101
|
Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 2010; 10:295-311. [PMID: 19725763 PMCID: PMC2946175 DOI: 10.1089/vbz.2009.0014] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control.
Collapse
Affiliation(s)
- Luke Alphey
- Oxitec Limited, Oxford, United
Kingdom
- Department of Zoology, University of Oxford, Oxford,
United Kingdom
| | - Mark Benedict
- Entomology Unit, International Atomic Energy Agency,
Vienna, Austria
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G.Nicoli,”
Crevalcore, Italy
| | - Gary G. Clark
- Mosquito and Fly Research Unit, USDA-ARS-CMAVE,
Gainesville, Florida
| | | | - Mike W. Service
- Liverpool School of Tropical Medicine, Liverpool,
United Kingdom
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky,
Lexington, Kentucky
| |
Collapse
|
102
|
Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Kim Phuc H, Marinotti O, Jasinskiene N, James AA, Alphey L. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A 2010; 107:4550-4. [PMID: 20176967 PMCID: PMC2826341 DOI: 10.1073/pnas.1000251107] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue and dengue hemorrhagic fever are increasing public health problems with an estimated 50-100 million new infections each year. Aedes aegypti is the major vector of dengue viruses in its range and control of this mosquito would reduce significantly human morbidity and mortality. Present mosquito control methods are not sufficiently effective and new approaches are needed urgently. A "sterile-male-release" strategy based on the release of mosquitoes carrying a conditional dominant lethal gene is an attractive new control methodology. Transgenic strains of Aedes aegypti were engineered to have a repressible female-specific flightless phenotype using either two separate transgenes or a single transgene, based on the use of a female-specific indirect flight muscle promoter from the Aedes aegypti Actin-4 gene. These strains eliminate the need for sterilization by irradiation, permit male-only release ("genetic sexing"), and enable the release of eggs instead of adults. Furthermore, these strains are expected to facilitate area-wide control or elimination of dengue if adopted as part of an integrated pest management strategy.
Collapse
Affiliation(s)
- Guoliang Fu
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Rosemary S. Lees
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Derric Nimmo
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
| | - Diane Aw
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Li Jin
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Pam Gray
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
| | - Thomas U. Berendonk
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Helen White-Cooper
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Sarah Scaife
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
| | - Hoang Kim Phuc
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-3900
| | - Luke Alphey
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, United Kingdom
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
103
|
Abstract
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Flaminia Catteruccia
- Imperial College London, Division of Cell and Molecular Biology, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
104
|
Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, Crisanti A. Sex separation strategies: past experience and new approaches. Malar J 2009; 8 Suppl 2:S5. [PMID: 19917075 PMCID: PMC2777327 DOI: 10.1186/1475-2875-8-s2-s5] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.
Collapse
Affiliation(s)
- Philippos A Papathanos
- Imperial College London, Department of Biological Sciences, Imperial College Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme.
Collapse
Affiliation(s)
- Alan S Robinson
- Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories, A-2444 Seibersdorf, Austria.
| | | | | | | |
Collapse
|
106
|
Wilke ABB, Gomes ADC, Natal D, Marrelli MT. Controle de vetores utilizando mosquitos geneticamente modificados. Rev Saude Publica 2009; 43:869-74. [PMID: 19722003 DOI: 10.1590/s0034-89102009005000050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 01/28/2009] [Indexed: 11/21/2022] Open
Abstract
Formas químicas de controle de mosquitos vetores são ineficazes, levando ao desenvolvimento de novas estratégias. Assim, foi realizada revisão das estratégias de controle genético de populações de mosquitos vetores baseada na técnica do inseto estéril. Uma delas consiste na liberação de machos esterilizados por radiação, a outra, na integração de um gene letal dominante associado a um promotor específico de fêmeas imaturas. Entre as vantagens sobre outras técnicas biológicas e químicas de controle de vetores estão: alta especificidade, não prejudicial ao meio ambiente, baixo custo de produção e alta eficácia. O uso desta técnica de modificação genética pode vir a ser uma importante ferramenta do manejo integrado de vetores.
Collapse
|
107
|
Crowder DW, Carrière Y. Comparing the refuge strategy for managing the evolution of insect resistance under different reproductive strategies. J Theor Biol 2009; 261:423-30. [PMID: 19703471 DOI: 10.1016/j.jtbi.2009.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 07/23/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
Genetically modified (GM) crops are used extensively worldwide to control diploid agricultural insect pests that reproduce sexually. However, future GM crops will likely soon target haplodiploid and parthenogenetic insects. As rapid pest adaptation could compromise these novel crops, strategies to manage resistance in haplodiploid and parthenogenetic pests are urgently needed. Here, we developed models to characterize factors that could delay or prevent the evolution of resistance to GM crops in diploid, haplodiploid, and parthenogenetic insect pests. The standard strategy for managing resistance in diploid pests relies on refuges of non-GM host plants and GM crops that produce high toxin concentrations. Although the tenets of the standard refuge strategy apply to all pests, this strategy does not greatly delay the evolution of resistance in haplodiploid or parthenogenetic pests. Two additional factors are needed to effectively delay or prevent the evolution of resistance in such pests, large recessive or smaller non-recessive fitness costs must reduce the fitness of resistance individuals in refuges (and ideally also on GM crops), and resistant individuals must have lower fitness on GM compared to non-GM crops (incomplete resistance). Recent research indicates that the magnitude and dominance of fitness costs could be increased by using specific host-plants, natural enemies, or pathogens. Furthermore, incomplete resistance could be enhanced by engineering desirable traits into novel GM crops. Thus, the sustainability of GM crops that target haplodiploid or parthenogenetic pests will require careful consideration of the effects of reproductive mode, fitness costs, and incomplete resistance.
