101
|
Monshausen M, Gehring NH, Kosik KS. The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons. Neuromolecular Med 2005; 6:127-44. [PMID: 15970630 DOI: 10.1385/nmm:6:2-3:127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 02/21/2005] [Accepted: 03/23/2005] [Indexed: 11/11/2022]
Abstract
Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.
Collapse
Affiliation(s)
- Michaela Monshausen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
102
|
Abstract
Fragile X syndrome (FXS) is caused by the transcriptional silencing of the Fmr1 gene, which encodes a protein (FMRP) that can act as a translational suppressor in dendrites, and is characterized by a preponderance of abnormally long, thin and tortuous dendritic spines. According to a current theory of FXS, the loss of FMRP expression leads to an exaggeration of translation responses linked to group I metabotropic glutamate receptors. Such responses are involved in the consolidation of a form of long-term depression that is enhanced in Fmr1 knockout mice and in the elongation of dendritic spines, resembling synaptic phenotypes over-represented in fragile X brain. These observations place fragile X research at the heart of a long-standing issue in neuroscience. The consolidation of memory, and several distinct forms of synaptic plasticity considered to be substrates of memory, requires mRNA translation and is associated with changes in spine morphology. A recent convergence of research on FXS and on the involvement of translation in various forms of synaptic plasticity has been very informative on this issue and on mechanisms underlying FXS. Evidence suggests a general relationship in which the receptors that induce distinct forms of efficacy change differentially regulate translation to produce unique spine shapes involved in their consolidation. We discuss several potential mechanisms for differential translation and the notion that FXS represents an exaggeration of one 'channel' in a set of translation-dependent consolidation responses.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
103
|
Terracciano A, Chiurazzi P, Neri G. Fragile X syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 137C:32-7. [PMID: 16010677 DOI: 10.1002/ajmg.c.30062] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome, the most common genetic disorder associated with mental retardation is caused by an expansion of the unstable CGG repeat within the FMR1 gene. Although overgrowth is not the main hallmark of this condition, the fragile X syndrome is usually included in the differential diagnosis of children with mental retardation and excess growth. This review highlights the most recent advances in the field of fragile X research.
Collapse
|
104
|
Tretyakova I, Zolotukhin AS, Tan W, Bear J, Propst F, Ruthel G, Felber BK. Nuclear Export Factor Family Protein Participates in Cytoplasmic mRNA Trafficking. J Biol Chem 2005; 280:31981-90. [PMID: 16014633 DOI: 10.1074/jbc.m502736200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the nuclear export of mRNA is mediated by nuclear export factor 1 (NXF1) receptors. Metazoans encode additional NXF1-related proteins of unknown function, which share homology and domain organization with NXF1. Some mammalian NXF1-related genes are expressed preferentially in the brain and are thought to participate in neuronal mRNA metabolism. To address the roles of NXF1-related factors, we studied the two mouse NXF1 homologues, mNXF2 and mNXF7. In neuronal cells, mNXF2, but not mNXF7, exhibited mRNA export activity similar to that of Tip-associated protein/NXF1. Surprisingly, mNXF7 incorporated into mobile particles in the neurites that contained poly(A) and ribosomal RNA and colocalized with Staufen1-containing transport granules, indicating a role in neuronal mRNA trafficking. Yeast two-hybrid interaction, coimmunoprecipitation, and in vitro binding studies showed that NXF proteins bound to brain-specific microtubule-associated proteins (MAP) such as MAP1B and the WD repeat protein Unrip. Both in vitro and in vivo, MAP1B also bound to NXF export cofactor U2AF as well as to Staufen1 and Unrip. These findings revealed a network of interactions likely coupling the export and cytoplasmic trafficking of mRNA. We propose a model in which MAP1B tethers the NXF-associated mRNA to microtubules and facilitates their translocation along dendrites while Unrip provides a scaffold for the assembly of these transport intermediates.
Collapse
Affiliation(s)
- Irina Tretyakova
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Dugré-Brisson S, Elvira G, Boulay K, Chatel-Chaix L, Mouland AJ, DesGroseillers L. Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs. Nucleic Acids Res 2005; 33:4797-812. [PMID: 16126845 PMCID: PMC1193567 DOI: 10.1093/nar/gki794] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Staufen1 is a component of transported ribonucleoprotein complexes. Genetic work in Drosophila has suggested that Staufen plays a role in the de-repression of translation of oskar mRNA following localization. To determine whether Staufen1 can play a similar role in mammals, we studied translation of transcripts in the presence or in the absence of Staufen1. Translationally repressed mRNAs were generated by fusing the structured human immunodeficiency virus type 1 trans-activating response (TAR) element to the 5′ end of a reporter transcript. In rabbit reticulocyte lysates and in mammalian cultured cells, the addition of Staufen1 resulted in the up-regulation of reporter activity when translation was driven by the TAR-bearing RNA. In contrast, Staufen1 had no effect on translation of efficiently translated mRNAs lacking an apparent structured 5′ end, suggesting that Staufen1-binding to the 5′ end is required for enhanced translation. Consistently, Staufen1 RNA-binding activity is necessary for this translational effect. In addition, similar up-regulation of translation was observed when Staufen1 was tethered to the 5′ end of mRNAs via other structured RNAs, the highest level of translational increase being obtained with the bona fide Staufen1-binding site of the Arf1 transcript. The expression of Staufen1 promoted polysomal loading of TAR-luciferase transcripts resulting in enhanced translation. Our results support a model in which the expression of Staufen1 and its interaction with the 5′ end of RNA and ribosomes facilitate translation initiation.
