101
|
Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H, Odake H, Suzuki Y, Kondo H, Konno Y, Yamakawa T, Sato S, Mitsui H, Minamisawa K. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat Commun 2018; 9:3139. [PMID: 30087346 PMCID: PMC6081438 DOI: 10.1038/s41467-018-05663-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Genotype-specific incompatibility in legume-rhizobium symbiosis has been suggested to be controlled by effector-triggered immunity underlying pathogenic host-bacteria interactions. However, the rhizobial determinant interacting with the host resistance protein (e.g., Rj2) and the molecular mechanism of symbiotic incompatibility remain unclear. Using natural mutants of Bradyrhizobium diazoefficiens USDA 122, we identified a type III-secretory protein NopP as the determinant of symbiotic incompatibility with Rj2-soybean. The analysis of nopP mutations and variants in a culture collection reveal that three amino acid residues (R60, R67, and H173) in NopP are required for Rj2-mediated incompatibility. Complementation of rj2-soybean by the Rj2 allele confers the incompatibility induced by USDA 122-type NopP. In response to incompatible strains, Rj2-soybean plants activate defense marker gene PR-2 and suppress infection thread number at 2 days after inoculation. These results suggest that Rj2-soybeans monitor the specific variants of NopP and reject bradyrhizobial infection via effector-triggered immunity mediated by Rj2 protein.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| | - Satoko Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroya Iwano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hirohito Tsurumaru
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Haruka Odake
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuta Suzuki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hitoshi Kondo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuki Konno
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takeo Yamakawa
- Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
102
|
Pinto-Carbó M, Gademann K, Eberl L, Carlier A. Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:23-31. [PMID: 29452904 DOI: 10.1016/j.pbi.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Various plant species establish intimate symbioses with bacteria within their aerial organs. The bacteria are contained within nodules or glands often present in distinctive patterns on the leaves, and have been used as taxonomic marker since the early 20th century. These structures are present in very diverse taxa, including dicots (Rubiaceae and Primulaceae) and monocots (Dioscorea). The symbionts colonize the plants throughout their life cycles and contribute bioactive secondary metabolites to the association. In this review, we present recent progress in the understanding of these plant-bacteria symbioses, including the modes of transmission, distribution and roles of the symbionts.
Collapse
Affiliation(s)
- Marta Pinto-Carbó
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
103
|
Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:7-15. [PMID: 29289792 DOI: 10.1016/j.pbi.2017.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/12/2023]
Abstract
By evolving the dual capacity of intracellular survival and symbiotic nitrogen fixation in legumes, rhizobia have achieved an ecological and evolutionary success that has reshaped our biosphere. Despite complex challenges, including a dual lifestyle of intracellular infection separated by a free-living phase in soil, rhizobial symbiosis has spread horizontally to hundreds of bacterial species and geographically throughout the globe. This symbiosis has also persisted and been reshaped through millions of years of history. Here, we summarize recent advances in our understanding of the molecular mechanisms, ecological settings, and evolutionary pathways that are collectively responsible for this symbiotic success story. We offer predictions of how this symbiosis can evolve under new influences and for the benefit of a burgeoning human population.
Collapse
Affiliation(s)
| | - Joel L Sachs
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
104
|
Berrabah F, Balliau T, Aït-Salem EH, George J, Zivy M, Ratet P, Gourion B. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. THE NEW PHYTOLOGIST 2018; 219:310-323. [PMID: 29668080 DOI: 10.1111/nph.15142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 05/11/2023]
Abstract
Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Thierry Balliau
- INRA, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - El Hosseyn Aït-Salem
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Michel Zivy
- CNRS, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Benjamin Gourion
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| |
Collapse
|
105
|
Duangkhet M, Chikoti Y, Thepsukhon A, Thapanapongworakul P, Chungopast S, Tajima S, Nomura M. Isolation and characterization of rhizobia from nodules of Clitoria ternatea in Thailand. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:123-129. [PMID: 31819714 PMCID: PMC6879394 DOI: 10.5511/plantbiotechnology.18.0402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 05/28/2023]
Abstract
Rhizobia were isolated from the root nodules of Clitoria ternatea in Thailand. The phylogeny of the isolates was investigated using 16S rDNA and the internal transcribed spacer (ITS) region from 16S to 23S rDNA. The phylogenetic tree of the 16S rDNA showed that ten of the eleven isolates belonged to Bradyrhizobium elkanii, and one belonged to Bradyrhizobium japonicum. The topology of the ITS tree was similar to that of 16S rDNA. The acetylene reduction activity was higher for the nodules inoculated with the isolated B. elkanii strains than for those inoculated with B. japonicum strains. When C. ternatea plants were inoculated with various Bradyrhizobium USDA strains isolated from Glycine max, C. ternatea formed many effective nodules with B. elkanii, especially USDA61. However, acetylene reduction activity per plant and the growth were higher in C. ternatea inoculated with our isolates. From these data we propose that effective rhizobia inoculant were identified for C. ternatea cultivation.
