101
|
Kondo T, Isoda R, Uchimura T, Sugiyama M, Hamao K, Hosoya H. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis. Biochem Biophys Res Commun 2011; 417:686-91. [PMID: 22166199 DOI: 10.1016/j.bbrc.2011.11.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 12/11/2022]
Abstract
Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II.
Collapse
Affiliation(s)
- Tomo Kondo
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Chlamydia trachomatis inclusions induce asymmetric cleavage furrow formation and ingression failure in host cells. Mol Cell Biol 2011; 31:5011-22. [PMID: 21969606 DOI: 10.1128/mcb.05734-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis infection has been suggested to induce host genome duplication and is linked to increased risks of cervical cancer. We describe here the mechanism by which Chlamydia causes a cleavage furrow defect that consistently results in the formation of multinucleated host cells, a phenomenon linked to tumorigenesis. Host signaling proteins essential for cleavage furrow initiation, ingression, and stabilization are displaced from one of the prospective furrowing cortices after Chlamydia infection. This protein displacement leads to the formation of a unique asymmetrical, unilateral cleavage furrow in infected human cells. The asymmetrical distribution of signaling proteins is caused by the physical presence of the Chlamydia inclusion at the cell equator. By using ingested latex beads, we demonstrate that the presence of a large vacuole at the cell equator is sufficient to cause furrow ingression failure and can lead to multinucleation. Interestingly, internalized latex beads of similar size do not localize to the cell equator as efficiently as Chlamydia inclusions; moreover, inhibition of bacterial protein synthesis with antibiotic reduces the frequency at which Chlamydia localizes to the cell equator. Together, these results suggest that Chlamydia effectors are involved in strategic positioning of the inclusion during cell division.
Collapse
|
103
|
Cook DR, Solski PA, Bultman SJ, Kauselmann G, Schoor M, Kuehn R, Friedman LS, Cowley DO, Van Dyke T, Yeh JJ, Johnson L, Der CJ. The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration. Genes Cancer 2011; 2:932-42. [PMID: 22701760 PMCID: PMC3374631 DOI: 10.1177/1947601912437035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 12/23/2022] Open
Abstract
Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2(+/-) mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2(-/-) embryos were not found at birth or postimplantation stages. Ect2(-/-) blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2(fl/fl) embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation.
Collapse
Affiliation(s)
- Danielle R. Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Solski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Ralf Kuehn
- TaconicArtemis GmbH, Cologne, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich,Germany
| | - Lori S. Friedman
- Exelixis Inc., South San Francisco, CA, USA
- Genentech Inc., South San Francisco, CA, USA
| | - Dale O. Cowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Terry Van Dyke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leisa Johnson
- Exelixis Inc., South San Francisco, CA, USA
- Genentech Inc., South San Francisco, CA, USA
| | - Channing J. Der
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
104
|
Szafer-Glusman E, Fuller MT, Giansanti MG. Role of Survivin in cytokinesis revealed by a separation-of-function allele. Mol Biol Cell 2011; 22:3779-90. [PMID: 21865602 PMCID: PMC3192858 DOI: 10.1091/mbc.e11-06-0569] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutation in Drosophila Survivin that enables metaphase functions but impairs cytokinesis demonstrates a role for Survivin and CPC in Rho activation and contractile ring assembly and highlights striking differences in regulation of cytokinesis in different cell systems. The chromosomal passenger complex (CPC), containing Aurora B kinase, Inner Centromere Protein, Survivin, and Borealin, regulates chromosome condensation and interaction between kinetochores and microtubules at metaphase, then relocalizes to midzone microtubules at anaphase and regulates central spindle organization and cytokinesis. However, the precise role(s) played by the CPC in anaphase have been obscured by its prior functions in metaphase. Here we identify a missense allele of Drosophila Survivin that allows CPC localization and function during metaphase but not cytokinesis. Analysis of mutant cells showed that Survivin is essential to target the CPC and the mitotic kinesin-like protein 1 orthologue Pavarotti (Pav) to the central spindle and equatorial cell cortex during anaphase in both larval neuroblasts and spermatocytes. Survivin also enabled localization of Polo kinase and Rho at the equatorial cortex in spermatocytes, critical for contractile ring assembly. In neuroblasts, in contrast, Survivin function was not required for localization of Rho, Polo, or Myosin II to a broad equatorial cortical band but was required for Myosin II to transition to a compact, fully constricted ring. Analysis of this “separation-of-function” allele demonstrates the direct role of Survivin and the CPC in cytokinesis and highlights striking differences in regulation of cytokinesis in different cell systems.
Collapse
Affiliation(s)
- Edith Szafer-Glusman
- Department of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
105
|
Wang SM, Ooi LLPJ, Hui KM. Upregulation of Rac GTPase-activating protein 1 is significantly associated with the early recurrence of human hepatocellular carcinoma. Clin Cancer Res 2011; 17:6040-51. [PMID: 21825042 DOI: 10.1158/1078-0432.ccr-11-0557] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the significance of Rac GTPase-activating protein 1 (RACGAP1) expression in identifying HBV-positive human hepatocellular carcinoma (HCC) patients who are at high risk for recurrent disease. EXPERIMENTAL DESIGN The prognostic significance of RACGAP1 was compared with clinicopathologic parameters available at diagnosis using multivariate and log-rank test. RACGAP1 expression and outcome in recurrence was compared between 35 patients with recurrence and 41 patients without recurrence using Kaplan-Meier analysis. RACGAP1-targeted molecules and pathways were identified and characterized by inhibition with siRNA duplexes. RESULTS Kaplan-Meier analysis showed that the level of RACGAP1 expression is sufficient to predict the early recurrence of HCC: high RACGAP1 expression correlates with high risk of postresection recurrent HCC (P < 0.0005). Silencing of RACGAP1 in Hep3B and MHCC97-H HCC cells with high endogenous RACGAP1 expression inhibited cell migration and invasion. Using Ingenuity Pathway Analysis, the target molecules silenced in the RACGAP1 interactome were mostly genes related to the mitotic roles of the polo-like kinases. These included PRC1, AURKB, CDC2, ECT2, KIF23, PAK1, and PPP2R5E. In providing clinical corroboration of these results, when expression of these transcripts was analyzed in an expression database that we have established previously for HBV-positive HCC patients, these genes was mostly upregulated in patients who exhibited early recurrent disease and hence provided important corroboration of these results. CONCLUSIONS siRNA-silencing RACGAP1 mainly targeted genes in an interactome clinically relevant to early HCC recurrence. Besides being an independent informative prognostic biomarker, RACGAP1 could also be a potential molecular target for designing therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Suk Mei Wang
- Bek Chai Heah Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Department of Surgical Oncology, National Cancer Centre, Singapore
| | | | | |
Collapse
|
106
|
Enhancement of myosin II/actin turnover at the contractile ring induces slower furrowing in dividing HeLa cells. Biochem J 2011; 435:569-76. [PMID: 21231914 DOI: 10.1042/bj20100837] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myosin II ATPase activity is enhanced by the phosphorylation of MRLC (myosin II regulatory light chain) in non-muscle cells. It is well known that pMRLC (phosphorylated MRLC) co-localizes with F-actin (filamentous actin) in the CR (contractile ring) of dividing cells. Recently, we reported that HeLa cells expressing non-phosphorylatable MRLC show a delay in the speed of furrow ingression, suggesting that pMRLC plays an important role in the control of furrow ingression. However, it is still unclear how pMRLC regulates myosin II and F-actin at the CR to control furrow ingression during cytokinesis. In the present study, to clarify the roles of pMRLC, we measured the turnover of myosin II and actin at the CR in dividing HeLa cells expressing fluorescent-tagged MRLCs and actin by FRAP (fluorescence recovery after photobleaching). A myosin II inhibitor, blebbistatin, caused an enhancement of the turnover of MRLC and actin at the CR, which induced a delay in furrow ingression. Furthermore, only non-phosphorylatable MRLC and a Rho-kinase inhibitor, Y-27632, accelerated the turnover of MRLC and actin at the CR. Interestingly, the effect of Y-27632 was cancelled in the cell expressing phosphomimic MRLCs. Taken together, these results reveal that pMRLC reduces the turnover of myosin II and also actin at the CR. In conclusion, we show that the enhancement of myosin II and actin turnover at the CR induced slower furrowing in dividing HeLa cells.
