. Comorbidities were present in 1795 (69%). The virus neutralizing antibody dilutional titer levels ranged from 8 to 14 580 in diverse assays. One hundred sixty of 1315 (12.2%) control patients were hospitalized, versus 111 of 1305 (8.5%) CCP-treated patients, yielding a 3.7% (95% confidence interval [CI], 1.3%-6.0%; P = .001) absolute risk reduction and 30.1% relative risk reduction for all-cause hospitalization. The hospitalization reduction was greatest in those with both early transfusion and high titer with a 7.6% absolute risk reduction (95% CI, 4.0%-11.1%; P = .0001) accompanied by at 51.4% relative risk reduction. No significant reduction in hospitalization was seen with treatment >5 days after symptom onset or in those receiving CCP with antibody titers below the median titer. CONCLUSIONS Among outpatients with COVID-19, treatment with CCP reduced the rate of all-cause hospitalization and may be most effective when given within 5 days of symptom onset and when antibody titer is higher.
Collapse
Affiliation(s)
- Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yuriko Fukuta
- Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Moises A Huaman
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jiangda Ou
- Division of Brain Injury Outcomes, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R Meisenberg
- Department of Hematology–Oncology, Anne Arundel Medical Center, Annapolis, Maryland, USA
| | - Bela Patel
- Division of Critical Care Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Arvind Gharbharan
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Jaap Jan Zwaginga
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
- Center for Clinical Transfusion Research, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Andrea Alemany
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Dan Ouchi
- Fight Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pere Millat-Martinez
- ISGlobal, Department of Infectious Diseases, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Valerie Durkalski-Mauldin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Larry J Dumont
- Vitalant Research Institute, Research Department, Denver, Colorado, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Romina Libster
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | - Fernando Polack
- Fundación INFANT, Buenos Aires, Argentina
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
145
|
Xu Y, Liu Y, Zheng R, Si S, Xi Y, Deng X, Wang G, Zhou L, Li M, Wang Y, Zhang S, Xie J, Liu X, Yang Y, Tang X. Effect of the Timing of Amubarvimab/Romlusevimab (BRII-196/198) Administration on Progression to Severe Disease in Elderly Patients with COVID-19 Infection: A Retrospective Cohort Study. INTENSIVE CARE RESEARCH 2023; 3:1-9. [PMID: 37360309 PMCID: PMC10240101 DOI: 10.1007/s44231-023-00040-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Objective Early intervention with neutralizing antibodies is considered to be effective in preventing disease progression in patients with mild to moderate COVID-19 infection. Elderly patients are the most susceptible and at a higher risk of COVID-19 infection. The present study aimed to assess the necessity and possible clinical benefits of the early administration of Amubarvimab/Romlusevimab (BRII-196/198) in the elderly population. Methods The present study was designed as a retrospective, multi-center cohort study conducted with 90 COVID-19 patients aged over 60, who were divided into two groups based on the timing of the administration of BRII-196/198 (administration at ≤ 3 days or > 3 days from the onset of infection symptoms). Results The ≤ 3 days group exhibited a greater positive effect (HR 5.94, 95% CI, 1.42-24.83; P < 0.01), with only 2 patients among 21 patients (9.52%) exhibiting disease progression, compared to the 31 patients among the 69 patients (44.93%) of the > 3 days group who exhibited disease progression. The multivariate Cox regression analysis revealed low flow oxygen support prior to BRII-196/198 administration (HR 3.53, 95% CI 1.42-8.77, P < 0.01) and PLT class (HR 3.68, 95% CI 1.37-9.91, P < 0.01) as independent predictors of disease progression. Conclusions In elderly patients with mild or moderate COVID-19 disease, who do not require oxygen support and had the risk factors for disease progression to severe COVID-19 disease, the administration of BRII-196/198 within 3 days resulted in a beneficial trend in terms of preventing disease progression.
Collapse
Affiliation(s)
- Yonghao Xu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ying Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Shujie Si
- The Forth Hospital of Inner Mongolia, Hohhot, China
| | - Yin Xi
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Xilong Deng
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gang Wang
- The People’s Hospital of Dalai Nur District, Manzhouli, China
| | - Liang Zhou
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Manshu Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ya Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Shuo Zhang
- The Forth Hospital of Inner Mongolia, Hohhot, China
| | - Jianfeng Xie
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoqing Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory and Health, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yi Yang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| |
Collapse
|
146
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
147
|
Yetmar ZA, Yao JD, Razonable RR. SARS-CoV-2 spike codon mutations and risk of hospitalization after antispike monoclonal antibody therapy in solid organ transplant recipients. J Med Virol 2023; 95:e28885. [PMID: 37334976 PMCID: PMC10583774 DOI: 10.1002/jmv.28885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Neutralizing antispike monoclonal antibody (mAb) therapies were highly efficacious in preventing coronavirus disease 2019 (COVID-19) hospitalization. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may harbor spike protein mutations conferring reduced in vitro susceptibility to these antibodies, the effect of these mutations on clinical outcomes is not well characterized. We conducted a case-control study of solid organ transplant recipients who received an antispike mAb for treatment of mild-to-moderate COVID-19 and had an available sample from initial COVID-19 diagnosis for genotypic sequencing. Patients whose SARS-CoV-2 isolate had at least one spike codon mutation conferring at least fivefold decreased in vitro susceptibility were classified as resistant. Overall, 9 of 41 patients (22%) had at least one spike codon mutation that confers reduced susceptibility to the antispike mAb used for treatment. Specifically, 9 of 12 patients who received sotrovimab had S371L mutation that was predicted to confer a 9.7-fold reduced susceptibility. However, among 22 patients who required hospitalization, 5 had virus with resistance mutation. In contrast, among 19 control patients who did not require hospitalization, 4 also had virus-containing resistance mutations (p > 0.99). In conclusion, spike codon mutations were common, though mutations that conferred a 9.7-fold reduced susceptibility did not predict subsequent hospitalization after treatment with antispike mAb.
