101
|
Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites. Proc Natl Acad Sci U S A 2016; 113:E6572-E6581. [PMID: 27791029 DOI: 10.1073/pnas.1613914113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes.
Collapse
|
102
|
Liberal R, Grant CR. Cirrhosis and autoimmune liver disease: Current understanding. World J Hepatol 2016; 8:1157-1168. [PMID: 27729952 PMCID: PMC5055585 DOI: 10.4254/wjh.v8.i28.1157] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/14/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) constitute the classic autoimmune liver diseases (AILDs). While AIH target the hepatocytes, in PBC and PSC the targets of the autoimmune attack are the biliary epithelial cells. Persistent liver injury, associated with chronic AILD, leads to un-resolving inflammation, cell proliferation and the deposition of extracellular matrix proteins by hepatic stellate cells and portal myofibroblasts. Liver cirrhosis, and the resultant loss of normal liver function, inevitably ensues. Patients with cirrhosis have higher risks or morbidity and mortality, and that in the decompensated phase, complications of portal hypertension and/or liver dysfunction lead to rapid deterioration. Accurate diagnosis and monitoring of cirrhosis is, therefore of upmost importance. Liver biopsy is currently the gold standard technique, but highly promising non-invasive methodology is under development. Liver transplantation (LT) is an effective therapeutic option for the management of end-stage liver disease secondary to AIH, PBC and PSC. LT is indicated for AILD patients who have progressed to end-stage chronic liver disease or developed intractable symptoms or hepatic malignancy; in addition, LT may also be indicated for patients presenting with acute liver disease due to AIH who do not respond to steroids.
Collapse
|
103
|
Choi YJ, Lee K, Park WJ, Kwon DN, Park C, Do JT, Song H, Cho SK, Park KW, Brown AN, Samuel MS, Murphy CN, Prather RS, Kim JH. Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget 2016; 7:50914-50926. [PMID: 27463006 PMCID: PMC5239447 DOI: 10.18632/oncotarget.10812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
In this study, we described the phenotype of monoallelic interleukin 2 receptor gamma knockout (mIL2RG+/Δ69-368 KO) pigs. Approximately 80% of mIL2RG+/Δ69-368 KO pigs (8/10) were athymic, whereas 20% (2/10) presented a rudimentary thymus. The body weight of IL2RG+/Δ69-368KO pigs developed normally. Immunological analysis showed that mIL2RG+/Δ69-368 KO pigs possessed CD25+CD44- or CD25-CD44+ cells, whereas single (CD4 or CD8) or double (CD4/8) positive cells were lacking in mIL2RG+/Δ69-368 KO pigs. CD3+ cells in the thymus of mIL2RG+/Δ69-368 KO pigs contained mainly CD44+ cells and/or CD25+ cells, which included FOXP3+ cells. These observations demonstrated that T cells from mIL2RG+/Δ69-368 KO pigs were able to develop to the DN3 stage, but failed to transition toward the DN4 stage. Whole-transcriptome analysis of thymus and spleen, and subsequent pathway analysis revealed that a subset of genes differentially expressed following the loss of IL2RG might be responsible for both impaired T-cell receptor and cytokine-mediated signalling. However, comparative analysis of two mIL2RG+/Δ69-368 KO pigs revealed little variability in the down- and up-regulated gene sets. In conclusion, mIL2RG+/Δ69-368 KO pigs presented a T-B+NK- SCID phenotype, suggesting that pigs can be used as a valuable and suitable biomedical model for human SCID research.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Woo-Jin Park
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Deug-Nam Kwon
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Chankyu Park
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Hyuk Song
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Seong-Keun Cho
- Department of Animal Science, Pusan National University, Miryang, Gyeongnam, Republic of Korea
| | - Kwang-Wook Park
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Alana N. Brown
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Melissa S. Samuel
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Clifton N. Murphy
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Randall S. Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Jin-Hoi Kim
- Animal Biotechnology to Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
104
|
Demers KR, Makedonas G, Buggert M, Eller MA, Ratcliffe SJ, Goonetilleke N, Li CK, Eller LA, Rono K, Maganga L, Nitayaphan S, Kibuuka H, Routy JP, Slifka MK, Haynes BF, McMichael AJ, Bernard NF, Robb ML, Betts MR. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog 2016; 12:e1005805. [PMID: 27486665 PMCID: PMC4972399 DOI: 10.1371/journal.ppat.1005805] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
The loss of HIV-specific CD8+ T cell cytolytic function is a primary factor underlying progressive HIV infection, but whether HIV-specific CD8+ T cells initially possess cytolytic effector capacity, and when and why this may be lost during infection, is unclear. Here, we assessed CD8+ T cell functional evolution from primary to chronic HIV infection. We observed a profound expansion of perforin+ CD8+ T cells immediately following HIV infection that quickly waned after acute viremia resolution. Selective expression of the effector-associated transcription factors T-bet and eomesodermin in cytokine-producing HIV-specific CD8+ T cells differentiated HIV-specific from bulk memory CD8+ T cell effector expansion. As infection progressed expression of perforin was maintained in HIV-specific CD8+ T cells with high levels of T-bet, but not necessarily in the population of T-betLo HIV-specific CD8+ T cells that expand as infection progresses. Together, these data demonstrate that while HIV-specific CD8+ T cells in acute HIV infection initially possess cytolytic potential, progressive transcriptional dysregulation leads to the reduced CD8+ T cell perforin expression characteristic of chronic HIV infection. Previous studies have demonstrated that HIV-specific CD8+ T cells are critical for the initial control of HIV infection. However, this control is typically incomplete, being able to neither clear infection nor maintain plasma viremia below undetectable levels. Mounting evidence has implicated CD8+ T cell cytotoxic capacity as a critical component of the HIV-specific response associated with spontaneous long-term control of HIV replication. CD8+ T cell cytotoxic responses are largely absent in the vast majority of HIV chronically infected individuals and it is unclear when or why this functionality is lost. In this study we show that HIV-specific CD8+ T cells readily express the cytolytic protein perforin during the acute phase of chronic progressive HIV infection but rapidly lose the ability to upregulate this molecule following resolution of peak viremia. Maintenance of perforin expression by HIV-specific CD8+ T cells appears to be associated with the expression level of the transcription factor T-bet, but not with the T-bet paralogue, Eomes. These findings further delineate qualitative attributes of CD8+ T cell-mediated immunity that may serve as targets for future HIV vaccine and therapeutic research.
