101
|
Galtier N, Rousselle M. How Much Does Ne Vary Among Species? Genetics 2020; 216:559-572. [PMID: 32839240 PMCID: PMC7536855 DOI: 10.1534/genetics.120.303622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Genetic drift is an important evolutionary force of strength inversely proportional to Ne , the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load - which implies also inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin's paradox while further questioning the meaning of the Ne parameter in population genomics.
Collapse
Affiliation(s)
- Nicolas Galtier
- Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
| | - Marjolaine Rousselle
- Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
- Bioinformatics Research Centre, Aarhus University, DK Aarhus, Denmark
| |
Collapse
|
102
|
Sidorova A, Tverdislov V, Levashova N, Garaeva A. A model of autowave self-organization as a hierarchy of active media in the biological evolution. Biosystems 2020; 198:104234. [PMID: 32889101 DOI: 10.1016/j.biosystems.2020.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
Within the framework of the active media concept, we develop a biophysical model of autowave self-organization which is treated as a hierarchy of active media in the evolution of the biosphere. We also propose a mathematical model of the autowave process of speciation in a flow of mutations for the three main taxonometric groups (prokaryotes, unicellular and multicellular eukaryotes) with a naturally determined lower boundary of living matter (the appearance of prokaryotes) and an open upper boundary for the formation of new species. It is shown that the fluctuation-bifurcation description of the evolution for the formation of new taxonometric groups as a trajectory of transformation of small fluctuations into giant ones adequately reflects the process of self-organization during the formation of taxa. The major concepts of biological evolution, conditions of hierarchy formation as a fundamental manifestation of self-organization and complexity in the evolution of biological systems are considered.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Head of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Postgraduate Student of the Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
103
|
Low Base-Substitution Mutation Rate but High Rate of Slippage Mutations in the Sequence Repeat-Rich Genome of Dictyostelium discoideum. G3-GENES GENOMES GENETICS 2020; 10:3445-3452. [PMID: 32732307 PMCID: PMC7466956 DOI: 10.1534/g3.120.401578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the rate and spectrum of spontaneous mutations for the social amoeba Dictyostelium discoideum, a key model organism in molecular, cellular, evolutionary and developmental biology. Whole-genome sequencing of 37 mutation accumulation lines of D. discoideum after an average of 1,500 cell divisions yields a base-substitution mutation rate of 2.47 × 10−11 per site per generation, substantially lower than that of most eukaryotic and prokaryotic organisms, and of the same order of magnitude as in the ciliates Paramecium tetraurelia and Tetrahymena thermophila. Known for its high genomic AT content and abundance of simple sequence repeats, we observe that base-substitution mutations in D. discoideum are highly A/T biased. This bias likely contributes both to the high genomic AT content and to the formation of simple sequence repeats in the AT-rich genome of Dictyostelium discoideum. In contrast to the situation in other surveyed unicellular eukaryotes, indel rates far exceed the base-substitution mutation rate in this organism with a high proportion of 3n indels, particularly in regions without simple sequence repeats. Like ciliates, D. discoideum has a large effective population size, reducing the power of random genetic drift, magnifying the effect of selection on replication fidelity, in principle allowing D. discoideum to evolve an extremely low base-substitution mutation rate.
Collapse
|
104
|
Wu FL, Strand AI, Cox LA, Ober C, Wall JD, Moorjani P, Przeworski M. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol 2020; 18:e3000838. [PMID: 32804933 PMCID: PMC7467331 DOI: 10.1371/journal.pbio.3000838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/02/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.
Collapse
Affiliation(s)
- Felix L. Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York, United States of America
| | - Alva I. Strand
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey D. Wall
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
105
|
Ford CT, Zenarosa GL, Smith KB, Brown DC, Williams J, Janies D. Genetic capitalism and stabilizing selection of antimicrobial resistance genotypes in Escherichia coli. Cladistics 2020; 36:348-357. [PMID: 34618971 DOI: 10.1111/cla.12421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in pathogenic strains of bacteria, such as Escherichia coli (E. coli), adversely impacts personal and public health. In this study, we examine competing hypotheses for the evolution of AMR including (i) 'genetic capitalism' in which genotypes that confer antibiotic resistance are gained and not often lost in lineages, and (ii) 'stabilizing selection' in which genotypes that confer antibiotic resistance are gained and lost often. To test these hypotheses, we assembled a dataset that includes annotations for 409 AMR genotypes and a phylogenetic tree based on genome-wide single nucleotide polymorphisms from 29 255 isolates of E. coli collected over the past 134 years. We used phylogenetic methods to count the times each AMR genotype was gained and lost across the tree and used model-based clustering of the genotypes with respect to their gain and loss rates. We demonstrate that many genotypes cluster to support the hypothesis for genetic capitalism while a few genotypes cluster to support the hypothesis for stabilizing selection. Comparing the sets of genotypes that fall under each of the hypotheses, we found a statistically significant difference in the breakdown of resistance mechanisms through which the AMR genotypes function. The result that many AMR genotypes cluster under genetic capitalism reflects that strong positive selective forces, primarily induced by human industrialization of antibiotics, outweigh the potential fitness costs to the bacterial lineages for carrying the AMR genotypes. We expect genetic capitalism to further drive bacterial lineages to resist antibiotics. We find that antibiotics that function via replacement and efflux tend to behave under stabilizing selection and thus may be valuable in an antibiotic cycling strategy.
Collapse
Affiliation(s)
- Colby T Ford
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.,School of Data Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Gabriel Lopez Zenarosa
- Department of Systems Engineering and Engineering Management, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kevin B Smith
- Department of Systems Engineering and Engineering Management, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - David C Brown
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - John Williams
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
106
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
107
|
Hall RJ, Whelan FJ, McInerney JO, Ou Y, Domingo-Sananes MR. Horizontal Gene Transfer as a Source of Conflict and Cooperation in Prokaryotes. Front Microbiol 2020; 11:1569. [PMID: 32849327 PMCID: PMC7396663 DOI: 10.3389/fmicb.2020.01569] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023] Open
Abstract
Horizontal gene transfer (HGT) is one of the most important processes in prokaryote evolution. The sharing of DNA can spread neutral or beneficial genes, as well as genetic parasites across populations and communities, creating a large proportion of the variability acted on by natural selection. Here, we highlight the role of HGT in enhancing the opportunities for conflict and cooperation within and between prokaryote genomes. We discuss how horizontally acquired genes can cooperate or conflict both with each other and with a recipient genome, resulting in signature patterns of gene co-occurrence, avoidance, and dependence. We then describe how interactions involving horizontally transferred genes may influence cooperation and conflict at higher levels (populations, communities, and symbioses). Finally, we consider the benefits and drawbacks of HGT for prokaryotes and its fundamental role in understanding conflict and cooperation from the gene-gene to the microbiome level.
