101
|
Hou H, Zhao L, Chen W, Li J, Zuo Q, Zhang G, Zhang X, Li X. Expression and significance of cortactin and HDAC6 in human prostatic foamy gland carcinoma. Int J Exp Pathol 2015; 96:248-54. [PMID: 26112958 DOI: 10.1111/iep.12132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/26/2015] [Indexed: 01/03/2023] Open
Abstract
Cortactin, the cytoplasmic substrate of HDAC6, is known to play an actin cytoskeletal regulatory role which is implicated in the motility of cancer cells, and thus in cancer progression. Its activity is found to be regulated by HDAC6. However, the significance of cortactin and HDAC6 remains unclear in uncommon histologic variant human prostatic foamy gland carcinoma (PfCa). In this study, we aimed to identify the expression and potential role of cortactin and HDAC6 in PfCa. Therefore, 16 PfCa specimens containing 48 foci with distinctive lesions were collected to identify the status of cortactin and HDAC6 by immunohistochemistry. Their correlation between clinicopathological characteristics and prognostic values were further analysed. The effect of cortactin and HDAC6 on prostate cancer cell migration and invasion was then evaluated in IA8 cells. The results showed that expression of cortactin and HDAC6 was significantly higher in PfCa foci, compared to that of high-grade prostatic intraepithelial neoplasia (HGPIN) foci and benign foci (P < 0.05). Cortactin and HDAC6 were associated with poor prognosis of patients with PfCa (P < 0.05). Multivariable Cox regression analysis showed HDAC6 level was a significant prognostic factor for survival of patients with PfCa (β = 1.200, Wald value = 7.282, P = 0.007, 95% CI = 1.389-7.941, P < 0.01, β > 0). Both knocking down cortactin and inhibition of HDAC6 activity with tubacin reduced in vitro migration and invasion ability of IA8 cells substantially. Furthermore, HDAC6 has prognostic value for patients with PfCa. Dysregulation of cortactin and HDAC6 is implicated in the invasiveness and migration of prostate cancer cells.
Collapse
Affiliation(s)
- Huilian Hou
- Department of Pathology, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Le Zhao
- Center for Translational Medicine, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Wei Chen
- Center for Laboratory Medicine, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Jing Li
- Center for Translational Medicine, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | | | - Guanjun Zhang
- Department of Pathology, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xuebin Zhang
- Department of Pathology, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xu Li
- Center for Translational Medicine, First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
102
|
Ali A, Burns TJ, Lucrezi JD, May SW, Green GR, Matesic DF. Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties. Invest New Drugs 2015; 33:827-34. [PMID: 26065689 DOI: 10.1007/s10637-015-0254-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/17/2015] [Indexed: 11/24/2022]
Abstract
4-Phenyl-3-butenoic acid (PBA) is an inhibitor of peptidylglycine alpha-amidating monooxygenase with anti-inflammatory properties that has been shown to inhibit the growth of ras-mutated epithelial and human lung carcinoma cells. In this report, we show that PBA also increases the acetylation levels of selected histone subtypes in a dose and time dependent manner, an effect that is attributable to the inhibition of histone deacetylase (HDAC) enzymes. Comparison studies with the known HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) using high resolution two-dimensional polyacrylamide gels and Western analysis provide evidence that PBA acts as an HDAC inhibitor within cells. PBA and a more potent amidation inhibitor, 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me), inhibit HDAC enzymes in vitro at micromolar concentrations, with IC50 values approximately 30 fold lower for AOPHA-Me than PBA for selected HDAC isoforms. Overall, these results indicate that PBA and AOPHA-Me are novel anti-tumorigenic HDAC inhibitors.
Collapse
Affiliation(s)
- Amna Ali
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | | | | | | | | | | |
Collapse
|
103
|
Mortenson JB, Heppler LN, Banks CJ, Weerasekara VK, Whited MD, Piccolo SR, Johnson WE, Thompson JW, Andersen JL. Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J Biol Chem 2015; 290:12487-96. [PMID: 25770209 DOI: 10.1074/jbc.m114.607580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys(49) and Lys(120), is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys(49)/Lys(120) deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser(112) and Thr(642), respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser(112)/Thr(642) phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William E Johnson
- the Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02215, and
| | - J Will Thompson
- the Institute for Genome Sciences and Policy, Duke University, Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
104
|
Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, O'Connor MJ, Bang YJ. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 2015; 17:33. [PMID: 25888415 PMCID: PMC4425881 DOI: 10.1186/s13058-015-0534-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, has been found to have therapeutic potential for treating cancers associated with impaired DNA repair capabilities, particularly those with deficiencies in the homologous recombination repair (HRR) pathway. Histone deacetylases (HDACs) are important for enabling functional HRR of DNA by regulating the expression of HRR-related genes and promoting the accurate assembly of HRR-directed sub-nuclear foci. Thus, HDAC inhibitors have recently emerged as a therapeutic agent for treating cancer by inhibiting DNA repair. Based on this, HDAC inhibition could be predicted to enhance the anti-tumor effect of PARP inhibitors in cancer cells by blocking the HRR pathway. METHODS We determined whether suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, could enhance the anti-tumor effects of olaparib on breast cancer cell lines using a cytotoxic assay, cell cycle analysis, and Western blotting. We evaluated how exposure to SAHA affects the expression of HRR-associated genes. The accumulation of DNA double strand breaks (DSBs) induced by combination treatment was assessed. Induction of autophagy was monitored by imaging green fluorescent protein-tagged microtubule-associated protein 1A/1B-light chain 3 (LC3) expression following co-treatment with olaparib and SAHA. These in vitro data were validated in vivo using a human breast cancer xenograft model. RESULTS Triple-negative breast cancer cell (TNBC) lines showed heterogeneous responses to the PARP and HDAC inhibitors. Co-administration of olaparib and SAHA synergistically inhibited the growth of TNBC cells that expressed functional Phosphatase and tensin homolog (PTEN). This effect was associated with down-regulation of the proliferative signaling pathway, increased apoptotic and autophagic cell death, and accumulation of DNA damage. The combined anti-tumor effect of olaparib and SAHA was also observed in a xenograft model. These data suggest that PTEN expression in TNBC cells can sensitize the cell response to simultaneous inhibition of PARP and HDAC both in vitro and in vivo. CONCLUSION Our findings suggest that expression of functional PTEN may serve as a biomarker for selecting TNBC patients that would favorably respond to a combination of olaparib with SAHA. This provides a strong rationale for treating TNBC patients with PTEN expression with a combination therapy consisting of olaparib and SAHA.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
| | - Hee-Jun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Chung Ang University College of Medicine, Seoul, 156-755, Korea.
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| |
Collapse
|
105
|
Brüning A, Jückstock J. Misfolded proteins: from little villains to little helpers in the fight against cancer. Front Oncol 2015; 5:47. [PMID: 25759792 PMCID: PMC4338749 DOI: 10.3389/fonc.2015.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cytostatic drugs targeting the high proliferation rates of cancer cells is currently the most commonly used treatment option in cancer chemotherapy. However, severe side effects and resistance mechanisms may occur as a result of such treatment, possibly limiting the therapeutic efficacy of these agents. In recent years, several therapeutic strategies have been developed that aim at targeting not the genomic integrity and replication machinery of cancer cells but instead their protein homeostasis. During malignant transformation, the cancer cell proteome develops vast aberrations in the expression of mutated proteins, oncoproteins, drug- and apoptosis-resistance proteins, etc. A complex network of protein quality-control mechanisms, including chaperoning by heat shock proteins (HSPs), not only is essential for maintaining the extravagant proteomic lifestyle of cancer cells but also represents an ideal cancer-specific target to be tackled. Furthermore, the high rate of protein synthesis and turnover in certain types of cancer cells can be specifically directed by interfering with the proteasomal and autophagosomal protein recycling and degradation machinery, as evidenced by the clinical application of proteasome inhibitors. Since proteins with loss of their native conformation are prone to unspecific aggregations and have proved to be detrimental to normal cellular function, specific induction of misfolded proteins by HSP inhibitors, proteasome inhibitors, hyperthermia, or inducers of endoplasmic reticulum stress represents a new method of cancer cell killing exploitable for therapeutic purposes. This review describes drugs - approved, repurposed, or under investigation - that can be used to accumulate misfolded proteins in cancer cells, and particularly focuses on the molecular aspects that lead to the cytotoxicity of misfolded proteins in cancer cells.