Collapse
Affiliation(s)
| | - George Elvira
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
| | - Karine Boulay
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
| | - Laurent Chatel-Chaix
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
- Lady Davis Institute for Medical Research, McGill UniversityMontréal, Canada H3C 3J7
| | - Andrew J. Mouland
- Lady Davis Institute for Medical Research, McGill UniversityMontréal, Canada H3C 3J7
| | - Luc DesGroseillers
- Département de Biochimie, Université de MontréalMontréal, QC, Canada
- Centre de Recherche en Sciences Neurologiques, Université de MontréalMontréal, QC, Canada
- To whom correspondence should be addressed at Department of Biochemistry, University of Montreal, PO Box 6128, Station Centre Ville, Montreal, QC, Canada H3C 3J7. Tel: +1 514 343 5802; Fax: +1 514 343 2210;
| |
Collapse
|
106
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
107
|
Olivier C, Poirier G, Gendron P, Boisgontier A, Major F, Chartrand P. Identification of a conserved RNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol 2005; 25:4752-66. [PMID: 15899876 PMCID: PMC1140632 DOI: 10.1128/mcb.25.11.4752-4766.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, over twenty mRNAs localize to the bud tip of daughter cells, playing roles in processes as different as mating type switching and plasma membrane targeting. The localization of these transcripts depends on interactions between a cis-acting localization element(s) or zipcodes and the RNA-binding protein She2p. While previous studies identified four different localization elements in the bud-localized ASH1 mRNA, the main determinants for She2p recognition are still unknown. To investigate the RNA-binding specificity of She2p, we isolated She2p-binding RNAs by in vivo selection from libraries of partially randomized ASH1 localization elements. The RNAs isolated contained a similar loop-stem-loop structure with a highly conserved CGA triplet in one loop and a single conserved cytosine in the other loop. Mutating these conserved nucleotides or the stem separating them resulted in the loss of She2p binding and in the delocalization of a reporter mRNA. Using this information, we identified the same RNA motif in two other known bud-localized transcripts, suggesting that this motif is conserved among bud-localized mRNAs. These results show that mRNAs with zipcodes lacking primary sequence similarity can rely on a few conserved nucleotides properly oriented in their three-dimensional structure in order to be recognized by the same localization machinery.
Collapse
Affiliation(s)
- Catherine Olivier
- Département de Biochimie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
108
|
Bray JD, Chennathukuzhi VM, Hecht NB. KIF2Abeta: A kinesin family member enriched in mouse male germ cells, interacts with translin associated factor-X (TRAX). Mol Reprod Dev 2005; 69:387-96. [PMID: 15457513 DOI: 10.1002/mrd.20171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Translin associated factor X (TRAX) is a binding partner of TB-RBP/Translin. A cDNA encoding the 260 C-terminal amino acids of KIF2Abeta was isolated from mouse testis cDNAs in a yeast two-hybrid library screen for specific TRAX-interacting proteins. KIF2Abeta was expressed predominantly in the mouse testis and enriched in germ cells. The interaction of full-length KIF2Abeta or its C-terminus with TRAX was verified using in vitro synthesized fusion proteins. Deletion mapping of the TRAX-binding region of KIF2Abeta indicated that amino acids 514-659 were necessary and sufficient for the interaction in vivo. Confocal microscopy studies using GFP-fusion proteins demonstrated that KIF2Abeta colocalizes with TRAX in a perinuclear location. KIF2Abeta does not interact with TB-RBP, suggesting that either TRAX can function as an adaptor molecule for motor proteins and TB-RBP, or that this interaction reveals an undescribed role for TRAX in germ cells. The interaction with KIF2Abeta suggests a role for TRAX in microtubule-based functions during spermatogenesis.
Collapse
Affiliation(s)
- Jeffrey D Bray
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | |
Collapse
|
109
|
Bagni C, Greenough WT. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 2005; 6:376-87. [PMID: 15861180 DOI: 10.1038/nrn1667] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mental retardation protein FMRP is involved in the transport of mRNAs and their translation at synapses. Patients with fragile X syndrome, in whom FMRP is absent or mutated, show deficits in learning and memory that might reflect impairments in the translational regulation of a subset of neuronal mRNAs. The study of FMRP provides important insights into the regulation and functions of local protein synthesis in the neuronal periphery, and increases our understanding of how these functions can produce specific effects at individual synapses.
Collapse
Affiliation(s)
- Claudia Bagni
- Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma, Italy.
| | | |
Collapse
|
110
|
Abstract
mRNA localization is a common mechanism for targeting proteins to regions of the cell where they are required. It has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion and allowing the local control of protein synthesis in neurons. New methods for in vivo labelling have revealed that several mRNAs are transported by motor proteins, but how most mRNAs are coupled to these proteins remains obscure.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
111
|
Abstract
Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase II alpha subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase II alpha subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.