Collapse
Affiliation(s)
- Rebecca J Hall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fiona J Whelan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James O McInerney
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Yaqing Ou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
108
|
Carlson J, DeWitt WS, Harris K. Inferring evolutionary dynamics of mutation rates through the lens of mutation spectrum variation. Curr Opin Genet Dev 2020; 62:50-57. [PMID: 32619789 DOI: 10.1016/j.gde.2020.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/04/2023]
Abstract
There are many possible failure points in the transmission of genetic information that can produce heritable germline mutations. Once a mutation has been passed from parents to offspring for several generations, it can be difficult or impossible to identify its root cause; however, sometimes the nature of the ancestral and derived DNA sequences can provide mechanistic clues about a genetic change that happened hundreds or thousands of generations ago. Here, we review evidence that the sequence context 'spectrum' of germline mutagenesis has been evolving surprisingly rapidly over the history of humans and other species. We go on to discuss possible causal factors that might underlie rapid mutation spectrum evolution.
Collapse
Affiliation(s)
- Jedidiah Carlson
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States
| | - William S DeWitt
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States; Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave E, Seattle, WA 98109, United States
| | - Kelley Harris
- Department of Genome Sciences, Foege Hall, University of Washington, Seattle, WA 98105, United States; Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave E, Seattle, WA 98109, United States.
| |
Collapse
|
109
|
Population genomics of Vibrionaceae isolated from an endangered oasis reveals local adaptation after an environmental perturbation. BMC Genomics 2020; 21:418. [PMID: 32571204 PMCID: PMC7306931 DOI: 10.1186/s12864-020-06829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background In bacteria, pan-genomes are the result of an evolutionary “tug of war” between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. Results We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. Conclusions Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.
Collapse
|
110
|
Wang L, Sun Y, Sun X, Yu L, Xue L, He Z, Huang J, Tian D, Hurst LD, Yang S. Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biol 2020; 21:142. [PMID: 32546205 PMCID: PMC7296669 DOI: 10.1186/s13059-020-02060-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Repeat-induced point (RIP) mutation in Neurospora crassa degrades transposable elements by targeting repeats with C→T mutations. Whether RIP affects core genomic sequence in important ways is unknown. RESULTS By parent-offspring whole genome sequencing, we estimate a mutation rate (3.38 × 10-6 per bp per generation) that is two orders of magnitude higher than reported for any non-viral organism, with 93-98% of mutations being RIP-associated. RIP mutations are, however, relatively rare in coding sequence, in part because RIP preferentially attacks GC-poor long duplicates that interact in three dimensional space, while coding sequence duplicates are rare, GC-rich, short, and tend not to interact. Despite this, with over 5 coding sequence mutations per genome per generation, the mutational burden is an order of magnitude higher than the previously highest observed. Unexpectedly, the majority of these coding sequence mutations appear not to be the direct product of RIP being mostly in non-duplicate sequence and predominantly not C→T mutations. Nonetheless, RIP-deficient strains have over an order of magnitude fewer coding sequence mutations outside of duplicated domains than RIP-proficient strains. CONCLUSIONS Neurospora crassa has the highest mutation rate and mutational burden of any non-viral life. While the high rate is largely due to the action of RIP, the mutational burden appears to be RIP-associated but not directly caused by RIP.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yingying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoguang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
111
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
112
|
Estimation of the Genome-Wide Mutation Rate and Spectrum in the Archaeal Species Haloferax volcanii. Genetics 2020; 215:1107-1116. [PMID: 32513815 DOI: 10.1534/genetics.120.303299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Organisms adapted to life in extreme habitats (extremophiles) can further our understanding of the mechanisms of genetic stability, particularly replication and repair. Despite the harsh environmental conditions they endure, these extremophiles represent a great deal of the Earth's biodiversity. Here, for the first time in a member of the archaeal domain, we report a genome-wide assay of spontaneous mutations in the halophilic species Haloferax volcanii using a direct and unbiased method: mutation accumulation experiments combined with deep whole-genome sequencing. H. volcanii is a key model organism not only for the study of halophilicity, but also for archaeal biology in general. Our methods measure the genome-wide rate, spectrum, and spatial distribution of spontaneous mutations. The estimated base substitution rate of 3.15 × 10-10 per site per generation, or 0.0012 per genome per generation, is similar to the value found in mesophilic prokaryotes (optimal growth at ∼20-45°). This study contributes to a comprehensive phylogenetic view of how evolutionary forces and molecular mechanisms shape the rate and molecular spectrum of mutations across the tree of life.
Collapse
|
113
|
Rong S, Buerer L, Rhine CL, Wang J, Cygan KJ, Fairbrother WG. Mutational bias and the protein code shape the evolution of splicing enhancers. Nat Commun 2020; 11:2845. [PMID: 32504065 PMCID: PMC7275064 DOI: 10.1038/s41467-020-16673-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exonic splicing enhancers (ESEs) are enriched in exons relative to introns and bind splicing activators. This study considers a fundamental question of co-evolution: How did ESE motifs become enriched in exons prior to the evolution of ESE recognition? We hypothesize that the high exon to intron motif ratios necessary for ESE function were created by mutational bias coupled with purifying selection on the protein code. These two forces retain certain coding motifs in exons while passively depleting them from introns. Through the use of simulations, genomic analyses, and high throughput splicing assays, we confirm the key predictions of this hypothesis, including an overlap between protein and splicing information in ESEs. We discuss the implications of mutational bias as an evolutionary driver in other cis-regulatory systems. Splicing is regulated by cis-acting elements in pre-mRNAs such as exonic or intronic splicing enhancers and silencers. Here the authors show that exonic splicing enhancers are enriched in exons compared to introns due to mutational bias coupled with purifying selection on the protein code.