Collapse
Affiliation(s)
- David W Crowder
- Department of Entomology, University of Arizona, 410 Forbes Bldg, Tucson, AZ 85721, USA.
| | | |
Collapse
|
108
|
Handler AM, Allen ML, Skoda SR. Development and utilization of transgenic New World screwworm, Cochliomyia hominivorax. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23 Suppl 1:98-105. [PMID: 19335836 DOI: 10.1111/j.1365-2915.2008.00773.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The New World screwworm (NWS), Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), was the first insect to be effectively controlled using the sterile insect technique (SIT). Recent efforts to improve SIT control of this species have centred on the development of genetically transformed strains using the piggyBac transposon vector system. Eight transgenic strains were produced incorporating an enhanced green fluorescent protein (EGFP) marker gene under polyubiquitin regulation that has the potential for use as a genetic marking system for released males. The transgenic strains were genetically and phenotypically characterized, including for life fitness parameters and mating competitiveness. These characteristics were unique for each strain and thus some strains were deemed suitable for incorporation into SIT eradication programmes. The strain with the best attributes is designated 'CLAY'. Four of the strains, including CLAY, have been successfully cryopreserved so that their original characteristics should be unchanged when further evaluation is required. With the demonstration of efficient germ-line transformation in NWS, allowing production of fit and competitive transformants, it is now possible to consider further transgenic strain development to improve SIT that are currently being tested in other dipteran species. This includes strains that allow genetic marking with fluorescent proteins, genetic sexing by female lethality, male-specific fluorescent sorting and male sterility by testis-specific lethality. The SIT may also be improved upon by new strategies resulting in lethality of offspring of released insects using conditional lethal systems based upon temperature-dependent or dietary tetracycline regulation of lethal gene expression. Both the creation of new NWS transgenic strains and the ecological safety of their release will be enhanced by new vector systems that allow specific genomic targeting of vector constructs and their subsequent immobilization, ensuring transgene and strain stability.
Collapse
Affiliation(s)
- A M Handler
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida 32608, USA.
| | | | | |
Collapse
|
109
|
Molecular genetic manipulation of vector mosquitoes. Cell Host Microbe 2008; 4:417-23. [PMID: 18996342 DOI: 10.1016/j.chom.2008.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/29/2008] [Accepted: 09/09/2008] [Indexed: 01/01/2023]
Abstract
Genetic strategies for reducing populations of vector mosquitoes or replacing them with those that are not able to transmit pathogens benefit greatly from molecular tools that allow gene manipulation and transgenesis. Mosquito genome sequences and associated EST (expressed sequence tags) databases enable large-scale investigations to provide new insights into evolutionary, biochemical, genetic, metabolic, and physiological pathways. Additionally, comparative genomics reveals the bases for evolutionary mechanisms with particular focus on specific interactions between vectors and pathogens. We discuss how this information may be exploited for the optimization of transgenes that interfere with the propagation and development of pathogens in their mosquito hosts.
Collapse
|
110
|
Juhn J, Marinotti O, Calvo E, James AA. Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. INSECT MOLECULAR BIOLOGY 2008; 17:545-52. [PMID: 18828840 PMCID: PMC3721150 DOI: 10.1111/j.1365-2583.2008.00823.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The products of the maternal-effect genes, nanos (nos) and oskar (osk), are important for the development of germ cells in insects. Furthermore, these genes have been proposed as candidates for donating functional DNA regulatory sequences for use in gene drive systems to control transmission of mosquito-borne pathogens. The nos and osk genes of the cosmopolitan vector mosquito, Culex quinquefasciatus, encode proteins with domains common to orthologues found in other mosquitoes. Expression analyses support the conclusion that the role of these genes is conserved generally among members of the nematocera. Hybridization in situ analyses reveal differences in mRNA distribution in early embryos in comparison with the cyclorraphan, Drosophila melanogaster, highlighting a possible feature in the divergence of the clades each insect represents.
Collapse
Affiliation(s)
- J Juhn
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
111
|
O'Brochta DA, Handler AM. Perspectives on the state of insect transgenics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:1-18. [PMID: 18510010 DOI: 10.1007/978-0-387-78225-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.
Collapse
Affiliation(s)
- David A O'Brochta
- University of Maryland Biotechnology Institute, Center for Biosystems Research, Rockville, MD, USA.
| | | |
Collapse
|
112
|
Impact of Technological Improvements on Traditional Control Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:84-92. [DOI: 10.1007/978-0-387-78225-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
113
|
Miller TA, Lauzon CR, Lampe DJ. Technological Advances to Enhance Agricultural Pest Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:141-50. [DOI: 10.1007/978-0-387-78225-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
114
|
Alphey L, Nimmo D, O'Connell S, Alphey N. Insect population suppression using engineered insects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:93-103. [PMID: 18510017 DOI: 10.1007/978-0-387-78225-6_8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Suppression or elimination of vector populations is a tried and tested method for reducing vector-borne disease, and a key component of integrated control programs. Genetic methods have the potential to provide new and improved methods for vector control. The required genetic technology is simpler than that required for strategies based on population replacement and is likely to be available earlier. In particular, genetic methods that enhance the Sterile Insect Technique (e.g., RIDL) are already available for some species.
Collapse
Affiliation(s)
- Luke Alphey
- Department of Zoology, Oxford University, Oxford, UK.
| | | | | | | |
Collapse
|
115
|
Abstract
Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.