Collapse
Affiliation(s)
- Korey R. Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George Makedonas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinksa University Hospital Huddinge, Stockholm, Sweden
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Sarah J. Ratcliffe
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nilu Goonetilleke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England
| | - Chris K. Li
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kathleen Rono
- Walter Reed Project-Kenya, Kenya Medical Research Institute, Kericho, Kenya
| | | | - Sorachai Nitayaphan
- Department of Retrovirology, United States Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Makerere University Medical School, Kampala, Uganda
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Andrew J. McMichael
- NDM Research Building, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
105
|
Sulaiman I, Lim JCW, Soo HL, Stanslas J. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm Pharmacol Ther 2016; 40:52-68. [PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
Collapse
Affiliation(s)
- Ibrahim Sulaiman
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hon Liong Soo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
106
|
Tchurikov NA, Yudkin DV, Gorbacheva MA, Kulemzina AI, Grischenko IV, Fedoseeva DM, Sosin DV, Kravatsky YV, Kretova OV. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo. Sci Rep 2016; 6:25866. [PMID: 27160357 PMCID: PMC4861929 DOI: 10.1038/srep25866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/25/2016] [Indexed: 01/05/2023] Open
Abstract
Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics(1,2). There are nine hot spots of DSBs located in human rDNA units(3-6). Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| | - Dmitry V Yudkin
- Department of Genomic Diversity and Evolution, Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia.,Department of Medicine, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Maria A Gorbacheva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| | - Anastasia I Kulemzina
- Department of Genomic Diversity and Evolution, Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave. 8/2, Novosibirsk, 630090, Russia
| | - Irina V Grischenko
- Department of Natural Science, Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Daria M Fedoseeva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| | - Dmitri V Sosin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| | - Yuri V Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| | - Olga V Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow, 119334, Russia
| |
Collapse
|
107
|
Xue Z, Zhang XG, Wu J, Xu WC, Li LQ, Liu F, Yu JE. Effect of treatment with geraniol on ovalbumin-induced allergic asthma in mice. Ann Allergy Asthma Immunol 2016; 116:506-13. [PMID: 27117312 DOI: 10.1016/j.anai.2016.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Accepted: 03/25/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Asthma, a complex highly prevalent airway disease, is a major public health problem for which current treatment options are inadequate. OBJECTIVE To evaluate the antiasthma activity of geraniol and investigate its underlying molecular mechanisms. METHODS In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with geraniol (100 or 200 mg/kg) or a vehicle control, during ovalbumin challenge. RESULTS Treatment of ovalbumin-sensitized/challenged mice with geraniol significantly decreased airway hyperresponsiveness to inhaled methacholine. Geraniol treatment reduced eotaxin levels in bronchoalveolar lavage fluid and attenuated infiltration of eosinophils induced by ovalbumin. Geraniol treatment reduced TH2 cytokines (including interleukins 4, 5, and 13), increased TH1 cytokine interferon γ in bronchoalveolar lavage fluid, and reduced ovalbumin-specific IgE in serum. In addition, treatment of ovalbumin-sensitized/challenged mice with geraniol enhanced T-bet (TH1 response) messenger RNA expression and reduced GATA-3 (TH2 response) messenger RNA expression in lungs. Furthermore, treatment of ovalbumin -sensitized/challenged mice with geraniol further enhanced Nrf2 protein expression and activated Nrf2-directed antioxidant pathways, such as glutamate-cysteine ligase, superoxide dismutase, and glutathione S-transferase, and enhanced formation of reduced glutathione and reduced formation of malondialdehyde in lungs. CONCLUSION Geraniol attenuated important features of allergic asthma in mice, possibly through the modulation of TH1/TH2 balance and activation the of Nrf2/antioxidant response element pathway.
Collapse
Affiliation(s)
- Zheng Xue
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China
| | - Xin-Guang Zhang
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China
| | - Jie Wu
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China
| | - Wan-Chao Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Qing Li
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China
| | - Fei Liu
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China
| | - Jian-Er Yu
- Department of Paediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China; Pediatric Institute of Shanghai Traditional Chinese Medicine Academy, Shanghai, China.
| |
Collapse
|
108
|
Mohamed R, Lord GM. T-bet as a key regulator of mucosal immunity. Immunology 2016; 147:367-76. [PMID: 26726991 PMCID: PMC4799884 DOI: 10.1111/imm.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022] Open
Abstract
Initially understood to be a key regulator of interferon-γ-producing helper T cells, our knowledge of T-bet's functional roles has expanded to encompass a growing range of cellular lineages. In addition to regulating other interferon-γ-producing adaptive immune cells, it is now clear that T-bet plays a fundamental role in the regulation of innate immune responses across mucosal surfaces. This homeostatic role is demonstrated by the spontaneous colitis that occurs when T-bet is deleted from innate immune cells in RAG(-/-) mice. Using this model as a focal point, we review our understanding of T-bet's regulation of adaptive and innate immune systems, focusing particularly on mucosal populations including innate lymphoid cells, dendritic cells and intraepithelial lymphocytes. With the increasingly diverse effects of T-bet on different lineages, the classical binding-centric paradigm of T-bet's molecular functionality has increasingly struggled to account for the versatility of T-bet's biological effects. Recent recognition of the synergistic interactions between T-bet and other canonical transcription factors has led to a co-operative paradigm that has provided greater explanatory power. Synthesizing insights from ChIP-seq and comparative biology, we expand the co-operative paradigm further and suggest a network approach as a powerful way to understand and model T-bet's diverse functionality.
Collapse
Affiliation(s)
- Rami Mohamed
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway Mill Hill, London NW7 1AA, UK
| | - Graham M Lord
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, King's College London, London, UK
| |
Collapse
|
109
|
Furusawa A, Sadashivaiah K, Singh ZN, Civin CI, Banerjee A. Inefficient megakaryopoiesis in mouse hematopoietic stem-progenitor cells lacking T-bet. Exp Hematol 2016; 44:194-206.e17. [PMID: 26607595 PMCID: PMC4789076 DOI: 10.1016/j.exphem.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Differentiation of hematopoietic stem-progenitor cells (HSPCs) into mature blood lineages results from the translation of extracellular signals into changes in the expression levels of transcription factors controlling cell fate decisions. Multiple transcription factor families are known to be involved in hematopoiesis. Although the T-box transcription factor family is known to be involved in the differentiation of multiple tissues, and expression of T-bet, a T-box family transcription factor, has been observed in HSPCs, T-box family transcription factors do not have a described role in HSPC differentiation. In the current study, we address the functional consequences of T-bet expression in mouse HSPCs. T-bet protein levels differed among HSPC subsets, with highest levels observed in megakaryo-erythroid progenitor cells (MEPs), the common precursor to megakaryocytes and erythrocytes. HSPCs from T-bet-deficient mice exhibited a defect in megakaryocytic differentiation when cultured in the presence of thrombopoietin. In contrast, erythroid differentiation in culture in the presence of erythropoietin was not substantially altered in T-bet-deficient HSPCs. Differences observed with respect to megakaryocyte number and maturity, as assessed by level of expression of CD41 and CD61, and megakaryocyte ploidy, in T-bet-deficient HSPCs were not associated with altered proliferation or survival in culture. Gene expression micro-array analysis of MEPs from T-bet-deficient mice exhibited diminished expression of multiple genes associated with the megakaryocyte lineage. These data advance our understanding of the transcriptional regulation of megakaryopoiesis by supporting a new role for T-bet in the differentiation of MEPs into megakaryocytes.
Collapse
Affiliation(s)
- Aki Furusawa
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Center for Stem Cell Research and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kavitha Sadashivaiah
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Center for Stem Cell Research and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Zeba N Singh
- Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Curt I Civin
- Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Center for Stem Cell Research and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Arnob Banerjee
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD; Center for Stem Cell Research and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
110
|
Xiong Y, Ahmad S, Iwami D, Brinkman CC, Bromberg JS. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2526-40. [PMID: 26880765 DOI: 10.4049/jimmunol.1502537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/16/2016] [Indexed: 01/31/2023]
Abstract
T-bet is essential for natural regulatory T cells (nTreg) to regulate Th1 inflammation, but whether T-bet controls other Treg functions after entering the inflammatory site is unknown. In an islet allograft model, T-bet(-/-) nTreg, but not induced Treg, failed to prolong graft survival as effectively as wild-type Treg. T-bet(-/-) nTreg had no functional deficiency in vitro but failed to home from the graft to draining lymph nodes (dLN) as efficiently as wild type. T-bet regulated expression of adhesion- and migration-related molecules, influencing nTreg distribution in tissues, so that T-bet(-/-) nTreg remained in the grafts rather than migrating to lymphatics and dLN. In contrast, both wild-type and T-bet(-/-) CD4(+) conventional T cells and induced Treg migrated normally toward afferent lymphatics. T-bet(-/-) nTreg displayed instability in the graft, failing to suppress Ag-specific CD4(+) T cells and prevent their infiltration into the graft and dLN. Thus, T-bet regulates nTreg migration into afferent lymphatics and dLN and consequently their suppressive stability in vivo.