Collapse
|
107
|
Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K. The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. ACTA ACUST UNITED AC 2011; 193:155-69. [PMID: 21464231 PMCID: PMC3082186 DOI: 10.1083/jcb.201008138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly. The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
108
|
Laporte D, Zhao R, Wu JQ. Mechanisms of contractile-ring assembly in fission yeast and beyond. Semin Cell Dev Biol 2010; 21:892-8. [PMID: 20708088 PMCID: PMC2991471 DOI: 10.1016/j.semcdb.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ran Zhao
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
109
|
|
110
|
Still entangled: assembly of the central spindle by multiple microtubule modulators. Semin Cell Dev Biol 2010; 21:899-908. [PMID: 20732438 DOI: 10.1016/j.semcdb.2010.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/25/2010] [Accepted: 08/03/2010] [Indexed: 01/10/2023]
Abstract
The central spindle is a microtubule-based structure that assembles during anaphase of mitosis in animal cells and is essential for multiple steps of cytokinesis. Central spindle assembly occurs by the cooperative action of multiple microtubule motors and modulators. Here, we review the mechanism by which the central spindle is formed, the role of several key proteins in this process and how central spindle assembly is temporally and spatially coordinated with mitosis.
Collapse
|
111
|
Schiel JA, Prekeris R. Making the final cut - mechanisms mediating the abscission step of cytokinesis. ScientificWorldJournal 2010; 10:1424-34. [PMID: 20661535 PMCID: PMC4365978 DOI: 10.1100/tsw.2010.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final stage of mitotic cell division that results in a physical separation of two daughter cells. Cytokinesis begins in the early stages of anaphase after the positioning of the cleavage plane and after the chromosomes segregate. This involves the recruitment and assembly of an actomyosin contractile ring, which constricts the plasma membrane and compacts midzone microtubules to form an electron-dense region, termed the midbody, located within an intracellular bridge. The resolution of this intracellular bridge, known as abscission, is the last step in cytokinesis that separates the two daughter cells. While much research has been done to delineate the mechanisms mediating actomyosin ring formation and contraction, the machinery that is responsible for abscission remains largely unclear. Recent work from several laboratories has demonstrated that dramatic changes occur in cytoskeleton and endosome dynamics, and are a prerequisite for abscission. However, the mechanistic details that regulate the final plasma membrane fusion during abscission are only beginning to emerge and are the subject of considerable controversy. Here we review recent studies within this field and discuss the proposed models of cell abscission.
Collapse
Affiliation(s)
- John A Schiel
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, USA
| | | |
Collapse
|
112
|
Ebrahimi S, Fraval H, Murray M, Saint R, Gregory SL. Polo kinase interacts with RacGAP50C and is required to localize the cytokinesis initiation complex. J Biol Chem 2010; 285:28667-73. [PMID: 20628062 DOI: 10.1074/jbc.m110.103887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and constriction of an actomyosin contractile ring in cytokinesis is dependent on the activation of Rho at the equatorial cortex by a complex, here termed the cytokinesis initiation complex, between a microtubule-associated kinesin-like protein (KLP), a member of the RacGAP family, and the RhoGEF Pebble. Recently, the activity of the mammalian Polo kinase ortholog Plk1 has been implicated in the formation of this complex. We show here that Polo kinase interacts directly with the cytokinesis initiation complex by binding RacGAP50C. We find that a new domain of Polo kinase, termed the intermediate domain, interacts directly with RacGAP50C and that Polo kinase is essential for localization of the KLP-RacGAP centralspindlin complex to the cell equator and spindle midzone. In the absence of Polo kinase, RacGAP50C and Pav-KLP fail to localize normally, instead decorating microtubules along their length. Our results indicate that Polo kinase directly binds the conserved cytokinesis initiation complex and is required to trigger centralspindlin localization as a first step in cytokinesis.
Collapse
Affiliation(s)
- Saman Ebrahimi
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
113
|
Rankin KE, Wordeman L. Long astral microtubules uncouple mitotic spindles from the cytokinetic furrow. ACTA ACUST UNITED AC 2010; 190:35-43. [PMID: 20603328 PMCID: PMC2911660 DOI: 10.1083/jcb.201004017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Depletion of MCAK, which lengthens astral microtubules, induces oscillations of the mitotic spindle, and displaces the plane of cell division. Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.
Collapse
Affiliation(s)
- Kathleen E Rankin
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
114
|
Gregory SL, Lorensuhewa N, Saint R. Signalling through the RhoGEF Pebble in Drosophila. IUBMB Life 2010; 62:290-5. [PMID: 20175154 DOI: 10.1002/iub.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small GTPase pathways of the Ras superfamily are implicated in a wide range of signalling processes in animal cells. Small GTPases control pathways by acting as molecular switches. They are converted from an inactive GDP-bound form to an active GTP-bound form by GTP exchange factors (GEFs). The spatial and temporal regulation of GEFs is a major component of the regulation of small GTPases. Here we review the role of the Drosophila RhoGEF, Pebble (the Drosophila ortholog of mammalian ECT2). We discuss its roles in cytokinesis and cell migration, highlighting the diversity with which Rho family signalling pathways operate in biological systems.
Collapse
Affiliation(s)
- Stephen L Gregory
- School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
115
|
Jones WM, Chao AT, Zavortink M, Saint R, Bejsovec A. Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation. J Cell Sci 2010; 123:2179-89. [PMID: 20516152 DOI: 10.1242/jcs.067868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.