Collapse
Affiliation(s)
- Ansgar Brüning
- Molecular Biology Laboratory, Ludwig-Maximilians-University , Munich , Germany
| | - Julia Jückstock
- Molecular Biology Laboratory, Ludwig-Maximilians-University , Munich , Germany
| |
Collapse
|
106
|
Héninger E, Krueger TEG, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6:29. [PMID: 25699047 PMCID: PMC4316783 DOI: 10.3389/fimmu.2015.00029] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Erika Héninger
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA ; Department of Medicine, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
107
|
Chan CT, Qi J, Smith W, Paranol R, Mazitschek R, West N, Reeves R, Chiosis G, Schreiber SL, Bradner JE, Paulmurugan R, Gambhir SS. Syntheses and discovery of a novel class of cinnamic hydroxamates as histone deacetylase inhibitors by multimodality molecular imaging in living subjects. Cancer Res 2014; 74:7475-86. [PMID: 25320008 DOI: 10.1158/0008-5472.can-14-0197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Histone deacetylases (HDAC) that regulate gene expression are being explored as cancer therapeutic targets. In this study, we focused on HDAC6 based on its ability to inhibit cancerous Hsp90 chaperone activities by disrupting Hsp90/p23 interactions. To identify novel HDAC6 inhibitors, we used a dual-luciferase reporter system in cell culture and living mice by bioluminescence imaging (BLI). On the basis of existing knowledge, a library of hydrazone compounds was generated for screening by coupling cinnamic hydroxamates with aldehydes and ketones. Potency and selectivity were determined by in vitro HDAC profiling assays, with further evaluation to inhibit Hsp90(α/β)/p23 interactions by BLI. In this manner, we identified compound 1A12 as a dose-dependent inhibitor of Hsp90(α/β)/p23 interactions, UKE-1 myeloid cell proliferation, p21(waf1) upregulation, and acetylated histone H3 levels. 1A12 was efficacious in tumor xenografts expressing Hsp90(α)/p23 reporters relative to carrier control-treated mice as determined by BLI. Small animal (18)F-FDG PET/CT imaging on the same cohort showed that 1A12 also inhibited glucose metabolism relative to control subjects. Ex vivo analyses of tumor lysates showed that 1A12 administration upregulated acetylated-H3 by approximately 3.5-fold. Taken together, our results describe the discovery and initial preclinical validation of a novel selective HDAC inhibitor.
Collapse
Affiliation(s)
- C T Chan
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - J Qi
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - W Smith
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Paranol
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Mazitschek
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts
| | - N West
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Reeves
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - G Chiosis
- Department of Medicine and Program in Molecular Pharmacology and Medical Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - J E Bradner
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts
| | - R Paulmurugan
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California
| | - S S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California. Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California. Bio-X Program, Stanford University School of Medicine, Stanford, California. Department of Bioengineering, Stanford University School of Medicine, Stanford, California. Division of Nuclear Medicine, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
108
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-336. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
109
|
LU HOUGEN, ZHAN WANG, YAN LIN, QIN RUIYING, YAN YIPENG, YANG ZHENJIANG, LIU GUICHAO, LI GUIQIN, WANG HAIFENG, LI XINGLIANG, LI ZHI, GAO LU, CHEN GUOQING. TET1 partially mediates HDAC inhibitor-induced suppression of breast cancer invasion. Mol Med Rep 2014; 10:2595-600. [DOI: 10.3892/mmr.2014.2517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
|
110
|
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13:673-91. [PMID: 25131830 DOI: 10.1038/nrd4360] [Citation(s) in RCA: 1216] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators--histone deacetylases (HDACs)--and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.
Collapse
|
111
|
Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res 2014; 20:4849-60. [PMID: 25070836 DOI: 10.1158/1078-0432.ccr-14-0034] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE The aim of this study is to explore the efficacy and define mechanisms of action of coadministration of the PI3K/mTOR inhibitor BEZ235 and pan-HDAC inhibitor panobinostat in diffuse large B-cell lymphoma (DLBCL) cells. EXPERIMENTAL DESIGN Various DLBCL cells were exposed to panobinostat and BEZ235 alone or together after which apoptosis and signaling/survival pathway perturbations were monitored by flow cytometry and Western blot analysis. Genetic strategies defined the functional significance of such changes, and xenograft mouse models were used to assess tumor growth and animal survival. RESULTS Panobinostat and BEZ235 interacted synergistically in ABC-, GC-, and double-hit DLBCL cells and MCL cells but not in normal CD34(+) cells. Synergism was associated with pronounced AKT dephosphorylation, GSK3 dephosphorylation/activation, Mcl-1 downregulation, Bim upregulation, increased Bcl-2/Bcl-xL binding, diminished Bax/Bak binding to Bcl-2/Bcl-xL/Mcl-1, increased γH2A.X phosphorylation and histone H3/H4 acetylation, and abrogation of p21(CIP1) induction. BEZ235/panobinostat lethality was not susceptible to stromal/microenvironmental forms of resistance. Genetic strategies confirmed significant functional roles for AKT inactivation, Mcl-1 downregulation, Bim upregulation, and Bax/Bak in synergism. Finally, coadministration of BEZ235 with panobinostat in immunocompromised mice bearing SU-DHL4-derived tumors significantly reduced tumor growth in association with similar signaling changes observed in vitro, and combined treatment increased animal survival compared with single agents. CONCLUSIONS BEZ235/panobinostat exhibits potent anti-DLBCL activity, including in poor-prognosis ABC- and double-hit subtypes, but not in normal CD34(+) cells. Synergism is most likely multifactorial, involving AKT inactivation/GSK3 activation, Bim upregulation, Mcl-1 downregulation, enhanced DNA damage, and is operative in vivo. Combined PI3K/mTOR and HDAC inhibition warrants further attention in DLBCL.
Collapse
Affiliation(s)
- Mohamed Rahmani
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Mandy Mayo Aust
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Elisa C Benson
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - LaShanale Wallace
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan Friedberg
- James T. Wilmot Cancer Center, University of Rochester, Rochester, New York
| | | |
Collapse
|
112
|
Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci 2014; 10:757-70. [PMID: 25013383 PMCID: PMC4081609 DOI: 10.7150/ijbs.9067] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022] Open
Abstract
Genetic abnormalities have been conventionally considered as hallmarks of cancer. However, studies over the past decades have demonstrated that epigenetic regulation also participates in the development of cancer. The fundamental patterns of epigenetic components, such as DNA methylation and histone modifications, are frequently altered in tumor cells. Acetylation is one of the best characterized modifications of histones, which is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are a group of enzymes which catalyze the removal of the acetyl groups of both histones and non-histone proteins. HDACs are involved in modulating most key cellular processes, including transcriptional regulation, apoptosis, DNA damage repair, cell cycle control, autophagy, metabolism, senescence and chaperone function. Because HDACs have been found to function incorrectly in cancer, various HDAC inhibitors are being investigated to act as cancer chemotherapeutics. The primary purpose of this paper is to summarize recent studies of the links between HDACs and cancer, and further discuss the underlying mechanisms of anti-tumor activities of HDAC inhibitors and clinical implications.