Collapse
Affiliation(s)
- Yanbao Xiong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarwat Ahmad
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Daiki Iwami
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - C Colin Brinkman
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
111
|
Reciprocal regulation of RORγt acetylation and function by p300 and HDAC1. Sci Rep 2015; 5:16355. [PMID: 26549310 PMCID: PMC4817527 DOI: 10.1038/srep16355] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
T helper 17 (Th17) cells not only play critical roles in protecting against bacterial and fungal infections but are also involved in the pathogenesis of autoimmune diseases. The retinoic acid-related orphan receptor (RORγt) is a key transcription factor involved in Th17 cell differentiation through direct transcriptional activation of interleukin 17(A) (IL-17). How RORγt itself is regulated remains unclear. Here, we report that p300, which has histone acetyltransferase (HAT) activity, interacts with and acetylates RORγt at its K81 residue. Knockdown of p300 downregulates RORγt protein and RORγt-mediated gene expression in Th17 cells. In addition, p300 can promote RORγt-mediated transcriptional activation. Interestingly, the histone deacetylase (HDAC) HDAC1 can also interact with RORγt and reduce its acetylation level. In summary, our data reveal previously unappreciated posttranslational regulation of RORγt, uncovering the underlying mechanism by which the histone acetyltransferase p300 and the histone deacetylase HDAC1 reciprocally regulate the RORγt-mediated transcriptional activation of IL-17.
Collapse
|
112
|
Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 2015; 298:126-33. [PMID: 26520669 DOI: 10.1016/j.cellimm.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms involved in cellular immune responses against control of human immunodeficiency virus (HIV) infection is key to development of effective immunotherapeutic strategies against viral proliferation. Clear insights into the regulation of cytotoxic CD8+ T cells is crucial to development of effective immunotherapeutic strategies due to their unique ability to eliminate virus-infected cells during the course of infection. Here, we reviewed the roles of transcription factors, co-inhibitory molecules and regulatory cytokines following HIV infection and their potential significance in regulating the cytotoxic potentials of CD8+ T cells.
Collapse
|
113
|
Chowdhury A, Hayes TL, Bosinger SE, Lawson BO, Vanderford T, Schmitz JE, Paiardini M, Betts M, Chahroudi A, Estes JD, Silvestri G. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol 2015; 89:8677-86. [PMID: 26063417 PMCID: PMC4524088 DOI: 10.1128/jvi.00869-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/03/2015] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Numerous studies have demonstrated that CD8(+) T lymphocytes suppress virus replication during human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. However, the mechanisms underlying this activity of T cells remain incompletely understood. Here, we conducted CD8(+) T lymphocyte depletion in 15 rhesus macaques (RMs) infected intravenously (i.v.) with SIVmac239. At day 70 postinfection, the animals (10 progressors with high viremia and 5 controllers with low viremia) were CD8 depleted by i.v. administration of the antibody M-T807R1. As expected, CD8 depletion resulted in increased virus replication, more prominently in controllers than progressors, which correlated inversely with predepletion viremia. Of note, the feature of CD8(+) T lymphocyte predepletion that correlated best with the increase in viremia postdepletion was the level of CD8(+) T-bet(+) lymphocytes. We next found that CD8 depletion resulted in a homogenous increase of SIV RNA in superficial and mesenteric lymph nodes, spleen, and the gastrointestinal tract of both controllers and progressors. Interestingly, the level of SIV DNA increased postdepletion in both CD4(+) central memory T lymphocytes (TCM) and CD4(+) effector memory T lymphocytes (TEM) in progressor RMs but decreased in the CD4(+) TCM of 4 out of 5 controllers. Finally, we found that CD8 depletion is associated with a greater increase in CD4(+) T lymphocyte activation (measured by Ki-67 expression) in controllers than in progressors. Overall, these data reveal a differential impact of CD8(+) T lymphocyte depletion between controller and progressor SIV-infected RMs, emphasizing the complexity of the in vivo antiviral role of CD8(+) T lymphocytes. IMPORTANCE In this study, we further dissect the impact of CD8(+) T lymphocytes on HIV/SIV replication during SIV infection. CD8(+) T lymphocyte depletion leads to a relatively homogenous increase in viral replication in peripheral blood and tissues. CD8(+) T lymphocyte depletion resulted in a more prominent increase in viral loads and CD4(+) T lymphocyte activation in controllers than in progressors. Interestingly, we found T-bet expression on CD8(+) T lymphocytes to be the best predictor of viral load increase following depletion. The levels of SIV DNA increase postdepletion in both CD4(+) TCM and TEM in progressor RMs but decrease in the CD4(+) TCM of controllers. The findings described in this study provide key insights into the differential functions of CD8(+) T lymphocytes in controller and progressor RMs.
Collapse
Affiliation(s)
- Ankita Chowdhury
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Timothy L Hayes
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Benton O Lawson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas Vanderford
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mirko Paiardini
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Michael Betts
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ann Chahroudi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
114
|
Inhibition of G-Protein βγ Signaling Decreases Levels of Messenger RNAs Encoding Proinflammatory Cytokines in T Cell Receptor-Stimulated CD4(+) T Helper Cells. J Mol Signal 2015; 10:1. [PMID: 27095999 PMCID: PMC4831316 DOI: 10.5334/1750-2187-10-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Inhibition of G-protein βγ (Gβγ) signaling was found previously to enhance T cell receptor (TCR)-stimulated increases in interleukin 2 (IL-2) mRNA in CD4+ T helper cells, suggesting that Gβγ might be a useful drug target for treating autoimmune diseases, as low dose IL-2 therapy can suppress autoimmune responses. Because IL-2 may counteract autoimmunity in part by shifting CD4+ T helper cells away from the Type 1 T helper cell (TH1) and TH17 subtypes towards the TH2 subtype, the purpose of this study was to determine if blocking Gβγ signaling affected the balance of TH1, TH17, and TH2 cytokine mRNAs produced by CD4+ T helper cells. Methods: Gallein, a small molecule inhibitor of Gβγ, and siRNA-mediated silencing of the G-protein β1 subunit (Gβ1) were used to test the effect of blocking Gβγ on mRNA levels of cytokines in primary human TCR-stimulated CD4+ T helper cells. Results: Gallein and Gβ1 siRNA decreased interferon-γ (IFN-γ) and IL-17A mRNA levels in TCR-stimulated CD4+ T cells grown under TH1-promoting conditions. Inhibiting Gβγ also decreased mRNA levels of STAT4, which plays a positive role in TH1 differentiation and IL-17A production. Moreover, mRNA levels of the STAT4-regulated TH1-associated proteins, IL-18 receptor β chain (IL-18Rβ), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), lymphocyte activation gene 3 (LAG-3), natural killer cell group 7 sequence (NKG7), and oncostatin M (OSM) were also decreased upon Gβγ inhibition. Gallein also increased IL-4, IL-5, IL-9, and IL-13 mRNA levels in TCR-stimulated memory CD4+ T cells grown in TH2-promoting conditions. Conclusions: Inhibiting Gβγ to produce these shifts in cytokine mRNA production might be beneficial for patients with autoimmune diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD), psoriasis, multiple sclerosis (MS), and Hashimoto’s thyroiditis (HT), in which both IFN-γ and IL-17A are elevated.