Collapse
Affiliation(s)
- Mallika Duangkhet
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Yamikani Chikoti
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Apiraya Thepsukhon
- Faculty of Agricultural Production, Maejo University, Chiang Mai, 50290, Thailand
| | | | - Sirinapa Chungopast
- Faculty of Agriculture Kamphaeng-saen, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Shigeyuki Tajima
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
106
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
107
|
Chaintreuil C, Perrier X, Martin G, Fardoux J, Lewis GP, Brottier L, Rivallan R, Gomez-Pacheco M, Bourges M, Lamy L, Thibaud B, Ramanankierana H, Randriambanona H, Vandrot H, Mournet P, Giraud E, Arrighi JF. Naturally occurring variations in the nod-independent model legume Aeschynomene evenia and relatives: a resource for nodulation genetics. BMC PLANT BIOLOGY 2018; 18:54. [PMID: 29614957 PMCID: PMC5883870 DOI: 10.1186/s12870-018-1260-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/06/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Among semi-aquatic species of the legume genus Aeschynomene, some have the unique property of being root and stem-nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the production of Nod factors. These species provide an excellent biological system with which to explore the evolution of nodulation in legumes. Among them, Aeschynomene evenia has emerged as a model legume to undertake the genetic dissection of the so-called Nod-independent symbiosis. In addition to the genetic analysis of nodulation on a reference line, natural variation in a germplasm collection could also be surveyed to uncover genetic determinants of nodulation. To this aim, we investigated the patterns of genetic diversity in a collection of 226 Nod-independent Aeschynomene accessions. RESULTS A combination of phylogenetic analyses, comprising ITS and low-copy nuclear genes, along with cytogenetic experiments and artificial hybridizations revealed the richness of the Nod-independent Aeschynomene group with the identification of 13 diploid and 6 polyploid well-differentiated taxa. A set of 54 SSRs was used to further delineate taxon boundaries and to identify different genotypes. Patterns of microsatellite diversity also illuminated the genetic basis of the Aeschynomene taxa that were all found to be predominantly autogamous and with a predicted simple disomic inheritance, two attributes favorable for genetics. In addition, taxa displaying a pronounced genetic diversity, notably A. evenia, A. indica and A. sensitiva, were characterized by a clear geographically-based genetic structure and variations in root and stem nodulation. CONCLUSION A well-characterized germplasm collection now exists as a major genetic resource to thoroughly explore the natural variation of nodulation in response to different bradyrhizobial strains. Symbiotic polymorphisms are expected to be found notably in the induction of nodulation, in nitrogen fixation and also in stem nodulation. Subsequent genetic analysis and locus mapping will pave the way for the identification of the underlying genes through forward or reverse genetics. Such discoveries will significantly contribute to our understanding of the molecular mechanisms underpinning how some Aeschynomene species can be efficiently nodulated in a Nod-independent fashion.
Collapse
Affiliation(s)
- Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Xavier Perrier
- CIRAD, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Guillaume Martin
- CIRAD, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB UK
| | - Laurent Brottier
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Ronan Rivallan
- CIRAD, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Mario Gomez-Pacheco
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud. Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Mickaël Bourges
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud. Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Léo Lamy
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Béatrice Thibaud
- CIRAD, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Heriniaina Ramanankierana
- Laboratoire de Microbiologie de l’Environnement/Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
| | - Herizo Randriambanona
- Laboratoire de Microbiologie de l’Environnement/Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
| | - Hervé Vandrot
- IAC, Laboratoire de Botanique et d’Ecologie Végétale Appliquée, UMR AMAP, 98825 Pouembout, Nouvelle-Calédonie, France
| | - Pierre Mournet
- CIRAD, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, UMR AGAP, Campus de Lavalette, F-34398 Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Jean-François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR LSTM, Campus International de Baillarguet, F-34398 Montpellier, France
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
108
|
Igiehon NO, Babalola OO. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040574. [PMID: 29570619 PMCID: PMC5923616 DOI: 10.3390/ijerph15040574] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Abstract
Rhizosphere microbiome which has been shown to enhance plant growth and yield are modulated or influenced by a few environmental factors such as soil type, plant cultivar, climate change and anthropogenic activities. In particular, anthropogenic activity, such as the use of nitrogen-based chemical fertilizers, is associated with environmental destruction and this calls for a more ecofriendly strategy to increase nitrogen levels in agricultural land. This feat is attainable by harnessing nitrogen-fixing endophytic and free-living rhizobacteria. Rhizobium, Pseudomonas, Azospirillum and Bacillus, have been found to have positive impacts on crops by enhancing both above and belowground biomass and could therefore play positive roles in achieving sustainable agriculture outcomes. Thus, it is necessary to study this rhizosphere microbiome with more sophisticated culture-independent techniques such as next generation sequencing (NGS) with the prospect of discovering novel bacteria with plant growth promoting traits. This review is therefore aimed at discussing factors that can modulate rhizosphere microbiome with focus on the contributions of nitrogen fixing bacteria towards sustainable agricultural development and the techniques that can be used for their study.
Collapse
Affiliation(s)
- Nicholas Ozede Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, Private Mail Bag X2046, North West University, Mmabatho 2735, South Africa.
| |
Collapse
|
109
|
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp. FEMS Microbiol Lett 2018; 365:4769627. [PMID: 29281013 DOI: 10.1093/femsle/fnx276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid.,Instituto de Ciencias Agrarias (ICA), Consejo Superior Investigaciones Científicas, Serrano 115, bis, 28006 Madrid, Spain
| | - José Palacios
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Susanne Zehner
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| |
Collapse
|
110
|
Clúa J, Roda C, Zanetti ME, Blanco FA. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes (Basel) 2018; 9:E125. [PMID: 29495432 PMCID: PMC5867846 DOI: 10.3390/genes9030125] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.
Collapse
Affiliation(s)
- Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Carla Roda
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Flavio A Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| |
Collapse
|
111
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
112
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
113
|
Abstract
Rhizobia are some of the best-studied plant microbiota. These oligotrophic Alphaproteobacteria or Betaproteobacteria form symbioses with their legume hosts. Rhizobia must exist in soil and compete with other members of the microbiota before infecting legumes and forming N2-fixing bacteroids. These dramatic lifestyle and developmental changes are underpinned by large genomes and even more complex pan-genomes, which encompass the whole population and are subject to rapid genetic exchange. The ability to respond to plant signals and chemoattractants and to colonize nutrient-rich roots are crucial for the competitive success of these bacteria. The availability of a large body of genomic, physiological, biochemical and ecological studies makes rhizobia unique models for investigating community interactions and plant colonization.
Collapse
|
114
|
Wang Q, Liu J, Zhu H. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:313. [PMID: 29593768 PMCID: PMC5854654 DOI: 10.3389/fpls.2018.00313] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.