Collapse
Affiliation(s)
- Fred Gould
- Department of Entomology, North Carolina State University, Box 7634, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
116
|
Condon KC, Condon GC, Dafa'alla TH, Fu G, Phillips CE, Jin L, Gong P, Alphey L. Genetic sexing through the use of Y-linked transgenes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1168-1176. [PMID: 17916503 DOI: 10.1016/j.ibmb.2007.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 05/25/2023]
Abstract
Sterile insect technique (SIT)-based pest control programs rely on the mass release of sterile insects to reduce the wild target population. In many cases, it is desirable to release only males. Sterile females may cause damage, e.g., disease transmission by mosquitoes or crop damage via oviposition by the Mediterranean fruit fly (Medfly). Also, sterile females may decrease the effectiveness of released males by distracting them from seeking out wild females. To eliminate females from the release population, a suitable sexual dimorphism is required. For several pest species, genetic sexing strains have been constructed in which such a dimorphism has been induced by genetics. Classical strains were based on the translocation to the Y chromosome of a selectable marker, which is therefore expressed only in males. Recently, several prototype strains have been constructed using sex-specific expression of markers or conditional lethal genes from autosomal insertions of transgenes. Here, we describe a novel genetic sexing strategy based on the use of Y-linked transgenes expressing fluorescent proteins. We demonstrate the feasibility of this strategy in a major pest species, Ceratitis capitata (Wiedemann), and discuss the advantages and disadvantages relative to other genetic sexing methods and potential applicability to other species.
Collapse
Affiliation(s)
- Kirsty C Condon
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 2007; 5:11. [PMID: 17374148 PMCID: PMC1865532 DOI: 10.1186/1741-7007-5-11] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 03/20/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality. RESULTS We investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality. CONCLUSION Conventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease control.
Collapse
|
118
|
King GF. Modulation of insect Cav channels by peptidic spider toxins. Toxicon 2007; 49:513-30. [PMID: 17197008 DOI: 10.1016/j.toxicon.2006.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Insects have a much smaller repertoire of voltage-gated calcium (Ca(V)) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(V)1, Ca(V)2, and Ca(V)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca(V) channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca(V) channels, since severe loss-of-function mutations in genes encoding the pore-forming alpha1 subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca(V) channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca(V) channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca(V) channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca(V) channels. This review focuses on peptidic spider toxins that specifically target insect Ca(V) channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests.
Collapse
Affiliation(s)
- Glenn F King
- Division of Chemical and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
119
|
Viktorinová I, Wimmer EA. Comparative analysis of binary expression systems for directed gene expression in transgenic insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:246-54. [PMID: 17296499 DOI: 10.1016/j.ibmb.2006.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 05/13/2023]
Abstract
Binary expression systems are of key interest to functional gene analysis by over- or misexpression. The application of such systems in diverse organisms would allow the study of many biological problems not addressable in model organisms. Here we report a set of constructs and an effective kinetic approach to quantitatively compare a series of diverse binary expression systems based on GAL4/UAS, LexA/(LL)(4) and tetracycline-controlled tTA/TRE. By the use of these constructs, we could show that in Drosophila melanogaster the yeast-derived GAL4/UAS systems are more effective in activating responder gene expression than the bacterial-derived LexA/(LL)(4) and tTA/TRE systems. The constructs are embedded in broad-range piggyBac-based transposon vectors and the transactivators are driven by the widely applicable 3xP3 promoter. These constructs should therefore be transferable to evaluate the functionality of binary expression systems in non-model insect species.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Department of Genetics, University of Bayreuth, Universitätsstrasse 30 NW I, 95447 Bayreuth, Germany
| | | |
Collapse
|
120
|
Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa'alla TH, Alphey L. Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 2007; 25:353-7. [PMID: 17322873 DOI: 10.1038/nbt1283] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/14/2006] [Indexed: 11/09/2022]
Abstract
The Sterile Insect Technique is a species-specific and environmentally friendly method of pest control involving mass release of sterilized insects that reduce the wild population through infertile matings. Insects carrying a female-specific autocidal genetic system offer an attractive alternative to conventional sterilization methods while also eliminating females from the release population. We exploited sex-specific alternative splicing in insects to engineer female-specific autocidal genetic systems in the Mediterranean fruit fly, Ceratitis capitata. These rely on the insertion of cassette exons from the C. capitata transformer gene into a heterologous tetracycline-repressible transactivator such that the transactivator transcript is disrupted in male splice variants but not in the female-specific one. As the key components of these systems function across a broad phylogenetic range, this strategy addresses the paucity of sex-specific expression systems (e.g., early-acting, female-specific promoters) in insects other than Drosophila melanogaster. The approach may have wide applicability for regulating gene expression in other organisms, particularly for combinatorial control with appropriate promoters.