Collapse
|
115
|
Jha SS, Chakraborty NG, Singh P, Mukherji B, Dorsky DI. Knockdown of T-bet expression in Mart-127-35 -specific T-cell-receptor-engineered human CD4(+) CD25(-) and CD8(+) T cells attenuates effector function. Immunology 2015; 145:124-35. [PMID: 25495780 DOI: 10.1111/imm.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022] Open
Abstract
Gene transfer to create tumour epitope-specific cytolytic T cells for adoptive immunotherapy of cancer remains an area of active inquiry. When the Mart-127-35 -specific DMF5 T-cell receptor (TCR) is transferred into peripheral human CD4(+) T cells, the reprogrammed cells exhibit a T helper type 1 (Th1) phenotype with significant multifactorial effector capabilities. The T-bet transcription factor plays an important role in determination of the Th1 differentiation pathway. To gain a deeper understanding of how T-bet controls the outcome of human T-cell reprogramming by gene transfer, we developed a system for examining the effects of short hairpin RNA-mediated T-bet gene knockdown in sorted cell populations uniformly expressing the knockdown construct. In this system, using activated peripheral human CD4(+) CD25(-) and CD8(+) T cells, T-bet knockdown led to attenuation of the interferon-γ response to both antigen-specific and non-specific TCR stimulation. The interleukin-2 (IL-2) antigen-specific response was not attenuated by T-bet knockdown. Also, in TCR-reprogrammed CD8(+) cells, the cytolytic effector response was attenuated by T-bet knockdown. T-bet knockdown did not cause redirection into a Th2 differentiation pathway, and no increased IL-4, IL-10, or IL-17 response was detected in this system. These results indicate that T-bet expression is required for maintenance of the CD4(+) CD25(-) and CD8(+) effector phenotypes in TCR-reprogrammed human T cells. They also suggest that the activation protocol necessary for transduction with retrovectors and lentivectors may commit the reprogrammed cells to the Th1 phenotype, which cannot be altered by T-bet knockdown but that there is, nevertheless, a continuous requirement of T-bet expression for interferon-γ gene activation.
Collapse
Affiliation(s)
- Sidharth S Jha
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | |
Collapse
|
116
|
Abstract
Research over the past decade has revealed the increasingly complex biologic features of the CD4(+) T-cell lineage. This T-cell subset, which was originally defined on the basis of helper activity in antibody responses, expresses receptors that recognize peptides that have been processed and presented by specialized antigen-presenting cells. At the core of the adaptive immune response, CD4 T cells display a large degree of plasticity and the ability to differentiate into multiple sublineages in response to developmental and environmental cues. These differentiated sublineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of an immune response. The contribution of CD4 cells to host defense against pathogenic invasion and regulation of autoimmunity is now well established. Emerging evidence suggests that CD4 cells also actively participate in shaping antitumor immunity. Here, we outline the biologic properties of CD4 T-cell subsets with an emphasis on their contribution to the antitumor response.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Authors' Affiliations: Department of Microbiology & Immunobiology, Division of Immunology, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
117
|
Chen HH, Huang WT, Yang LW, Lin CW. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1487-99. [DOI: 10.1016/j.ajpath.2015.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
|
118
|
T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. Proc Natl Acad Sci U S A 2015; 112:4056-61. [PMID: 25829541 DOI: 10.1073/pnas.1418549112] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.
Collapse
|
119
|
Tang F, Wang F, An L, Wang X. Upregulation of Tim-3 on CD4(+) T cells is associated with Th1/Th2 imbalance in patients with allergic asthma. Int J Clin Exp Med 2015; 8:3809-3816. [PMID: 26064278 PMCID: PMC4443112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
T cell Ig and mucin domain-containing molecule-3 (Tim-3) is a negative regulator preferentially expressed on Th1 cells. Allergic asthma is a clinical syndrome well characterized by Th1/Th2 imbalance. To investigate the role of Tim-3 in the pathogenesis of asthma and its relationship with Th1/Th2 imbalance, a total of 40 patients with allergic asthma and 40 healthy controls were enrolled. Expression of Tim-3 and Th1/Th2 imbalance as well as the relationship between them was analyzed by flow cytometry and real-time PCR. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro and anti-Tim-3 was used to block Tim-3 signaling; Th1/Th2 cytokines in the culture supernatant were detected by enzyme linked immunosorbent assay (ELISA). CD4(+) T cells and B cells were sorted and co-cultured in vitro, and anti-Tim-3 was used to block Tim-3 signaling; Total IgG/IgE in the culture supernatant was detected by ELISA. The mRNA level of T-bet and IFN-γ were significantly decreased in allergic asthma patients, while GATA-3 and IL-4 were significantly increased. Expression of Tim-3 on CD4(+) T cells was much higher in allergic asthma patients and it was negatively correlated with T-bet/GATA-3 ratio or IFN-γ/IL-4 ratio. Blocking of Tim-3 significantly increased Th1 cytokines (TNF-α and IFN-γ) and decreased Th2 cytokines (IL-4, IL-5, IL-13) in the culture supernatant of PBMCs. Blocking of Tim-3 dramatically reduced the production of IgG and IgE in the co-culture supernatant of CD4(+) T cells and B cells. In conclusion, Tim-3 was up-regulated in allergic asthma patients and related with the Th1/Th2 imbalance. Blocking of Tim-3 may be of therapeutic benefit by enhancing the Th1 cytokines response, down-regulating the Th2 cytokines response, and reducing IgG/IgE production.
Collapse
Affiliation(s)
- Fei Tang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA 050082, Hebei Province, China
| | - Fukun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA 050082, Hebei Province, China
| | - Liyun An
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA 050082, Hebei Province, China
| | - Xianling Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA 050082, Hebei Province, China
| |
Collapse
|
120
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
121
|
Fu J, Wang D, Yu Y, Heinrichs J, Wu Y, Schutt S, Kaosaard K, Liu C, Haarberg K, Bastian D, McDonald DG, Anasetti C, Yu XZ. T-bet is critical for the development of acute graft-versus-host disease through controlling T cell differentiation and function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:388-97. [PMID: 25404360 PMCID: PMC4314960 DOI: 10.4049/jimmunol.1401618] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-bet is a master regulator for IFN-γ production and Th1 differentiation. We evaluated the roles of T-bet and IFN-γ in T cell responses in acute graft-versus-host disease (GVHD) and found that T-bet(-/-) T cells induced significantly less GVHD compared with wild-type or IFN-γ(-/-) counterparts in both MHC-mismatched and MHC-matched but minor histocompatibility Ag-mismatched models driven by CD4 T cells. T-bet(-/-), but not IFN-γ(-/-), CD4 T cells had a markedly reduced ability to cause tissue damage in liver and gut. This distinct outcome is reflected by the differential gene expression on donor CD4 T cells deficient for T-bet or IFN-γ. At mRNA and protein levels, we defined several T-bet-dependent molecules that may account for the impaired ability of T-bet(-/-) T cells to migrate into target organs and to produce Th1-related cytokines. Moreover, these molecules were independent of either endogenous IFN-γ, such as CXCR3 and programmed death-1, or systematic IFN-γ, such as NKG2D, I-A(b), and granzyme B. Although both T-bet(-/-) and IFN-γ(-/-) CD4 T cells are prone to differentiate into Th17 cells, polarized Th17 cells deficient for T-bet but not for IFN-γ had a significantly reduced ability to cause GVHD. Finally, T-bet(-/-) T cells had a compromised graft-versus-leukemia effect, which could be essentially reversed by neutralization of IL-17 in the recipients. We conclude that T-bet is required for Th1 differentiation and migration, as well as for optimal function of Th17 cells. Thus, targeting T-bet or regulating its downstream effectors independent of IFN-γ may be a promising strategy to control GVHD in the clinic.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612; Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Dapeng Wang
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Yu Yu
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jessica Heinrichs
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Kane Kaosaard
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Kelley Haarberg
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Claudio Anasetti
- Immunology, Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
122
|
EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1185-97. [PMID: 24655378 DOI: 10.1016/j.ajpath.2013.12.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023]
Abstract
Nasal NK-cell lymphoma (NNL) is an Epstein-Barr virus (EBV)-associated lymphoma of cytotoxic natural killer (NK) cell origin. Because normal NK cells secrete the principal cytotoxic cytokine IFN-γ to suppress both tumor growth and viral replication, we investigated how EBV may have used miRNAs of viral origin to inhibit the IFN-γ-STAT1 pathway to facilitate viral replication and tumor growth. In EBV(-) Jurkat cells, transfection of miR-BART20-5p and miR-BART8 inhibited translation of luciferase-IFN-γ-3'-UTR and luciferase-STAT1-3'-UTR, respectively. In EBV(+) IFN-γ(weak)/STAT1(strong) YT leukemic cells and IFN-γ(strong)/STAT1(weak) NK92 cells, relative endogenous levels between miR-BART20-5p and IFN-γ mRNAs or between miR-BART8 and STAT1 mRNAs determined expression of the targets. Chromatin immunoprecipitation studies showed that STAT1 regulates the transcription of the tumor suppressor TP53 (encoding p53) and miR-let7a. Consistent with these findings, overexpression of miR-BART8 in YT cells or of miR-BART20-5p in NK92 cells inhibited p53 and increased resistance to doxorubicin. In 36 NNLs, the levels of miR-BART20-5p or miR-BART8 correlated inversely with the expression of STAT1. Additionally, in 46 NNLs, expression of both miR-BART20-5p and miR-BART8 identified a group of NNLs with decreased p53 mRNAs and evidence of disease progression. We conclude that miR-BART20-5p and miR-BART8 cause progression of nasal NK-cell lymphomas through inhibition of the IFN-γ-STAT1 pathway.