Collapse
Affiliation(s)
- Zhiming Li
- 1. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing 100191, China. ; 2. Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Guo Zhu
- 1. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing 100191, China. ; 2. Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China. ; 3. Peking-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
113
|
Zhang M, Xiang S, Joo HY, Wang L, Williams KA, Liu W, Hu C, Tong D, Haakenson J, Wang C, Zhang S, Pavlovicz RE, Jones A, Schmidt KH, Tang J, Dong H, Shan B, Fang B, Radhakrishnan R, Glazer PM, Matthias P, Koomen J, Seto E, Bepler G, Nicosia SV, Chen J, Li C, Gu L, Li GM, Bai W, Wang H, Zhang X. HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol Cell 2014; 55:31-46. [PMID: 24882211 DOI: 10.1016/j.molcel.2014.04.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/21/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
MutS protein homolog 2 (MSH2) is a key DNA mismatch repair protein. It forms the MSH2-MSH6 (MutSα) and MSH2-MSH3 (MutSβ) heterodimers, which help to ensure genomic integrity. MutSα not only recognizes and repairs mismatched nucleotides but also recognizes DNA adducts induced by DNA-damaging agents, and triggers cell-cycle arrest and apoptosis. Loss or depletion of MutSα from cells leads to microsatellite instability (MSI) and resistance to DNA damage. Although the level of MutSα can be reduced by the ubiquitin-proteasome pathway, the detailed mechanisms of this regulation remain elusive. Here we report that histone deacetylase 6 (HDAC6) sequentially deacetylates and ubiquitinates MSH2, leading to MSH2 degradation. In addition, HDAC6 significantly reduces cellular sensitivity to DNA-damaging agents and decreases cellular DNA mismatch repair activities by downregulation of MSH2. Overall, these findings reveal a mechanism by which proper levels of MutSα are maintained.
Collapse
Affiliation(s)
- Mu Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Heui-Yun Joo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| | - Lei Wang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Kendra A Williams
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Wei Liu
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Chen Hu
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Dan Tong
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Joshua Haakenson
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Chuangui Wang
- Key Laboratory of Medical Cell Biology, Institute for Translational Medicine, China Medical University, Shengyang 110000, China
| | - Shengping Zhang
- Key Laboratory of Medical Cell Biology, Institute for Translational Medicine, China Medical University, Shengyang 110000, China
| | - Ryan E Pavlovicz
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jinfu Tang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Huiqin Dong
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Bin Shan
- Medical Sciences, Washington State University at Spokane, 412E Spokane Falls Boulevard, Spokane, WA 99201, USA
| | - Bin Fang
- Proteomics, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Rangasudhagar Radhakrishnan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, 4058 Basel, Switzerland
| | - John Koomen
- Proteomics, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Edward Seto
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Gerold Bepler
- Molecular Therapeutics Program, Karmanos Cancer Institute, 4100 John R, Detroit, MI 48201, USA
| | - Santo V Nicosia
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jiandong Chen
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Chenglong Li
- Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Liya Gu
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Guo-Min Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Wenlong Bai
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
114
|
Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014; 31:985. [PMID: 24838514 DOI: 10.1007/s12032-014-0985-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms are increasingly recognized as a major factor contributing to pathogenesis of cancer including glioblastoma, the most common and most malignant primary brain tumour in adults. Enzymatic modifications of histone proteins regulating gene expression are being exploited for therapeutic drug targeting. Over the last decade, numerous studies have shown promising results with histone deacetylase (HDAC) inhibitors in various malignancies. This article provides a brief overview of mechanism of anti-cancer effect and pharmacology of HDAC inhibitors and summarizes results from pre-clinical and clinical studies in glioblastoma. It analyses experience with HDAC inhibitors as single agents as well as in combination with targeted agents, cytotoxic chemotherapy and radiotherapy. Hallmark features of glioblastoma, such as uncontrolled cellular proliferation, invasion, angiogenesis and resistance to apoptosis, have been shown to be targeted by HDAC inhibitors in experiments with glioblastoma cell lines. Vorinostat is the most advanced HDAC inhibitor that entered clinical trials in glioblastoma, showing activity in recurrent disease. Multiple phase II trials with vorinostat in combination with targeted agents, temozolomide and radiotherapy are currently recruiting. While the results from pre-clinical studies are encouraging, early clinical trials showed only modest benefit and the value of HDAC inhibitors for clinical practice will need to be confirmed in larger prospective trials. Further research in epigenetic mechanisms driving glioblastoma pathogenesis and identification of molecular subtypes of glioblastoma is needed. This will hopefully lead to better selection of patients who will benefit from treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Pavel Bezecny
- Rosemere Cancer Centre, Lancashire Teaching Hospitals NHS Foundation Trust, Sharoe Green Lane, Preston, PR2 9HT, UK,
| |
Collapse
|
115
|
Lee HY, Tsai AC, Chen MC, Shen PJ, Cheng YC, Kuo CC, Pan SL, Liu YM, Liu JF, Yeh TK, Wang JC, Chang CY, Chang JY, Liou JP. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J Med Chem 2014; 57:4009-22. [PMID: 24766560 DOI: 10.1021/jm401899x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of indolylsulfonylcinnamic hydroxamates has been synthesized. Compound 12, (E)-3-(3-((1H-pyrrolo[2,3-b]pyridin-1-yl)sulfonyl)phenyl)-N-hydroxyacrylamide, which has a 7-azaindole core cap, was shown to have antiproliferative activity against KB, H460, PC3, HSC-3, HONE-1, A549, MCF-7, TSGH, MKN45, HT29, and HCT116 human cancer cell lines. Pharmacological studies indicated that 12 functions as a potent HDAC inhibitor with an IC50 value of 0.1 μM. It is highly selective for histone deacetylase 6 (HDAC6) and is 60-fold more active than against HDAC1 and 223-fold more active than against HDAC2. It has a good pharmacokinetic profile with oral bioavailability of 33%. In in vivo efficacy evaluations in colorectal HCT116 xenografts, compound 12 suppresses tumor growth more effectively than SAHA (1, N-hydroxy-N'-phenyloctanediamide) and is therefore seen as a suitable candidate for further investigation.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University , 250 Wuxing Street, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Lai LC, Tsai MH, Chen PC, Chen LH, Hsiao JH, Chen SK, Lu TP, Lee JM, Hsu CP, Hsiao CK, Chuang EY. SNP rs10248565 in HDAC9 as a novel genomic aberration biomarker of lung adenocarcinoma in non-smoking women. J Biomed Sci 2014; 21:24. [PMID: 24650256 PMCID: PMC3994426 DOI: 10.1186/1423-0127-21-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Although cigarette smoking is the primary risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. Since cancer results from progressive accumulation of genetic aberrations, genomic rearrangements may be early events in carcinogenesis. RESULTS In order to identify biomarkers of early-stage adenocarcinoma, the genome-wide DNA aberrations of 60 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined using Affymetrix Genome-Wide Human SNP 6.0 arrays. Common copy number variation (CNV) regions were identified by ≥30% of patients with copy number beyond 2 ± 0.5 of copy numbers for each single nucleotide polymorphism (SNP) and at least 100 continuous SNP variant loci. SNPs associated with lung adenocarcinoma were identified by McNemar's test. Loss of heterozygosity (LOH) SNPs were identified in ≥18% of patients with LOH in the locus. Aberration of SNP rs10248565 at HDAC9 in chromosome 7p21.1 was identified from concurrent analyses of CNVs, SNPs, and LOH. CONCLUSION The results elucidate the genetic etiology of lung adenocarcinoma by demonstrating that SNP rs10248565 may be a potential biomarker of cancer susceptibility.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Rosik L, Niegisch G, Fischer U, Jung M, Schulz WA, Hoffmann MJ. Limited efficacy of specific HDAC6 inhibition in urothelial cancer cells. Cancer Biol Ther 2014; 15:742-57. [PMID: 24618845 DOI: 10.4161/cbt.28469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modifiers such as histone deacetylases (HDACs) have come into focus as novel drug targets for cancer therapy due to their functional role in tumor progression. Since common pan-HDAC inhibitors have adverse side effects and minor anti-cancer activity against solid tumors, enzyme-specific inhibitors were developed. HDAC6 is especially well-suited for specific inhibition due to its unique domain structure and mode of action and has been suggested to provide an exceptionally suitable target for cancer therapy. However, expression and function of HDACs have been insufficiently studied in urothelial cancers (UC), a disease urgently requiring new therapeutic approaches. The present study sought to evaluate HDAC6 as a target for treatment of urothelial cancers with enzyme-specific inhibitors. We observed moderate HDAC6 overexpression in urothelial cancer tissues and a broad range of expression in urothelial cancer cell lines. In the cell lines Tubacin was the most potent inhibitor, compared with Tubastatin and ST-80, but still active only at high micromolar concentrations. HDAC6 expression levels correlated poorly with sensitivity to enzyme inhibition. Combined treatments with heat shock, HSP90 inhibition by 17-AAG, proteasome inhibition by bortezomib, or DNA-damaging agents did not result in significant synergistic effects. Experiments with siRNA-mediated knockdown further underlined that urothelial cancer cells do not critically depend on HDAC6 expression for survival.