Collapse
Affiliation(s)
- Guoliang Fu
- Oxitec Limited, 71 Milton Park, Oxford OX14 4RX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sarkar A, Atapattu A, Belikoff EJ, Heinrich JC, Li X, Horn C, Wimmer EA, Scott MJ. Insulated piggyBac vectors for insect transgenesis. BMC Biotechnol 2006; 6:27. [PMID: 16776846 PMCID: PMC1525164 DOI: 10.1186/1472-6750-6-27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 06/16/2006] [Indexed: 11/12/2022] Open
Abstract
Background Germ-line transformation of insects is now a widely used method for analyzing gene function and for the development of genetically modified strains suitable for pest control programs. The most widely used transposable element for the germ-line transformation of insects is piggyBac. The site of integration of the transgene can influence gene expression due to the effects of nearby transcription enhancers or silent heterochromatic regions. Position effects can be minimized by flanking a transgene with insulator elements. The scs/scs' and gypsy insulators from Drosophila melanogaster as well as the chicken β-globin HS4 insulator function in both Drosophila and mammalian cells. Results To minimize position effects we have created a set of piggyBac transformation vectors that contain either the scs/scs', gypsy or chicken β-globin HS4 insulators. The vectors contain either fluorescent protein or eye color marker genes and have been successfully used for germ-line transformation of Drosophila melanogaster. A set of the scs/scs' vectors contains the coral reef fluorescent protein marker genes AmCyan, ZsGreen and DsRed that have not been optimized for translation in human cells. These marker genes are controlled by a combined GMR-3xP3 enhancer/promoter that gives particularly strong expression in the eyes. This is also the first report of the use of the ZsGreen and AmCyan reef fluorescent proteins as transformation markers in insects. Conclusion The insulated piggyBac vectors should protect transgenes against position effects and thus facilitate fine control of gene expression in a wide spectrum of insect species. These vectors may also be used for transgenesis in other invertebrate species.
Collapse
Affiliation(s)
- Abhimanyu Sarkar
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Asela Atapattu
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Esther J Belikoff
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Jörg C Heinrich
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Xuelei Li
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Carsten Horn
- Lehrstuhl für Genetik, Universität Bayreuth, Universitätsstraße 30 NW1, 95447 Bayreuth, Germany
| | - Ernst A Wimmer
- Lehrstuhl für Genetik, Universität Bayreuth, Universitätsstraße 30 NW1, 95447 Bayreuth, Germany
| | - Maxwell J Scott
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
122
|
Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I, Economopoulos A, Savakis C. Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. INSECT MOLECULAR BIOLOGY 2006; 15:95-103. [PMID: 16469073 DOI: 10.1111/j.1365-2583.2006.00613.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The olive fruit fly (olive fly) Bactrocera oleae (Dacus), recently introduced in North America, is the most destructive pest of olives worldwide. The lack of an efficient gene transfer technology for olive fly has hampered molecular analysis, as well as development of genetic techniques for its control. We have developed a Minos-based transposon vector carrying a self-activating cassette which overexpresses the enhanced green fluorescent protein (EGFP). Efficient transposase-mediated integration of one to multiple copies of this vector was achieved in the germ line of B. oleae by coinjecting the vector along with in vitro synthesized Minos transposase mRNA into preblastoderm embryos. The self-activating gene construct combined with transposase mRNA present a system with potential for transgenesis of very diverse species.
Collapse
Affiliation(s)
- M Koukidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Magori K, Gould F. Genetically engineered underdominance for manipulation of pest populations: a deterministic model. Genetics 2006; 172:2613-20. [PMID: 16415364 PMCID: PMC1456375 DOI: 10.1534/genetics.105.051789] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We theoretically investigate the potential for introgressing a desired engineered gene into a pest population by linking the desired gene to DNA constructs that exhibit underdominance properties. Our deterministic model includes two independently segregating engineered constructs that both carry a lethal gene, but suppress each other. Only genotypes containing both or neither construct are viable. Both constructs also carry the desired gene with an independent regulatory mechanism. We examine the minimal number of individuals of an engineered strain that must be released into a natural population to successfully introgress the desired gene. We compare results for strains carrying single and multiple insertions of the constructs. When there are no fitness costs associated with the inserted constructs (when the lethal sequences are not expressed), the number of individuals that must be released decreases as the number of insertions in the genome of the released strain increases. As fitness costs increase, the number of individuals that must be released increases at a greater rate for release strains with more insertions. Under specific conditions this results in the strain with only a single insertion of each construct being the most efficient for introgressing the desired gene. We discuss practical implications of our findings.
Collapse
Affiliation(s)
- Krisztian Magori
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27607, USA.
| | | |
Collapse
|
124
|
Dhillon MK, Singh R, Naresh JS, Sharma HC. The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. JOURNAL OF INSECT SCIENCE (ONLINE) 2005; 5:40. [PMID: 17119622 PMCID: PMC1615247 DOI: 10.1093/jis/5.1.40] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 08/08/2005] [Indexed: 05/08/2023]
Abstract
The melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) is distributed widely in temperate, tropical, and sub-tropical regions of the world. It has been reported to damage 81 host plants and is a major pest of cucurbitaceous vegetables, particularly the bitter gourd (Momordica charantia), muskmelon (Cucumis melo), snap melon (C. melo var. momordica), and snake gourd (Trichosanthes anguina). The extent of losses vary between 30 to 100%, depending on the cucurbit species and the season. Its abundance increases when the temperatures fall below 32 degrees C, and the relative humidity ranges between 60 to 70%. It prefers to infest young, green, soft-skinned fruits. It inserts the eggs 2 to 4 mm deep in the fruit tissues, and the maggots feed inside the fruit. Pupation occurs in the soil at 0.5 to 15 cm below the soil surface. Keeping in view the importance of the pest and crop, melon fruit fly management could be done using local area management and wide area management. The melon fruit fly can successfully be managed over a local area by bagging fruits, field sanitation, protein baits, cue-lure traps, growing fruit fly-resistant genotypes, augmentation of biocontrol agents, and soft insecticides. The wide area management program involves the coordination of different characteristics of an insect eradication program (including local area options) over an entire area within a defensible perimeter, and subsequently protected against reinvasion by quarantine controls. Although, the sterile insect technique has been successfully used in wide area approaches, this approach needs to use more sophisticated and powerful technologies in eradication programs such as insect transgenesis and geographical information systems, which could be deployed over a wide area. Various other options for the management of fruit fly are also discussed in relation to their bio-efficacy and economics for effective management of this pest.