Collapse
|
115
|
Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ, Zhang B, Wang XL, Li ML, Chen Y, Xiong ZQ, Chen WX, Tian CF. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. THE ISME JOURNAL 2018; 12:101-111. [PMID: 28800133 PMCID: PMC5738999 DOI: 10.1038/ismej.2017.136] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Mutualism between bacteria and eukaryotes has essential roles in the history of life, but the evolution of their compatibility is poorly understood. Here we show that different Sinorhizobium strains can form either nitrogen-fixing nodules or uninfected pseudonodules on certain cultivated soybeans, while being all effective microsymbionts of some wild soybeans. However, a few well-infected nodules can be found on a commercial soybean using inocula containing a mixed pool of Tn5 insertion mutants derived from an incompatible strain. Reverse genetics and genome sequencing of compatible mutants demonstrated that inactivation of T3SS (type three secretion system) accounted for this phenotypic change. These mutations in the T3SS gene cluster were dominated by parallel transpositions of insertion sequences (ISs) other than the introduced Tn5. This genetic and phenotypic change can also be achieved in an experimental evolution scenario on a laboratory time scale using incompatible wild-type strains as inocula. The ISs acting in the adaptive evolution of Sinorhizobium strains exhibit broader phyletic and replicon distributions than other ISs, and prefer target sequences of low GC% content, a characteristic feature of symbiosis plasmid where T3SS genes are located. These findings suggest an important role of co-evolved ISs in the adaptive evolution of rhizobial compatibility.
Collapse
Affiliation(s)
- Ran Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Jing Cui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Lin Wang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Lin Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Qing Xiong
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
116
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
117
|
Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata. Genes (Basel) 2017; 8:genes8120374. [PMID: 29292795 PMCID: PMC5748692 DOI: 10.3390/genes8120374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
The establishment of a root nodule symbiosis between a leguminous plant and a rhizobium requires complex molecular interactions between the two partners. Compatible interactions lead to the formation of nitrogen-fixing nodules, however, some legumes exhibit incompatibility with specific rhizobial strains and restrict nodulation by the strains. Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean cultivars carrying the Rj4 allele. Here, we explored genetic loci in USDA61 that determine incompatibility with V. radiata KPS1. We identified five novel B. elkanii genes that contribute to this incompatibility. Four of these genes also control incompatibility with soybean cultivars carrying the Rj4 allele, suggesting that a common mechanism underlies nodulation restriction in both legumes. The fifth gene encodes a hypothetical protein that contains a tts box in its promoter region. The tts box is conserved in genes encoding the type III secretion system (T3SS), which is known for its delivery of virulence effectors by pathogenic bacteria. These findings revealed both common and unique genes that are involved in the incompatibility of B. elkanii with mung bean and soybean. Of particular interest is the novel T3SS-related gene, which causes incompatibility specifically with mung bean cv. KPS1.
Collapse
|
118
|
Yan H, Xie JB, Ji ZJ, Yuan N, Tian CF, Ji SK, Wu ZY, Zhong L, Chen WX, Du ZL, Wang ET, Chen WF. Evolutionarily Conserved nodE, nodO, T1SS, and Hydrogenase System in Rhizobia of Astragalus membranaceus and Caragana intermedia. Front Microbiol 2017; 8:2282. [PMID: 29209294 PMCID: PMC5702008 DOI: 10.3389/fmicb.2017.02282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 02/01/2023] Open
Abstract
Mesorhizobium species are the main microsymbionts associated with the medicinal or sand-fixation plants Astragalus membranaceus and Caragana intermedia (AC) in temperate regions of China, while all the Mesorhizobium strains isolated from each of these plants could nodulate both of them. However, Rhizobium yanglingense strain CCBAU01603 could nodulate AC plants and it's a high efficiency symbiotic and competitive strain with Caragana. Therefore, the common features shared by these symbiotic rhizobia in genera of Mesorhizobium and Rhizobium still remained undiscovered. In order to study the genomic background influencing the host preference of these AC symbiotic strains, the whole genomes of two (M. silamurunense CCBAU01550, M. silamurunense CCBAU45272) and five representative strains (M. septentrionale CCBAU01583, M. amorphae CCBAU01570, M. caraganae CCBAU01502, M. temperatum CCBAU01399, and R. yanglingense CCBAU01603) originally isolated from AC plants were sequenced, respectively. As results, type III secretion systems (T3SS) of AC rhizobia evolved in an irregular pattern, while an evolutionarily specific region including nodE, nodO, T1SS, and a hydrogenase system was detected to be conserved in all these AC rhizobia. Moreover, nodO was verified to be prevalently distributed in other AC rhizobia and was presumed as a factor affecting the nodule formation process. In conclusion, this research interpreted the multifactorial features of the AC rhizobia that may be associated with their host specificity at cross-nodulation group, including nodE, nodZ, T1SS as the possible main determinants; and nodO, hydrogenase system, and T3SS as factors regulating the bacteroid formation or nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Bo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhao Jun Ji
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Na Yuan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Shou Kun Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Yu Wu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Zheng Lin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico, Mexico
| | - Wen Feng Chen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
119
|
Kelly S, Radutoiu S, Stougaard J. Legume LysM receptors mediate symbiotic and pathogenic signalling. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:152-158. [PMID: 28787662 DOI: 10.1016/j.pbi.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 05/13/2023]
Abstract
Legume-rhizobia symbiosis is coordinated through the production and perception of signal molecules by both partners with legume LysM receptor kinases performing a central role in this process. Receptor complex formation and signalling outputs derived from these are regulated through ligand binding and further modulated by a diverse variety of interactors. The challenge now is to understand the molecular mechanisms of these reported interactors. Recently attributed roles of LysM receptors in the perception of rhizobial exopolysaccharide, distinguishing between pathogens and symbionts, and assembly of root and rhizosphere communities expand on the importance of these receptors. These studies also highlight challenges, such as identification of cognate ligands, formation of responsive receptor complexes and separation of downstream signal transduction pathways.