Collapse
|
123
|
Ono M, Tanaka RJ, Kano M. Visualisation of the T cell differentiation programme by Canonical Correspondence Analysis of transcriptomes. BMC Genomics 2014; 15:1028. [PMID: 25428805 PMCID: PMC4258272 DOI: 10.1186/1471-2164-15-1028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/12/2014] [Indexed: 12/24/2022] Open
Abstract
Background Currently, in the era of post-genomics, immunology is facing a challenging problem to translate mutant phenotypes into gene functions based on high-throughput data, while taking into account the classifications and functions of immune cells, which requires new methods. Results Here we propose a novel application of a multidimensional analysis, Canonical Correspondence Analysis (CCA), to reveal the molecular characteristics of undefined cells in terms of cellular differentiation programmes by analysing two transcriptomic datasets. Using two independent datasets, whether RNA-seq or microarray data, CCA successfully visualised the cross-level relationships between genes, cells, and differentiation programmes, and thereby identified the immunological features of mutant cells (Gata3-KO T cells and Stat3-KO T cells) in a data-oriented manner. With a new concept, differentiation variable, CCA provides an automatic classification of cell samples, which had a high sensitivity and a comparable performance to other classification methods. In addition, we elaborate how CCA results can be interpreted, and reveal the features of CCA in comparison with other visualisation techniques. Conclusions CCA is a visualisation tool with a classification ability to reveal the cross-level relationships of genes, cells and differentiation programmes. This can be used for characterising the functional defect of cells of interest (e.g. mutant cells) in the context of cellular differentiation. The proposed approach fits with common hypothesis-oriented studies in immunology, and can be used for a wide range of molecular and genomic studies on cellular differentiation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1028) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masahiro Ono
- Immunobiology Section, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
124
|
Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity 2014; 41:191-206. [PMID: 25148023 DOI: 10.1016/j.immuni.2014.06.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France; INSERM U668, 75724 Paris, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
125
|
Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M, Zentek J, Hartmann S. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:333-340. [PMID: 24858028 DOI: 10.1016/j.dci.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Research in mouse and human clearly identified subsets of T helper (Th) cells based on nuclear expression of specific lineage transcription factors. In swine, however, transcription factor based detection of functional subpopulations of porcine Th cells by flow cytometry is so far limited to regulatory T cells via Foxp3. T-bet and GATA-3 are the transcription factors that regulate commitment to Th1 or Th2 cells, respectively. In this study we prove GATA-3 and T-bet expression in porcine CD4(+) cells polarized in vitro. Importantly, GATA-3 and T-bet expressing cells were detectable in pigs infected with pathogens associated with Th2 and Th1 immune responses. Increased frequencies of GATA-3 positive CD4(+) cells are found in vivo in pigs experimentally infected with the nematode Trichuris suis, whereas porcine reproductive and respiratory syndrome virus (PRRSV) infection elicited T-bet positive CD4(+) T cells. Analysing the immune status of pre-weaning piglets with intrauterine growth restriction (IUGR) we found an increased expression of Foxp3, T-bet and GATA-3 in CD4(+) and CD4(+)CD8(+) double-positive T cells in systemic and intestinal compartments of IUGR piglets. Hence, we established the detection of porcine Th1 and Th2 cells via T-bet and GATA-3 and show that the porcine lineage transcription factors are differentially regulated very early in life depending on the developmental status.
Collapse
Affiliation(s)
- F Ebner
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - S Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - L Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - M Burwinkel
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany.
| |
Collapse
|
126
|
Mammary carcinoma cell derived cyclooxygenase 2 suppresses tumor immune surveillance by enhancing intratumoral immune checkpoint activity. Breast Cancer Res 2014; 15:R75. [PMID: 24004819 PMCID: PMC3979159 DOI: 10.1186/bcr3469] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Systemic inhibition of the inflammatory enzyme cyclooxygenase (COX) 2 decreases the risk of breast cancer and its recurrence. However, the biology of COX-2 in the multicellular tumor microenvironment is poorly defined. METHODS Mammary tumor onset and multiplicity were examined in ErbB2 transgenic mice that were deficient in mammary epithelial cell COX-2 (COX-2(MEC)KO) compared to wild type (WT) mice. Tumors were analyzed, by real time PCR, immune-staining and flow cytometry, for proliferation, apoptosis, angiogenesis and immune microenvironment. Lentiviral shRNA delivery was used to knock down (KD) COX-2 in ErbB2-transformed mouse breast cancer cells (COX-2KD), and growth as orthotopic tumors was examined in syngenic recipient mice, with or without depletion of CD8+ immune cells. RESULTS Mammary tumor onset was delayed, and multiplicity halved, in COX-2(MEC)KO mice compared to WT. COX-2(MEC)KO tumors showed decreased expression of Ki67, a proliferation marker, as well as reduced VEGFA, its receptor VEGFR2, endothelial NOS and the vascular endothelial marker CD31, indicating reduced tumor vascularization. COX-2(MEC)KO tumors contained more CD4+ T helper (Th) cells and CD8+ cytotoxic immune cells (CTL) consistent with increased immune surveillance. The ratio of Th markers Tbet (Th1) to GATA3 (Th2) was higher, and levels of Retnla, a M2 macrophage marker, lower, in COX-2(MEC)KO tumor infiltrating leukocytes compared to WT, suggesting a prevalence of pro-immune Th1 over immune suppressive Th2 lymphocytes, and reduced macrophage polarization to the immune suppressive M2 phenotype. Enhanced immune surveillance in COX-2(MEC)KO tumors was coincident with increased intratumoral CXCL9, a T cell chemoattractant, and decreased expression of T lymphocyte co-inhibitory receptors CTLA4 and PD-1, as well as PD-L1, the ligand for PD-1. PD-L1 was also decreased in IFNγ-treated COX-2KD mouse mammary cancer cells in vitro and, compared to control cells, growth of COX-2KD cells as orthotopic tumors in immune competent mice was markedly suppressed. However, robust growth of COX-2KD tumor cells was evident when recipients were depleted of CD8+ cells. CONCLUSIONS The data strongly support that, in addition to its angiogenic function, tumor cell COX-2 suppresses intratumoral cytotoxic CD8+ immune cell function, possibly through upregulation of immune checkpoints, thereby contributing to tumor immune escape. COX-2 inhibition may be clinically useful to augment breast cancer immunotherapy.