Collapse
Affiliation(s)
- M K Dhillon
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India 502324.
| | | | | | | |
Collapse
|
125
|
Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa'alla T, Coleman PG, Alphey L. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 2005; 23:453-6. [PMID: 15750586 DOI: 10.1038/nbt1071] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/05/2005] [Indexed: 11/09/2022]
Abstract
The Sterile Insect Technique (SIT) used to control insect pests relies on the release of large numbers of radiation-sterilized insects. Irradiation can have a negative impact on the subsequent performance of the released insects and therefore on the cost and effectiveness of a control program. This and other problems associated with current SIT programs could be overcome by the use of recombinant DNA methods and molecular genetics. Here we describe the construction of strains of the Mediterranean fruit fly (medfly) harboring a tetracycline-repressible transactivator (tTA) that causes lethality in early developmental stages of the heterozygous progeny but has little effect on the survival of the parental transgenic tTA insects. We show that these properties should prove advantageous for the implementation of insect pest control programs.
Collapse
Affiliation(s)
- Peng Gong
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Hatakeyama M, Sumitani M. Preservation of a transgenic strain of the sawfly, Athalia rosae (Hymenoptera) by artificial fertilization using cryopreserved sperm. INSECT MOLECULAR BIOLOGY 2005; 14:105-109. [PMID: 15663780 DOI: 10.1111/j.1365-2583.2004.00526.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Germline transformation using a piggyBac-derived vector is feasible in the sawfly, Athalia rosae. A previously generated transgenic line carrying green fluorescence protein (GFP) genes as reporters was successfully maintained and preserved without consecutive rearing. Sperm taken from males that were frozen directly in liquid nitrogen and stored at -80 degrees C for a year were microinjected into mature unfertilized eggs dissected from female ovaries. A fraction of the sperm-injected eggs was fertilized and developed into diploid females, and all of them expressed GFP. Haploid male progeny from these females segregated into GFP-positive and GFP-negative individuals in a ratio of 1:1 indicating heterozygosity of the parental females. The GFP genes were stably inherited staying at the location where they were originally integrated.
Collapse
Affiliation(s)
- M Hatakeyama
- Developmental Mechanisms Laboratory, Developmental Biology Department, National Institute of Agrobiological Sciences, Owashi, Tsukuba, Japan.
| | | |
Collapse
|
127
|
Sinkins SP, Hastings IM. Male-specific insecticide resistance and mosquito transgene dispersal. Trends Parasitol 2004; 20:413-6. [PMID: 15324731 DOI: 10.1016/j.pt.2004.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a need to develop methods to spread disease-blocking transgenes through mosquito populations. This article discusses the possibility of linking transgenes to insecticide-resistant alleles engineered to be expressed only in males. The resulting increase in mean longevity of males carrying the construct under insecticide treatment could easily outweigh any fitness costs in females, so that the construct would spread rapidly. It should be possible to produce constructs where any potential risk of loss of male-specific expression would be negligible.
Collapse
Affiliation(s)
- Steven P Sinkins
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | |
Collapse
|
128
|
Muñoz D, Jimenez A, Marinotti O, James AA. The AeAct-4 gene is expressed in the developing flight muscles of female Aedes aegypti. INSECT MOLECULAR BIOLOGY 2004; 13:563-568. [PMID: 15373813 DOI: 10.1111/j.0962-1075.2004.00519.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Population reduction of mosquitoes is an effective method for controlling dengue fever and malaria transmission. Recent developments in control techniques include proposals to construct transgenic strains of mosquitoes carrying dominant, conditional-lethal genes under the control of sex- and stage-specific promoters. In order to identify such promoters, subtractive cDNA libraries derived from male and female pupal mRNA of the yellow fever mosquito, Aedes aegypti, were constructed and screened. A cDNA clone, F49, corresponds to a gene expressed specifically in female pupae. Sequence analyses revealed that this gene belongs to the actin gene family, and therefore was designated Aedes Actin-4 (AeAct-4). Transcription analyses demonstrated that this gene is expressed predominantly in the indirect flight muscles and, to a lesser extent, the legs of developing female mosquitoes. The promoter of this gene may be a useful tool for developing conditional lethal strains of mosquitoes.
Collapse
Affiliation(s)
- D Muñoz
- Departamento de Producción Agraria, Universidad Pública de Navarra, Campus Arrosadía s/n, Pamplona, Spain
| | | | | | | |
Collapse
|
129
|
Riehle MA, Srinivasan P, Moreira CK, Jacobs-Lorena M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. ACTA ACUST UNITED AC 2004; 206:3809-16. [PMID: 14506216 DOI: 10.1242/jeb.00609] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malaria kills millions of people every year, yet there has been little progress in controlling this disease. For transmission to occur, the malaria parasite has to complete a complex developmental cycle in the mosquito. The mosquito is therefore a potential weak link in malaria transmission, and generating mosquito populations that are refractory to the parasite is a potential means of controlling the disease. There has been considerable progress over the last decade towards developing the tools for creating a refractory mosquito. Accomplishments include germline transformation of several important mosquito vectors, the completed genomes of the mosquito Anopheles gambiae and the malaria parasite Plasmodium falciparum, and the identification of promoters and effector genes that confer resistance in the mosquito. These tools have provided researchers with the ability to engineer a refractory mosquito vector, but there are fundamental gaps in our knowledge of how to transfer this technology safely and effectively into field populations. This review considers strategies for interfering with Plasmodium development in the mosquito, together with issues related to the transfer of laboratory-acquired knowledge to the field, such as minimization of transgene fitness load to the mosquito, driving genes through populations, avoiding the selection of resistant strains, and how to produce and release populations of males only.