Collapse
Affiliation(s)
- Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Simona Radutoiu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, University of Aarhus, DK - 8000 Aarhus, Denmark.
| |
Collapse
|
120
|
Songwattana P, Noisangiam R, Teamtisong K, Prakamhang J, Teulet A, Tittabutr P, Piromyou P, Boonkerd N, Giraud E, Teaumroong N. Type 3 Secretion System (T3SS) of Bradyrhizobium sp. DOA9 and Its Roles in Legume Symbiosis and Rice Endophytic Association. Front Microbiol 2017; 8:1810. [PMID: 28979252 PMCID: PMC5611442 DOI: 10.3389/fmicb.2017.01810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/05/2017] [Indexed: 11/15/2022] Open
Abstract
The Bradyrhizobium sp. DOA9 strain isolated from a paddy field has the ability to nodulate a wide spectrum of legumes. Unlike other bradyrhizobia, this strain has a symbiotic plasmid harboring nod, nif, and type 3 secretion system (T3SS) genes. This T3SS cluster contains all the genes necessary for the formation of the secretory apparatus and the transcriptional activator (TtsI), which is preceded by a nod-box motif. An in silico search predicted 14 effectors putatively translocated by this T3SS machinery. In this study, we explored the role of the T3SS in the symbiotic performance of DOA9 by evaluating the ability of a T3SS mutant (ΩrhcN) to nodulate legumes belonging to Dalbergioid, Millettioid, and Genistoid tribes. Among the nine species tested, four (Arachis hypogea, Vigna radiata, Crotalaria juncea, and Macroptilium atropurpureum) responded positively to the rhcN mutation (ranging from suppression of plant defense reactions, an increase in the number of nodules and a dramatic improvement in nodule development and infection), one (Stylosanthes hamata) responded negatively (fewer nodules and less nitrogen fixation) and four species (Aeschynomene americana, Aeschynomene afraspera, Indigofera tinctoria, and Desmodium tortuosum) displayed no phenotype. We also tested the role of the T3SS in the ability of the DOA9 strain to endophytically colonize rice roots, but detected no effect of the T3SS mutation, in contrast to what was previously reported in the Bradyrhizobium SUTN9-2 strain. Taken together, these data indicate that DOA9 contains a functional T3SS that interferes with the ability of the strain to interact symbiotically with legumes but not with rice.
Collapse
Affiliation(s)
- Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Rujirek Noisangiam
- National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and CooperativesBangkok, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Janpen Prakamhang
- Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology IsanNakhon Ratchasima, Thailand
| | - Albin Teulet
- Institut de Recherche pour le Développement, LSTM, UMR IRD/SupAgro/INRA/Univ. Montpellier/CIRADMontpellier, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD/SupAgro/INRA/Univ. Montpellier/CIRADMontpellier, France
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of TechnologyNakhon Ratchasima, Thailand
| |
Collapse
|
121
|
Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. Interplay Between Innate Immunity and the Plant Microbiota. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:565-589. [PMID: 28645232 DOI: 10.1146/annurev-phyto-080516-035623] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Stijn Spaepen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
122
|
Plant signalling in symbiosis and immunity. Nature 2017; 543:328-336. [PMID: 28300100 DOI: 10.1038/nature22009] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Plants encounter a myriad of microorganisms, particularly at the root-soil interface, that can invade with detrimental or beneficial outcomes. Prevalent beneficial associations between plants and microorganisms include those that promote plant growth by facilitating the acquisition of limiting nutrients such as nitrogen and phosphorus. But while promoting such symbiotic relationships, plants must restrict the formation of pathogenic associations. Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.
Collapse
|
123
|
Abstract
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis.
Collapse
Affiliation(s)
- Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
124
|
Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes? Pathog Dis 2017; 75:3861975. [DOI: 10.1093/femspd/ftx059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
|
125
|
Pan H, Wang D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. NATURE PLANTS 2017; 3:17048. [PMID: 28470183 DOI: 10.1038/nplants.2017.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/14/2017] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing symbiosis between legumes and rhizobia is highly relevant to human society and global ecology. One recent breakthrough in understanding the molecular interplay between the plant and the prokaryotic partner is that, at least in certain legumes, the host deploys a number of antimicrobial peptides, called nodule cysteine-rich (NCR) peptides, to control the outcome of this symbiosis. Under this plant dominance, the bacteria are subject to the sub-lethal toxicity of these antimicrobial peptides, resulting in limited reproductive potential. However, recent genetic studies have added unexpected twists to this mechanism: certain NCR peptides are essential for the bacteria to adapt to the intracellular environment needed for a successful symbiosis, and the absence of these peptides can break down the mutualism. Meanwhile, some rhizobial strains have evolved a peptidase to specifically degrade these antimicrobial peptides, allowing the bacteria to escape host control. These findings challenge the preconceptions about 'antimicrobial' peptides, supporting the notion that their role in biotic interactions extends beyond toxicity to the microbial partners.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| |
Collapse
|
126
|
Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:187-213. [PMID: 28712497 DOI: 10.1016/bs.pmbts.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen-fixing rhizobia have established a symbiotic relationship with the legume family through more than 60 million years of evolution. Hundreds of legume host genes are involved in the SNF (symbiotic nitrogen fixation) process, such as recognition of the bacterial partners, nodulation signaling and nodule development, maintenance of highly efficient nitrogen fixation within nodules, regulation of nodule numbers, and nodule senescence. However, investigations of SNF-related gene functions and dissecting molecular mechanisms of the complicated signaling crosstalk on a genomic scale were significantly restricted by insufficient mutant resources of several representative model legumes. Targeted genome-editing technologies, including ZFNs, TALENs, and CRISPR-Cas systems, have been developed in recent years and rapidly revolutionized biological research in many fields. These technologies were also applied to legume plants, and significant progress has been made in the last several years. Here, we summarize the applications of these genome-editing technologies, especially CRISPR-Cas9, toward the study of SNF in legumes, which should greatly advance our understanding of the basic mechanisms underpinning the legume-rhizobia interactions and guide the engineering of the SNF pathway into nonlegume crops to reduce the dependence on the use of nitrogen fertilizers for sustainable development of modern agriculture.