Collapse
Affiliation(s)
- Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.,Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Christy L Rhine
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jing Wang
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kamil J Cygan
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.,Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA. .,Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA. .,Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
114
|
Li W, Lynch M. Universally high transcript error rates in bacteria. eLife 2020; 9:54898. [PMID: 32469307 PMCID: PMC7259958 DOI: 10.7554/elife.54898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Errors can occur at any level during the replication and transcription of genetic information. Genetic mutations derived mainly from replication errors have been extensively studied. However, fundamental details of transcript errors, such as their rate, molecular spectrum, and functional effects, remain largely unknown. To globally identify transcript errors, we applied an adapted rolling-circle sequencing approach to Escherichia coli, Bacillus subtilis, Agrobacterium tumefaciens, and Mesoplasma florum, revealing transcript-error rates 3 to 4 orders of magnitude higher than the corresponding genetic mutation rates. The majority of detected errors would result in amino-acid changes, if translated. With errors identified from 9929 loci, the molecular spectrum and distribution of errors were uncovered in great detail. A G→A substitution bias was observed in M. florum, which apparently has an error-prone RNA polymerase. Surprisingly, an increased frequency of nonsense errors towards the 3' end of mRNAs was observed, suggesting a Nonsense-Mediated Decay-like quality-control mechanism in prokaryotes.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Biology, Indiana University, Bloomington, United States
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, United States.,Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, United States
| |
Collapse
|
115
|
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environ Microbiol 2020; 22:3234-3247. [PMID: 32390223 DOI: 10.1111/1462-2920.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He-Yu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
116
|
Maistrenko OM, Mende DR, Luetge M, Hildebrand F, Schmidt TSB, Li SS, Rodrigues JFM, von Mering C, Pedro Coelho L, Huerta-Cepas J, Sunagawa S, Bork P. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. THE ISME JOURNAL 2020; 14:1247-1259. [PMID: 32047279 PMCID: PMC7174425 DOI: 10.1038/s41396-020-0600-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/04/2022]
Abstract
Microbial organisms inhabit virtually all environments and encompass a vast biological diversity. The pangenome concept aims to facilitate an understanding of diversity within defined phylogenetic groups. Hence, pangenomes are increasingly used to characterize the strain diversity of prokaryotic species. To understand the interdependence of pangenome features (such as the number of core and accessory genes) and to study the impact of environmental and phylogenetic constraints on the evolution of conspecific strains, we computed pangenomes for 155 phylogenetically diverse species (from ten phyla) using 7,000 high-quality genomes to each of which the respective habitats were assigned. Species habitat ubiquity was associated with several pangenome features. In particular, core-genome size was more important for ubiquity than accessory genome size. In general, environmental preferences had a stronger impact on pangenome evolution than phylogenetic inertia. Environmental preferences explained up to 49% of the variance for pangenome features, compared with 18% by phylogenetic inertia. This observation was robust when the dataset was extended to 10,100 species (59 phyla). The importance of environmental preferences was further accentuated by convergent evolution of pangenome features in a given habitat type across different phylogenetic clades. For example, the soil environment promotes expansion of pangenome size, while host-associated habitats lead to its reduction. Taken together, we explored the global principles of pangenome evolution, quantified the influence of habitat, and phylogenetic inertia on the evolution of pangenomes and identified criteria governing species ubiquity and habitat specificity.
Collapse
Affiliation(s)
- Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Daniel R Mende
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007, St. Gallen, Switzerland
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Simone S Li
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - João F Matias Rodrigues
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057, Zurich, Switzerland
| | - Luis Pedro Coelho
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Jaime Huerta-Cepas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Shinichi Sunagawa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany
- Department of Biology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
117
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
118
|
Ruan Y, Wang H, Chen B, Wen H, Wu CI. Mutations Beget More Mutations-Rapid Evolution of Mutation Rate in Response to the Risk of Runaway Accumulation. Mol Biol Evol 2020; 37:1007-1019. [PMID: 31778175 DOI: 10.1093/molbev/msz283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rapidity with which the mutation rate evolves could greatly impact evolutionary patterns. Nevertheless, most studies simply assume a constant rate in the time scale of interest (Kimura 1983; Drake 1991; Kumar 2005; Li 2007; Lynch 2010). In contrast, recent studies of somatic mutations suggest that the mutation rate may vary by several orders of magnitude within a lifetime (Kandoth et al. 2013; Lawrence et al. 2013). To resolve the discrepancy, we now propose a runaway model, applicable to both the germline and soma, whereby mutator mutations form a positive-feedback loop. In this loop, any mutator mutation would increase the rate of acquiring the next mutator, thus triggering a runaway escalation in mutation rate. The process can be initiated more readily if there are many weak mutators than a few strong ones. Interestingly, even a small increase in the mutation rate at birth could trigger the runaway process, resulting in unfit progeny. In slowly reproducing species, the need to minimize the risk of this uncontrolled accumulation would thus favor setting the mutation rate low. In comparison, species that starts and ends reproduction sooner do not face the risk and may set the baseline mutation rate higher. The mutation rate would evolve in response to the risk of runaway mutation, in particular, when the generation time changes. A rapidly evolving mutation rate may shed new lights on many evolutionary phenomena (Elango et al. 2006; Thomas et al. 2010, 2018; Langergraber et al. 2012; Besenbacher et al. 2019).
Collapse
Affiliation(s)
- Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bingjie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
119
|
Northover DE, Shank SD, Liberles DA. Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates. BMC Evol Biol 2020; 20:24. [PMID: 32046633 PMCID: PMC7011509 DOI: 10.1186/s12862-020-1585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Background Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. Results An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in β-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. Conclusion Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.
Collapse
Affiliation(s)
- David E Northover
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Stephen D Shank
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA. .,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
120
|
Krasovec M, Sanchez-Brosseau S, Piganeau G. First Estimation of the Spontaneous Mutation Rate in Diatoms. Genome Biol Evol 2020; 11:1829-1837. [PMID: 31218358 PMCID: PMC6604790 DOI: 10.1093/gbe/evz130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation-accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is μbs = 4.77 × 10-10 and the insertion-deletion mutation rate is μid = 1.58 × 10-11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls/Mer, France.,Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
121
|
Krasovec M, Filatov DA. Evolution of Codon Usage Bias in Diatoms. Genes (Basel) 2019; 10:genes10110894. [PMID: 31698749 PMCID: PMC6896221 DOI: 10.3390/genes10110894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/22/2022] Open
Abstract
Codon usage bias (CUB)-preferential use of one of the synonymous codons, has been described in a wide range of organisms from bacteria to mammals, but it has not yet been studied in marine phytoplankton. CUB is thought to be caused by weak selection for translational accuracy and efficiency. Weak selection can overpower genetic drift only in species with large effective population sizes, such as Drosophila that has relatively strong CUB, while organisms with smaller population sizes (e.g., mammals) have weak CUB. Marine plankton species tend to have extremely large populations, suggesting that CUB should be very strong. Here we test this prediction and describe the patterns of codon usage in a wide range of diatom species belonging to 35 genera from 4 classes. We report that most of the diatom species studied have surprisingly modest CUB (mean Effective Number of Codons, ENC = 56), with some exceptions showing stronger codon bias (ENC = 44). Modest codon bias in most studied diatom species may reflect extreme disparity between astronomically large census and modest effective population size (Ne), with fluctuations in population size and linked selection limiting long-term Ne and rendering selection for optimal codons less efficient. For example, genetic diversity (pi ~0.02 at silent sites) in Skeletonema marinoi corresponds to Ne of about 10 million individuals, which is likely many orders of magnitude lower than its census size. Still, Ne ~107 should be large enough to make selection for optimal codons efficient. Thus, we propose that an alternative process-frequent changes of preferred codons, may be a more plausible reason for low CUB despite highly efficient selection for preferred codons in diatom populations. The shifts in the set of optimal codons should result in the changes of the direction of selection for codon usage, so the actual codon usage never catches up with the moving target of the optimal set of codons and the species never develop strong CUB. Indeed, we detected strong shifts in preferential codon usage within some diatom genera, with switches between preferentially GC-rich and AT-rich 3rd codon positions (GC3). For example, GC3 ranges from 0.6 to 1 in most Chaetoceros species, while for Chaetoceros dichaeta GC3 = 0.1. Both variation in selection intensity and mutation spectrum may drive such shifts in codon usage and limit the observed CUB. Our study represents the first genome-wide analysis of CUB in diatoms and the first such analysis for a major phytoplankton group.