Collapse
Affiliation(s)
- Whitney M Jones
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | | | | | | | | |
Collapse
|
116
|
O'Brien RN, Shen Z, Tachikawa K, Lee PA, Briggs SP. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal. Mol Cell Proteomics 2010; 9:2238-51. [PMID: 20513800 DOI: 10.1074/mcp.m110.000281] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells and embryonal carcinoma cells share two key characteristics: pluripotency (the ability to differentiate into endoderm, ectoderm, and mesoderm) and self-renewal (the ability to grow without change in an untransformed, euploid state). Much has been done to identify and characterize transcription factors that are necessary or sufficient to maintain these characteristics. Oct-4 and Nanog are necessary to maintain pluripotency; they are down-regulated at the mRNA level by differentiation. There may be additional regulatory genes whose mRNA levels are unchanged but whose proteins are destabilized during differentiation. We generated proteome-wide, quantitative profiles of ES and embryonal carcinoma cells during differentiation, replicating a microarray-based study by Aiba et al. (Aiba, K., Sharov, A. A., Carter, M. G., Foroni, C., Vescovi, A. L., and Ko, M. S. (2006) Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells. Stem Cells 24, 889-895) who triggered differentiation by treatment with 1 μM all-trans-retinoic acid. We identified several proteins whose levels decreased during differentiation in both cell types but whose mRNA levels were unchanged. We confirmed several of these cases by RT-PCR and Western blot. Racgap1 (also known as mgcRacgap) was particularly interesting because it is required for viability of preimplantation embryos and hematopoietic stem cells, and it is also required for differentiation. To confirm our observation that RACGAP-1 declines during retinoic acid-mediated differentiation, we used multiple reaction monitoring, a targeted mass spectrometry-based quantitation method, and determined that RACGAP-1 levels decline by half during retinoic acid-mediated differentiation. We knocked down Racgap-1 mRNA levels using a panel of five shRNAs. This resulted in a loss of self-renewal that correlated with the level of knockdown. We conclude that RACGAP-1 is post-transcriptionally regulated during blastocyst development to enable differentiation by inhibiting ES cell self-renewal.
Collapse
Affiliation(s)
- Robert N O'Brien
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0380, USA
| | | | | | | | | |
Collapse
|
117
|
Heng YW, Koh CG. Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol 2010; 42:1622-33. [PMID: 20412868 DOI: 10.1016/j.biocel.2010.04.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Abstract
The network of actin filaments is one of the crucial cytoskeletal structures contributing to the morphological framework of a cell and which participates in the dynamic regulation of cellular functions. In adherent cell types, cells adhere to the substratum during interphase and spread to assume their characteristic shape supported by the actin cytoskeleton. This actin cytoskeleton is reorganized during mitosis to form rounded cells with increased cortical rigidity. The actin cytoskeleton is re-established after mitosis, allowing cells to regain their extended shape and attachment to the substratum. The modulation of such drastic changes in cell shape in coordination with cell cycle progression suggests a tight regulatory interaction between cytoskeleton signalling, cell-cell/cell-matrix adhesions and mitotic events. Here, we review the contribution of the actin cytoskeleton to cell cycle progression with an emphasis on the effectors responsible for the regulation of the actin cytoskeleton and integration of their activities with the cell cycle machinery.
Collapse
Affiliation(s)
- Yi-Wen Heng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
118
|
Özlü N, Monigatti F, Renard BY, Field CM, Steen H, Mitchison TJ, Steen JJ. Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition. Mol Cell Proteomics 2010; 9:336-50. [PMID: 19786723 PMCID: PMC2830844 DOI: 10.1074/mcp.m900308-mcp200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/25/2009] [Indexed: 01/14/2023] Open
Abstract
The cytoskeleton globally reorganizes between mitosis (M phase) and cytokinesis (C phase), which presumably requires extensive regulatory changes. To reveal these changes, we undertook a comparative proteomics analysis of cells tightly drug-synchronized in each phase. We identified 25 proteins that bind selectively to microtubules in C phase and identified several novel binding partners including nucleolar and spindle-associated protein. C phase-selective microtubule binding of many of these proteins depended on activity of Aurora kinases as assayed by treatment with the drug VX680. Aurora-B binding partners switched dramatically between M phase to C phase, and we identified several novel C phase-selective Aurora-B binding partners including PRC1, KIF4, and anaphase-promoting complex/cyclosome. Our approach can be extended to other cellular compartments and cell states, and our data provide the first broad biochemical framework for understanding C phase. Concretely, we report a central role for Aurora-B in regulating the C phase cytoskeleton.
Collapse
Affiliation(s)
- Nurhan Özlü
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
| | - Flavio Monigatti
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- ‖Pathology, Harvard Medical School and Children's Hospital Boston, Boston, Massachusetts 02115, and
| | - Bernhard Y. Renard
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- **Interdisciplinary Center for Scientific Computing, University of Heidelberg, D-069120 Heidelberg, Germany
| | - Christine M. Field
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanno Steen
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- ‖Pathology, Harvard Medical School and Children's Hospital Boston, Boston, Massachusetts 02115, and
| | - Timothy J. Mitchison
- From the ‡Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Judith J. Steen
- §Proteomics Center at Children's Hospital Boston, Boston, Massachusetts 02115
- Departments of ‡‡Neurobiology and
| |
Collapse
|
119
|
von Dassow G, Verbrugghe KJC, Miller AL, Sider JR, Bement WM. Action at a distance during cytokinesis. J Cell Biol 2009; 187:831-45. [PMID: 20008563 PMCID: PMC2806324 DOI: 10.1083/jcb.200907090] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023] Open
Abstract
Animal cells decide where to build the cytokinetic apparatus by sensing the position of the mitotic spindle. Reflecting a long-standing presumption that a furrow-inducing stimulus travels from spindle to cortex via microtubules, debate continues about which microtubules, and in what geometry, are essential for accurate cytokinesis. We used live imaging in urchin and frog embryos to evaluate the relationship between microtubule organization and cytokinetic furrow position. In normal cells, the cytokinetic apparatus forms in a region of lower cortical microtubule density. Remarkably, cells depleted of astral microtubules conduct accurate, complete cytokinesis. Conversely, in anucleate cells, asters alone can support furrow induction without a spindle, but only when sufficiently separated. Ablation of a single centrosome displaces furrows away from the remaining centrosome; ablation of both centrosomes causes broad, inefficient furrowing. We conclude that the asters confer accuracy and precision to a primary furrow-inducing signal that can reach the cell surface from the spindle without transport on microtubules.
Collapse
Affiliation(s)
- George von Dassow
- Center for Cell Dynamics, Friday Harbor Laboratories, University of Washington, Seattle, WA 98250, USA.
| | | | | | | | | |
Collapse
|
120
|
Hutterer A, Glotzer M, Mishima M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr Biol 2009; 19:2043-9. [PMID: 19962307 DOI: 10.1016/j.cub.2009.10.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/25/2009] [Accepted: 10/16/2009] [Indexed: 12/29/2022]
Abstract
Cytokinesis in animal cells requires the central spindle and midbody, which contain prominent microtubule bundles. Centralspindlin, a heterotetrameric complex consisting of kinesin-6 and RhoGAP (Rho-family GTPase-activating protein) subunits, is essential for the formation of these structures. Centralspindlin becomes precisely localized to the central spindle, where it promotes the equatorial recruitment of important cytokinetic regulators. These include ECT2, the activator of the small GTPase RhoA, which controls cleavage furrow formation and ingression. Centralspindlin's own RhoGAP domain also contributes to furrow ingression. Finally, centralspindlin facilitates recruitment of the chromosome passenger complex and factors that control abscission. Despite the importance of localized accumulation of centralspindlin, the mechanism by which this motor protein complex suddenly concentrates to the center of interpolar microtubule bundles during anaphase is unclear. Here, we show that centralspindlin travels along central spindle microtubules as higher-order clusters. Clustering of centralspindlin is critical for microtubule bundling and motility along microtubules in vitro and for midbody formation in vivo. These data support a positive feedback loop of centralspindlin clustering and microtubule organization that may underlie its distinctive localization during cytokinesis.