Collapse
Affiliation(s)
- Ross Smith
- Department of Biochemistry and Molecular Biology, University of Queensland, Queensland, Australia.
| |
Collapse
|
112
|
Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 2005; 120:195-208. [PMID: 15680326 DOI: 10.1016/j.cell.2004.11.050] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/11/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
Mammalian Staufen (Stau)1 is an RNA binding protein that is thought to function in mRNA transport and translational control. Nonsense-mediated mRNA decay (NMD) degrades abnormal and natural mRNAs that terminate translation sufficiently upstream of a splicing-generated exon-exon junction. Here we describe an mRNA decay mechanism that involves Stau1, the NMD factor Upf1, and a termination codon. Unlike NMD, this mechanism does not involve pre-mRNA splicing and occurs when Upf2 or Upf3X is downregulated. Stau1 binds directly to Upf1 and elicits mRNA decay when tethered downstream of a termination codon. Stau1 also interacts with the 3'-untranslated region of ADP-ribosylation factor (Arf)1 mRNA. Accordingly, downregulating either Stau1 or Upf1 increases Arf1 mRNA stability. These findings suggest that Arf1 mRNA is a natural target for Stau1-mediated decay, and data indicate that other mRNAs are also natural targets. We discuss this pathway as a means for cells to downregulate the expression of Stau1 binding transcripts.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
113
|
Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB. The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 2005; 5:1013-23. [PMID: 15573138 DOI: 10.1038/nrm1528] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA duplexes have been catapulted into the spotlight by the discovery of RNA interference and related phenomena. But double-stranded and highly structured RNAs have long been recognized as key players in cell processes ranging from RNA maturation and localization to the antiviral response in higher organisms. Penetrating insights into the metabolism and functions of such RNAs have come from the identification and study of proteins that contain the double-stranded-RNA-binding motif.
Collapse
Affiliation(s)
- Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | | | | | | |
Collapse
|
114
|
Abstract
The strength of synaptic connections can undergo long-lasting changes, and such long-term plasticity is thought to underlie higher brain functions such as learning and memory. De novo synthesis of proteins is required for such plastic changes. This model is now supported by several lines of experimental data. Components of translational machinery have been identified in dendrites, including ribosomes, translation-al factors, numerous RNAs, and components of posttranslational secretory pathways. Various RNAs have been shown to be actively and rapidly transported to dendrites. Dendritic RNAs typically contain transport-specifying elements (dendritic targeting elements). Such dendritic targeting elements associate with trans-acting factors to form transport-competent ribonucleoprotein particles. It is assumed that molecular motors mediate transport of such particles along dendritic cytoskeletal elements. Once an mRNA has arrived at its dendritic destination site, appropriate spatiotemporal control of its translation, for example, in response to transsynaptic activity, becomes vital. Such local translational control, recent evidence indicates, is implemented at different levels and through various pathways. In the default state, translation is assumed to be repressed, and several mechanisms, some including small untranslated RNAs, have been proposed to contribute to such repression. Translational control at the synapse thus provides a molecular basis for the long-term, input-specific modulation of synaptic strength.
Collapse
Affiliation(s)
- Huidong Wang
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, 11203, USA
| | | |
Collapse
|
115
|
Brendel C, Rehbein M, Kreienkamp HJ, Buck F, Richter D, Kindler S. Characterization of Staufen 1 ribonucleoprotein complexes. Biochem J 2004; 384:239-46. [PMID: 15303970 PMCID: PMC1134106 DOI: 10.1042/bj20040812] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/21/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
In Drosophila oocytes and neuroblasts, the double-stranded RNA binding protein Staufen assembles into ribonucleoprotein particles, which mediate cytoplasmic mRNA trafficking and translation. Two different mammalian orthologues also appear to reside in distinct RNA-containing particles. To date, relatively little is known about the molecular composition of Staufen-containing ribonucleoprotein complexes. Here, we have used a novel one-step affinity purification protocol to identify components of Staufen 1-containing particles. Whereas the nucleocytoplasmic RNA-binding protein nucleolin is linked to Staufen in an RNA-dependent manner, the association of protein phosphatase 1, the microtubule-dependent motor protein kinesin and several components of the large and small ribosomal subunits with Staufen ribonucleoprotein complexes is RNA-independent. Notably, all these components do not co-purify with a second RNA-binding protein, hnRNPK (heterogeneous ribonucleoprotein K), demonstrating the high specificity of the purification protocol. Furthermore, pull-down and immunoprecipitation experiments suggest a direct interaction between Staufen 1 and the ribosomal protein P0 in vitro as well as in cells. In cell fractionation and sucrose gradient assays, Staufen co-fractionates with intact ribosomes and polysomes, but not with the isolated 40 S ribosomal subunit. Taken together, these findings imply that, in the cytoplasm of mammalian cells, an association with the ribosomal P-stalk protein P0 recruits Staufen 1 into ribosome-containing ribonucleoprotein particles, which also contain kinesin, protein phosphatase 1 and nucleolin.