Collapse
|
127
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
128
|
Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaëlsson J, Lund O, Hejdeman B, Jansson M, Sönnerborg A, Koup RA, Betts MR, Karlsson AC. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog 2014; 10:e1004251. [PMID: 25032686 PMCID: PMC4102564 DOI: 10.1371/journal.ppat.1004251] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
CD8(+) T cell exhaustion represents a major hallmark of chronic HIV infection. Two key transcription factors governing CD8(+) T cell differentiation, T-bet and Eomesodermin (Eomes), have previously been shown in mice to differentially regulate T cell exhaustion in part through direct modulation of PD-1. Here, we examined the relationship between these transcription factors and the expression of several inhibitory receptors (PD-1, CD160, and 2B4), functional characteristics and memory differentiation of CD8(+) T cells in chronic and treated HIV infection. The expression of PD-1, CD160, and 2B4 on total CD8(+) T cells was elevated in chronically infected individuals and highly associated with a T-bet(dim)Eomes(hi) expressional profile. Interestingly, both resting and activated HIV-specific CD8(+) T cells in chronic infection were almost exclusively T-bet(dim)Eomes(hi) cells, while CMV-specific CD8(+) T cells displayed a balanced expression pattern of T-bet and Eomes. The T-bet(dim)Eomes(hi) virus-specific CD8(+) T cells did not show features of terminal differentiation, but rather a transitional memory phenotype with poor polyfunctional (effector) characteristics. The transitional and exhausted phenotype of HIV-specific CD8(+) T cells was longitudinally related to persistent Eomes expression after antiretroviral therapy (ART) initiation. Strikingly, these characteristics remained stable up to 10 years after ART initiation. This study supports the concept that poor human viral-specific CD8(+) T cell functionality is due to an inverse expression balance between T-bet and Eomes, which is not reversed despite long-term viral control through ART. These results aid to explain the inability of HIV-specific CD8(+) T cells to control the viral replication post-ART cessation.
Collapse
Affiliation(s)
- Marcus Buggert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Johanna Tauriainen
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Yamamoto
- Immunology Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juliet Frederiksen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Martin A. Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Bo Hejdeman
- Department of Infectious Diseases Venhälsan, Stockholm South General Hospital (Södersjukhuset), Stockholm, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Richard A. Koup
- Immunology Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
129
|
Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, Wu C, Baloglu E, Schmidt D, Ramesh R, Lobera M, Sundrud MS, Tsai PY, Xiang Z, Wang J, Xu Y, Lin X, Kretschmer K, Rahl PB, Young RA, Zhong Z, Hafler DA, Regev A, Ghosh S, Marson A, Kuchroo VK. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 2014; 40:477-89. [PMID: 24745332 DOI: 10.1016/j.immuni.2014.04.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/29/2014] [Indexed: 12/15/2022]
Abstract
We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.
Collapse
Affiliation(s)
- Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nir Yosef
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jianfei Yang
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Yonghui Wang
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Ling Zhou
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Chen Zhu
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chuan Wu
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Erkan Baloglu
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Darby Schmidt
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Radha Ramesh
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Mercedes Lobera
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Mark S Sundrud
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Pei-Yun Tsai
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Zhijun Xiang
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Jinsong Wang
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Yan Xu
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xichen Lin
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Peter B Rahl
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Zhong Zhong
- GlaxoSmithKline Research and Development Center, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Shomir Ghosh
- Tempero Pharmaceuticals (a GlaxoSmithKline company), Cambridge, MA 02139, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
130
|
Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants. Mol Immunol 2014; 60:129-34. [PMID: 24853398 DOI: 10.1016/j.molimm.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
Physical stressors, such as strenuous exercise, can have numerous effects on the human body including the immune system. The aim of this study was to evaluate the gene expression profile of Th1/Th2 cytokines and related transcription factor genes in order to investigate possible immune imbalances before and after a marathon. Blood samples were collected from 16 normal volunteers 24-48 h before and one week after completing a marathon race. Gene expression of Th1 and Th2 related cytokines from human peripheral blood mononuclear cells (PBMC) was analyzed using Human Th1-Th2-Th3 RT(2) Profiler PCR Array and qRT-PCR that measured the transcript levels of 84 genes related to T cell activation. We found that PBMC express a characteristic Th2-like gene profile one week post-marathon compared to pre-marathon. The majority of genes up-regulated one week post-marathon such as IL-4, GATA3, and CCR4 were Th2 associated. For Th1-related genes, CXCR3 and IRF1 were up-regulated one week post-marathon. There was a trend of down-regulation of two Th1 related genes, T-bet and STAT1. Th3-related gene expression patterns did not change in the study. The ratios of both IFN-γ/IL-4 and T-bet/GATA3 gene expressions were significantly lower one week after marathon. These findings suggest that a Th1/Th2 immune imbalance persisted at least 1 week after completion of a marathon which offers a mechanistic rationale for the increased risk of upper respiratory tract infections often reported after strenuous exercise.
Collapse
|
131
|
Reynolds C, Chong D, Raynsford E, Quigley K, Kelly D, Llewellyn-Hughes J, Altmann D, Boyton R. Elongated TCR alpha chain CDR3 favors an altered CD4 cytokine profile. BMC Biol 2014; 12:32. [PMID: 24886643 PMCID: PMC4046507 DOI: 10.1186/1741-7007-12-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/04/2014] [Indexed: 12/04/2022] Open
Abstract
Background CD4 T lymphocyte activation requires T cell receptor (TCR) engagement by peptide/MHC (major histocompatibility complex) (pMHC). The TCR complementarity-determining region 3 (CDR3) contains variable α and β loops critical for pMHC recognition. During any immune response, tuning of TCR usage through progressive clonal selection occurs. Th1 and Th2 cells operate at different avidities for activation and display distinct transcriptional programs, although polarization may be plastic, influenced by pathogens and cytokines. We therefore hypothesized that CDR3αβ sequence features may intrinsically influence CD4 phenotype during progression of a response. Results We show that CD4 polarization involves distinct CDR3α usage: Th1 and Th17 cells favored short TCR CDR3α sequences of 12 and 11 amino acids, respectively, while Th2 cells favored elongated CDR3α loops of 14 amino acids, with lower predicted affinity. The dominant Th2- and Th1-derived TCRα sequences with14 amino acid CDR3 loops and 12 amino acid CDR3 loops, respectively, were expressed in TCR transgenics. The functional impact of these TCRα transgenes was assessed after in vivo priming with a peptide/adjuvant. The short, Th1-derived receptor transgenic T cell lines made IFNγ, but not IL-4, 5 or 13, while the elongated, Th2-derived receptor transgenic T cell lines made little or no IFNγ, but increased IL-4, 5 and 13 with progressive re-stimulations, mirrored by GATA-3 up-regulation. T cells from primed Th2 TCRα transgenics selected dominant TCR Vβ expansions, allowing us to generate TCRαβ transgenics carrying the favored, Th2-derived receptor heterodimer. Primed T cells from TCRαβ transgenics made little or no IL-17 or IFNγ, but favored IL-9 after priming with Complete Freund’s adjuvant and IL-4, 5, 9, 10 and 13 after priming with incomplete Freund’s. In tetramer-binding studies, this transgenic receptor showed low binding avidity for pMHC and polarized T cell lines show TCR avidity for Th17 > Th1 > Th2. While transgenic expression of a Th2-derived, ‘elongated’ TCR-CDR3α and the TCRαβ pair, clearly generated a program shifted away from Th1 immunity and with low binding avidity, cytokine-skewing could be over-ridden by altering peptide challenge dose. Conclusion We propose that selection from responding clones with distinctive TCRs on the basis of functional avidity can direct a preference away from Th1 effector responses, favoring Th2 cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rosemary Boyton
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
132
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
133
|
Fu J, Heinrichs J, Yu XZ. Helper T-cell differentiation in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Arch Immunol Ther Exp (Warsz) 2014; 62:277-301. [PMID: 24699629 DOI: 10.1007/s00005-014-0284-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapeutic option for many malignant diseases. However, the efficacy of allo-HSCT is limited by the occurrence of destructive graft-versus-host disease (GVHD). Since allogeneic T cells are the driving force in the development of GVHD, their activation, proliferation, and differentiation are key factors to understanding GVHD pathogenesis. This review focuses on one critical aspect: the differentiation and function of helper T (Th) cells in acute GVHD. We first summarize well-established subsets including Th1, Th2, Th17, and T-regulatory cells; their flexibility, plasticity, and epigenetic modification; and newly identified subsets including Th9, Th22, and T follicular helper cells. Next, we extensively discuss preclinical findings of Th-cell lineages in GVHD: the networks of transcription factors involved in differentiation, the cytokine and signaling requirements for development, the reciprocal differentiation features, and the regulation of microRNAs on T-cell differentiation. Finally, we briefly summarize the recent findings on the roles of T-cell subsets in clinical GVHD and ongoing strategies to modify T-cell differentiation for controlling GVHD in patients. We believe further exploration and understanding of the immunobiology of T-cell differentiation in GVHD will expand therapeutic options for the continuing success of allo-HSCT.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology PhD Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
134
|
Lin TC, Liu TY, Hsu SM, Lin CW. Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 182:1865-75. [PMID: 23608226 DOI: 10.1016/j.ajpath.2013.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 02/09/2023]
Abstract
Nasal NK/T-cell lymphoma (NNL) is an Epstein-Barr virus (EBV)-associated lymphoma derived from cytotoxic NK or T cells of the nasal mucosa. NNLs are noninvasive in the earliest stage, and become invasive with disease progression. The EBV encodes at least 44 miRNAs, whose functions in the pathogenesis of NNL are mostly unknown. We evaluated the levels of 39 EBV-encoded miRNAs with quantitative real-time RT-PCR in a series of 20 noninvasive NNLs and 20 invasive NNLs. miR-BART20-5p was associated most strongly with invasion (P ≤ 0.001), and lack of T-bet, the master transcription factor for cytotoxic NK cells. However, we identified T-bet (official symbol, TBX21) transcripts in T-bet-negative NNLs, implying a block in the translation of T-bet by miR-BART20-5p. In co-transfection experiments, miR-BART20-5p inhibited T-bet translation in both non-Hodgkin and Hodgkin lymphoma cell lines. Endogenous mir-BART20-5p also inhibited translation of T-bet in EBV-infected YT lymphoma cells of NK-cell origin. Induction of T-bet in YT cells up-regulated p53, leading to increased sensitivity in response to doxorubicin. Finally, YT cells transplanted into severe combined immunodeficiency mice had an invasive behavior. Taken together, we conclude that EBV-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. An antagomir to miR-BART20-5p might be an effective therapeutic agent through induction of T-bet and p53.