Collapse
Affiliation(s)
- Andrea Hutterer
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
121
|
Morin P, Flors C, Olson MF. Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis. Eur J Cell Biol 2009; 88:495-507. [PMID: 19515453 PMCID: PMC2750871 DOI: 10.1016/j.ejcb.2009.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/21/2009] [Accepted: 04/26/2009] [Indexed: 01/21/2023] Open
Abstract
The actions of RhoA in cytoskeletal regulation have been extensively studied. RhoA also contributes to proliferation and oncogenic transformation by less well-characterized means. Elevated RhoA signalling has been associated with human cancer; through increased RhoA expression, mutation or elevated expression of activating Rho guanine-nucleotide exchange factors (GEFs), or from deletion or decreased expression of inhibitory Rho GTPase-activating proteins (GAPs). Unlike the Ras oncogene, constitutively-activated GTPase-deficient RhoA mutants have not been identified in tumours. To investigate the effects of active RhoA on proliferation, we generated Swiss3T3 cells that inducibly express wild-type RhoA or GTPase-deficient active V14RhoA. We found that V14RhoA inhibited cell proliferation by retarding entry into the DNA synthetic cell cycle phase and blocking successful completion of cytokinesis, resulting in an increased incidence of binucleate cells. These effects were associated with inhibition of mitogen-induced activation of the MAPK pathway, and suppression of several proteins involved in mitosis, including anillin, ECT2 and cyclin B1 which would be expected to result in reduced activation of endogenous RhoA at the cell equator. Accumulation of active RhoA protein in the midbody of cells in telophase was inhibited in V14RhoA-expressing cells, suggesting that RhoA inactivation must occur prior to re-activation. Defective cytokinesis was also associated with prominent actin structures in V14RhoA-expressing cells, which might be incompatible with equatorial furrowing. Using super-resolution imaging based on single-molecule switching, we have significantly improved the resolution of active RhoA in midbodies. These results indicate that constitutively-active RhoA antagonizes several cellular activities that contribute to proliferation, highlighting the importance for cycling between GTP/GDP-bound states.
Collapse
Affiliation(s)
- Pierre Morin
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Cristina Flors
- School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Michael F. Olson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
122
|
Proteins recruited by SH3 domains of Ruk/CIN85 adaptor identified by LC-MS/MS. Proteome Sci 2009; 7:21. [PMID: 19531213 PMCID: PMC2702278 DOI: 10.1186/1477-5956-7-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/16/2009] [Indexed: 11/27/2022] Open
Abstract
Background Ruk/CIN85 is a mammalian adaptor molecule with three SH3 domains. Using its SH3 domains Ruk/CIN85 can cluster multiple proteins and protein complexes, and, consequently, facilitates organisation of elaborate protein interaction networks with diverse regulatory roles. Previous research linked Ruk/CIN85 with the regulation of vesicle-mediated transport and cancer cell invasiveness. Despite the recent findings, precise molecular functions of Ruk/CIN85 in these processes remain largely elusive and further research is hampered by a lack of complete lists of its partner proteins. Results In the present study we employed a LC-MS/MS-based experimental pipeline to identify a considerable number (over 100) of proteins recruited by the SH3 domains of Ruk/CIN85 in vitro. Most of these identifications are novel Ruk/CIN85 interaction candidates. The identified proteins have diverse molecular architectures and can interact with other proteins, as well as with lipids and nucleic acids. Some of the identified proteins possess enzymatic activities. Functional profiling analyses and literature mining demonstrate that many of the proteins recruited by the SH3 domains of Ruk/CIN85 identified in this work were involved in the regulation of membranes and cytoskeletal structures necessary for vesicle-mediated transport and cancer cell invasiveness. Several groups of the proteins were also associated with few other cellular processes not previously related to Ruk/CIN85, most prominently with cell division. Conclusion Obtained data support the notion that Ruk/CIN85 regulates vesicle-mediated transport and cancer cell invasiveness through the assembly of multimeric protein complexes governing coordinated remodelling of membranes and underlying cytoskeletal structures, and imply its important roles in formation of coated vesicles and biogenesis of invadopodia. In addition, this study points to potential involvement of Ruk/CIN85 in other cellular processes, chiefly in cell division.
Collapse
|
123
|
D'Avino PP. How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins. J Cell Sci 2009; 122:1071-9. [PMID: 19339546 DOI: 10.1242/jcs.034785] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this purpose, a network of cytoskeletal proteins is built at the cleavage site to act as a scaffold for actomyosin filaments and to connect them to the plasma membrane. The Drosophila melanogaster protein Anillin, and its related proteins in other organisms, has a pivotal role in the organization of this scaffold in many species, ranging from yeast to humans. Recent studies indicate that Anillin-related proteins interact not only with the structural components of the contractile ring, but also with the signalling factors that control their dynamics. In addition, Drosophila Anillin connects the actomyosin ring to the spindle microtubules through its interaction with the RacGAP component of the centralspindlin complex. Here I review the structures and functions of Anillin and Anillin-related proteins in various model systems, and aim to highlight both the common and distinctive features of these essential organizers of the molecular machinery that drives furrow ingression.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
124
|
Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol 2009; 7:e1000111. [PMID: 19468302 PMCID: PMC2680336 DOI: 10.1371/journal.pbio.1000111] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 03/31/2009] [Indexed: 12/24/2022] Open
Abstract
Animal cells initiate cytokinesis in parallel with anaphase onset, when an actomyosin ring assembles and constricts through localized activation of the small GTPase RhoA, giving rise to a cleavage furrow. Furrow formation relies on positional cues provided by anaphase spindle microtubules (MTs), but how such cues are generated remains unclear. Using chemical genetics to achieve both temporal and spatial control, we show that the self-organized delivery of Polo-like kinase 1 (Plk1) to the midzone and its local phosphorylation of a MT-bound substrate are critical for generating this furrow-inducing signal. When Plk1 was active but unable to target itself to this equatorial landmark, both cortical RhoA recruitment and furrow induction failed to occur, thus recapitulating the effects of anaphase-specific Plk1 inhibition. Using tandem mass spectrometry and phosphospecific antibodies, we found that Plk1 binds and directly phosphorylates the HsCYK-4 subunit of centralspindlin (also known as MgcRacGAP) at the midzone. At serine 157, this modification creates a major docking site for the tandem BRCT repeats of the Rho GTP exchange factor Ect2. Cells expressing only a nonphosphorylatable form of HsCYK-4 failed to localize Ect2 at the midzone and were severely impaired in cleavage furrow formation, implying that HsCYK-4 is Plk1's rate-limiting target upstream of RhoA. Conversely, tethering an inhibitor-resistant allele of Plk1 to HsCYK-4 allowed furrows to form despite global inhibition of all other Plk1 molecules in the cell. Our findings illuminate two key mechanisms governing the initiation of cytokinesis in human cells and illustrate the power of chemical genetics to probe such regulation both in time and space.