Collapse
|
122
|
Koch EM, Schweizer RM, Schweizer TM, Stahler DR, Smith DW, Wayne RK, Novembre J. De Novo Mutation Rate Estimation in Wolves of Known Pedigree. Mol Biol Evol 2019; 36:2536-2547. [PMID: 31297530 PMCID: PMC6805234 DOI: 10.1093/molbev/msz159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge of mutation rates is crucial for calibrating population genetics models of demographic history in units of years. However, mutation rates remain challenging to estimate because of the need to identify extremely rare events. We estimated the nuclear mutation rate in wolves by identifying de novo mutations in a pedigree of seven wolves. Putative de novo mutations were discovered by whole-genome sequencing and were verified by Sanger sequencing of parents and offspring. Using stringent filters and an estimate of the false negative rate in the remaining observable genome, we obtain an estimate of ∼4.5 × 10-9 per base pair per generation and provide conservative bounds between 2.6 × 10-9 and 7.1 × 10-9. Although our estimate is consistent with recent mutation rate estimates from ancient DNA (4.0 × 10-9 and 3.0-4.5 × 10-9), it suggests a wider possible range. We also examined the consequences of our rate and the accompanying interval for dating several critical events in canid demographic history. For example, applying our full range of rates to coalescent models of dog and wolf demographic history implies a wide set of possible divergence times between the ancestral populations of dogs and extant Eurasian wolves (16,000-64,000 years ago) although our point estimate indicates a date between 25,000 and 33,000 years ago. Aside from one study in mice, ours provides the only direct mammalian mutation rate outside of primates and is likely to be vital to future investigations of mutation rate evolution.
Collapse
Affiliation(s)
- Evan M Koch
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Teia M Schweizer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY
| | - Douglas W Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA
| | - John Novembre
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
- Department of Human Genetics, University of Chicago, Chicago, IL
| |
Collapse
|
123
|
Sedaghatkish A, Gossen BD, Yu F, Torkamaneh D, McDonald MR. Whole-genome DNA similarity and population structure of Plasmodiophora brassicae strains from Canada. BMC Genomics 2019; 20:744. [PMID: 31619176 PMCID: PMC6794840 DOI: 10.1186/s12864-019-6118-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022] Open
Abstract
Background Clubroot is an important disease of brassica crops world-wide. The causal agent, Plasmodiophora brassicae, has been present in Canada for over a century but was first identified on canola (Brassica napus) in Alberta, Canada in 2003. Genetic resistance to clubroot in an adapted canola cultivar has been available since 2009, but resistance breakdown was detected in 2013 and new pathotypes are increasing rapidly. Information on genetic similarity among pathogen populations across Canada could be useful in estimating the genetic variation in pathogen populations, predicting the effect of subsequent selection pressure on changes in the pathogen population over time, and even in identifying the origin of the initial pathogen introduction to canola in Alberta. Results The genomic sequences of 43 strains (34 field collections, 9 single-spore isolates) of P. brassicae from Canada, the United States, and China clustered into five clades based on SNP similarity. The strains from Canada separated into four clades, with two containing mostly strains from the Prairies (provinces of Alberta, Saskatchewan, and Manitoba) and two that were mostly from the rest of Canada or the USA. Several strains from China formed a separate clade. More than one pathotype and host were present in all four Canadian clades. The initial pathotypes from canola on the Prairies clustered separately from the pathotypes on canola that could overcome resistance to the initial pathotypes. Similarly, at one site in central Canada where resistance had broken down, about half of the genes differed (based on SNPs) between strains before and after the breakdown. Conclusion Clustering based on genome-wide DNA sequencing demonstrated that the initial pathotypes on canola on the Prairies clustered separately from the new virulent pathotypes on the Prairies. Analysis indicated that these ‘new’ pathotypes were likely present in the pathogen population at very low frequency, maintained through balancing selection, and increased rapidly in response to selection from repeated exposure to host resistance.
Collapse
Affiliation(s)
- Afsaneh Sedaghatkish
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Bruce D Gossen
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Département de Phytologie, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
124
|
Abstract
In evolutionary biology, it is generally assumed that evolution occurs in the weak mutation limit, that is, the frequency of multiple mutations simultaneously occurring in the same genome and the same generation is negligible. We employ mathematical modeling to show that, although under the typical parameter values of the evolutionary process the probability of multimutational leaps is indeed low, they might become substantially more likely under stress, when the mutation rate is dramatically elevated. We hypothesize that stress-induced mutagenesis in microbes is an evolvable adaptive strategy. Multimutational leaps might matter also in other cases of substantially increased mutation rate, such as growing tumors or evolution of primordial replicators. Is evolution always gradual or can it make leaps? We examine a mathematical model of an evolutionary process on a fitness landscape and obtain analytic solutions for the probability of multimutation leaps, that is, several mutations occurring simultaneously, within a single generation in 1 genome, and being fixed all together in the evolving population. The results indicate that, for typical, empirically observed combinations of the parameters of the evolutionary process, namely, effective population size, mutation rate, and distribution of selection coefficients of mutations, the probability of a multimutation leap is low, and accordingly the contribution of such leaps is minor at best. However, we show that, taking sign epistasis into account, leaps could become an important factor of evolution in cases of substantially elevated mutation rates, such as stress-induced mutagenesis in microbes. We hypothesize that stress-induced mutagenesis is an evolvable adaptive strategy.
Collapse
|
125
|
Maintenance of High Genome Integrity over Vegetative Growth in the Fairy-Ring Mushroom Marasmius oreades. Curr Biol 2019; 29:2758-2765.e6. [PMID: 31402298 DOI: 10.1016/j.cub.2019.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
Abstract
Most mutations in coding regions of the genome are deleterious, causing selection to favor mechanisms that minimize the mutational load over time [1-5]. DNA replication during cell division is a major source of new mutations. It is therefore important to limit the number of cell divisions between generations, particularly for large and long-lived organisms [6-9]. The germline cells of animals and the slowly dividing cells in plant meristems are adaptations to control the number of mutations that accumulate over generations [9-11]. Fungi lack a separated germline while harboring species with very large and long-lived individuals that appear to maintain highly stable genomes within their mycelia [8, 12, 13]. Here, we studied genomic mutation accumulation in the fairy-ring mushroom Marasmius oreades. We generated a chromosome-level genome assembly using a combination of cutting-edge DNA sequencing technologies and re-sequenced 40 samples originating from six individuals of this fungus. The low number of mutations recovered in the sequencing data suggests the presence of an unknown mechanism that works to maintain extraordinary genome integrity over vegetative growth in M. oreades. The highly structured growth pattern of M. oreades allowed us to estimate the number of cell divisions leading up to each sample [14, 15], and from this data, we infer an incredibly low per mitosis mutation rate (3.8 × 10-12 mutations per site and cell division) as one of several possible explanations for the low number of identified mutations.