Collapse
|
127
|
Cao Y, Halane MK, Gassmann W, Stacey G. The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:535-561. [PMID: 28142283 DOI: 10.1146/annurev-arplant-042916-041030] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A classic view of the evolution of mutualism is that it derives from a pathogenic relationship that attenuated over time to a situation in which both partners can benefit. If this is the case for rhizobia, then one might uncover features of the symbiosis that reflect this earlier pathogenic state. For example, as with plant pathogens, it is now generally assumed that rhizobia actively suppress the host immune response to allow infection and symbiosis establishment. Likewise, the host has retained mechanisms to control the nutrient supply to the symbionts and the number of nodules so that they do not become too burdensome. The open question is whether such events are strictly ancillary to the central symbiotic nodulation factor signaling pathway or are essential for rhizobial host infection. Subsequent to these early infection events, plant immune responses can also be induced inside nodules and likely play a role in, for example, nodule senescence. Thus, a balanced regulation of innate immunity is likely required throughout rhizobial infection, symbiotic establishment, and maintenance. In this review, we discuss the significance of plant immune responses in the regulation of symbiotic associations with rhizobia, as well as rhizobial evasion of the host immune system.
Collapse
Affiliation(s)
- Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Morgan K Halane
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Sciences, C.S. Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
128
|
Ibáñez F, Wall L, Fabra A. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1905-1918. [PMID: 27756807 DOI: 10.1093/jxb/erw387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed.
Collapse
Affiliation(s)
- Fernando Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Luis Wall
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Adriana Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
129
|
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants. Appl Environ Microbiol 2017; 83:e02770-16. [PMID: 27986730 PMCID: PMC5311403 DOI: 10.1128/aem.02770-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis.IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected nodulation.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Carlos Medina
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Seville, Spain
| | | | | |
Collapse
|
130
|
Glyan’ko AK, Ischenko AA. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
131
|
Yuan SL, Li R, Chen HF, Zhang CJ, Chen LM, Hao QN, Chen SL, Shan ZH, Yang ZL, Zhang XJ, Qiu DZ, Zhou XA. RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2. Sci Rep 2017; 7:42248. [PMID: 28169364 PMCID: PMC5294573 DOI: 10.1038/srep42248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
Nodule development directly affects nitrogen fixation efficiency during soybean growth. Although abundant genome-based information related to nodule development has been released and some studies have reported the molecular mechanisms that regulate nodule development, information on the way nodule genes operate in nodule development at different developmental stages of soybean is limited. In this report, notably different nodulation phenotypes in soybean roots inoculated with Bradyrhizobium japonicum strain 113-2 at five developmental stages (branching stage, flowering stage, fruiting stage, pod stage and harvest stage) were shown, and the expression of nodule genes at these five stages was assessed quantitatively using RNA-Seq. Ten comparisons were made between these developmental periods, and their differentially expressed genes were analysed. Some important genes were identified, primarily encoding symbiotic nitrogen fixation-related proteins, cysteine proteases, cystatins and cysteine-rich proteins, as well as proteins involving plant-pathogen interactions. There were no significant shifts in the distribution of most GO functional annotation terms and KEGG pathway enrichment terms between these five development stages. A cystatin Glyma18g12240 was firstly identified from our RNA-seq, and was likely to promote nodulation and delay nodule senescence. This study provides molecular material for further investigations into the mechanisms of nitrogen fixation at different soybean developmental stages.
Collapse
Affiliation(s)
- Song L. Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Hai F. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Chan J. Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Li M. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Qing N. Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Shui L. Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Zhi H. Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Zhong L. Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Xiao J. Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - De Z. Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| | - Xin A. Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, China
| |
Collapse
|
132
|
Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei dit Frey N. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:124. [PMID: 28223991 PMCID: PMC5293756 DOI: 10.3389/fpls.2017.00124] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants-a monocot, a dicot and a liverwort-in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.
Collapse
Affiliation(s)
- Laurent Kamel
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
- Agronutrition, Laboratoire de BiotechnologiesLabege, France
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Mathilde Malbreil
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| |
Collapse
|
133
|
Estrada-Navarrete G, Cruz-Mireles N, Lascano R, Alvarado-Affantranger X, Hernández-Barrera A, Barraza A, Olivares JE, Arthikala MK, Cárdenas L, Quinto C, Sanchez F. An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between Phaseolus vulgaris and Both Rhizobia and Arbuscular Mycorrhizal Fungi. THE PLANT CELL 2016; 28:2326-2341. [PMID: 27577790 PMCID: PMC5059792 DOI: 10.1105/tpc.15.01012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 05/02/2023]
Abstract
Eukaryotes contain three types of lipid kinases that belong to the phosphatidylinositol 3-kinase (PI3K) family. In plants and Saccharomyces cerevisiae, only PI3K class III family members have been identified. These enzymes regulate the innate immune response, intracellular trafficking, autophagy, and senescence. Here, we report that RNAi-mediated downregulation of common bean (Phaseolus vulgaris) PI3K severely impaired symbiosis in composite P. vulgaris plants with endosymbionts such as Rhizobium tropici and Rhizophagus irregularis Downregulation of Pv-PI3K was associated with a marked decrease in root hair growth and curling. Additionally, infection thread growth, root-nodule number, and symbiosome formation in root nodule cells were severely affected. Interestingly, root colonization by AM fungi and the formation of arbuscules were also abolished in PI3K loss-of-function plants. Furthermore, the transcript accumulation of genes encoding proteins known to interact with PI3K to form protein complexes involved in autophagy was drastically reduced in these transgenic roots. RNAi-mediated downregulation of one of these genes, Beclin1/Atg6, resulted in a similar phenotype as observed for transgenic roots in which Pv-PI3K had been downregulated. Our findings show that an autophagy-related process is crucial for the mutualistic interactions of P. vulgaris with beneficial microorganisms.