Collapse
Affiliation(s)
- Michael A Riehle
- Johns Hopkins University, Bloomberg School of Public Health, Dept of Molecular Microbiology & Immunology, 615 N. Wolfe St, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
130
|
Allen ML, Handler AM, Berkebile DR, Skoda SR. piggyBac transformation of the New World screwworm, Cochliomyia hominivorax, produces multiple distinct mutant strains. MEDICAL AND VETERINARY ENTOMOLOGY 2004; 18:1-9. [PMID: 15009439 DOI: 10.1111/j.1365-2915.2004.0473.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sterile insect technique (SIT) programs are designed to eradicate pest species by releasing mass-reared, sterile insects into an infested area. The first major implementation of SIT was the New World Screwworm Eradication Program, which successfully eliminated the New World screwworm (NWS), Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), from the Continental US, Mexico and much of Central America. Ionizing radiation is currently used for sterilization, but transgenic insect techniques could replace this method, providing a safer, more cost-effective alternative. Genetic transformation methods have been demonstrated in NWS, and verified by Southern blot hybridization, PCR and sequencing of element insertion junctions. A lethal insertional mutation and enhancer detection-like phenotypic expression variations are presented and discussed. In addition to supporting the eradication efforts, transformation methods offer potential means to identify genes and examine gene function in NWS.
Collapse
Affiliation(s)
- M L Allen
- Midwest Livestock Insects Laboratory, US Department of Agriculture, Lincoln, NE 68583, USA.
| | | | | | | |
Collapse
|
131
|
Scott MJ, Heinrich JC, Li X. Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:185-192. [PMID: 14871615 DOI: 10.1016/j.ibmb.2003.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Indexed: 05/24/2023]
Abstract
The Australian sheep blowfly Lucilia cuprina is the most important pest species involved in cutaneous myiasis (flystrike) of sheep in Australia and New Zealand. In New Zealand L. cuprina is primarily controlled through the application of insecticides. However, there is an increased interest in biological methods of control of this species. We have proposed to develop a genetically modified strain of L. cuprina that would be ideal for a male-only sterile release program. To that end we have developed a method for making transgenic L. cuprina using a piggyBac vector and an EGFP marker gene. We have also developed in Drosophila melanogaster a 2-component genetic system for controlling female viability. Females carrying both components of the system die unless fed a diet that contains tetracycline. We anticipate that the female-killing system will need to be optimised for L. cuprina in order to make a strain with the properties required for a male-only release program.
Collapse
Affiliation(s)
- Maxwell J Scott
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
132
|
Komitopoulou K, Christophides GK, Kalosaka K, Chrysanthis G, Theodoraki MA, Savakis C, Zacharopoulou A, Mintzas AC. Medfly promoters relevant to the sterile insect technique. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:149-157. [PMID: 14871611 DOI: 10.1016/j.ibmb.2003.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 04/04/2003] [Accepted: 06/12/2003] [Indexed: 05/24/2023]
Abstract
This review summarizes structural and functional studies on medfly promoters and regulatory elements that can be used for driving sex-specific, conditional and constitutive gene expression in this species. Sex-specific and conditional promoters are important for generating transgenic sexing strains that could increase the performance of the Sterile Insect Technique while strong constitutive promoters are necessary for developing sensitive transgenic marker systems. The review focuses on the functional analysis of the promoters of two male-specific and heat shock medfly genes. A special emphasis is put on the potential utility of these promoters for developing transgenic sexing strains.
Collapse
Affiliation(s)
- Katia Komitopoulou
- Department of Genetics and Biotechnology, School of Biological Sciences, University of Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Markaki M, Craig RK, Savakis C. Insect population control using female specific pro-drug activation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:131-137. [PMID: 14871609 DOI: 10.1016/j.ibmb.2003.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2002] [Accepted: 03/21/2003] [Indexed: 05/24/2023]
Abstract
A system for population control of insects is proposed. It is based on transgenic insects expressing an enzyme which converts an inactive pro-drug into an active, toxic form. A model system is presented which relies on transposon-mediated integration of a bacterial cytosine deaminase (CD) gene into the genome of Drosophila melanogaster. We demonstrate female-specific sterility and transgene-dependent lethality when flies carrying the CD gene under a Drosophila female-specific promoter/enhancer are treated with 5-Fluorocytosine, a low-toxicity nucleoside analogue which is converted to toxic 5-Fluorouracil by the enzyme. The approach can be used with existing pro-insecticides and appropriate converting enzymes in combination with established mass rearing technology, for targeted, environmentally acceptable control of insects of economic and public health importance.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, FoRTH, Heraklion, Crete, Greece
| | | | | |
Collapse
|
134
|
Robinson AS, Franz G, Atkinson PW. Insect transgenesis and its potential role in agriculture and human health. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:113-120. [PMID: 14871607 DOI: 10.1016/j.ibmb.2003.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 05/24/2023]
Abstract
The ability to genetically engineer insects other than Drosophila melanogaster has further extended modern genetic techniques into important insect pest species ranging from fruit fly pests of horticulture to mosquito vectors of human disease. In only a relatively short period of time, a range of transgenes have been inserted into more than 10 insect pest species. Genetic transformation of these pest species has proven to be a very important laboratory tool in analyzing gene function and effects on phenotype however the full extension of this technology into the field is yet to be realized. Here we briefly review the development of transgenic technology in pest insect species and discuss the challenges that remain in this applied area of insect genetics and entomology.