Collapse
|
126
|
Rates of Molecular Evolution in a Marine Synechococcus Phage Lineage. Viruses 2019; 11:v11080720. [PMID: 31390807 PMCID: PMC6722890 DOI: 10.3390/v11080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cyanophages are characterized by vast genomic diversity and the formation of stable ecotypes over time. The evolution of phage diversity includes vertical processes, such as mutation, and horizontal processes, such as recombination and gene transfer. Here, we study the contribution of vertical and horizontal processes to short-term evolution of marine cyanophages. Analyzing time series data of Synechococcus-infecting Myoviridae ecotypes spanning up to 17 years, we found a high contribution of recombination relative to mutation (r/m) in all ecotypes. Additionally, we found a molecular clock of substitution and recombination in one ecotype, RIM8. The estimated RIM8 evolutionary rates are 2.2 genome-wide substitutions per year (1.275 × 10−5 substitutions/site/year) and 29 genome-wide nucleotide alterations due to recombination per year. We found 26 variable protein families, of which only two families have a predicted functional annotation, suggesting that they are auxiliary metabolic genes with bacterial homologs. A comparison of our rate estimates to other phage evolutionary rate estimates in the literature reveals a negative correlation of phage substitution rates with their genome size. A comparison to evolutionary rates in bacterial organisms further shows that phages have high rates of mutation and recombination compared to their bacterial hosts. We conclude that the increased recombination rate in phages likely contributes to their vast genomic diversity.
Collapse
|
127
|
Ram Y, Hadany L. Evolution of Stress-Induced Mutagenesis in the Presence of Horizontal Gene Transfer. Am Nat 2019; 194:73-89. [PMID: 31251650 DOI: 10.1086/703457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stress-induced mutagenesis has been observed in multiple species of bacteria and yeast. It has been suggested that in asexual populations, a mutator allele that increases the mutation rate during stress can sweep to fixation with the beneficial mutations it generates. However, even asexual microbes can undergo horizontal gene transfer and rare recombination, which typically interfere with the spread of mutator alleles. Here we examine the effect of horizontal gene transfer on the evolutionary advantage of stress-induced mutator alleles. Our results demonstrate that stress-induced mutator alleles are favored by selection even in the presence of horizontal gene transfer and more so when the mutator alleles also increase the rate of horizontal gene transfer. We suggest that when regulated by stress, mutation and horizontal gene transfer can be complementary rather than competing adaptive strategies and that stress-induced mutagenesis has important implications for evolutionary biology, ecology, and epidemiology, even in the presence of horizontal gene transfer and rare recombination.
Collapse
|
128
|
Ilker E, Hinczewski M. Modeling the Growth of Organisms Validates a General Relation between Metabolic Costs and Natural Selection. PHYSICAL REVIEW LETTERS 2019; 122:238101. [PMID: 31298905 DOI: 10.1103/physrevlett.122.238101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/11/2018] [Indexed: 06/10/2023]
Abstract
Metabolism and evolution are closely connected: if a mutation incurs extra energetic costs for an organism, there is a baseline selective disadvantage that may or may not be compensated for by other adaptive effects. A long-standing, but to date unproven, hypothesis is that this disadvantage is equal to the fractional cost relative to the total resting metabolic expenditure. We validate this result from physical principles through a general growth model and show it holds to excellent approximation for experimental parameters drawn from a wide range of species.
Collapse
Affiliation(s)
- Efe Ilker
- Physico-Chimie Curie UMR 168, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
129
|
Voskarides K, Dweep H, Chrysostomou C. Evidence that DNA repair genes, a family of tumor suppressor genes, are associated with evolution rate and size of genomes. Hum Genomics 2019; 13:26. [PMID: 31174607 PMCID: PMC6555970 DOI: 10.1186/s40246-019-0210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Adaptive radiation and evolutionary stasis are characterized by very different evolution rates. The main aim of this study was to investigate if any genes have a special role to a high or low evolution rate. The availability of animal genomes permitted comparison of gene content of genomes of 24 vertebrate species that evolved through adaptive radiation (representing high evolutionary rate) and of 20 vertebrate species that are considered as living fossils (representing a slow evolutionary rate or evolutionary stasis). Mammals, birds, reptiles, and bony fishes were included in the analysis. Pathway analysis was performed for genes found to be specific in adaptive radiation or evolutionary stasis respectively. Pathway analysis revealed that DNA repair and cellular response to DNA damage are important (false discovery rate = 8.35 × 10−5; 7.15 × 10−6, respectively) for species evolved through adaptive radiation. This was confirmed by further genetic in silico analysis (p = 5.30 × 10−3). Nucleotide excision repair and base excision repair were the most significant pathways. Additionally, the number of DNA repair genes was found to be linearly related to the genome size and the protein number (proteome) of the 44 animals analyzed (p < 1.00 × 10−4), this being compatible with Drake’s rule. This is the first study where radiated and living fossil species have been genetically compared. Evidence has been found that cancer-related genes have a special role in radiated species. Linear association of the number of DNA repair genes with the species genome size has also been revealed. These comparative genetics results can support the idea of punctuated equilibrium evolution.
Collapse
|
130
|
Braasch J, Barker BS, Dlugosch KM. Expansion history and environmental suitability shape effective population size in a plant invasion. Mol Ecol 2019; 28:2546-2558. [PMID: 30993767 DOI: 10.1111/mec.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne ) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome-wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona.,Integrated Plant Protection Center and Department of Horticulture, Oregon State University, Corvallis, Oregon
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
131
|
Rossoni AW, Weber APM. Systems Biology of Cold Adaptation in the Polyextremophilic Red Alga Galdieria sulphuraria. Front Microbiol 2019; 10:927. [PMID: 31118926 PMCID: PMC6504705 DOI: 10.3389/fmicb.2019.00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Rapid fluctuation of environmental conditions can impose severe stress upon living organisms. Surviving such episodes of stress requires a rapid acclimation response, e.g., by transcriptional and post-transcriptional mechanisms. Persistent change of the environmental context, however, requires longer-term adaptation at the genetic level. Fast-growing unicellular aquatic eukaryotes enable analysis of adaptive responses at the genetic level in a laboratory setting. In this study, we applied continuous cold stress (28°C) to the thermoacidophile red alga G. sulphuraria, which is 14°C below its optimal growth temperature of 42°C. Cold stress was applied for more than 100 generations to identify components that are critical for conferring thermal adaptation. After cold exposure for more than 100 generations, the cold-adapted samples grew ∼30% faster than the starting population. Whole-genome sequencing revealed 757 variants located on 429 genes (6.1% of the transcriptome) encoding molecular functions involved in cell cycle regulation, gene regulation, signaling, morphogenesis, microtubule nucleation, and transmembrane transport. CpG islands located in the intergenic region accumulated a significant number of variants, which is likely a sign of epigenetic remodeling. We present 20 candidate genes and three putative cis-regulatory elements with various functions most affected by temperature. Our work shows that natural selection toward temperature tolerance is a complex systems biology problem that involves gradual reprogramming of an intricate gene network and deeply nested regulators.