Collapse
Affiliation(s)
- Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Neftaly Cruz-Mireles
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ramiro Lascano
- Centro de Investigaciones Agropecuarias, Instituto de Fisiología y Recursos Genéticos Vegetales, CP 5119 Córdoba, Argentina
| | - Xóchitl Alvarado-Affantranger
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandra Hernández-Barrera
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Juan E Olivares
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores-Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato 37684, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
134
|
Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis. PLANT & CELL PHYSIOLOGY 2016; 57:1791-800. [PMID: 27373538 DOI: 10.1093/pcp/pcw104] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/16/2016] [Indexed: 05/06/2023]
Abstract
Symbiosis between legumes and rhizobia leads to the formation of N2-fixing root nodules. In soybean, several host genes, referred to as Rj genes, control nodulation. Soybean cultivars carrying the Rj4 gene restrict nodulation by specific rhizobia such as Bradyrhizobium elkanii We previously reported that the restriction of nodulation was caused by B. elkanii possessing a functional type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria. In the present study, we investigated the molecular basis for the T3SS-dependent nodulation restriction in Rj4 soybean. Inoculation tests revealed that soybean cultivar BARC-2 (Rj4/Rj4) restricted nodulation by B. elkanii USDA61, whereas its nearly isogenic line BARC-3 (rj4/rj4) formed nitrogen-fixing nodules with the same strain. Root-hair curling and infection threads were not observed in the roots of BARC-2 inoculated with USDA61, indicating that Rj4 blocked B. elkanii infection in the early stages. Accumulation of H2O2 and salicylic acid (SA) was observed in the roots of BARC-2 inoculated with USDA61. Transcriptome analyses revealed that inoculation of USDA61, but not its T3SS mutant in BARC-2, induced defense-related genes, including those coding for hypersensitive-induced responsive protein, which act in effector-triggered immunity (ETI) in Arabidopsis. These findings suggest that B. elkanii T3SS triggers the SA-mediated ETI-type response in Rj4 soybean, which consequently blocks symbiotic interactions. This study revealed a common molecular mechanism underlying both plant-pathogen and plant-symbiont interactions, and suggests that establishment of a root nodule symbiosis requires the evasion or suppression of plant immune responses triggered by rhizobial effectors.
Collapse
Affiliation(s)
- Michiko Yasuda
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Hiroki Miwa
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Sachiko Masuda
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| | - Yumiko Takebayashi
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Shin Okazaki
- International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509 Japan
| |
Collapse
|
135
|
Wang C, Wang E. Arabidopsis Farms Colletotrichum tofieldiae for Phosphate Uptake. MOLECULAR PLANT 2016; 9:953-955. [PMID: 27216320 DOI: 10.1016/j.molp.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Chao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
136
|
Tatsukami Y, Ueda M. Rhizobial gibberellin negatively regulates host nodule number. Sci Rep 2016; 6:27998. [PMID: 27307029 PMCID: PMC4910070 DOI: 10.1038/srep27998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
In legume-rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia.
Collapse
Affiliation(s)
- Yohei Tatsukami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
137
|
Gully D, Gargani D, Bonaldi K, Grangeteau C, Chaintreuil C, Fardoux J, Nguyen P, Marchetti R, Nouwen N, Molinaro A, Mergaert P, Giraud E. A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:447-57. [PMID: 26959836 DOI: 10.1094/mpmi-03-16-0052-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.
Collapse
Affiliation(s)
- Djamel Gully
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | | | - Katia Bonaldi
- 3 Center for Chronobiology, Division of Biological Sciences, 9500 Gilman Drive, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Cédric Grangeteau
- 4 UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Clémence Chaintreuil
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Joël Fardoux
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Phuong Nguyen
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Roberta Marchetti
- 5 Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126 Napoli, Italy; and
| | - Nico Nouwen
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonio Molinaro
- 5 Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126 Napoli, Italy; and
| | - Peter Mergaert
- 6 Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
| | - Eric Giraud
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| |
Collapse
|
138
|
Yuan S, Li R, Chen S, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Yang Z, Qiu D, Zhang X, Zhou X. RNA-Seq Analysis of Differential Gene Expression Responding to Different Rhizobium Strains in Soybean (Glycine max) Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:721. [PMID: 27303417 PMCID: PMC4885319 DOI: 10.3389/fpls.2016.00721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 05/25/2023]
Abstract
The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient and productive source of nitrogen fixation, and has critical importance in agriculture and mesology. Soybean (Glycine max), one of the most important legume crops in the world, establishes a nitrogen-fixing symbiosis with different types of rhizobia, and the efficiency of symbiotic nitrogen fixation in soybean greatly depends on the symbiotic host-specificity. Although, it has been reported that rhizobia use surface polysaccharides, secretion proteins of the type-three secretion systems and nod factors to modulate host range, the host control of nodulation specificity remains poorly understood. In this report, the soybean roots of two symbiotic systems (Bradyrhizobium japonicum strain 113-2-soybean and Sinorhizobium fredii USDA205-soybean)with notable different nodulation phenotypes and the control were studied at five different post-inoculation time points (0.5, 7-24 h, 5, 16, and 21 day) by RNA-seq (Quantification). The results of qPCR analysis of 11 randomly-selected genes agreed with transcriptional profile data for 136 out of 165 (82.42%) data points and quality assessment showed that the sequencing library is of quality and reliable. Three comparisons (control vs. 113-2, control vs. USDA205 and USDA205 vs. 113-2) were made and the differentially expressed genes (DEGs) between them were analyzed. The number of DEGs at 16 days post-inoculation (dpi) was the highest in the three comparisons, and most of the DEGs in USDA205 vs. 113-2 were found at 16 dpi and 21 dpi. 44 go function terms in USDA205 vs. 113-2 were analyzed to evaluate the potential functions of the DEGs, and 10 important KEGG pathway enrichment terms were analyzed in the three comparisons. Some important genes induced in response to different strains (113-2 and USDA205) were identified and analyzed, and these genes primarily encoded soybean resistance proteins, NF-related proteins, nodulins and immunity defense proteins, as well as proteins involving flavonoids/flavone/flavonol biosynthesis and plant-pathogen interaction. Besides, 189 candidate genes are largely expressed in roots and\or nodules. The DEGs uncovered in this study provides molecular candidates for better understanding the mechanisms of symbiotic host-specificity and explaining the different symbiotic effects between soybean roots inoculated with different strains (113-2 and USDA205).