Collapse
Key Words
- ribonucleoprotein particle
- ribosome
- rna sorting
- rna-binding protein
- translation
- dsrbd, double-stranded rna-binding domain
- ef1α, elongation factor 1α
- (e)gfp, (enhanced) green fluorescent protein
- fmrp, fragile x mental retardation protein 1
- gkap/sapap1, guanylate kinase-associated protein/sap90/psd-95-associated protein
- gst, glutathione s-transferase
- hek, human embryonic kidney
- hnrnp(k/u), heterogeneous ribonucleoprotein k or u respectively
- ip buffer, immunoprecipitation buffer
- pp1, protein phosphatase-1
- (m)rnp, (messenger) ribonucleoprotein particle
- nfar, nuclear factor associated with double-stranded rna
- pabp, poly(a)+-binding protein
- rha, rna helicase a
- rstau, rat staufen
- sstrip, somatostatin receptor-interacting protein
- stau1, staufen 1
- stau2, staufen 2
Collapse
Affiliation(s)
- Cornelia Brendel
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Monika Rehbein
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Friedrich Buck
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Dietmar Richter
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Stefan Kindler
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
116
|
Bannai H, Fukatsu K, Mizutani A, Natsume T, Iemura SI, Ikegami T, Inoue T, Mikoshiba K. An RNA-interacting Protein, SYNCRIP (Heterogeneous Nuclear Ribonuclear Protein Q1/NSAP1) Is a Component of mRNA Granule Transported with Inositol 1,4,5-Trisphosphate Receptor Type 1 mRNA in Neuronal Dendrites. J Biol Chem 2004; 279:53427-34. [PMID: 15475564 DOI: 10.1074/jbc.m409732200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA transport and local translation in the neuronal dendrite is implicated in the induction of synaptic plasticity. Recently, we cloned an RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1), that is suggested to be important for the stabilization of mRNA. We report here that SYNCRIP is a component of mRNA granules in rat hippocampal neurons. SYNCRIP was mainly found at cell bodies, but punctate expression patterns in the proximal dendrite were also seen. Time-lapse analysis in living neurons revealed that the granules labeled with fluorescent protein-tagged SYNCRIP were transported bi-directionally within the dendrite at approximately 0.05 microm/s. Treatment of neurons with nocodazole significantly inhibited the movement of green fluorescent protein-SYNCRIP-positive granules, indicating that the transport of SYNCRIP-containing granules is dependent on microtubules. The distribution of SYNCRIP-containing granules overlapped with that of dendritic RNAs and elongation factor 1alpha. SYNCRIP was also found to be co-transported with green fluorescent protein-tagged human staufen1 and the 3'-untranslated region of inositol 1,4,5-trisphosphate receptor type 1 mRNA. These results suggest that SYNCRIP is transported within the dendrite as a component of mRNA granules and raise the possibility that mRNA turnover in mRNA granules and the regulation of local protein synthesis in neuronal dendrites may involve SYNCRIP.
Collapse
Affiliation(s)
- Hiroko Bannai
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Miki T, Yoneda Y. Alternative splicing of Staufen2 creates the nuclear export signal for CRM1 (Exportin 1). J Biol Chem 2004; 279:47473-9. [PMID: 15364930 DOI: 10.1074/jbc.m407883200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Staufen2 (Stau2), a brain-specific double-stranded RNA-binding protein, is involved in the localization of mRNA in neurons. To gain insights into the function of Stau2, the subcellular localization of Stau2 isoforms fused to the green fluorescence protein was examined. Fluorescence microscopic analysis showed that Stau2 functions as a nucleocytoplasmic shuttle protein. The nuclear export of the 62-kDa isoform of Stau2 (Stau2(62)) is mediated by the double-stranded RNA-binding domain 3 (RBD3) because a mutation to RBD3 led to nuclear accumulation. On the other hand, the shorter isoform of Stau2, Stau2(59), is exported from the nucleus by two distinct pathways, one of which is RBD3-mediated and the other of which is CRM1 (exportin 1)-dependent. The nuclear export signal recognized by CRM1 was found to be located in the N-terminal region of Stau2(59). These results suggest that Stau2 may carry a variety of RNAs out of the nucleus, using the two export pathways. The present study addresses the issue of why plural Stau2 isoforms are expressed in neurons.
Collapse
Affiliation(s)
- Takashi Miki
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | |
Collapse
|
118
|
Thomas MG, Martinez Tosar LJ, Loschi M, Pasquini JM, Correale J, Kindler S, Boccaccio GL. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell 2004; 16:405-20. [PMID: 15525674 PMCID: PMC539183 DOI: 10.1091/mbc.e04-06-0516] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Alternative Splicing
- Animals
- Animals, Newborn
- Biological Transport
- Blotting, Western
- Brain/metabolism
- Cloning, Molecular
- Computer Simulation
- Cytoplasm/metabolism
- In Situ Hybridization, Fluorescence
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microtubules/metabolism
- Models, Genetic
- Myelin Sheath/metabolism
- Oligodendroglia/metabolism
- Oxidative Stress
- Polyribosomes/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Messenger/metabolism
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/physiology
- Rats
- Rats, Sprague-Dawley
- Ribonucleases/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- María G Thomas
- Fundación Instituto Leloir, IIB Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
119
|
Allison R, Czaplinski K, Git A, Adegbenro E, Stennard F, Houliston E, Standart N. Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis. RNA (NEW YORK, N.Y.) 2004; 10:1751-63. [PMID: 15496522 PMCID: PMC1370663 DOI: 10.1261/rna.7450204] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 08/06/2004] [Indexed: 05/21/2023]
Abstract
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.