Collapse
Affiliation(s)
| | - Andreas P. M. Weber
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
132
|
Abstract
Mutation provides the ultimate source of all new alleles in populations, including variants that cause disease and fuel adaptation. Recent whole genome sequencing studies have uncovered variation in the mutation rate among individuals and differences in the relative frequency of specific nucleotide changes (the mutation spectrum) between populations. Although parental age is a major driver of differences in overall mutation rate among individuals, the causes of variation in the mutation spectrum remain less well understood. Here, I use high-quality whole genome sequences from 29 inbred laboratory mouse strains to explore the root causes of strain variation in the mutation spectrum. My analysis leverages the unique, mosaic patterns of genetic relatedness among inbred mouse strains to identify strain private variants residing on haplotypes shared between multiple strains due to their recent descent from a common ancestor. I show that these strain-private alleles are strongly enriched for recent de novo mutations and lack signals of widespread purifying selection, suggesting their faithful recapitulation of the spontaneous mutation landscape in single strains. The spectrum of strain-private variants varies significantly among inbred mouse strains reared under standardized laboratory conditions. This variation is not solely explained by strain differences in age at reproduction, raising the possibility that segregating genetic differences affect the constellation of new mutations that arise in a given strain. Collectively, these findings imply the action of remarkably precise nucleotide-specific genetic mechanisms for tuning the de novo mutation landscape in mammals and underscore the genetic complexity of mutation rate control.
Collapse
|
133
|
Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ, Sree KS, Gershenzon J, Widmer A, Huber M. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun 2019; 10:1243. [PMID: 30886148 PMCID: PMC6423293 DOI: 10.1038/s41467-019-09235-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022] Open
Abstract
Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| | - Jessica Stapley
- Center for Adaptation to a Changing Environment, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Saskia Gablenz
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Justin Boyer
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Klaus J Appenroth
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University of Jena, Dornburgerstraße 159, 07743, Jena, Germany
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, 671316, India
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Meret Huber
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany.
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48143, Münster, Germany.
| |
Collapse
|
134
|
Abstract
Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.
Collapse
|
135
|
Concepts of the last eukaryotic common ancestor. Nat Ecol Evol 2019; 3:338-344. [DOI: 10.1038/s41559-019-0796-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022]
|
136
|
Xia X, Cheung S, Endo H, Suzuki K, Liu H. Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean. MICROBIAL ECOLOGY 2019; 77:333-342. [PMID: 30610255 DOI: 10.1007/s00248-018-1308-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Synechococcus is one of the most widely distributed and abundant picocyanobacteria in the global oceans. Although latitudinal variation of Synechococcus assemblage in marine surface waters has been observed, few studies compared Synechococcus assemblage composition in surface and subsurface waters at the basin scale. Here, we report marine Synechococcus diversity in the surface and deep chlorophyll maximum (DCM) layers along 170° W from the South Pacific to the Arctic Ocean in summer. Along the transect, spatial niche partitioning of Synechococcus lineages in the surface waters was clearly observed. Species richness of surface Synechococcus assemblage was positively correlated with water temperature. Clade CRD1 was dominant in the areas (15° S-10° N and 35-40° N) associated with upwelling, and there were 3 different subclades with distinct distribution. CRD1-A was restricted in the North Equatorial Current (5-10° N), CRD1-B dominated in the equatorial upwelling region (15° S-0.17° N), and CRD1-C was only distributed in the North Pacific Current (35-40° N). Similarities between the Synechococcus assemblages in the surface and DCM layers were high at the upwelling regions and areas where the mixed layer was deep, while low in the Subtropical Gyres with strong stratification. Clade I, CRD1-B, and CRD1-C were major Synechococcus lineages in the DCM layer. In particular, clade I, which is composed of 7 subclades with distinct thermal niches, was widely distributed in the DCM layer. Overall, our results provide new insights into not only the latitudinal distribution of Synechococcus assemblages, but also their vertical variation in the central Pacific.
Collapse
Affiliation(s)
- Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Shunyuan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hisashi Endo
- Faculty of Environmental Earth Science, Hokkaido University/JST-CREST, North 10 West 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University/JST-CREST, North 10 West 5, Kita-ku, Sapporo, 060-0810, Hokkaido, Japan.
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
137
|
Katju V, Bergthorsson U. Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biol Evol 2019; 11:136-165. [PMID: 30476040 PMCID: PMC6330053 DOI: 10.1093/gbe/evy252] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations spawn genetic variation which, in turn, fuels evolution. Hence, experimental investigations into the rate and fitness effects of spontaneous mutations are central to the study of evolution. Mutation accumulation (MA) experiments have served as a cornerstone for furthering our understanding of spontaneous mutations for four decades. In the pregenomic era, phenotypic measurements of fitness-related traits in MA lines were used to indirectly estimate key mutational parameters, such as the genomic mutation rate, new mutational variance per generation, and the average fitness effect of mutations. Rapidly emerging next-generating sequencing technology has supplanted this phenotype-dependent approach, enabling direct empirical estimates of the mutation rate and a more nuanced understanding of the relative contributions of different classes of mutations to the standing genetic variation. Whole-genome sequencing of MA lines bears immense potential to provide a unified account of the evolutionary process at multiple levels-the genetic basis of variation, and the evolutionary dynamics of mutations under the forces of selection and drift. In this review, we have attempted to synthesize key insights into the spontaneous mutation process that are rapidly emerging from the partnering of classical MA experiments with high-throughput sequencing, with particular emphasis on the spontaneous rates and molecular properties of different mutational classes in nuclear and mitochondrial genomes of diverse taxa, the contribution of mutations to the evolution of gene expression, and the rate and stability of transgenerational epigenetic modifications. Future advances in sequencing technologies will enable greater species representation to further refine our understanding of mutational parameters and their functional consequences.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| |
Collapse
|
138
|
Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 2019; 17:e3000102. [PMID: 30673701 PMCID: PMC6361464 DOI: 10.1371/journal.pbio.3000102] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota are shaped by a combination of ecological and evolutionary forces. While the ecological dynamics have been extensively studied, much less is known about how species of gut bacteria evolve over time. Here, we introduce a model-based framework for quantifying evolutionary dynamics within and across hosts using a panel of metagenomic samples. We use this approach to study evolution in approximately 40 prevalent species in the human gut. Although the patterns of between-host diversity are consistent with quasi-sexual evolution and purifying selection on long timescales, we identify new genealogical signatures that challenge standard population genetic models of these processes. Within hosts, we find that genetic differences that accumulate over 6-month timescales are only rarely attributable to replacement by distantly related strains. Instead, the resident strains more commonly acquire a smaller number of putative evolutionary changes, in which nucleotide variants or gene gains or losses rapidly sweep to high frequency. By comparing these mutations with the typical between-host differences, we find evidence that some sweeps may be seeded by recombination, in addition to new mutations. However, comparisons of adult twins suggest that replacement eventually overwhelms evolution over multi-decade timescales, hinting at fundamental limits to the extent of local adaptation. Together, our results suggest that gut bacteria can evolve on human-relevant timescales, and they highlight the connections between these short-term evolutionary dynamics and longer-term evolution across hosts.