Collapse
Affiliation(s)
- Mark E. Burkard
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John Maciejowski
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Verónica Rodriguez-Bravo
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Michael Repka
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Drew M. Lowery
- Departments of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michael B. Yaffe
- Departments of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Prasad V. Jallepalli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
125
|
Wolfe BA, Takaki T, Petronczki M, Glotzer M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 2009; 7:e1000110. [PMID: 19468300 PMCID: PMC2680334 DOI: 10.1371/journal.pbio.1000110] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/31/2009] [Indexed: 11/19/2022] Open
Abstract
To complete cell division with high fidelity, cytokinesis must be coordinated with chromosome segregation. Mammalian Polo-like kinase 1, Plk1, may function as a critical link because it is required for chromosome segregation and establishment of the cleavage plane following anaphase onset. A central spindle-localized pool of the RhoGEF Ect2 promotes activation of the small GTPase RhoA, which drives contractile ring assembly at the equatorial cortex. Here, we have investigated how Plk1 promotes the central spindle recruitment of Ect2. Plk1 phosphorylates the noncatalytic N terminus of the RhoGAP HsCyk-4 at the central spindle, creating a phospho-epitope recognized by the BRCA1 C-terminal (BRCT) repeats of Ect2. Failure to phosphorylate HsCyk-4 blocks Ect2 recruitment to the central spindle and the subsequent induction of furrowing. Microtubules, as well as the microtubule-associated protein (MAP) Prc1, facilitate Plk1 phosphorylation of HsCyk-4. Characterization of a phosphomimetic version of HsCyk-4 indicates that Plk1 promotes Ect2 recruitment through multiple targets. Collectively, our data reveal that formation of the HsCyk-4-Ect2 complex is subject to multiple layers of regulation to ensure that RhoA activation occurs between the segregated sister chromatids during anaphase.
Collapse
Affiliation(s)
- Benjamin A. Wolfe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Tohru Takaki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
126
|
Abstract
Proper spatial and temporal regulation of the small GTPase RhoA at the equatorial cortex represents a critical step in the specification of the division plane in eukaryotes. Despite increased understanding of the mechanisms whereby RhoA becomes active following chromosome segregation, far less is known about how RhoA is spatially regulated so that it concentrates precisely at the division site. In the April 1, 2009, issue of Genes & Development, Yoshida and colleagues (pp. 810-823) uncovered two genetically separable mechanisms whereby Rho1 is recruited to the bud neck in the budding yeast Saccharomyces cerevisiae to facilitate cytokinesis.
Collapse
Affiliation(s)
- Benjamin A Wolfe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
127
|
|
128
|
Asiedu M, Wu D, Matsumura F, Wei Q. Centrosome/spindle pole-associated protein regulates cytokinesis via promoting the recruitment of MyoGEF to the central spindle. Mol Biol Cell 2009; 20:1428-40. [PMID: 19129481 DOI: 10.1091/mbc.e08-01-0001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cooperative communications between the central spindle and the contractile ring are critical for the spatial and temporal regulation of cytokinesis. Here we report that MyoGEF, a guanine nucleotide exchange factor that localizes to the central spindle and cleavage furrow, interacts with centrosome/spindle pole-associated protein (CSPP), which is concentrated at the spindle pole and central spindle during mitosis and cytokinesis. Both in vitro and in vivo pulldown assays show that MyoGEF interacts with CSPP. The C-terminus of MyoGEF and N-terminus of CSPP are required for their interaction. Immunofluorescence analysis indicates that MyoGEF and CSPP colocalize at the central spindle. Depletion of CSPP or MyoGEF by RNA-interference (RNAi) not only causes defects in mitosis and cytokinesis, such as metaphase arrest and furrow regression, but also mislocalization of nonmuscle myosin II with a phosphorylated myosin regulatory light chain (p-MRLC). Importantly, CSPP depletion by RNAi interferes with MyoGEF localization at the central spindle. Finally, MyoGEF interacts with ECT2, and RNAi-mediated depletion of MyoGEF leads to mislocalization of ECT2 and RhoA during cytokinesis. Therefore, we propose that CSPP interacts with and recruits MyoGEF to the central spindle, where MyoGEF contributes to the spatiotemporal regulation of cytokinesis.
Collapse
Affiliation(s)
- Michael Asiedu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
129
|
Abstract
Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell-cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell-cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell-cell coordination.
Collapse
Affiliation(s)
- Philip Vitorino
- Department of Chemical and Systems Biology, Bio-X Program, Stanford University, Stanford, California 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Bio-X Program, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
130
|
Takaki T, Trenz K, Costanzo V, Petronczki M. Polo-like kinase 1 reaches beyond mitosis--cytokinesis, DNA damage response, and development. Curr Opin Cell Biol 2008; 20:650-60. [PMID: 19000759 DOI: 10.1016/j.ceb.2008.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/29/2008] [Accepted: 10/13/2008] [Indexed: 01/12/2023]
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this review we focus on recent leaps in our understanding of how Plk1 controls cytokinesis, the final stage of cell division. Furthermore, we will go beyond mitosis to highlight unexpected roles of Plk1 during interphase and during animal development. In vertebrate cells, Plk1 has emerged as a novel player in maintaining genomic stability during DNA replication and as an important modulator of the DNA damage checkpoint. Plk1 functions extend past the 'core' cell cycle. Plk1 acts as a link between developmental processes and the cell cycle machinery during asymmetric cell divisions in flies and worms. The term 'mitotic kinase' might not do justice to Plk1 in the light of these recent results.
Collapse
Affiliation(s)
- Tohru Takaki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | |
Collapse
|
131
|
Chen W, Foss M, Tseng KF, Zhang D. Redundant mechanisms recruit actin into the contractile ring in silkworm spermatocytes. PLoS Biol 2008; 6:e209. [PMID: 18767903 PMCID: PMC2528054 DOI: 10.1371/journal.pbio.0060209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022] Open
Abstract
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage. In animal cells, the last step of cell division, or cytokinesis, requires the action of a contractile ring—composed largely of actin and myosin filaments—that cleaves the cell in two. Before the cell divides, it first duplicates its genome and separates the chromosomes into the two newly forming daughter cells, a task carried out by a structure called the spindle apparatus, which is composed mostly of long polymers called microtubules. The site of cleavage must occur between the segregating chromosomes—at the spindle equator—to ensure that each cell receives the proper number of chromosomes. In addition to separating the chromosomes, microtubules are also essential for inducing cytokinesis—but how they do this is controversial. For example, the “polar relaxation” hypothesis proposes that the astral microtubules, which radiate outward, cause contractile elements to flow from the polar cortex toward the equator, resulting in furrowing. In contrast, the “equatorial stimulation” hypothesis proposes that the spindle microtubules directly stimulate cleavage exclusively at the equator. Using a novel approach, we demonstrate that both mechanisms are in fact functioning together to recruit actin filaments to the nascent ring, providing redundancy that increases fidelity. Specifically, we were able to mechanically alter the distribution of actin filaments in living, dividing cells by using a microscopic needle to manipulate microtubules while perturbing the cytoskeleton with chemical compounds. Our high-resolution microscopy data advance the understanding of both proposed mechanisms. We also documented a novel, microtubule-based mechanism for transporting actin aggregates to the equatorial cortex. These results help to resolve a long-standing dispute concerning this fundamental cellular process. How is actin recruited to assemble a contractile ring during cytokinesis? Combining micromanipulation with pharmacological perturbation, this comprehensive study elegantly documents the contributions of two complementary mechanisms within one cell.