Collapse
Affiliation(s)
- Rachel Allison
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
mRNA localization is a widespread post-transcriptional mechanism for targeting protein synthesis to specific cellular sites. It is involved in the generation of cell polarity, asymmetric segregation of cell fate determinants and germ cell specification. Actin and microtubule filaments have key functions during RNA localization, especially during transport of mRNAs and anchoring at target sites. Recent advances in understanding the role of motors and filament systems have mainly resulted from the contribution of live imaging of mRNA movement and from the purification of putative localization ribonucleoproteins. There have also been new findings on the role of centrosomes in RNA localization.
Collapse
Affiliation(s)
- Miguel López de Heredia
- Gene Center and Institute for Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.
| | | |
Collapse
|
121
|
Sung YJ, Weiler IJ, Greenough WT, Denman RB. Selectively enriched mRNAs in rat synaptoneurosomes. ACTA ACUST UNITED AC 2004; 126:81-7. [PMID: 15207920 DOI: 10.1016/j.molbrainres.2004.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2004] [Indexed: 11/26/2022]
Abstract
Differential display was used to identify synapse-enriched mRNAs. Of 15 mRNAs initially identified, all were found in multiple synaptoneurosome preparations; 58% were subsequently shown to be enriched in all the preparations by Northern blotting and semiquantitative RT-PCR. RNAs involved in signal transduction, vesicle trafficking, lipid modification and cell shape and remodeling were among these messages. Tip60a mRNA, recently found to associate with the fragile X mental retardation protein, was also identified. These data demonstrate the diversity of the local message pool at synapses.
Collapse
Affiliation(s)
- Y-J Sung
- Department of Anatomy and Cell Biology Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
122
|
Chang P, Torres J, Lewis RA, Mowry KL, Houliston E, King ML. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol Biol Cell 2004; 15:4669-81. [PMID: 15292452 PMCID: PMC519158 DOI: 10.1091/mbc.e04-03-0265] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm, which originates within a distinct "mitochondrial cloud" (MC) in previtellogenic oocytes. Germ plasm contains localized RNAs implicated in germ cell development, including Xcat2 and Xdazl. To understand the mechanism of the early pathway through which RNAs localize to the MC, we applied live confocal imaging and photobleaching analysis to oocytes microinjected with fluorescent Xcat2 and Xdazl RNA constructs. These RNAs dispersed evenly throughout the cytoplasm through diffusion and then became progressively immobilized and formed aggregates in the MC. Entrapment in the MC was not prevented by microtubule disruption and did not require localization to germinal granules. Immobilized RNA constructs codistributed and showed coordinated movement with densely packed endoplasmic reticulum (ER) concentrated in the MC, as revealed with Dil16(3) labeling and immunofluorescence analysis. Vg1RBP/Vera protein, which has been implicated in linking late pathway RNAs to vegetal ER, was shown to bind specifically both wild-type Xcat2 3' untranslated region and localization-defective constructs. We found endogenous Vg1RBP/Vera and Vg1RBP/Vera-green fluorescent protein to be largely excluded from the MC but subsequently to codistribute with Xcat2 and ER at the vegetal cortex. We conclude that germ line RNAs localize into the MC through a diffusion/entrapment mechanism involving Vg1RBP/Vera-independent association with ER.
Collapse
Affiliation(s)
- Patrick Chang
- Unité Mixte de Recherche 7009 Centre National pour la Recherche Scientifique/Université Pierre et Marie Curie, Observatoire Océanologique, 06230 Villefranche sur Mer, France
| | | | | | | | | | | |
Collapse
|
123
|
Kanai Y, Dohmae N, Hirokawa N. Kinesin Transports RNA. Neuron 2004; 43:513-25. [PMID: 15312650 DOI: 10.1016/j.neuron.2004.07.022] [Citation(s) in RCA: 849] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/21/2004] [Accepted: 07/19/2004] [Indexed: 01/01/2023]
Abstract
RNA transport is an important and fundamental event for local protein synthesis, especially in neurons. RNA is transported as large granules, but little is known about them. Here, we isolated a large RNase-sensitive granule (size: 1000S approximately) as a binding partner of conventional kinesin (KIF5). We identified a total of 42 proteins with mRNAs for CaMKIIalpha and Arc in the granule. Seventeen of the proteins (hnRNP-U, Pur alpha and beta, PSF, DDX1, DDX3, SYNCRIP, TLS, NonO, HSPC117, ALY, CGI-99, staufen, three FMRPs, and EF-1alpha) were extensively investigated, including their classification, binding combinations, and necessity for the "transport" of RNA. These proteins and the mRNAs were colocalized to the kinesin-associated granules in dendrites. The granules moved bidirectionally, and the distally directed movement was enhanced by the overexpression of KIF5 and reduced by its functional blockage. Thus, kinesin transports RNA via this granule in dendrites coordinately with opposite motors, such as dynein.