Collapse
Affiliation(s)
- Nandita R. Garud
- Gladstone Institutes, San Francisco, California, United States of America
| | - Benjamin H. Good
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
139
|
Krašovec R, Richards H, Gifford DR, Belavkin RV, Channon A, Aston E, McBain AJ, Knight CG. Opposing effects of final population density and stress on Escherichia coli mutation rate. THE ISME JOURNAL 2018; 12:2981-2987. [PMID: 30087411 PMCID: PMC6230470 DOI: 10.1038/s41396-018-0237-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 11/14/2022]
Abstract
Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 108 cells ml-1). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution.
Collapse
Affiliation(s)
- Rok Krašovec
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PT, UK.
| | - Huw Richards
- Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PT, UK
| | - Danna R Gifford
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PT, UK
| | - Roman V Belavkin
- School of Engineering and Information Sciences, Middlesex University, London, NW4 4BT, UK
| | - Alastair Channon
- School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK
| | - Elizabeth Aston
- School of Computing and Mathematics, Keele University, Keele, ST5 5BG, UK
| | - Andrew J McBain
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher G Knight
- Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
140
|
Merrikh CN, Merrikh H. Gene inversion potentiates bacterial evolvability and virulence. Nat Commun 2018; 9:4662. [PMID: 30405125 PMCID: PMC6220195 DOI: 10.1038/s41467-018-07110-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Most bacterial genes are encoded on the leading strand, co-orienting the movement of the replication machinery with RNA polymerases. This bias reduces the frequency of detrimental head-on collisions between the two machineries. The negative outcomes of these collisions should lead to selection against head-on alleles, maximizing genome co-orientation. Our findings challenge this model. Using the GC skew calculation, we reveal the evolutionary inversion record of all chromosomally encoded genes in multiple divergent bacterial pathogens. Against expectations, we find that a large number of co-oriented genes have inverted to the head-on orientation, presumably increasing the frequency of head-on replication-transcription conflicts. Furthermore, we find that head-on genes, (including key antibiotic resistance and virulence genes) have higher rates of non-synonymous mutations and are more frequently under positive selection (dN/dS > 1). Based on these results, we propose that spontaneous gene inversions can increase the evolvability and pathogenic capacity of bacteria through head-on replication-transcription collisions. Head-on replication-transcription collisions occur within genes encoded on the lagging DNA strand. Here, the authors show that a large number of originally co-oriented (leading strand) genes have inverted to the head-on orientation, increasing both gene-specific mutation rates, and the overall evolvability of several bacterial pathogens.
Collapse
Affiliation(s)
- Christopher N Merrikh
- Department of Microbiology, University of Washington, Health Sciences Building J-209, Seattle, WA, 98195, USA
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Health Sciences Building J-209, Seattle, WA, 98195, USA. .,Department of Genome Sciences, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
141
|
Flynn JM, Lower SE, Barbash DA, Clark AG. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. Genome Biol Evol 2018; 10:1673-1686. [PMID: 29931069 PMCID: PMC6041958 DOI: 10.1093/gbe/evy123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The mutational patterns of large tandem arrays of short sequence repeats remain largely unknown, despite observations of their high levels of variation in sequence and genomic abundance within and between species. Many factors can influence the dynamics of tandem repeat evolution; however, their evolution has only been examined over a limited phylogenetic sample of taxa. Here, we use publicly available whole-genome sequencing data of 85 haploid mutation accumulation lines derived from six geographically diverse Chlamydomonas reinhardtii isolates to investigate genome-wide mutation rates and patterns in tandem repeats in this species. We find that tandem repeat composition differs among ancestral strains, both in genome-wide abundance and presence/absence of individual repeats. Estimated mutation rates (repeat copy number expansion and contraction) were high, averaging 4.3×10−4 per generation per single unit copy. Although orders of magnitude higher than other types of mutation previously reported in C. reinhardtii, these tandem repeat mutation rates were one order of magnitude lower than what has recently been found in Daphnia pulex, even after correcting for lower overall genome-wide satellite abundance in C. reinhardtii. Most high-abundance repeats were related to others by a single mutational step. Correlations of repeat copy number changes within genomes revealed clusters of closely related repeats that were strongly correlated positively or negatively, and similar patterns of correlation arose independently in two different mutation accumulation experiments. Together, these results paint a dynamic picture of tandem repeat evolution in this unicellular alga.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sarah E Lower
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
142
|
Spontaneous mutation rate as a source of diversity for improving desirable traits in cultured microalgae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
143
|
Gutiérrez R, Markus B, Carstens Marques de Sousa K, Marcos-Hadad E, Mugasimangalam RC, Nachum-Biala Y, Hawlena H, Covo S, Harrus S. Prophage-Driven Genomic Structural Changes Promote Bartonella Vertical Evolution. Genome Biol Evol 2018; 10:3089-3103. [PMID: 30346520 PMCID: PMC6257571 DOI: 10.1093/gbe/evy236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Bartonella is a genetically diverse group of vector-borne bacteria. Over 40 species have been characterized to date, mainly from mammalian reservoirs and arthropod vectors. Rodent reservoirs harbor one of the largest Bartonella diversity described to date, and novel species and genetic variants are continuously identified from these hosts. Yet, it is still unknown if this significant genetic diversity stems from adaptation to different niches or from intrinsic high mutation rates. Here, we explored the vertical occurrence of spontaneous genomic alterations in 18 lines derived from two rodent-associated Bartonella elizabethae-like strains, evolved in nonselective agar plates under conditions mimicking their vector- and mammalian-associated temperatures, and the transmission cycles between them (i.e., 26 °C, 37 °C, and alterations between the two), using mutation accumulation experiments. After ∼1,000 generations, evolved genomes revealed few point mutations (average of one-point mutation per line), evidencing conserved single-nucleotide mutation rates. Interestingly, three large structural genomic changes (two large deletions and an inversion) were identified over all lines, associated with prophages and surface adhesin genes. Particularly, a prophage, deleted during constant propagation at 37 °C, was associated with an increased autonomous replication at 26 °C (the flea-associated temperature). Complementary molecular analyses of wild strains, isolated from desert rodents and their fleas, further supported the occurrence of structural genomic variations and prophage-associated deletions in nature. Our findings suggest that structural genomic changes represent an effective intrinsic mechanism to generate diversity in slow-growing bacteria and emphasize the role of prophages as promoters of diversity in nature.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
144
|
Bobay LM, Ochman H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol Biol 2018; 18:153. [PMID: 30314447 PMCID: PMC6186134 DOI: 10.1186/s12862-018-1272-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background Knowledge of population-level processes is essential to understanding the efficacy of selection operating within a species. However, attempts at estimating effective population sizes (Ne) are particularly challenging in bacteria due to their extremely large census populations sizes, varying rates of recombination and arbitrary species boundaries. Results In this study, we estimated Ne for 153 species (152 bacteria and one archaeon) defined under a common framework and found that ecological lifestyle and growth rate were major predictors of Ne; and that contrary to theoretical expectations, Ne was unaffected by recombination rate. Additionally, we found that Ne shapes the evolution and diversity of total gene repertoires of prokaryotic species. Conclusion Together, these results point to a new model of genome architecture evolution in prokaryotes, in which pan-genome sizes, not individual genome sizes, are governed by drift-barrier evolution. Electronic supplementary material The online version of this article (10.1186/s12862-018-1272-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, PO Box 26170, Greensboro, NC, 27402, USA.