Collapse
Affiliation(s)
- Lorena Rosik
- Department of Urology; Heinrich-Heine-University; Medical Faculty; Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology; Heinrich-Heine-University; Medical Faculty; Duesseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University; Medical Faculty; Duesseldorf, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; University of Freiburg; Freiburg, Germany; German Cancer Consortium (DKTK); Heidelberg, Germany; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | | | | |
Collapse
|
118
|
Ree AH, Saelen MG, Kalanxhi E, Østensen IHG, Schee K, Røe K, Abrahamsen TW, Dueland S, Flatmark K. Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy. PLoS One 2014; 9:e89750. [PMID: 24587009 PMCID: PMC3934935 DOI: 10.1371/journal.pone.0089750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. PATIENTS AND METHODS Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. RESULTS This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. CONCLUSION Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Marie Grøn Saelen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Ingrid H. G. Østensen
- Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Schee
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kathrine Røe
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Torveig Weum Abrahamsen
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital – Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
119
|
Ganai SA, Shanmugam K, Mahadevan V. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms. J Biomol Struct Dyn 2014; 33:374-87. [PMID: 24460542 DOI: 10.1080/07391102.2013.879073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Histone deacetylases (HDACs) are conjugated enzymes that modulate chromatin architecture by deacetylating lysine residues on the histone tails leading to transcriptional repression. Pharmacological interventions of these enzymes with small molecule inhibitors called Histone deacetylase inhibitors (HDACi) have shown enhanced acetylation of the genome and are hence emerging as potential targets at the clinic. Type-specific inhibition of Class II HDACs has shown enhanced therapeutic benefits against developmental and neurodegenerative disorders. However, the structural identity of class-specific isoforms limits the potential of their inhibitors in precise targeting of their enzymes. Diverse strategies have been implemented to recognise the features in HDAC enzymes which may help in identifying isoform specificity factors. This work attempts a computational approach that combines in silico docking and energy-optimised pharmacophore (E-pharmacophore) mapping of 18 known HDAC inhibitors and has identified structural variations that regulate their interactions against the six Class II HDAC enzymes considered for the study. This combined approach establishes that inhibitors possessing higher number of aromatic rings in different structural regions might function as potent inhibitors, while inhibitors with scarce ring structures might point to compromised potency. This would aid the rationale for chemical optimisation and design of isoform selective HDAC inhibitors with enhanced affinity and therapeutic efficiency.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India
| | | | | |
Collapse
|
120
|
Shin HJ, DeCotiis J, Giron M, Palmeri D, Lukac DM. Histone deacetylase classes I and II regulate Kaposi's sarcoma-associated herpesvirus reactivation. J Virol 2014; 88:1281-92. [PMID: 24227836 PMCID: PMC3911646 DOI: 10.1128/jvi.02665-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022] Open
Abstract
In primary effusion lymphoma (PEL) cells infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta's promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation.
Collapse
Affiliation(s)
- Hye Jin Shin
- Department of Microbiology and Molecular Genetics, New Jersey Medical School and Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
121
|
Sodji QH, Patil V, Kornacki JR, Mrksich M, Oyelere AK. Synthesis and structure-activity relationship of 3-hydroxypyridine-2-thione-based histone deacetylase inhibitors. J Med Chem 2013; 56:9969-81. [PMID: 24304348 PMCID: PMC4029159 DOI: 10.1021/jm401225q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously identified 3-hydroxypyridine-2-thione (3HPT) as a novel zinc binding group for histone deacetylase (HDAC) inhibition. Early structure-activity relationship (SAR) studies led to various small molecules possessing selective inhibitory activity against HDAC6 or HDAC8 but devoid of HDAC1 inhibition. To delineate further the depth of the SAR of 3HPT-derived HDAC inhibitors (HDACi), we have extended the SAR studies to include the linker region and the surface recognition group to optimize the HDAC inhibition. The current efforts resulted in the identification of two lead compounds, 10d and 14e, with potent HDAC6 and HDAC8 activities that are inactive against HDAC1. These new HDACi possess anticancer activities against various cancer cell lines including Jurkat J.γ1 for which SAHA and the previously disclosed 3HPT-derived HDACi were inactive.
Collapse
Affiliation(s)
- Quaovi H. Sodji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| | - Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| | - James R. Kornacki
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400 USA
| |
Collapse
|
122
|
Histone deacetylase inhibitors. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
123
|
Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 158:161-9. [PMID: 24263215 DOI: 10.5507/bp.2013.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent success toward discovery of more effective anticancer drugs, chemoresistance remains a major cause of treatment failure. There is emerging evidence that epigenetics plays a key role in the development of the resistance. Epigenetic regulators such as histone acetyltransferases (HATs) and histone deacetylases (HDACs) play an important role in gene expression. The latter are found to be commonly linked with many types of cancers and influence cancer development. Overall, histone acetylation is being investigated as a therapeutic target because of its importance in regulating gene expression. This review summarizes mechanisms of the anticancer effects of histone deacetylase (HDAC) inhibitors and the results of clinical studies. RESULTS Different HDAC inhibitors induce cancer cell death by different mechanisms that include changes in gene expression and alteration of both histone and non-histone proteins. Enhanced histone acetylation in tumors results in modification of expression of genes involved in cell signaling. Inhibition of HDACs causes changed expression in 2-10 % of genes involved in important biological processes. The results of experiments and clinical studies demonstrate that combination of HDAC inhibitors with some anticancer drugs have synergistic or additive effects. CONCLUSIONS Even though many biological effects of HDAC inhibitors have been found, most of the mechanisms of their action remain unclear. In addition, their use in combination with other drugs and the combination regime need to be investigated. The discovery of predictive factors is also necessary. Finally, a key question is whether the pan-HDAC inhibitors or the selective inhibitors will be more efficient for different types of cancers.
Collapse
Affiliation(s)
- Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
124
|
Gouraud A, Brazeau MA, Grégoire MC, Simard O, Massonneau J, Arguin M, Boissonneault G. "Breaking news" from spermatids. Basic Clin Androl 2013; 23:11. [PMID: 25780573 PMCID: PMC4349474 DOI: 10.1186/2051-4190-23-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 01/06/2023] Open
Abstract
During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.