Collapse
Affiliation(s)
- Wei Chen
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Margit Foss
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kuo-Fu Tseng
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Dahong Zhang
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, Oregon, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
132
|
Odell GM, Foe VE. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. J Cell Biol 2008; 183:471-83. [PMID: 18955556 PMCID: PMC2575788 DOI: 10.1083/jcb.200807129] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/01/2008] [Indexed: 12/25/2022] Open
Abstract
From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.
Collapse
Affiliation(s)
- Garrett M Odell
- Center for Cell Dynamics, University of Washington, Friday Harbor, WA 98250, USA.
| | | |
Collapse
|
133
|
Abstract
Cleavage furrow formation in animal cells results from a local increase in cortical contractility. During anaphase, the spindle contains, in addition to astral arrays of microtubules, a set of bundled microtubules known as the central spindle. Each of these populations of microtubules, the astral arrays and the central spindle bundles, is sufficient to direct cleavage furrow formation, yet in wild-type situations these sets of microtubules co-operate to induce furrow formation at the same site, between the segregating chromosomes. These pathways have distinct genetic requirements that reflect their differential control of cortical actomyosin. We review our current understanding of the molecular mechanisms of furrow formation, with particular emphasis on the central spindle-independent pathway.
Collapse
|
134
|
Foe VE, von Dassow G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. J Cell Biol 2008; 183:457-70. [PMID: 18955555 PMCID: PMC2575787 DOI: 10.1083/jcb.200807128] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/05/2008] [Indexed: 01/29/2023] Open
Abstract
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Victoria E Foe
- The Center for Cell Dynamics, University of Washington, Friday Harbor, WA 98250, USA.
| | | |
Collapse
|
135
|
Asiedu M, Wu D, Matsumura F, Wei Q. Phosphorylation of MyoGEF on Thr-574 by Plk1 promotes MyoGEF localization to the central spindle. J Biol Chem 2008; 283:28392-400. [PMID: 18694934 PMCID: PMC2568926 DOI: 10.1074/jbc.m801801200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/05/2008] [Indexed: 01/13/2023] Open
Abstract
We reported previously that a guanine nucleotide exchange factor, MyoGEF, localizes to the central spindle, activates RhoA, and is required for cytokinesis. In this study, we have found that Plk1 (polo-like kinase 1) can phosphorylate MyoGEF, thereby recruiting MyoGEF to the central spindle as well as enhancing MyoGEF activity toward RhoA. The in vitro kinase assay shows that Plk1 can phosphorylate MyoGEF on threonine 574. Immunoprecipitation/immunoblot analysis demonstrates that mutation of threonine 574 to alanine dramatically decreases threonine phosphorylation of MyoGEF in transfected HeLa cells, suggesting that threonine 574 is phosphorylated in vivo. Consistent with these observations, immunofluorescence shows that Plk1 and MyoGEF colocalize at the spindle pole and central spindle during mitosis and cytokinesis. Importantly, RNA interference-mediated depletion of Plk1 interferes with the localization of MyoGEF at the spindle pole and central spindle. Moreover, mutation of threonine 574 to alanine in MyoGEF or depletion of Plk1 by RNA interference leads to a decrease in MyoGEF activity toward RhoA in HeLa cells. Therefore, our results suggest that Plk1 can regulate MyoGEF activity and localization, contributing to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Michael Asiedu
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
136
|
Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H, Grosse R, Kitzing T, Rantala JK, Kallioniemi O, Fässler R, Kallio M, Ivaska J. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 2008; 15:371-385. [PMID: 18804435 DOI: 10.1016/j.devcel.2008.08.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/27/2008] [Accepted: 08/01/2008] [Indexed: 12/20/2022]
Abstract
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
Collapse
Affiliation(s)
- Teijo Pellinen
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland
| | - Saara Tuomi
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland
| | - Antti Arjonen
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland
| | - Maija Wolf
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland; FIMM, Institute of Molecular Medicine and the Genome-Scale Biology Research Program, Biomedicum, 00014 University of Helsinki, Helsinki, Finland
| | - Henrik Edgren
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland; FIMM, Institute of Molecular Medicine and the Genome-Scale Biology Research Program, Biomedicum, 00014 University of Helsinki, Helsinki, Finland
| | - Hannelore Meyer
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Robert Grosse
- Institute of Pharmacology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Kitzing
- Institute of Pharmacology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Juha K Rantala
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland
| | - Olli Kallioniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland; FIMM, Institute of Molecular Medicine and the Genome-Scale Biology Research Program, Biomedicum, 00014 University of Helsinki, Helsinki, Finland
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Marko Kallio
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland and University of Turku, Turku FIN-20520, Finland.
| |
Collapse
|
137
|
Bompard G, Rabeharivelo G, Morin N. Inhibition of cytokinesis by wiskostatin does not rely on N-WASP/Arp2/3 complex pathway. BMC Cell Biol 2008; 9:42. [PMID: 18667055 PMCID: PMC2527559 DOI: 10.1186/1471-2121-9-42] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokinesis is the final step of cell division taking place at the end of mitosis during which the cytoplasmic content and replicated chromosomes of a cell are equally partitioned between the two daughter cells. This process is achieved by the formation and the ingression of an actomyosin contractile ring under the control of equatorial microtubules. The mechanisms of contractile ring formation are not fully understood but involve recruitment of preexisting actin filaments and de novo actin polymerisation. RESULTS In this study, we evaluated the role of the actin nucleation factor, Arp2/3 complex, during cytokinesis. We found that the Arp2/3 complex is recruited late to the cleavage furrow suggesting a potential involvement of Arp2/3 complex during this process. Furthermore, wiskostatin a potent inhibitor of N-WASP activity towards the Arp2/3 complex blocked cytokinesis without affecting mitosis. Nonetheless, this inhibition could not be reproduced using alternative approaches targeting the N-WASP/Arp2/3 complex pathway. CONCLUSION We conclude that the wiskostatin induced defective cytokinesis does not occur through the inhibition of the N-WASP/Arp2/3 pathway. Wiskostatin is likely to either directly target other proteins required for cytokinesis progression or alternately wiskostatin bound to N-WASP could affect the activity of other factors involved in cytokinesis.
Collapse
Affiliation(s)
- Guillaume Bompard
- CRBM, CNRS UMR 5237, Université Montpellier I et II, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
138
|
Vader G, Lens SMA. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:60-72. [PMID: 18662747 DOI: 10.1016/j.bbcan.2008.07.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022]
Abstract
The Aurora protein kinase family (consisting of Aurora-A, -B and -C) is an important group of enzymes that controls several aspects of cell division in mammalian cells. Dysfunction of these kinases has been associated with a failure to maintain a stable chromosome content, a state that can contribute to tumourigenesis. Additionally, Aurora-A is frequently found amplified in a variety of tumour types and displays oncogenic activity. On the other hand, therapeutic inhibition of these kinases has shown great promise as potential anti-cancer treatment, most likely because of their essential roles during cell division. This review will focus on our present understanding of the different roles played by these kinases, their regulation throughout cell division, their deregulation in human cancers and on the progress that is made in targeting these important regulators in the treatment of cancer.