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| |
Collapse
|
139
|
Lardi M, Murset V, Fischer HM, Mesa S, Ahrens CH, Zamboni N, Pessi G. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures. Int J Mol Sci 2016; 17:E815. [PMID: 27240350 PMCID: PMC4926349 DOI: 10.3390/ijms17060815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection-time-of-flight mass spectrometry analysis the metabolome of (i) nodules and roots from four different B. diazoefficiens host plants; (ii) soybean nodules harvested at different time points during nodule development; and (iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by independent transcriptomics data. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Collapse
Affiliation(s)
- Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| | - Valérie Murset
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Hans-Martin Fischer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland.
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18080 Granada, Spain.
| | - Christian H Ahrens
- Agroscope, Institute for Plant Production Sciences, Research Group Molecular Diagnostics, Genomics and Bioinformatics & Swiss Institute of Bioinformatics (SIB), CH-8820 Wädenswil, Switzerland.
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
140
|
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int J Mol Sci 2016; 17:E755. [PMID: 27213334 PMCID: PMC4881576 DOI: 10.3390/ijms17050755] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.
Collapse
Affiliation(s)
- Francisco J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain.
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| |
Collapse
|
141
|
Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2483-94. [PMID: 26931172 DOI: 10.1093/jxb/erw065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria utilize type 3 secretion systems to inject type 3 effectors (T3Es) into host cells, thereby subverting host defense reactions. Similarly, T3Es of symbiotic nitrogen-fixing rhizobia can affect nodule formation on roots of legumes. Previous work showed that NopL (nodulation outer protein L) of Sinorhizobium(Ensifer) sp. strain NGR234 is multiply phosphorylated in eukaryotic cells and that this T3E suppresses responses mediated by mitogen-activated protein (MAP) kinase signaling in yeast (mating pheromone signaling) and plant cells (expression of pathogenesis-related defense proteins). Here, we show that NopL is a MAP kinase substrate. Microscopic observations of fluorescent fusion proteins and bimolecular fluorescence complementation analysis in onion cells indicated that NopL is targeted to the nucleus and forms a complex with SIPK (salicylic acid-induced protein kinase), a MAP kinase of tobacco. In vitro experiments demonstrated that NopL is phosphorylatyed by SIPK. At least nine distinct spots were observed after two-dimensional gel electrophoresis, indicating that NopL can be hyperphosphorylated by MAP kinases. Senescence symptoms in nodules of beans (Phaseolus vulgaris cv. Tendergreen) were analyzed to determine the symbiotic effector activity of different NopL variants with serine to alanine substitutions at identified and predicted phosphorylation sites (serine-proline motif). NopL variants with six or eight serine to alanine substitutions were partially active, whereas NopL forms with 10 or 12 substituted serine residues were inactive. In conclusion, our findings provide evidence that NopL interacts with MAP kinases and reveals the importance of serine-proline motifs for effector activity during symbiosis.
Collapse
Affiliation(s)
- Ying-Ying Ge
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Wang Xiang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, China
| |
Collapse
|
142
|
Baral B, Teixeira da Silva JA, Izaguirre-Mayoral ML. Early signaling, synthesis, transport and metabolism of ureides. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:97-109. [PMID: 26967003 DOI: 10.1016/j.jplph.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 05/26/2023]
Abstract
The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed.
Collapse
Affiliation(s)
- Bikash Baral
- Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
| | | | - Maria Luisa Izaguirre-Mayoral
- Biological Nitrogen Fixation Laboratory, Chemistry Department, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
143
|
Geurts R, Xiao TT, Reinhold-Hurek B. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis? TRENDS IN PLANT SCIENCE 2016; 21:199-208. [PMID: 26850795 DOI: 10.1016/j.tplants.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/08/2023]
Abstract
Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutionary trajectory towards endosymbiosis is not complex. Here, we argue that microbe-induced cell divisions are a prerequisite for the entrance of diazotrophic prokaryotes into living plant cells. For rhizobia and Frankia bacteria, this is achieved by adapting the readout of the common symbiosis signalling pathway, such that cell divisions are induced. The common symbiosis signalling pathway is conserved in the plant kingdom and is required to establish an endosymbiosis with mycorrhizal fungi. We also discuss the adaptations that may have occurred that allowed nitrogen-fixing root nodule endosymbiosis.