Collapse
Affiliation(s)
- Anne Gouraud
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marc-André Brazeau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marie-Chantal Grégoire
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Olivier Simard
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Julien Massonneau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Mélina Arguin
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Guylain Boissonneault
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| |
Collapse
|
125
|
Liu KC, Ho HC, Huang AC, Ji BC, Lin HY, Chueh FS, Yang JS, Lu CC, Chiang JH, Meng M, Chung JG. Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. ENVIRONMENTAL TOXICOLOGY 2013; 28:579-587. [PMID: 21887735 DOI: 10.1002/tox.20752] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/25/2011] [Accepted: 06/04/2011] [Indexed: 05/31/2023]
Abstract
Our earlier studies have demonstrated that gallic acid (GA) induced cytotoxic effects including induction of apoptosis and DNA damage and inhibited the cell migration and invasion in human cancer cells. However, GA-affected DNA damage and repair gene expressions in human prostate cancer cells are still unclear. In this study, we investigated whether or not GA induces DNA damage and inhibits DNA repair gene expression in a human prostate cancer cell line (PC-3). The results from flow cytometric assay indicated that GA decreased the percentage of viable PC-3 cells in a dose- and time-dependent manner. PC-3 cells after exposure to different doses (50, 100, and 200 μM) of GA and various periods of time (12, 24, and 48 h) led to a longer DNA migration smear (comet tail) occurred based on the single cell gel electrophoresis (comet assay). These observations indicated that GA-induced DNA damage in PC-3 cells, which also confirmed by 4,6-diamidino-2-phenylindole dihydrochloride staining and DNA agarose gel electrophoresis. Alternatively, results from real-time polymerase chain reaction assay also indicated that GA inhibited ataxia telangiectasia mutated, ataxia-telangiectasia and Rad3-related, O⁶-methylguanine-DNA methyltransferase, DNA-dependent serine/threonine protein kinase, and p53 mRNA expressions in PC-3 cells. Taken together, the present study showed that GA caused DNA damage and inhibited DNA repair genes as well as both effects may be the critical factors for GA-inhibited growth of PC-3 cells in vitro.
Collapse
Affiliation(s)
- Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Development of a histone deacetylase 6 inhibitor and its biological effects. Proc Natl Acad Sci U S A 2013; 110:15704-9. [PMID: 24023063 DOI: 10.1073/pnas.1313893110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of isoform-selective histone deacetylase (HDAC) inhibitors is important in elucidating the function of individual HDAC enzymes and their potential as therapeutic agents. Among the eleven zinc-dependent HDACs in humans, HDAC6 is structurally and functionally unique. Here, we show that a hydroxamic acid-based small-molecule N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide (HPOB) selectively inhibits HDAC6 catalytic activity in vivo and in vitro. HPOB causes growth inhibition of normal and transformed cells but does not induce cell death. HPOB enhances the effectiveness of DNA-damaging anticancer drugs in transformed cells but not normal cells. HPOB does not block the ubiquitin-binding activity of HDAC6. The HDAC6-selective inhibitor HPOB has therapeutic potential in combination therapy to enhance the potency of anticancer drugs.
Collapse
|
127
|
Komatsu S, Moriya S, Che XF, Yokoyama T, Kohno N, Miyazawa K. Combined treatment with SAHA, bortezomib, and clarithromycin for concomitant targeting of aggresome formation and intracellular proteolytic pathways enhances ER stress-mediated cell death in breast cancer cells. Biochem Biophys Res Commun 2013; 437:41-7. [PMID: 23792097 DOI: 10.1016/j.bbrc.2013.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome pathway and the autophagy-lysosome pathway are two major intracellular protein degradation systems. We previously reported that clarithromycin (CAM) blocks autophagy flux, and that combined treatment with CAM and proteasome inhibitor bortezomib (BZ) enhances ER-stress-mediated apoptosis in breast cancer cells, whereas treatment with CAM alone results in almost no cytotoxicity. Since HDAC6 is involved in aggresome formation, which is recognized as a cytoprotective response serving to sequester misfolded proteins and facilitate their clearance by autophagy, we further investigated the combined effect of vorinostat (suberoylanilide hydroxamic acid (SAHA)), which has a potent inhibitory effect for HDAC6, with CAM and BZ in breast cancer cell lines. SAHA exhibited some cytotoxicity along with an increased acetylation level of α-tubulin, a substrate of HDAC6. Combined treatment of SAHA, CAM, and BZ potently enhanced the apoptosis-inducing effect compared with treatment using each reagent alone or a combination of two of the three. Expression levels of ER-stress-related genes, including the pro-apoptotic transcription factor CHOP (GADD153), were maximally induced by the simultaneous combination of three reagents. Like breast cancer cell lines, a wild-type murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and maximally up-regulated Chop after combined treatment with SAHA, CAM, and BZ; however, a Chop knockout MEF cell line almost completely canceled this enhanced effect. The specific HDAC6 inhibitor tubacin also exhibited a pronounced cytocidal effect with a combination of CAM plus BZ. These data suggest that simultaneous targeting of intracellular proteolytic pathways and HDAC6 enhances ER-stress-mediated apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Seiichiro Komatsu
- Department of Breast Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | | | | | |
Collapse
|
128
|
Alzoubi KH, Khabour OF, Jaber AG, Al-Azzam SI, Mhaidat NM, Masadeh MM. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage. Cytotechnology 2013; 66:449-55. [PMID: 23761013 DOI: 10.1007/s10616-013-9597-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022] Open
Abstract
Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan,
| | | | | | | | | | | |
Collapse
|
129
|
Olson DE, Wagner FF, Kaya T, Gale JP, Aidoud N, Davoine EL, Lazzaro F, Weïwer M, Zhang YL, Holson EB. Discovery of the first histone deacetylase 6/8 dual inhibitors. J Med Chem 2013; 56:4816-20. [PMID: 23672185 DOI: 10.1021/jm400390r] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We disclose the first small molecule histone deacetylase (HDAC) inhibitor (3, BRD73954) capable of potently and selectively inhibiting both HDAC6 and HDAC8 despite the fact that these isoforms belong to distinct phylogenetic classes within the HDAC family of enzymes. Our data demonstrate that meta substituents of phenyl hydroxamic acids are readily accommodated upon binding to HDAC6 and, furthermore, are necessary for the potent inhibition of HDAC8.
Collapse
Affiliation(s)
- David E Olson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kalin JH, Bergman JA. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J Med Chem 2013; 56:6297-313. [PMID: 23627282 DOI: 10.1021/jm4001659] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This Perspective provides an in depth look at the numerous disease states in which histone deacetylase 6 (HDAC6) has been implicated. The physiological pathways, protein-protein interactions, and non-histone substrates relating to different pathological conditions are discussed with regard to HDAC6. Furthermore, the compounds and methods used to modulate HDAC6 activity are profiled. The latter half of this Perspective analyzes reported HDAC6 selective inhibitors in terms of structure, potency, and selectivity over the other HDAC isoforms with the intent of providing a comprehensive overview of the molecular tools available. Potential obstacles and future directions of HDAC6 research are also presented.
Collapse
Affiliation(s)
- Jay H Kalin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Illinois 60612, United States.
| | | |
Collapse
|
131
|
Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Löhr CV, Ho E, Williams DE, Dashwood RH. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 2013; 8:612-23. [PMID: 23770684 PMCID: PMC3857341 DOI: 10.4161/epi.24710] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.