Collapse
Affiliation(s)
- Alan S Robinson
- Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Agency's Laboratories Seibersdorf, International Atomic Energy Agency, A-1400 Vienna, Austria
| | | | | |
Collapse
|
135
|
Raphael KA, Whyard S, Shearman D, An X, Frommer M. Bactrocera tryoni and closely related pest tephritids--molecular analysis and prospects for transgenic control strategies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:167-176. [PMID: 14871613 DOI: 10.1016/j.ibmb.2003.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 04/01/2003] [Accepted: 06/20/2003] [Indexed: 05/24/2023]
Abstract
Bactrocera tryoni is a serious pest of horticulture in eastern Australia. Here we review molecular data relevant to pest status and development of a transformation system for this species. The development of transformation vectors for non-drosophilid insects has opened the door to the possibility of improving the sterile insect technique (SIT), by genetically engineering factory strains of pest insects to produce male-only broods. Transposition assays indicate that all five of the vectors currently used for transformation in non-drosophilid species have the potential to be useful as transformation vectors in B. tryoni. Evidence of cross mobilization of hobo by an endogenous Homer element emphasises the necessity to understand the endogenous transposons within a species. The sex-specific doublesex and yolk protein genes have been characterized with a view to engineering a female-specific lethal gene or modifying gene expression through RNA interference (RNAi). Data are presented which indicate the potential of RNAi to modify the sex ratio of resultant broods. An understanding of how pest status is determined and maintained is being addressed through the characterization of genes of the circadian clock that enable the fly to adapt to environmental cues. Such an understanding will be useful in the future to the effective delivery of sophisticated pest control measures.
Collapse
Affiliation(s)
- Kathryn A Raphael
- Fruit Fly Research Centre, School of Biological Sciences, University of Sydney, New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|
136
|
Handler AM. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:121-130. [PMID: 14871608 DOI: 10.1016/j.ibmb.2003.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/19/2003] [Accepted: 08/07/2003] [Indexed: 05/24/2023]
Abstract
Genetically transformed insect pests provide significant opportunities to create strains for improved sterile insect technique and new strategies based on conditional lethality. A major concern for programs that rely on the release of transgenic insects is the stability of the transgene, and maintenance of consistent expression of genes of interest within the transgene. Transgene instability would influence the integrity of the transformant strain upon which the effectiveness of the biological control program depends. Loss or intra-genomic transgene movement would result in strain attributes important to the program being lost or diminished, and the mass-release of such insects could significantly exacerbate the insect pest problem. Instability resulting in intra-genomic movement may also be a prelude to inter-genomic transgene movement between species resulting in ecological risks. This is less of a concern for short-term releases, where transgenic insects are not expected to survive in the environment beyond two or three generations. Transgene movement may occur, however, into infectious agents during mass-rearing, and the potential for movement after release is a possibility for programs using many millions of insects. The primary methods of addressing potential transgene instability relate to an understanding of the vector system used for gene transfer, the potential for its mobilization by the same or a related vector system, and methods required to identify transformants and determine if unexpected transgene movement has occurred. Methods also exist for preventing transposon-mediated mobilization, by deleting or rearranging vector sequences required for transposition using recombination systems. Stability of transgene expression is also a critical concern, especially in terms of potential epigenetic interactions with host genomes resulting in gene silencing that have been observed in plants and fungi, and it must be determined if this or related phenomena can occur in insects.
Collapse
Affiliation(s)
- Alfred M Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 S.W. 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
137
|
Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. ANNUAL REVIEW OF ENTOMOLOGY 2004; 49:193-217. [PMID: 14651462 DOI: 10.1146/annurev.ento.49.061802.123344] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The concept that an insect species' genome could be altered in a manner that would result in the control of that species (i.e., autocidal control) or in the replacement of a pestiferous strain of the species with a more benign genotype was first proposed in the mid-twentieth century. A major research effort in population genetics and ecology followed and led to the development of a set of classical genetic control approaches that included use of sterile males, conditional lethal genes, translocations, compound chromosomes, and microbe-mediated infertility. Although there have been a number of major successes in application of classical genetic control, research in this area has declined in the past 20 years for technical and societal reasons. Recent advances in molecular biology and transgenesis research have renewed interest in genetically based control methods because these advances may remove some major technical problems that have constrained effective genetic manipulation of pest species. Population genetic analyses suggest that transgenic manipulations may enable development of strains that would be 10 to over 100 times more efficient than strains developed by classical methods. Some of the proposed molecular approaches to genetic control involve modifications of classical approaches such as conditional lethality, whereas others are novel. Experience from the classical era of genetic control research indicates that the population structure and population dynamics of the target population will determine which, if any, genetic control approaches would be appropriate for addressing a specific problem. As such, there continues to be a need for ongoing communication between scientists who are developing strains and those who study the native pest populations.
Collapse
Affiliation(s)
- Fred Gould
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
138
|
Abstract
The recent establishment of broadly applicable genetic transformation systems will allow the analysis of gene function in diverse insect species. This will increase our understanding of developmental and evolutionary biology. Furthermore, insect transgenesis will provide new strategies for insect pest management and methods to impair the transmission of pathogens by human disease vectors. However, these powerful techniques must be applied with great care to avoid harm to our environment.