Collapse
Affiliation(s)
- Rene Geurts
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands.
| | - Ting Ting Xiao
- Wageningen University, Department of Plant Science, Laboratory of Molecular Biology, Droevendaalsesteeg 1, 6708PB, The Netherlands
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interaction, Faculty 2, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
144
|
Tang F, Yang S, Liu J, Zhu H. Rj4, a Gene Controlling Nodulation Specificity in Soybeans, Encodes a Thaumatin-Like Protein But Not the One Previously Reported. PLANT PHYSIOLOGY 2016; 170:26-32. [PMID: 26582727 PMCID: PMC4704605 DOI: 10.1104/pp.15.01661] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 05/19/2023]
Abstract
Rj4 is a dominant gene in soybeans (Glycine max) that restricts nodulation by many strains of Bradyrhizobium elkanii. The soybean-B. elkanii symbiosis has a low nitrogen-fixation efficiency, but B. elkanii strains are highly competitive for nodulation; thus, cultivars harboring an Rj4 allele are considered favorable. Cloning the Rj4 gene is the first step in understanding the molecular basis of Rj4-mediated nodulation restriction and facilitates the development of molecular tools for genetic improvement of nitrogen fixation in soybeans. We finely mapped the Rj4 locus within a small genomic region on soybean chromosome 1, and validated one of the candidate genes as Rj4 using both complementation tests and CRISPR/Cas9-based gene knockout experiments. We demonstrated that Rj4 encodes a thaumatin-like protein, for which a corresponding allele is not present in the surveyed rj4 genotypes, including the reference genome Williams 82. Our conclusion disagrees with the previous report that Rj4 is the Glyma.01G165800 gene (previously annotated as Glyma01g37060). Instead, we provide convincing evidence that Rj4 is Glyma.01g165800-D, a duplicated and unique version of Glyma.01g165800, that has evolved the ability to control symbiotic specificity.
Collapse
Affiliation(s)
- Fang Tang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Shengming Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| |
Collapse
|
145
|
Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J, Chaintreuil C, Gully D, Arrighi JF, Furuta N, Miwa H, Yasuda M, Nouwen N, Teaumroong N, Giraud E. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. THE ISME JOURNAL 2016; 10:64-74. [PMID: 26161635 PMCID: PMC4681849 DOI: 10.1038/ismej.2015.103] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/28/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023]
Abstract
The occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NF-independent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all non-photosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Panlada Tittabutr
- Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Albin Teulet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Julien Thouin
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Jean- François Arrighi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Noriyuki Furuta
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nico Nouwen
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| | - Neung Teaumroong
- Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, Montpellier, France
| |
Collapse
|
146
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
147
|
Piromyou P, Songwattana P, Greetatorn T, Okubo T, Kakizaki KC, Prakamhang J, Tittabutr P, Boonkerd N, Teaumroong N, Minamisawa K. The Type III Secretion System (T3SS) is a Determinant for Rice-Endophyte Colonization by Non-Photosynthetic Bradyrhizobium. Microbes Environ 2015; 30:291-300. [PMID: 26582551 PMCID: PMC4676552 DOI: 10.1264/jsme2.me15080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant associations by bradyrhizobia have been detected not only in leguminous plants, but also in non-leguminous species including rice. Bradyrhizobium sp. SUTN9-2 was isolated from Aeschynomene americana L., which is a leguminous weed found in the rice fields of Thailand. This strain promoted the highest total rice (Oryza sativa L. cultivar Pathum Thani 1) dry weight among the endophytic bradyrhizobial strains tested, and was, thus, employed for the further characterization of rice-Bradyrhizobium interactions. Some known bacterial genes involved in bacteria-plant interactions were selected. The expression of the type III secretion component (rhcJ), type IV secretion component (virD4), and pectinesterase (peces) genes of the bacterium were up-regulated when the rice root exudate was added to the culture. When SUTN9-2 was inoculated into rice seedlings, the peces, rhcJ, virD4, and exopolysaccharide production (fliP) genes were strongly expressed in the bacterium 6–24 h after the inoculation. The gene for glutathione-S-transferase (gst) was slightly expressed 12 h after the inoculation. In order to determine whether type III secretion system (T3SS) is involved in bradyrhizobial infections in rice plants, wild-type SUTN9-2 and T3SS mutant strains were inoculated into the original host plant (A. americana) and a rice plant (cultivar Pathum Thani 1). The ability of T3SS mutants to invade rice tissues was weaker than that of the wild-type strain; however, their phenotypes in A. americana were not changed by T3SS mutations. These results suggest that T3SS is one of the important determinants modulating rice infection; however, type IV secretion system and peces may also be responsible for the early steps of rice infection.
Collapse
Affiliation(s)
- Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 2015; 10:e0142866. [PMID: 26569401 PMCID: PMC4646503 DOI: 10.1371/journal.pone.0142866] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Carlos Medina
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Sevilla, Spain
| | | | | |
Collapse
|
149
|
Murfin KE, Whooley AC, Klassen JL, Goodrich-Blair H. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions. BMC Genomics 2015; 16:889. [PMID: 26525894 PMCID: PMC4630870 DOI: 10.1186/s12864-015-2000-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. METHODS To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. RESULTS The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. CONCLUSIONS The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred. For example, diverse metabolic profiles among bacterial symbionts may have been selected by dissimilarities in nutritional requirements of their different nematode hosts. Similarly, factors involved in parasitism (e.g. immune suppression and microbial competition factors), likely differ based on evolution in response to naturally encountered organisms, such as insect hosts, competitors, predators or pathogens. This study provides insight into effectors of a symbiotic lifestyle, and also highlights that when mining Xenorhabdus species for novel natural products, including antibiotics and insecticidal toxins, analysis of multiple bacterial strains likely will increase the potential for the discovery of novel molecules.
Collapse
Affiliation(s)
- Kristen E Murfin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Amy C Whooley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jonathan L Klassen
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
150
|
Tsurumaru H, Hashimoto S, Okizaki K, Kanesaki Y, Yoshikawa H, Yamakawa T. A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans. Appl Environ Microbiol 2015; 81:5812-9. [PMID: 26092458 PMCID: PMC4551253 DOI: 10.1128/aem.00823-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/12/2015] [Indexed: 11/20/2022] Open
Abstract
The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor.
Collapse
Affiliation(s)
- Hirohito Tsurumaru
- Graduate School of Life Science, Tohoku University, Miyagi, Japan Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Syougo Hashimoto
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouhei Okizaki
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yu Kanesaki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takeo Yamakawa
- Department of Biosciences and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|