Collapse
|
132
|
Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 2013; 4:e610. [PMID: 23618908 PMCID: PMC3641350 DOI: 10.1038/cddis.2013.127] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is the best known as an essential protein for osteoblast differentiation. In this study, we have found for the first time that RUNX2 acts as a negative regulator for p53 in response to DNA damage. On DNA damage mediated by adriamycin (ADR) exposure, p53 as well as RUNX2 was induced at protein and mRNA level in human osteosarcoma-derived U2OS cells in association with a significant upregulation of various p53-target genes. Indirect immunostaining and co-immunoprecipitation experiments demonstrated that RUNX2 colocalizes with p53 in cell nucleus and forms a complex with p53 following ADR treatment. Chromatin immunoprecipitation assays revealed that RUNX2/p53 complex is efficiently recruited onto p53-target promoters in response to ADR, suggesting that RUNX2 might be involved in the regulation of transcriptional activation mediated by p53. Indeed, forced expression of RUNX2 resulted in a remarkable downregulation of p53-target genes. Consistent with these observations, knockdown of RUNX2 enhanced ADR-mediated apoptosis and also elevated p53-target gene expression in response to ADR. On the other hand, depletion of RUNX2 in p53-deficient human lung carcinoma-derived H1299 cells had an undetectable effect on p53-target gene expression regardless of ADR treatment, indicating that RUNX2-mediated downregulation of p53-target genes is dependent on p53. Furthermore, RUNX2/p53 complex included histone deacetylase 6 (HDAC6) and HDAC6 was also recruited onto p53-target promoters following ADR exposure. Of note, HDAC6-specific chemical inhibitor tubacin treatment enhanced ADR-mediated upregulation of p53-target gene expression, indicating that deacetylase activity of HDAC6 is required for RUNX2-mediated downregulation of p53-target gene. Taken together, our present findings strongly suggest that RUNX2 inhibits DNA damage-induced transcriptional as well as pro-apoptotic activity of p53 through the functional collaboration with HDAC6 and therefore might be an attractive therapeutic target for cancer treatment.
Collapse
|
133
|
Patil V, Sodji QH, Kornacki JR, Mrksich M, Oyelere AK. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J Med Chem 2013; 56:3492-506. [PMID: 23547652 DOI: 10.1021/jm301769u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines.
Collapse
Affiliation(s)
- Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | | | | | | | | |
Collapse
|
134
|
de Clare M, Oliver SG. Copy-number variation of cancer-gene orthologs is sufficient to induce cancer-like symptoms in Saccharomyces cerevisiae. BMC Biol 2013; 11:24. [PMID: 23531409 PMCID: PMC3635878 DOI: 10.1186/1741-7007-11-24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy-number variation (CNV), rather than complete loss of gene function, is increasingly implicated in human disease. Moreover, gene dosage is recognised as important in tumourigenesis, and there is an increasing realisation that CNVs may not be just symptomatic of the cancerous state but may, in fact, be causative. However, the identification of CNV-related phenotypes for mammalian genes is a slow process, due to the technical difficulty of constructing deletion mutants. Using the genome-wide deletion library for the model eukaryote, Saccharomyces cerevisiae, we have identified genes (termed haploproficient, HP) which, when one copy is deleted from a diploid cell, result in an increased rate of proliferation. Since haploproficiency under nutrient-sufficient conditions is a novel phenotype, we sought here to characterise a subset of the yeast haploproficient genes which seem particularly relevant to human cancers. RESULTS We show that, for a subset of HP genes, heterozygous deletion is sufficient to cause aberrant cell cycling and altered rates of apoptosis, phenotypes associated with cancer in mammalian cells. A majority of these yeast genes are the orthologs of mammalian cancer genes, and hence our studies suggest that CNV of these oncogenic orthologs may be sufficient to lead to tumourigenesis in human cells. Moreover, where not already implicated, this cluster of cancer-like phenotypes in this model eukaryote may be predictive of the involvement in cancer of the mammalian orthologs of these yeast HP genes. Using the yeast set as a model, we show that the response to a range of anti-cancer drugs is strongly dependent on gene dosage, such that intermediate concentrations of the drugs can actually increase a mutant's growth rate. CONCLUSIONS The exploitation of data on the phenotypic impact of heterozygosis in Saccharomyces cerevisiae has permitted the prediction of CNVs affecting tumourigenesis in humans. Our yeast data also suggest that the identification of CNVs in tumour cells may assist both the selection of anti-cancer drugs and the dosages at which they should be administered if they are to be a beneficial, rather than a deleterious, therapy.
Collapse
Affiliation(s)
- Michaela de Clare
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
135
|
Abstract
Histone deacetylase inhibitors (HDACis) increase gene expression through induction of histone acetylation. However, it remains unclear whether specific gene expression changes determine the apoptotic response following HDACis administration. Herein, we discuss evidence that HDACis trigger in cancer and leukemia cells not only widespread histone acetylation but also actual increases in reactive oxygen species (ROS) and DNA damage that are further increased following treatment with DNA-damaging chemotherapies. While the origins of ROS production are not completely understood, mechanisms, including inflammation and altered antioxidant signaling, have been reported. While the generation of ROS is an explanation, at least in part, for the source of DNA damage observed with HDACi treatment, DNA damage can also be independently induced by changes in the DNA repair activity and chromatin remodeling factors. Recent development of sirtuin inhibitors (SIRTis) has shown that, similar to HDACis, these drugs induce increases in ROS and DNA damage used singly, or in combination with HDACis and other drugs. Thus, induction of apoptosis by HDACis/SIRTis may result through oxidative stress and DNA damage mechanisms in addition to direct activation of apoptosis-inducing genes. Nevertheless, while DNA damage and stress responses could be of interest as markers for clinical responses, they have yet to be validated as markers for responses to HDACi treatment in clinical trials, alone, and in combination.
Collapse
Affiliation(s)
- Carine Robert
- Department of Radiation Oncology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
136
|
Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013; 7:47-60. [PMID: 23459471 PMCID: PMC3584656 DOI: 10.2147/btt.s29965] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
137
|
Cea M, Cagnetta A, Gobbi M, Patrone F, Richardson PG, Hideshima T, Anderson KC. New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Curr Pharm Des 2013; 19:734-744. [PMID: 23016853 PMCID: PMC4171085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Multiple Myeloma (MM) is a common hematologic malignancy of plasma cells representing an excellent model of epigenomics dysregulation in human disease. Importantly, these findings, in addition to providing a better understanding of the underlying molecular changes leading to this malignance, furnish the basis for an innovative therapeutic approach. Histone deacetylase inhibitors (HDACIs), including Vorinostat and Panobinostat, represent a novel class of drugs targeting enzymes involved in epigenetic regulation of gene expression, which have been evaluated also for the treatment of multiple myeloma. Although the clinical role in this setting is evolving and their precise utility remains to be determined, to date that single-agent anti-MM activity is modest. More importantly, HDACIs appear to be synergistic both in vitro and in vivo when combined with other anti-MM agents, mainly proteasome inhibitors including bortezomib. The molecular basis underlying this synergism seems to be multifactorial and involves interference with protein degradation as well as the interaction of myeloma cells with microenvironment. Here we review molecular events underling antitumor effects of HDACIs and the most recent results of clinical trials in relapsed and refractory MM.
Collapse
Affiliation(s)
- Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, M551, 450 Brookline Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Class I and class II histone deacetylases are potential therapeutic targets for treating pancreatic cancer. PLoS One 2012; 7:e52095. [PMID: 23251689 PMCID: PMC3522644 DOI: 10.1371/journal.pone.0052095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer. Methodology HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively. Results The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells. Conclusion Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic cancer. Accordingly, treating pancreatic cancer with pan-HDACIs may be more beneficial than class- or isoform-selective inhibitors.