Collapse
Affiliation(s)
- Yoshimitsu Kanai
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
124
|
Diefenbach RJ, Diefenbach E, Douglas MW, Cunningham AL. The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B. Biochem Biophys Res Commun 2004; 319:987-92. [PMID: 15184079 DOI: 10.1016/j.bbrc.2004.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 10/26/2022]
Abstract
The conventional microtubule-dependent motor protein kinesin consists of heavy and light chains both of which have been documented to bind a variety of potential linker or cargo proteins. In this study we employed a yeast two-hybrid assay to identify additional binding partners of the kinesin heavy chain isoform KIF5B. A human brain cDNA library was screened with a bait corresponding to amino acid residues 814-963 of human KIF5B. This screen identified the ribosome receptor, p180, as a KIF5B-binding protein. The sites of interaction are residues 1294-1413 of p180 and the C-terminal half of the cargo binding-domain of KIF5B (residues 867-907). The KIF5B-binding site in p180 is homologous to the previously determined KIF5B-binding site in kinectin. The interacting regions of p180 and KIF5B consist almost entirely of heptad repeats, suggesting the interaction is a coiled-coil. A role for the kinesin/p180 interaction may include mRNA localization and/or transport of endoplasmic reticulum-derived vesicles.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | | | | | | |
Collapse
|
125
|
Yoon YJ, Mowry KL. Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development 2004; 131:3035-45. [PMID: 15163628 DOI: 10.1242/dev.01170] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNA localization is a key mechanism for generating cell and developmental polarity in a wide variety of organisms. We have performed studies to investigate a role for the Xenopus homolog of the double-stranded RNA-binding protein, Staufen, in RNA localization during oogenesis. We have found that Xenopus Staufen (XStau) is present in a ribonucleoprotein complex, and associates with both a kinesin motor protein and vegetally localized RNAs Vg1 and VegT. A functional role for XStau was revealed through expression of a dominant-negative version that blocks localization of Vg1 RNA in vivo. Our results suggest a central role for XStau in RNA localization in Xenopus oocytes, and provide evidence that Staufen is a conserved link between specific mRNAs and the RNA localization machinery.
Collapse
Affiliation(s)
- Young J Yoon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
126
|
Seidenbecher CI, Landwehr M, Smalla KH, Kreutz M, Dieterich DC, Zuschratter W, Reissner C, Hammarback JA, Böckers TM, Gundelfinger ED, Kreutz MR. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol 2004; 336:957-70. [PMID: 15095872 DOI: 10.1016/j.jmb.2003.12.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Villacé P, Marión RM, Ortín J. The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res 2004; 32:2411-20. [PMID: 15121898 PMCID: PMC419443 DOI: 10.1093/nar/gkh552] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
hStaufen is the human homolog of dmStaufen, a double-stranded (ds)RNA-binding protein involved in early development of the fly. hStaufen-containing complexes were purified by affinity chromatography from human cells transfected with a TAP-tagged hStaufen gene. These complexes showed a size >10 MDa. Untagged complexes with similar size were identified from differentiated human neuroblasts. The identity of proteins present in purified hStaufen complexes was determined by mass spectrometry and the presence of these proteins and other functionally related ones was verified by western blot. Ribosomes and proteins involved in the control of protein synthesis (PABP1 and FMRP) were present in purified hStaufen complexes, as well as elements of the cytoskeleton (tubulins, tau, actin and internexin), cytoskeleton control proteins (IQGAP1, cdc42 and rac1) and motor proteins (dynein, kinesin and myosin). In addition, proteins normally found in the nucleus, like nucleolin and RNA helicase A, were also found associated with cytosolic hStaufen complexes. The co-localization of these components with hStaufen granules in the dendrites of differentiated neuroblasts, determined by confocal immunofluorescence, validated their association in living cells. These results support the notion that the hStaufen-containing granules are structures essential in the localization and regulated translation of human mRNAs in vivo.
Collapse
Affiliation(s)
- Patricia Villacé
- Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
128
|
Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I. The Spinocerebellar Ataxia 8 Noncoding RNA Causes Neurodegeneration and Associates with Staufen in Drosophila. Curr Biol 2004; 14:302-8. [PMID: 14972680 DOI: 10.1016/j.cub.2004.01.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 12/18/2003] [Accepted: 12/29/2003] [Indexed: 11/29/2022]
Abstract
Spinocerebellar Ataxia 8 (SCA8) appears unique among triplet repeat expansion-induced neurodegenerative diseases because the predicted gene product is a noncoding RNA. Little is currently known about the normal function of SCA8 in neuronal survival or how repeat expansion contributes to neurodegeneration. To investigate the molecular context in which SCA8 operates, we have expressed the human SCA8 noncoding RNA in Drosophila. SCA8 induces late-onset, progressive neurodegeneration in the Drosophila retina. Using this neurodegenerative phenotype as a sensitized background for a genetic modifier screen, we have identified mutations in four genes: staufen, muscle-blind, split ends, and CG3249. All four encode neuronally expressed RNA binding proteins conserved in Drosophila and humans. Although expression of both wild-type and repeat-expanded SCA8 induce neurodegeneration, the strength of interaction with certain modifiers differs between the two SCA8 backgrounds, suggesting that CUG expansions alter associations with specific RNA binding proteins. Our demonstration that SCA8 can recruit Staufen and that the interaction domain maps to the portion of the SCA8 RNA that undergoes repeat expansion in the human disease suggests a specific mechanism for SCA8 function and disease. Genetic modifiers identified in our SCA8-based screens may provide candidates for designing therapeutic interventions to treat this disease.