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
145
|
Suárez-Villagrán MY, Azevedo RBR, Miller JH. Influence of Electron-Holes on DNA Sequence-Specific Mutation Rates. Genome Biol Evol 2018; 10:1039-1047. [PMID: 29617801 PMCID: PMC5887664 DOI: 10.1093/gbe/evy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron–hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution.
Collapse
Affiliation(s)
- Martha Y Suárez-Villagrán
- Department of Physics, University of Houston, Houston.,Texas Center for Superconductivity, University of Houston, Houston
| | | | - John H Miller
- Department of Physics, University of Houston, Houston.,Texas Center for Superconductivity, University of Houston, Houston
| |
Collapse
|
146
|
Senra MVX, Sung W, Ackerman M, Miller SF, Lynch M, Soares CAG. An Unbiased Genome-Wide View of the Mutation Rate and Spectrum of the Endosymbiotic Bacterium Teredinibacter turnerae. Genome Biol Evol 2018; 10:723-730. [PMID: 29415256 PMCID: PMC5833318 DOI: 10.1093/gbe/evy027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion–deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10−9 per site per generation and indel rate of 1.55 × 10−10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.
Collapse
Affiliation(s)
- Marcus V X Senra
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, Brazil
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte
| | - Matthew Ackerman
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University
| | - Carlos Augusto G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil
- Corresponding author: E-mail:
| |
Collapse
|
147
|
Nelson P, Masel J. Evolutionary Capacitance Emerges Spontaneously during Adaptation to Environmental Changes. Cell Rep 2018; 25:249-258. [DOI: 10.1016/j.celrep.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
|
148
|
Cvijović I, Nguyen Ba AN, Desai MM. Experimental Studies of Evolutionary Dynamics in Microbes. Trends Genet 2018; 34:693-703. [PMID: 30025666 PMCID: PMC6467257 DOI: 10.1016/j.tig.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly complex. In the past two decades, observations of these dynamics have challenged simple models of adaptation and have shown that clonal interference, hitchhiking, ecological diversification, and contingency are widespread. In recent years, advances in high-throughput strain maintenance and phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented resolution. These new methods can now begin to provide detailed measurements of key aspects of fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can highlight challenges to existing theoretical models and guide new theoretical work towards the complications that are most widely important.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
149
|
Spatial Vulnerabilities of the Escherichia coli Genome to Spontaneous Mutations Revealed with Improved Duplex Sequencing. Genetics 2018; 210:547-558. [PMID: 30076202 DOI: 10.1534/genetics.118.301345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Investigation of spontaneous mutations by next-generation sequencing technology has attracted extensive attention lately due to the fundamental roles of spontaneous mutations in evolution and pathological processes. However, these studies only focused on the mutations accumulated through many generations during long-term (possibly be years of) culturing, but not the freshly generated mutations that occur at very low frequencies. In this study, we established a molecularly barcoded deep sequencing strategy to detect low abundant spontaneous mutations in genomes of bacteria cell cultures. Genome-wide spontaneous mutations in 15 Escherichia coli cell culture samples were defined with a high confidence (P < 0.01). We also developed a hotspot-calling approach based on the run-length encoding algorithm to find the genomic regions that are vulnerable to the spontaneous mutations. The hotspots for the mutations appeared to be highly conserved across the bacteria samples. Further biological annotation of these regions indicated that most of the spontaneous mutations were located at the repeat domains or nonfunctional domains of the genomes, suggesting the existence of mechanisms that could somehow prevent the occurrence of mutations in crucial genic areas. This study provides a more faithful picture of mutation occurrence and spectra in a single expansion process without long-term culturing.
Collapse
|
150
|
Wei W, Xiong L, Ye YN, Du MZ, Gao YZ, Zhang KY, Jin YT, Yang Z, Wong PC, Lau SKP, Kan B, Zhu J, Woo PCY, Guo FB. Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biol Evol 2018; 10:2072-2085. [PMID: 30060177 PMCID: PMC6105331 DOI: 10.1093/gbe/evy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Pandemic cholera is a major concern for public health because of its high mortality and morbidity. Mutation accumulation (MA) experiments were performed on a representative strain of the current cholera pandemic. Although the base-pair substitution mutation rates in Vibrio cholerae (1.24 × 10-10 per site per generation for wild-type lines and 3.29 × 10-8 for mismatch repair deficient lines) are lower than that previously reported in other bacteria using MA analysis, we discovered specific high rates (8.31 × 10-8 site/generation for wild-type lines and 1.82 × 10-6 for mismatch repair deficient lines) of base duplication or deletion driven by large-scale copy number variations (CNVs). These duplication-deletions are located in two pathogenic islands, IMEX and the large integron island. Each element of these islands has discrepant rate in rapid integration and excision, which provides clues to the pandemicity evolution of V. cholerae. These results also suggest that large-scale structural variants such as CNVs can accumulate rapidly during short-term evolution. Mismatch repair deficient lines exhibit a significantly increased mutation rate in the larger chromosome (Chr1) at specific regions, and this pattern is not observed in wild-type lines. We propose that the high frequency of GATC sites in Chr1 improves the efficiency of MMR, resulting in similar rates of mutation in the wild-type condition. In addition, different mutation rates and spectra were observed in the MA lines under distinct growth conditions, including minimal media, rich media and antibiotic treatments.
Collapse
Affiliation(s)
- Wen Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Life Sciences, Chongqing University, China
| | - Lifeng Xiong
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
| | - Yuan-Nong Ye
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Bioinformatics and Biomedical Bigdata Mining Laboratory, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi-Zhou Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai-Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Po-Chun Wong
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
| | - Susanna K P Lau
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania
| | - Patrick C Y Woo
- Department of Microbiology, Research Centre of Infection and Immunology, State Key Laboratory of Emerging Infectious Diseases, and Carol Yu Centre for Infection, The University of Hong Kong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|