Collapse
|
139
|
Lin TY, Huang CP, Au LC, Chang YW, Hu CY, Lin SB. A cysteine-reactive alkyl hydroquinone modifies topoisomerase IIα, enhances DNA breakage, and induces apoptosis in cancer cells. Chem Res Toxicol 2012; 25:2340-51. [PMID: 23088786 DOI: 10.1021/tx3002302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that the anticancer activity of a botanical compound 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)] was attributed to topoisomerase (Topo) IIα poisoning and the induction of oxidative damage. HQ17(3) irreversibly inhibits Topo IIα activity in vitro and is more cytotoxic in leukemia HL-60 cells than in Topo IIα-deficient variant HL-60/MX2 cells, which suggests that Topo IIα is a cellular target of HQ17(3). This study further characterizes the molecular mechanisms of the anticancer activity of HQ17(3). Proteomic analyses indicated that HQ17(3) reacted with Cys-427, Cys-733, and Cys-997 of recombinant Topo IIα in vitro, whereas it reacted with Cys-427 of cellular Topo IIα in Huh7 hepatoma cells. The modification of HQ17(3) inhibited Topo IIα catalytic activity, increased the Topo IIα-DNA cleavage complex, and caused the accumulation of DNA breakage. In Huh7 cells, HQ17(3) treatment caused prompt inhibition of DNA synthesis and consequently induced the expression of DNA damage-related genes DDIT3, GADD45A, and GADD45G. Topo IIα inhibition, apoptosis, and oxidative stress were found to account for cytotoxicity caused by HQ17(3). Pretreatment of Huh7 cells with N-acetylcysteine (NAC) partially attenuated mitochondrial membrane damage, DNA breakage, and caspase activation. However, NAC pretreatment did not diminish HQ17(3)-induced cell death. These results suggest that the anticancer activity of HQ17(3) is attributed significantly to Topo IIα poisoning. The structural feature of HQ17(3) can be used as a model for the design of Topo IIα inhibitors and anticancer drugs.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
140
|
Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M. Chromatin-modifying agents in anti-cancer therapy. Biochimie 2012; 94:2264-79. [DOI: 10.1016/j.biochi.2012.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
|
141
|
Mak AB, Nixon AML, Kittanakom S, Stewart JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I, Moffat J. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep 2012; 2:951-63. [PMID: 23084749 DOI: 10.1016/j.celrep.2012.09.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 07/21/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
The pentaspan membrane glycoprotein CD133 marks lineage-specific cancer progenitor cells and is associated with poor prognosis in a number of tumor types. Despite its utility as a cancer progenitor cell marker, CD133 protein regulation and molecular function remain poorly understood. We find that the deacetylase HDAC6 physically associates with CD133 to negatively regulate CD133 trafficking down the endosomal-lysosomal pathway for degradation. We further demonstrate that CD133, HDAC6, and the central molecule of the canonical Wnt signaling pathway, β-catenin, can physically associate as a ternary complex. This association stabilizes β-catenin via HDAC6 deacetylase activity, which leads to activation of β-catenin signaling targets. Downregulation of either CD133 or HDAC6 results in increased β-catenin acetylation and degradation, which correlates with decreased proliferation in vitro and tumor xenograft growth in vivo. Given that CD133 marks progenitor cells in a wide range of cancers, targeting CD133 may be a means to treat multiple cancer types.
Collapse
Affiliation(s)
- Anthony B Mak
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Wang L, Xiang S, Williams KA, Dong H, Bai W, Nicosia SV, Khochbin S, Bepler G, Zhang X. Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS One 2012; 7:e44265. [PMID: 22957056 PMCID: PMC3434198 DOI: 10.1371/journal.pone.0044265] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are promising therapeutic agents which are currently used in combination with chemotherapeutic agents in clinical trials for cancer treatment including non-small cell lung cancer (NSCLC). However, the mechanisms underlying their anti-tumor activities remain elusive. Previous studies showed that inhibition of HDAC6 induces DNA damage and sensitizes transformed cells to anti-tumor agents such as etoposide and doxorubicin. Here, we showed that depletion of HDAC6 in two NSCLC cell lines, H292 and A549, sensitized cells to cisplatin, one of the first-line chemotherapeutic agents used to treat NSCLC. We suggested that depletion of HDAC6 increased cisplatin-induced cytotoxicity was due to the enhancement of apoptosis via activating ATR/Chk1 pathway. Furthermore, we showed that HDAC6 protein levels were positively correlated with cisplatin IC(50) in 15 NSCLC cell lines. Lastly, depletion of HDAC6 in H292 xenografts rendered decreased tumor weight and volume and exhibited increased basal apoptosis compared with the controls in a xenograft mouse model. In summary, our findings suggest that HDAC6 is positively associated with cisplatin resistance in NSCLC and reveal HDAC6 as a potential novel therapeutic target for platinum refractory NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Kendra A. Williams
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Huiqin Dong
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Wenlong Bai
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
- Program of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Santo V. Nicosia
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
- Experimental Therapeutics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Saadi Khochbin
- French National Institute of Health and Medical Research, The Albert Bonniot Institute, Grenoble, France
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan, United States of America
- * E-mail: (GB); (XZ)
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America
- Program of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail: (GB); (XZ)
| |
Collapse
|
143
|
Licciardi PV, Kwa FAA, Ververis K, Di Costanzo N, Balcerczyk A, Tang ML, El-Osta A, Karagiannis TC. Influence of natural and synthetic histone deacetylase inhibitors on chromatin. Antioxid Redox Signal 2012; 17:340-54. [PMID: 22229817 DOI: 10.1089/ars.2011.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™), and the cyclic peptide, depsipeptide (Romidepsin, Istodax™), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. RECENT ADVANCES The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. CRITICAL ISSUES Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. FUTURE DIRECTIONS Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification.
Collapse
Affiliation(s)
- Paul V Licciardi
- Allergy and Immune Disorders, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Siegelin MD. Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis. Expert Opin Ther Targets 2012; 16:801-17. [PMID: 22762543 DOI: 10.1517/14728222.2012.703655] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising death ligand who has received significant attention due to its specific anti-cancer activity. Recently, a number of clinical trials involving either recombinant soluble TRAIL or agonistic death receptor (DR) antibodies have even been initiated. One major caveat in TRAIL-based anti-cancer therapies is that a considerable number of cancer cells are notorious resistant to apoptosis induction by TRAIL. Overcoming this primary or secondary evolved resistance is an utmost important goal of present cancer research. The current literature suggests that TRAIL resistance is mediated by a number of endogenous factors. AREAS COVERED According to recent research, stress-related transcription factors have acquired a pivotal role in the sensitization of highly resistant cancer cells, for example, pancreatic cancer and glioblastoma cells, to TRAIL-mediated cell death. Out of this transcription factor family, C/EBP-homologous protein (CHOP) is linked to the control of DR-mediated apoptosis by modulation of several apoptotic and anti-apoptotic factors. Stress responses in certain organelles, such as endoplasmic reticulum (ER) and mitochondria, are potent inductors of CHOP expression. This report focuses on the influence of stress responses on endogenous or acquired resistance to extrinsic apoptosis in tumor cells and summarizes recent findings and results. The Medline and ClinicalTrials database with key words were used for this review. EXPERT OPINION A potential novel treatment strategy for highly treatment-resistant tumors is the induction of a cellular stress response in cancer cells. The induction of an organelle-related stress response, such as nuclear, ER and mitochondrial stress, leads to a dramatic sensitization of a broad variety of cancer cells of different tumor entities to the apoptotic ligand, TRAIL. Importantly, non-neoplastic cells are not sensitized to TRAIL-mediated cell death through the unfolded protein response in most instances, suggesting that this treatment is not only of high efficacy, but even more less of unwanted toxicity in patients.