Collapse
Affiliation(s)
- Mousumi Mutsuddi
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
129
|
Chennathukuzhi V, Morales CR, El-Alfy M, Hecht NB. The kinesin KIF17b and RNA-binding protein TB-RBP transport specific cAMP-responsive element modulator-regulated mRNAs in male germ cells. Proc Natl Acad Sci U S A 2003; 100:15566-71. [PMID: 14673085 PMCID: PMC307608 DOI: 10.1073/pnas.2536695100] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Testis brain RNA-binding protein (TB-RBP), the mouse orthologue of the human protein Translin, is a widely expressed and highly conserved protein with proposed functions in chromosomal translocations, mitotic cell division, and mRNA transport, stabilization, and storage. Targeted inactivation of TB-RBP leads to abnormalities in fertility and behavior. A testis-enriched kinesin KIF17b coimmunoprecipitates with TB-RBP in a RNA-protein complex containing specific cAMP-responsive element modulator (CREM)-regulated mRNAs. The specificity of this interaction is confirmed by in vivo RNA-protein crosslinking and transfections of hippocampal neurons. Combining in situ hybridization and immunohistochemistry at the electron microscope level, a temporally sequential dissociation of KIF17b and TB-RBP from specific mRNAs is detected with TB-RBP release coincident with the time of mRNA translation, indicating a separation of the processes of transport and translation. We conclude that KIF17b serves as a molecular motor component of a TB-RBP-mouse ribonucleoprotein complex transporting a group of specific CREM-regulated mRNAs in mammalian male postmeiotic germ cells. Because KIF17b has been reported to control CREM-dependent transcription in male germ cells by regulating the intracellular location of the transcriptional coactivator activator of CREM in testis, this indicates that one kinesin links the processes of transcription and transport of specific mRNAs in mammalian male germ cells.
Collapse
Affiliation(s)
- Vargheese Chennathukuzhi
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6142, USA
| | | | | | | |
Collapse
|
130
|
Lalonde S, Weise A, Walsh RP, Ward JM, Frommer WB. Fusion to GFP blocks intercellular trafficking of the sucrose transporter SUT1 leading to accumulation in companion cells. BMC PLANT BIOLOGY 2003; 3:8. [PMID: 14667250 PMCID: PMC319702 DOI: 10.1186/1471-2229-3-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 12/11/2003] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant phloem consists of an interdependent cell pair, the sieve element/companion cell complex. Sucrose transporters are localized to enucleate sieve elements (SE), despite being transcribed in companion cells (CC). Due to the high turnover of SUT1, sucrose transporter mRNA or protein must traffic from CC to SE via the plasmodesmata. Localization of SUT mRNA at plasmodesmatal orifices connecting CC and SE suggests RNA transport, potentially mediated by RNA binding proteins. In many organisms, polar RNA transport is mediated through RNA binding proteins interacting with the 3'-UTR and controlling localized protein synthesis. To study mechanisms for trafficking of SUT1, GFP-fusions with and without 3'-UTR were expressed in transgenic plants. RESULTS In contrast to plants expressing GFP from the strong SUC2 promoter, in RolC-controlled expression GFP is retained in companion cells. The 3'-UTR of SUT1 affected intracellular distribution of GFP but was insufficient for trafficking of SUT1, GFP or their fusions to SEs. Fusion of GFP to SUT1 did however lead to accumulation of SUT1-GFP in the CC, indicating that trafficking was blocked while translational inhibition of SUT1 mRNA was released in CCs. CONCLUSION A fusion with GFP prevents targeting of the sucrose transporter SUT1 to the SE while leading to accumulation in the CC. The 3'-UTR of SUT1 is insufficient for mobilization of either the fusion or GFP alone. It is conceivable that SUT1-GFP protein transport through PD to SE was blocked due to the presence of GFP, resulting in retention in CC particles. Alternatively, SUT1 mRNA transport through the PD could have been blocked due to insertion of GFP between the SUT1 coding sequence and 3'-UTR.