Collapse
Affiliation(s)
- Ting-Chu Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
135
|
Podshivalova K, Salomon DR. MicroRNA regulation of T-lymphocyte immunity: modulation of molecular networks responsible for T-cell activation, differentiation, and development. Crit Rev Immunol 2014; 33:435-76. [PMID: 24099302 DOI: 10.1615/critrevimmunol.2013006858] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T-lymphocyte development, differentiation, and function. In this review, we highlight the current literature regarding the differential expression of miRNAs in various models of murine and human T-cell biology. We emphasize mechanistic understandings of miRNA regulation of thymocyte development, T-cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T-cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between murine and human systems. Ultimately, it is not always correct to simplify the complex events of T-cell biology into a model driven by only one or two master regulator miRNAs. In reality, T-cell activation and differentiation involve the expression of multiple miRNAs with many mRNA targets; thus, the true extent of miRNA regulation of T-cell biology is likely far more vast than currently appreciated.
Collapse
Affiliation(s)
- Katie Podshivalova
- Laboratory for Functional Genomics, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | | |
Collapse
|
136
|
Matsuyama M, Ishii Y, Yageta Y, Ohtsuka S, Ano S, Matsuno Y, Morishima Y, Yoh K, Takahashi S, Ogawa K, Hogaboam CM, Hizawa N. Role of Th1/Th17 Balance Regulated by T-bet in a Mouse Model of Mycobacterium avium Complex Disease. THE JOURNAL OF IMMUNOLOGY 2014; 192:1707-17. [DOI: 10.4049/jimmunol.1302258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
137
|
Stolarczyk E, Lord GM, Howard JK. The immune cell transcription factor T-bet: A novel metabolic regulator. Adipocyte 2014; 3:58-62. [PMID: 24575371 PMCID: PMC3917935 DOI: 10.4161/adip.26220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated insulin resistance is accompanied by an alteration in the Th1/Th2 balance in adipose tissue. T-bet (Tbx21) is an immune cell transcription factor originally described as the master regulator of Th1 cell development, although is now recognized to have a role in both the adaptive and innate immune systems. T-bet also directs T-cell homing to pro-inflammatory sites by the regulation of CXCR3 expression. T-bet−/− mice have increased visceral adiposity but are more insulin-sensitive, exhibiting reduced immune cell content and cytokine secretion specifically in the visceral fat depot, perhaps due to altered T-cell trafficking. Studies of T-bet deficiency on Rag2- and IFN-γ-deficient backgrounds indicate the importance of CD4+ T cells and IFN-γ in this model. This favorable metabolic phenotype, uncoupling adiposity from insulin resistance, is present in young lean mice yet persists with age and increasing obesity. We suggest a novel role for T-bet in metabolic regulation.
Collapse
|
138
|
Kumar V. Innate lymphoid cells: New paradigm in immunology of inflammation. Immunol Lett 2014; 157:23-37. [DOI: 10.1016/j.imlet.2013.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022]
|
139
|
Gökmen MR, Dong R, Kanhere A, Powell N, Perucha E, Jackson I, Howard JK, Hernandez-Fuentes M, Jenner RG, Lord GM. Genome-wide regulatory analysis reveals that T-bet controls Th17 lineage differentiation through direct suppression of IRF4. THE JOURNAL OF IMMUNOLOGY 2013; 191:5925-32. [PMID: 24249732 DOI: 10.4049/jimmunol.1202254] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage. It has recently been suggested that pathogenic Th17 cells express T-bet and are dependent on IL-23. However, T-bet has previously been shown to be a negative regulator of Th17 cells. We have taken an unbiased approach to determine the functional impact of T-bet on Th17 lineage commitment. Genome-wide analysis of functional T-bet binding sites provides an improved understanding of the transcriptional regulation mediated by T-bet, and suggests novel mechanisms by which T-bet regulates Th cell differentiation. Specifically, we show that T-bet negatively regulates Th17 lineage commitment via direct repression of the transcription factor IFN regulatory factor-4 (IRF4). An in vivo analysis of the pathogenicity of T-bet-deficient T cells demonstrated that mucosal Th17 responses were augmented in the absence of T-bet, and we have demonstrated that the roles of T-bet in enforcing Th1 responses and suppressing Th17 responses are separable. The interplay of the two key transcription factors T-bet and IRF4 during the determination of T cell fate choice significantly advances our understanding of the mechanisms underlying the development of pathogenic T cells.
Collapse
Affiliation(s)
- M Refik Gökmen
- Department of Experimental Immunobiology, Division of Transplantation Immunology and Mucosal Biology and Medical Research Council Centre for Transplantation, Guy's Campus, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Molecular mechanisms guiding naïve T helper cell differentiation into functionally specified effector cells are intensively studied. The rapidly growing knowledge is mainly achieved by using mouse cells or disease models. Comparatively exiguous data is gathered from human primary cells although they provide the "ultimate model" for immunology in man, have been exploited in many original studies paving the way for the field, and can be analyzed more easily than ever with the help of modern technology and methods. As usage of mouse models is unavoidable in translational research, parallel human and mouse studies should be performed to assure the relevancy of the hypothesis created during the basic research. In this review, we give an overview on the status of the studies conducted with human primary cells aiming at elucidating the mechanisms instructing the priming of T helper cell subtypes. The special emphasis is given to the recent high-throughput studies. In addition, by comparing the human and mouse studies we intend to point out the regulatory mechanisms and questions which are lacking examination with human primary cells.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | | |
Collapse
|
141
|
Ma Y, Vilanova D, Atalar K, Delfour O, Edgeworth J, Ostermann M, Hernandez-Fuentes M, Razafimahatratra S, Michot B, Persing DH, Ziegler I, Törös B, Mölling P, Olcén P, Beale R, Lord GM. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLoS One 2013; 8:e75918. [PMID: 24146790 PMCID: PMC3797812 DOI: 10.1371/journal.pone.0075918] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/17/2013] [Indexed: 02/08/2023] Open
Abstract
RATIONALE Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity. OBJECTIVES We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU). METHODS Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature. RESULTS A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation. CONCLUSIONS Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.