Collapse
Affiliation(s)
- Markus David Siegelin
- Department of Pathology & Cell Biology, Columbia University College of Physicians & Surgeons, 630 W. 168th Street, VC14-239, New York, NY 10032, USA.
| |
Collapse
|
145
|
Zafar SF, Nagaraju GP, El-Rayes B. Developing histone deacetylase inhibitors in the therapeutic armamentarium of pancreatic adenocarcinoma. Expert Opin Ther Targets 2012; 16:707-18. [PMID: 22621256 DOI: 10.1517/14728222.2012.691473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Histone deacetylases (HDACs) are commonly dysregulated in pancreatic adenocarcinoma (PA) and have a central role in the development and progression of the disease. HDAC is a family of enzymes involved in deacetylation of lysine residues on histone and non-histone proteins. Deacetylation of histone proteins leads to compaction of the DNA/histone complex resulting in inhibition of gene expression. Deacetylation of non-histone proteins can affect the stability and function of key proteins leading to dysregulation of cellular signaling pathways. HDAC inhibitors have been shown to potentiate the antiproliferative and proapoptotic effects of several cytotoxic agents, in vitro and in vivo PA xenograft models. AREAS COVERED The areas covered include the biology and function of the HDAC isoenzymes and their significant role in multiple oncogenic pathways in PA. Preclinical and clinical trials evaluating HDAC inhibitors are also reviewed. EXPERT OPINION Despite discouraging early phase clinical trials evaluating HDAC inhibitors in PA, this strategy deserves further evaluation guided by better preclinical studies in identifying the role of specific HDAC isoenzyme inhibitors in PA. Evaluation of the effects of HDAC inhibitors on PA stem cell function and epithelial to mesenchymal transformation is also an evolving area that holds future potential for these agents. Such preclinical studies will yield insight into the functionality of HDAC isoenzymes, which can then be translated into rationally designed clinical trials. One such strategy could focus on HDAC inhibition employed in combination with proteasome inhibition targeting the aggresome pathway in PA.
Collapse
Affiliation(s)
- Syed F Zafar
- Emory University, Winship Cancer Institute, Department of Hematology and Medical Oncology, Atlanta, GA-30322, USA
| | | | | |
Collapse
|
146
|
Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2:PBA-2-14980. [PMID: 22953035 PMCID: PMC3417541 DOI: 10.3402/pba.v2i0.14980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | |
Collapse
|
147
|
Inks ES, Josey BJ, Jesinkey SR, Chou CJ. A novel class of small molecule inhibitors of HDAC6. ACS Chem Biol 2012; 7:331-9. [PMID: 22047054 DOI: 10.1021/cb200134p] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that play significant roles in numerous biological processes and diseases. HDACs are best known for their repressive influence on gene transcription through histone deacetylation. Mapping of nonhistone acetylated proteins and acetylation-modifying enzymes involved in various cellular pathways has shown protein acetylation/deacetylation also plays key roles in a variety of cellular processes including RNA splicing, nuclear transport, and cytoskeletal remodeling. Studies of HDACs have accelerated due to the availability of small molecule HDAC inhibitors, most of which contain a canonical hydroxamic acid or benzamide that chelates the metal catalytic site. To increase the pool of unique and novel HDAC inhibitor pharmacophores, a pharmacological active compound screen was performed. Several unique HDAC inhibitor pharmacophores were identified in vitro. One class of novel HDAC inhibitors, with a central naphthoquinone structure, displayed a selective inhibition profile against HDAC6. Here we present the results of a unique class of HDAC6 inhibitors identified using this compound library screen. In addition, we demonstrated that treatment of human acute myeloid leukemia cell line MV4-11 with the selective HDAC6 inhibitors decreases levels of mutant FLT-3 and constitutively active STAT5 and attenuates Erk phosphorylation, all of which are associated with the inhibitor's selective toxicity against leukemia.
Collapse
Affiliation(s)
- Elizabeth S. Inks
- Department
of Pharmaceutical and Biomedical Sciences,
South Carolina College of Pharmacy, Medical University of South Carolina, 280 Calhoun St. MSC140 QF307 Charleston,
South Carolina 29425, United States
| | - Benjamin J. Josey
- Department
of Pharmaceutical and Biomedical Sciences,
South Carolina College of Pharmacy, Medical University of South Carolina, 280 Calhoun St. MSC140 QF307 Charleston,
South Carolina 29425, United States
| | - Sean R. Jesinkey
- Department
of Pharmaceutical and Biomedical Sciences,
South Carolina College of Pharmacy, Medical University of South Carolina, 280 Calhoun St. MSC140 QF307 Charleston,
South Carolina 29425, United States
| | - C. James Chou
- Department
of Pharmaceutical and Biomedical Sciences,
South Carolina College of Pharmacy, Medical University of South Carolina, 280 Calhoun St. MSC140 QF307 Charleston,
South Carolina 29425, United States
| |
Collapse
|
148
|
Guerrant W, Patil V, Canzoneri JC, Oyelere AK. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J Med Chem 2012; 55:1465-77. [PMID: 22260166 DOI: 10.1021/jm200799p] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Strategies to ameliorate the flaws of current chemotherapeutic agents, while maintaining potent anticancer activity, are of particular interest. Agents which can modulate multiple targets may have superior utility and fewer side effects than current single-target drugs. To explore the prospect in cancer therapy of a bivalent agent that combines two complementary chemo-active groups within a single molecular architecture, we have synthesized dual-acting histone deacetylase and topoisomerase II inhibitors. These dual-acting agents are derived from suberoylanilide hydroxamic acid (SAHA) and anthracycline daunorubicin, prototypical histone deacetylase (HDAC) and topoisomerase II (Topo II) inhibitors, respectively. We report herein that these agents present the signatures of inhibition of HDAC and Topo II in both cell-free and whole-cell assays. Moreover, these agents potently inhibit the proliferation of representative cancer cell lines.
Collapse
Affiliation(s)
- William Guerrant
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | | | | | | |
Collapse
|
149
|
Ververis K, Karagiannis TC. Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/130360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cyclic peptide, depsipeptide (Romidepsin, Istodax) for the same disease in
2009. Currently numerous histone deacetylase inhibitors are undergoing preclinical and clinical trials for the treatment of hematological and solid malignancies. Most of these studies are focused on combinations of histone deacetylase inhibitors with other therapeutic modalities, particularly conventional chemotherapeutics and radiotherapy. The aim of this paper is to provide an overview of the classical histone deacetylase enzymes and histone deacetylase inhibitors with an emphasis on potential combination therapies.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Baker IDI Heart & Diabetes Institute, Alfred Medical Research and Education Precinct, Melbourne, VIC 8008, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Baker IDI Heart & Diabetes Institute, Alfred Medical Research and Education Precinct, Melbourne, VIC 8008, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
150
|
Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012; 119:2579-89. [PMID: 22262760 DOI: 10.1182/blood-2011-10-387365] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase (HDAC) enzymatic activity has been linked to the transcription of DNA in cancers including multiple myeloma (MM). Therefore, HDAC inhibitors used alone and in combination are being actively studied as novel therapies in MM. In the present study, we investigated the preclinical activity of ACY-1215, an HDAC6-selective inhibitor, alone and in combination with bortezomib in MM. Low doses of ACY-1215 combined with bortezomib triggered synergistic anti-MM activity, resulting in protracted endoplasmic reticulum stress and apoptosis via activation of caspase-3, caspase-8, and caspase-9 and poly (ADP) ribosome polymerase. In vivo, the anti-MM activity of ACY-1215 in combination with bortezomib was confirmed using 2 different xenograft SCID mouse models: human MM injected subcutaneously (the plasmacytoma model) and luciferase-expressing human MM injected intravenously (the disseminated MM model). Tumor growth was significantly delayed and overall survival was significantly prolonged in animals treated with the combination therapy. Pharmacokinetic data showed peak plasma levels of ACY-1215 at 4 hours after treatment coincident with an increase in acetylated α-tubulin, a marker of HDAC6 inhibition, by immunohistochemistry and Western blot analysis. These studies provide preclinical rationale for acetylated α-tubulin use as a pharmacodynamic biomarker in future clinical trials.
Collapse
|