Collapse
Affiliation(s)
- Zachary A. Yetmar
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph D. Yao
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
148
|
Chambers LC, Chu HT, Lewis N, Kamat G, Fortnam T, Chan PA, Lasher L, Hogan JW. Effectiveness of Monoclonal Antibody Therapy for Preventing COVID-19 Hospitalization and Mortality in a Statewide Population. RHODE ISLAND MEDICAL JOURNAL (2013) 2023; 106:42-48. [PMID: 37195162 PMCID: PMC11457867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Monoclonal antibody (MAB) treatments for COVID-19 received Emergency Use Authorization in the United States. METHODS We used surveillance data from Rhode Island to conduct a retrospective, statewide cohort study to estimate the effectiveness of MABs for preventing hospitalization and death during periods when Alpha and Delta variants were predominant. RESULTS From 1/17/2021-10/26/2021, 285 long-term congregate care (LTCC) residents and 3,113 non-congregate patients met our eligibility criteria and received MAB; they were matched to 285 and 6,226 controls, respectively. Among LTCC residents, 8.8% (25/285) of patients who received MAB were hospitalized or died compared to 25.3% (72/285) of those who did not receive MAB (adjusted difference=16.7%, 95% confidence interval CI=11.0-22.3%). Among non-congregate patients, 4.5% (140/3,113) of patients who received MAB were hospitalized or died compared to 11.8% (737/6,226) of those who did not receive MAB (adjusted difference=7.2%, 95% CI=6.0-8.4%). CONCLUSIONS Administration of MABs led to an absolute reduction in hospitalization or death during periods when Alpha and Delta variants were predominant.
Collapse
Affiliation(s)
- Laura C Chambers
- was Lead of the COVID-19 Data and Analytics Program at the Rhode Island Department of Health in Providence, RI, when this work was completed. Dr. Chambers is now a Lead Research Scientist and Assistant Professor of the Practice of Epidemiology in the Department of Epidemiology at Brown University in Providence, RI
| | - Huong T Chu
- was the Analytics Team Lead in the COVID-19 Data and Analytics Program at the Rhode Island Department of Health in Providence, RI, when this work was completed. Dr. Chu is now a doctoral student in the Department of Health Metrics Sciences at the University of Washington in Seattle, WA
| | - Nickolas Lewis
- doctoral student in the Department of Biostatistics at Brown University in Providence, RI
| | - Gauri Kamat
- doctoral student in the Department of Biostatistics at Brown University in Providence, RI
| | - Taylor Fortnam
- octoral student in the Department of Biostatistics at Brown University in Providence, RI
| | - Philip A Chan
- Consultant Medical Director at the Rhode Island Department of Health and an Associate Professor in the Department of Medicine at Brown University in Providence, RI
| | - Leanne Lasher
- Chief COVID-19 Data and Analytics Officer at the Rhode Island Department of Health in Providence, RI, when this work was completed. She is now the Senior Director of Public Health Research and Business Intelligence at the Association of State and Territorial Health Officers in Arlington, VA
| | - Joseph W Hogan
- Professor and Chair of the Department of Biostatistics at Brown University in Providence, RI
| |
Collapse
|
149
|
Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P. COVID-19 Therapeutic Potential of Natural Products. Int J Mol Sci 2023; 24:9589. [PMID: 37298539 PMCID: PMC10254072 DOI: 10.3390/ijms24119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Collapse
Affiliation(s)
- Zhaoxuan Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Chitlaa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.L.); (S.A.)
| |
Collapse
|
150
|
Bajpai J, Kant S, Verma AK, Pradhan A. Monoclonal antibody for COVID-19: Unveiling the recipe of a new cocktail. World J Respirol 2023; 12:1-9. [DOI: 10.5320/wjr.v12.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a tremendous adverse impact on the global health system, public sector, and social aspects. It is unarguably the worst pandemic of the century. However, COVID-19 management is a mystery in front of us, and an authentic treatment is urgently needed. Various repurposed drugs, like ivermectin, remdesivir, tocilizumab, baricitinib, etc., have been used to treat COVID-19, but none are promising. Antibody therapy and their combinations are emerging modalities for treating moderate COVID-19, and they have shown the potential to reduce hospitalisations. One antibody monotherapy, bamlanivimab, and two cocktails, casirivimab/imdevimab and bamlanivimab/ esterivimab, have received authorization for emergency use by the United States Food and Drug Administration for the treatment of mild COVID-19 in high risk individuals. The European Emergency has made similar recommendations for use of the drug in COVID-19 patients without oxygen therapy. This brief review will focus on monoclonal antibodies and their combination cocktail therapy in managing COVID-19 infection.
Collapse
Affiliation(s)
- Jyoti Bajpai
- Department ofRespiratory Medicine, King George’s Medical University, Lucknow 226003, India
| | - Surya Kant
- Department ofRespiratory Medicine, King George’s Medical University, Lucknow 226003, India
| | - Ajay Kumar Verma
- Department ofRespiratory Medicine, King George’s Medical University, Lucknow 226003, India
| | - Akshyaya Pradhan
- Department ofCardiology, King George’s Medical University, Lucknow 226003, India
| |
Collapse
|