Collapse
Affiliation(s)
- Yuqian Ma
- Department of Experimental Immunobiology, King's College London, London, United Kingdom ; NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 2013; 13:777-89. [PMID: 24113868 DOI: 10.1038/nri3536] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally described over a decade ago as a T cell transcription factor regulating T helper 1 cell lineage commitment, T-bet is now recognized as having an important role in many cells of the adaptive and innate immune system. T-bet has a fundamental role in coordinating type 1 immune responses by controlling a network of genetic programmes that regulate the development of certain immune cells and the effector functions of others. Many of these transcriptional networks are conserved across innate and adaptive immune cells and these shared mechanisms highlight the biological functions that are regulated by T-bet.
Collapse
Affiliation(s)
- Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
143
|
Lönnberg T, Chen Z, Lahesmaa R. From a gene-centric to whole-proteome view of differentiation of T helper cell subsets. Brief Funct Genomics 2013; 12:471-82. [PMID: 24106101 PMCID: PMC3838199 DOI: 10.1093/bfgp/elt033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proper differentiation of naïve T helper cells into functionally distinct subsets is of critical importance to human health. Consequently, the process is tightly controlled by a complex intracellular signalling network. To dissect the regulatory principles of this network, immunologists have early on embraced system-wide transcriptomics tools, leading to identification of large panels of potential regulatory factors. In contrast, the use of proteomics approaches in T helper cell research has been notably rare, and to this date relatively few high-throughput datasets have been reported. Here, we discuss the importance of such research and envision the possibilities afforded by mass spectrometry-based proteomics in the near future.
Collapse
Affiliation(s)
- Tapio Lönnberg
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
144
|
Chen Z, Lönnberg T, Lahesmaa R. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets. Scand J Immunol 2013; 78:172-80. [PMID: 23679154 DOI: 10.1111/sji.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/11/2013] [Indexed: 01/22/2023]
Abstract
Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.
Collapse
Affiliation(s)
- Z Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | |
Collapse
|
145
|
Stochastic cytokine expression induces mixed T helper cell States. PLoS Biol 2013; 11:e1001618. [PMID: 23935453 PMCID: PMC3728019 DOI: 10.1371/journal.pbio.1001618] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 06/18/2013] [Indexed: 12/25/2022] Open
Abstract
During early differentiation of T helper cells, stochastic cytokine expression triggers the co-expression of antagonistic transcription factors at high levels, buffered by the interplay between extracellular and intracellular signaling components. During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression. During the development of a multicellular organism, the progenitor cells, which have the potential to become any of several different cell lineages with specialized functions, commit and differentiate into one particular lineage. This differentiation of progenitors is driven by the induction of lineage-specific transcription factors, molecules that regulate gene expression. This process is often mediated by extracellular signaling molecules, including a class of molecules called cytokines that can bind to cell surface receptors, activating and/or repressing transcription factors. Here we explored the early differentiation of naive T helper (Th) cells, an important class of T lymphocytes that help effector immune cells to defend the body against various pathogens. We measured both mRNA and protein levels of cytokines and transcription factors in individual cells. In particular, mRNA levels were measured with single-molecule resolution. Contrary to the expression of only one set of lineage-specific transcription factors, we observed ubiquitous high-level co-expression of antagonistic transcription factors in individual cells. We found that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in individual cells. When cytokine signaling is inhibited, each cell expressed only one of the antagonistic transcription factors at high levels. This reveals a weak intracellular network that is otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process T helper cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.
Collapse
|
146
|
Abstract
The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.
Collapse
Affiliation(s)
- Catherine M Evans
- Division of Infection and Immunity and UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | | |
Collapse
|
147
|
Demers KR, Reuter MA, Betts MR. CD8(+) T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol Rev 2013; 254:190-206. [PMID: 23772621 PMCID: PMC3693771 DOI: 10.1111/imr.12069] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A detailed understanding of the immune response to human immunodeficiency virus (HIV) infection is needed to inform prevention and therapeutic strategies that aim to contain the acquired immunodeficiency syndrome (AIDS) pandemic. The cellular immune response plays a critical role in controlling viral replication during HIV infection and will likely need to be a part of any vaccine approach. The qualitative feature of the cellular response most closely associated with immunological control of HIV infection is CD8(+) T-cell cytotoxic potential, which is responsible for mediating the elimination of infected CD4(+) T cells. Understanding the underlying mechanisms involved in regulating the elicitation and maintenance of this kind of effector response can provide guidance for vaccine design. In this review, we discuss the evidence for CD8(+) T cells as correlates of protection, the means by which their antiviral capacity is evaluated, and transcription factors responsible for their function, or dysfunction, during HIV infection.
Collapse
Affiliation(s)
- Korey R. Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan A. Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
148
|
Roderick JE, Gonzalez-Perez G, Kuksin CA, Dongre A, Roberts ER, Srinivasan J, Andrzejewski C, Fauq AH, Golde TE, Miele L, Minter LM. Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. ACTA ACUST UNITED AC 2013; 210:1311-29. [PMID: 23733784 PMCID: PMC3698520 DOI: 10.1084/jem.20112615] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Notch1 signaling sustains the proinflammatory behavior of Th1 cells, implicated in the development of aplastic anemia in humans and mice. Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by γ-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1IC and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering γ-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1IC was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1IC levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Justine E Roderick
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Stolarczyk E, Vong C, Perucha E, Jackson I, Cawthorne M, Wargent E, Powell N, Canavan J, Lord G, Howard J. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet. Cell Metab 2013; 17:520-33. [PMID: 23562076 PMCID: PMC3685808 DOI: 10.1016/j.cmet.2013.02.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/18/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
Abstract
Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet(-/-) mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet(-/-) mice also lacking adaptive immunity (T-bet(-/-)xRag2(-/-)), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4(+) T cells to Rag2(-/-) mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Emilie Stolarczyk
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
| | - Chi Teng Vong
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
| | - Esperanza Perucha
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | - Ian Jackson
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | | | | | - Nick Powell
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Bart’s and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - James B. Canavan
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Bart’s and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Graham M. Lord
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | - Jane K. Howard
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
- Corresponding author
| |
Collapse
|
150
|
Dobrzanski MJ. Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol 2013; 3:63. [PMID: 23533029 PMCID: PMC3607796 DOI: 10.3389/fonc.2013.00063] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/07/2013] [Indexed: 12/18/2022] Open
Abstract
The importance of CD4 T cells in orchestrating the immune system and their role in inducing effective T cell-mediated therapies for the treatment of patients with select established malignancies are undisputable. Through a complex and balanced array of direct and indirect mechanisms of cellular activation and regulation, this functionally diverse family of lymphocytes can potentially promote tumor eradication, long-term tumor immunity, and aid in establishing and/or rebalancing immune cell homeostasis through interaction with other immune cell populations within the highly dynamic tumor environment. However, recent studies have uncovered additional functions and roles for CD4 T cells, some of which are independent of other lymphocytes, that can not only influence and contribute to tumor immunity but paradoxically promote tumor growth and progression. Here, we review the recent advances in our understanding of the various CD4 T cell lineages and their signature cytokines in disease progression and/or regression. We discuss their direct and indirect mechanistic interplay among themselves and with other responding cells of the antitumor response, their potential roles and abilities for "plasticity" and memory cell generation within the hostile tumor environment, and their potentials in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Mark J. Dobrzanski
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of MedicineAmarillo, TX, USA
| |
Collapse
|