Collapse
Affiliation(s)
- Gerben Vader
- Laboratory of Experimental Oncology, Department of Medical Oncology, University Medical Center Utrecht, Stratenum 2.125, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | |
Collapse
|
139
|
Abstract
Microtubules stimulate contractile-ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microtubules. Selective disassembly of astral microtubules resulted in functional contractile rings that were wider than controls and had altered dynamic activity, as measured by FRAP. Complete microtubule disassembly or selective loss of astral microtubules resulted in wave-like contractile behavior of actin in the non-equatorial cortex, and mislocalization of myosin II and Rho. FRAP experiments showed that both contractility and actin polymerization contributed to the wave-like behavior of actin. Wave-like contractile behavior in anaphase cells was Rho-dependent. We conclude that dynamic astral microtubules function to suppress Rho activation in the non-equatorial cortex, limiting the contractile activity of the polar cortex.
Collapse
Affiliation(s)
- Kausalya Murthy
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
140
|
Simon GC, Schonteich E, Wu CC, Piekny A, Ekiert D, Yu X, Gould GW, Glotzer M, Prekeris R. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 2008; 27:1791-803. [PMID: 18511905 PMCID: PMC2486418 DOI: 10.1038/emboj.2008.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 05/14/2008] [Indexed: 01/06/2023] Open
Abstract
Cytokinesis is a highly regulated and dynamic event that involves the reorganization of the cytoskeleton and membrane compartments. Recently, FIP3 has been implicated in targeting of recycling endosomes to the mid-body of dividing cells and is found required for abscission. Here, we demonstrate that the centralspindlin component Cyk-4 is a FIP3-binding protein. Furthermore, we show that FIP3 binds to Cyk-4 at late telophase and that centralspindlin may be required for FIP3 recruitment to the mid-body. We have mapped the FIP3-binding region on Cyk-4 and show that it overlaps with the ECT2-binding domain. Finally, we demonstrate that FIP3 and ECT2 form mutually exclusive complexes with Cyk-4 and that dissociation of ECT2 from the mid-body at late telophase may be required for the recruitment of FIP3 and recycling endosomes to the cleavage furrow. Thus, we propose that centralspindlin complex not only regulates acto-myosin ring contraction but also endocytic vesicle transport to the cleavage furrow and it does so through sequential interactions with ECT2 and FIP3.
Collapse
Affiliation(s)
- Glenn C Simon
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Eric Schonteich
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Christine C Wu
- Department of Pharmacology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Alisa Piekny
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Damian Ekiert
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Xinzi Yu
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Rytis Prekeris
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| |
Collapse
|
141
|
Yamada T, Kurosaki T, Hikida M. Essential roles of mgcRacGAP in multilineage differentiation and survival of murine hematopoietic cells. Biochem Biophys Res Commun 2008; 372:941-6. [PMID: 18541143 DOI: 10.1016/j.bbrc.2008.05.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 05/30/2008] [Indexed: 12/17/2022]
Abstract
MgcRacGAP, a negative regulator for Rho family GTPases, has been shown to play important roles in cytokinesis using several cell lines. However, the physiological role of mgcRacGAP in multilineage hematopoietic development remains unclear. Here, we conditionally ablated mgcRacGAP in vivo to clarify this issue. As the result, we found that normal hematopoietic development including proliferation and survival requires mgcRacGAP. We also found that depletion of mgcRacGAP in hematopoietic cells results in a marked decrease in c-Kit(+)Sca-1(+)Lin(-) cells, suggesting that mgcRacGAP is required for the maintenance of the hematopoietic stem cells. In addition, B cells in which mgcRacGAP had been selectively ablated showed proliferation failure and fell into apoptosis. Taken together, mgcRacGAP is now shown to play a indispensable role in the development of hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
142
|
Glover DM, Capalbo L, D'Avino PP, Gatt MK, Savoian MS, Takeda T. Girds 'n' cleeks o' cytokinesis: microtubule sticks and contractile hoops in cell division. Biochem Soc Trans 2008; 36:400-4. [PMID: 18481968 DOI: 10.1042/bst0360400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubules maintain an intimate relationship with the rings of anillin, septins and actomyosin filaments throughout cytokinesis. In Drosophila, peripheral microtubules emanating from the spindle poles contact the equatorial cell cortex to deliver the signal that initiates formation of the cytokinetic furrow. Mutations that affect microtubule stability lead to ectopic furrowing because peripheral microtubules contact inappropriate cortical sites. The PAV-KLP (Pavarotti-kinesin-like protein)/RacGAP50C (where GAP is GTPase-activating protein) centralspindlin complex moves towards the plus ends of microtubules to reach the cell equator. When RacGAP50C is tethered to the cell membrane, furrowing initiates at multiple non-equatorial sites, indicating that mis-localization of this single molecule is sufficient to promote furrowing. Furrow formation and ingression requires RhoA activation by the RhoGEF (guanine-nucleotide-exchange factor) Pebble, which interacts with RacGAP50C. RacGAP50C also binds anillin, which associates with actin, myosin and septins. Thus RacGAP50C plays a pivotal role during furrow formation by activating RhoA and linking the peripheral microtubules with the nascent rings through its interaction with anillin.
Collapse
Affiliation(s)
- David M Glover
- Cancer Research U.K. Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. New techniques, including the application of small-molecule inhibitors, have greatly expanded our knowledge of the functions, targets, and regulation of this key mitotic enzyme. In this review, we focus on how Plk1 is recruited to centrosomes, kinetochores, and the spindle midzone and what the specific tasks of Plk1 at these distinct subcellular structures might be. In particular, we highlight new work on the role of Plk1 in cytokinesis in human cells. Finally, we describe how better understanding of Plk1 functions allows critical evaluation of Plk1 as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom.
| | | | | |
Collapse
|
144
|
Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G. Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol 2008; 181:65-78. [PMID: 18378770 PMCID: PMC2287288 DOI: 10.1083/jcb.200712027] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/10/2008] [Indexed: 12/21/2022] Open
Abstract
Through a convergence of functional genomic and proteomic studies, we identify Bora as a previously unknown cell cycle protein that interacts with the Plk1 kinase and the SCF-beta-TrCP ubiquitin ligase. We show that the Bora protein peaks in G2 and is degraded by proteasomes in mitosis. Proteolysis of Bora requires the Plk1 kinase activity and is mediated by SCF-beta-TrCP. Plk1 phosphorylates a conserved DSGxxT degron in Bora and promotes its interaction with beta-TrCP. Mutations in this degron stabilize Bora. Expression of a nondegradable Bora variant prolongs the metaphase and delays anaphase onset, indicating a physiological requirement of Bora degradation. Interestingly, the activity of Bora is also required for normal mitotic progression, as knockdown of Bora activates the spindle checkpoint and delays sister chromatid segregation. Mechanistically, Bora regulates spindle stability and microtubule polymerization and promotes tension across sister kinetochores during mitosis. We conclude that tight regulation of the Bora protein by its synthesis and degradation is critical for cell cycle progression.