Collapse
Affiliation(s)
- Sylvie Lalonde
- ZMBP Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Andreas Weise
- ZMBP Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
- Current address: Greenovation Biotech GmbH, Boetzinger Str. 29 b, D-79111 Freiburg, Germany
| | - Rama Panford Walsh
- ZMBP Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - John M Ward
- ZMBP Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
- Current address: Plant Biology Dept., University of Minnesota, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| | - Wolf B Frommer
- ZMBP Tübingen, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
- Current address: Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
131
|
Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, Meier E, Johnson EM, Daniel DC, Kinoshita Y, Amini S, Gordon J. Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol 2003; 23:6857-75. [PMID: 12972605 PMCID: PMC193944 DOI: 10.1128/mcb.23.19.6857-6875.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-stranded DNA- and RNA-binding protein, Puralpha, has been implicated in many biological processes, including control of transcription of multiple genes, initiation of DNA replication, and RNA transport and translation. Deletions of the PURA gene are frequent in acute myeloid leukemia. Mice with targeted disruption of the PURA gene in both alleles appear normal at birth, but at 2 weeks of age, they develop neurological problems manifest by severe tremor and spontaneous seizures and they die by 4 weeks. There are severely lower numbers of neurons in regions of the hippocampus and cerebellum of PURA(-/-) mice versus those of age-matched +/+ littermates, and lamination of these regions is aberrant at time of death. Immunohistochemical analysis of MCM7, a protein marker for DNA replication, reveals a lack of proliferation of precursor cells in these regions in the PURA(-/-) mice. Levels of proliferation were also absent or low in several other tissues of the PURA(-/-) mice, including those of myeloid lineage, whereas those of PURA(+/-) mice were intermediate. Evaluation of brain sections indicates a reduction in myelin and glial fibrillary acidic protein labeling in oligodendrocytes and astrocytes, respectively, indicating pathological development of these cells. At postnatal day 5, a critical time for cerebellar development, Puralpha and Cdk5 were both at peak levels in bodies and dendrites of Purkinje cells of PURA(+/+) mice, but both were absent in dendrites of PURA(-/-) mice. Puralpha and Cdk5 can be coimmunoprecipitated from brain lysates of PURA(+/+) mice. Immunohistochemical studies reveal a dramatic reduction in the level of both phosphorylated and nonphosphorylated neurofilaments in dendrites of the Purkinje cell layer and of synapse formation in the hippocampus. Overall results are consistent with a role for Puralpha in developmentally timed DNA replication in specific cell types and also point to a newly emerging role in compartmentalized RNA transport and translation in neuronal dendrites.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lerner RS, Seiser RM, Zheng T, Lager PJ, Reedy MC, Keene JD, Nicchitta CV. Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA (NEW YORK, N.Y.) 2003; 9:1123-37. [PMID: 12923260 PMCID: PMC1370476 DOI: 10.1261/rna.5610403] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 05/28/2003] [Indexed: 05/21/2023]
Abstract
In eukaryotic cells, it is generally accepted that protein synthesis is compartmentalized; soluble proteins are synthesized on free ribosomes, whereas secretory and membrane proteins are synthesized on endoplasmic reticulum (ER)-bound ribosomes. The partitioning of mRNAs that accompanies such compartmentalization arises early in protein synthesis, when ribosomes engaged in the translation of mRNAs encoding signal-sequence-bearing proteins are targeted to the ER. In this report, we use multiple cell fractionation protocols, in combination with cDNA microarray, nuclease protection, and Northern blot analyses, to assess the distribution of mRNAs between free and ER-bound ribosomes. We find a broad representation of mRNAs encoding soluble proteins in the ER fraction, with a subset of such mRNAs displaying substantial ER partitioning. In addition, we present evidence that membrane-bound ribosomes engage in the translation of mRNAs encoding soluble proteins. Single-cell in situ hybridization analysis of the subcellular distribution of mRNAs encoding ER-localized and soluble proteins identify two overall patterns of mRNA distribution in the cell-endoplasmic reticular and cytosolic. However, both partitioning patterns include a distinct perinuclear component. These results identify previously unappreciated roles for membrane-bound ribosomes in the subcellular compartmentalization of protein synthesis and indicate possible functions for the perinuclear membrane domain in mRNA sorting in the cell.
Collapse
Affiliation(s)
- Rachel S Lerner
- Departments of Cell Biology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003. [PMID: 12843282 DOI: 10.1523/jneurosci.23-13-05778.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
|
134
|
Macchi P, Kroening S, Palacios IM, Baldassa S, Grunewald B, Ambrosino C, Goetze B, Lupas A, St Johnston D, Kiebler M. Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003; 23:5778-88. [PMID: 12843282 PMCID: PMC6741274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
Affiliation(s)
- Paolo Macchi
- Max-Planck-Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Mohr E, Richter D. Molecular determinants and physiological relevance of extrasomatic RNA localization in neurons. Front Neuroendocrinol 2003; 24:128-39. [PMID: 12763001 DOI: 10.1016/s0091-3022(03)00011-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Specific sorting of mRNA molecules to subcellular microdomains is an evolutionarily conserved mechanism by which the polarized nature of eukayotic cells may be established and maintained. The molecular composition of the RNA localization machinery is complex. Sequence motifs within RNA molecules to be transported, called cis-acting elements, and proteins, referred to as trans-acting factors, are essential components. Transport of the resulting ribonucleoprotein complexes to distinct cytoplasmic regions occurs along the cytoskeletal network. The pathway is observed in organisms as diverse as yeast and human and it plays a critical role in development and cell differentiation. Moreover, RNA localization takes place in differentiated cell types including neurons. There is ample evidence to suggest that sorting of defined mRNA species to the neurites of nerve cells and on-site translation has an impact on various aspects of nerve cell biology.
Collapse
Affiliation(s)
- Evita Mohr
- Institute for Cell Biochemistry and Clinical Neurobiology, University Clinic Hamburg-Eppendorf, Martinistr 52, D-20246, Hamburg, Germany.
| | | |
Collapse
|
136
|
Affiliation(s)
- Fabrice Roegiers
- Department of Physiology, Howard Hughes Medical Institute, University of California, 533 Parnassus Avenue, San Francisco, CA 94122, USA.
| |
Collapse
|