Collapse
Affiliation(s)
- Akiko Seki
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
145
|
D'Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM. Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 2008; 121:1151-8. [PMID: 18349071 DOI: 10.1242/jcs.026716] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anillin, one of the first factors recruited to the cleavage site during cytokinesis, interacts with actin, myosin II and septins, and is essential for proper organization of the actomyosin contractile ring. We employed affinity-purification methodology coupled with mass spectrometry to identify Anillin-interacting molecules in Drosophila cells. We isolated several actin and myosin proteins, three of the five Drosophila septins and RacGAP50C (Tum), a component of the centralspindlin complex. Using drug and RNA interference (RNAi) treatments we established that F-actin is essential for Anillin cortical localization in prometaphase but not for its accumulation at the cleavage furrow after anaphase onset. Moreover, septins were not recruited to the cleavage site in cells in which Anillin was knocked down by RNAi, but localized to central-spindle microtubules, suggesting that septins travel along microtubules to interact with Anillin at the furrow. Finally, we demonstrate that RacGAP50C is necessary for Anillin accumulation at the furrow and that the two proteins colocalize in vivo and interact in vitro. Thus, in addition to its role in activating RhoA signalling, RacGAP50C also controls the proper assembly of the actomyosin ring by interacting with Anillin at the cleavage furrow.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | | | | | | | | | | | | |
Collapse
|
146
|
Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol 2007; 18:25-9. [PMID: 18158242 DOI: 10.1016/j.cub.2007.11.050] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 01/09/2023]
Abstract
The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein complex creates a band of activated RhoA [6], which subsequently recruits contractile-ring components such as actin, myosin, and Anillin [1-3]. Equatorial microtubules are essential for continued constriction, but how they interact with the contractile apparatus is unknown. Here, we report the first direct molecular link between the microtubule spindle and the actomyosin contractile ring. We find that the spindle-associated component, RacGAP50C, which specifies the site of cleavage [1-5], interacts directly with Anillin, an actin and myosin binding protein found in the contractile ring [7-10]. Both proteins depend on this interaction for their localization. In the absence of Anillin, the spindle-associated RacGAP loses its association with the equatorial cortex, and cytokinesis fails. These results account for the long-observed dependence of cytokinesis on the continual presence of microtubules at the cortex.
Collapse
Affiliation(s)
- Stephen L Gregory
- Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | |
Collapse
|
147
|
Lyberopoulou A, Venieris E, Mylonis I, Chachami G, Pappas I, Simos G, Bonanou S, Georgatsou E. MgcRacGAP interacts with HIF-1alpha and regulates its transcriptional activity. Cell Physiol Biochem 2007; 20:995-1006. [PMID: 17982282 DOI: 10.1159/000110460] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2007] [Indexed: 01/07/2023] Open
Abstract
HIF-1alpha is the inducible subunit of the dimeric transcription factor HIF-1 (Hypoxia Inducible Factor 1). It is induced by hypoxia and hypoxia-mimetics in most cell types, as well as non-hypoxic signals such as growth factors, cytokines and oncogenes, often in a cell specific manner. HIF-1 is present in virtually all cells of higher eukaryotes and its function is of great biomedical relevance since it is highly involved in development, tumor progression and tissue ischemia. Intracellular signaling to HIF-1alpha, as well as its further action, involves its participation in numerous protein complexes. Using the yeast two-hybrid system we have identified MgcRacGAP (male germ cell Rac GTPase Activating Protein) as a HIF-1alpha interacting protein. The MgcRacGAP protein is a regulator of Rho proteins, which are principally involved in cytoskeletal organization. We have verified specific binding of HIF-1alpha and MgcRacGAP in vitro and in vivo in mammalian cells. We have additionally shown that MgcRacGAP overexpression inhibits HIF-1alpha transcriptional activity, without lowering HIF-1alpha protein levels, or altering its subcellular localization. Moreover, this inhibition is dependent on the MgcRacGAP domain that interacts with HIF-1alpha. In conclusion, our findings demonstrate that HIF-1alpha function is negatively affected by its interaction with MgcRacGAP.
Collapse
Affiliation(s)
- Aggeliki Lyberopoulou
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Pavicic-Kaltenbrunner V, Mishima M, Glotzer M. Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 2007; 18:4992-5003. [PMID: 17942600 DOI: 10.1091/mbc.e07-05-0468] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokinesis in metazoan cells requires a set of antiparallel microtubules that become bundled upon anaphase onset to form a structure known as the central spindle. Bundling of these microtubules requires a protein complex, centralspindlin, that consists of the CYK-4/MgcRacGAP Rho-family GTPase-activating protein and the ZEN-4/MKLP1 kinesin-6 motor protein. Centralspindlin, but not its individual subunits, is sufficient to bundle microtubules in vitro. Here, we present a biochemical and genetic dissection of centralspindlin. We show that each of the two subunits of centralspindlin dimerize via a parallel coiled coil. The two homodimers assemble into a high-affinity heterotetrameric complex by virtue of two low-affinity interactions. Conditional mutations in the regions that mediate complex assembly can be readily suppressed by numerous second site mutations in the interacting regions. This unexpected plasticity explains the lack of primary sequence conservation of the regions critical for this essential protein-protein interaction.
Collapse
|
149
|
Rasmussen CG, Glass NL. Localization of RHO-4 indicates differential regulation of conidial versus vegetative septation in the filamentous fungus Neurospora crassa. EUKARYOTIC CELL 2007; 6:1097-107. [PMID: 17496127 PMCID: PMC1951110 DOI: 10.1128/ec.00050-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rho-4 mutants of the filamentous fungus Neurospora crassa lack septa and asexual spores (conidia) and grow slowly. In this report, localization of green fluorescent protein-tagged RHO-4 is used to elucidate the differences in factors controlling RHO-4 localization during vegetative growth versus asexual development. RHO-4 forms a ring at incipient vegetative septation sites that constricts with the formation of the septum toward the septal pore; RHO-4 persists around the septal pore after septum completion. During the formation of conidia, RHO-4 localizes to the primary septum but subsequently is relocalized to the cytoplasm after the placement of the secondary septum. Cytoplasmic localization and inactivation of RHO-4 are mediated by a direct physical interaction with RDI-1, a RHO guanosine nucleotide dissociation inhibitor. Inappropriate activation of the cyclic AMP-dependent protein kinase A pathway during vegetative growth causes mislocalization of RHO-4 away from septa to the cytoplasm, a process which was dependent upon RDI-1. An adenylate cyclase cr-1 mutant partially suppresses the aconidial defect of rho-4 mutants but only rarely suppresses the vegetative septation defect, indicating that conidial septation is negatively regulated by CR-1. These data highlight the differences in the regulation of septation during conidiation versus vegetative septation in filamentous fungi.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
150
|
Brennan IM, Peters U, Kapoor TM, Straight AF. Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS One 2007; 2:e409. [PMID: 17476331 PMCID: PMC1853238 DOI: 10.1371/journal.pone.0000409] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 04/02/2007] [Indexed: 12/28/2022] Open
Abstract
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.
Collapse
Affiliation(s)
- Ian M. Brennan
- Department of Biochemistry, Stanford Medical School, Stanford, California, United States of America
| | - Ulf Peters
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Aaron F. Straight
- Department of Biochemistry, Stanford Medical School, Stanford, California, United States of America
| |
Collapse
|