Collapse
Affiliation(s)
- Ernst A Wimmer
- Lehrstuhl für Genetik, Universität Bayreuth, Universitätsstrasse 30 NWI, 95447 Bayreuth, Germany.
| |
Collapse
|
139
|
Horn C, Offen N, Nystedt S, Häcker U, Wimmer EA. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 2003; 163:647-61. [PMID: 12618403 PMCID: PMC1462455 DOI: 10.1093/genetics/163.2.647] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transposon mutagenesis provides a fundamental tool for functional genomics. Here we present a non-species-specific, combined enhancer detection and binary expression system based on the transposable element piggyBac: For the different components of this insertional mutagenesis system, we used widely applicable transposons and distinguishable broad-range transformation markers, which should enable this system to be operational in nonmodel arthropods. In a pilot screen in Drosophila melanogaster, piggyBac mutator elements on the X chromosome were mobilized in males by a Hermes-based jumpstarter element providing piggyBac transposase activity under control of the alpha1-tubulin promoter. As primary reporters in the piggyBac mutator elements, we employed the heterologous transactivators GAL4delta or tTA. To identify larval and adult enhancer detectors, strains carrying UASp-EYFP or TRE-EYFP as secondary reporter elements were used. Tissue-specific enhancer activities were readily observed in the GAL4delta/UASp-based systems, but only rarely in the tTA/TRE system. Novel autosomal insertions were recovered with an average jumping rate of 80%. Of these novel insertions, 3.8% showed homozygous lethality, which was reversible by piggyBac excision. Insertions were found in both coding and noncoding regions of characterized genes and also in noncharacterized and non-P-targeted CG-number genes. This indicates that piggyBac will greatly facilitate the intended saturation mutagenesis in Drosophila.
Collapse
Affiliation(s)
- Carsten Horn
- Lehrstuhl für Genetik, Universität Bayreuth, 95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
140
|
Horn C, Wimmer EA. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 2003; 21:64-70. [PMID: 12483222 DOI: 10.1038/nbt769] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Accepted: 11/14/2002] [Indexed: 11/09/2022]
Abstract
Biological approaches to insect pest management offer alternatives to pesticidal control. In area-wide control programs that cover entire regions, the sterile insect technique (SIT) can be used to successfully suppress economically important pest species by the mass release of sterilized pest organisms. However, conventional sterilization by ionizing radiation reduces insect fitness, which can result in reduced competitiveness of the sterilized insects. Here we report a transgene-based, dominant embryonic lethality system that allows for generation of large quantities of competitive but sterile insects without the need of irradiation. The system involves the ectopic expression of a hyperactive pro-apoptotic gene that causes embryo-specific lethality when driven by the tetracycline-controlled transactivator (tTA) under the regulation of a cellularization gene enhancer-promoter. We have successfully tested this system in Drosophila melanogaster. The embryonic lethality can be suppressed maternally, which will allow it to be combined with transgenic female-specific lethality systems to raise only vigorous but sterile males.
Collapse
Affiliation(s)
- Carsten Horn
- Lehrstuhl für Genetik, Universität Bayreuth, Universitätsstrasse 30 NWI, 95447 Bayreuth, Germany
| | | |
Collapse
|
141
|
Horn C, Schmid BGM, Pogoda FS, Wimmer EA. Fluorescent transformation markers for insect transgenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1221-1235. [PMID: 12225913 DOI: 10.1016/s0965-1748(02)00085-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The first effectively achieved germ-line transformations of non-drosophilid insects were based on mutant rescue of eye color phenotypes. However, for most insect species neither visible mutants nor corresponding cloned genes are available. Therefore, the development of broadly applicable and reliable transformation markers will be of great importance to fully exploit the enormous potential transgenic insect technology has to offer. Here we review transposon-mediated germ-line transformation approaches that employ green fluorescent protein (GFP) variants to identify successful gene transfer. Furthermore, we provide novel data on the use of DsRed as an additional red fluorescent transformation marker for insect transgenesis. In conclusion, fluorescent proteins controlled by suitable strong promoters possess ideal characteristics to serve as transformation markers for a wide range of insect species.
Collapse
Affiliation(s)
- Carsten Horn
- Universität Bayreuth, Lehrstuhl für Genetik, Universitätsstrasse 30 NWI, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
142
|
Abstract
The mass release of sterile insects (the Sterile Insect Technique, SIT) is a highly effective area-wide method of pest control with a low environmental impact. SIT relies on the sterilization by irradiation of large numbers of insects. This has unavoidable costs in terms of the fitness of the irradiated insects and the financial requirements of constructing and operating the radiation facility. In many cases it is considered important to release only males, but large-scale sex-separation is also problematic. I have proposed that both of these difficulties can be overcome by using engineered strains of insects carrying a dominant, repressible, lethal gene or genetic system. As a proof of principle, my group and others have constructed strains of Drosophila melanogaster with the required genetic properties.
Collapse
Affiliation(s)
- Luke Alphey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
143
|
Atkinson PW. Genetic engineering in insects of agricultural importance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1237-1242. [PMID: 12225914 DOI: 10.1016/s0965-1748(02)00086-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The past five years have witnessed the extension of genetic transformation techniques into 11 insect species covering four orders within the Insecta. While the robustness of these transformation systems can be improved, there is now a highly likely probability that transformation of a given insect species will ensue, provided transposable element-containing plasmid DNA can be effectively delivered to the embryo or some other life stage. These developments have shifted emphasis to concerns of transgene stability and the regulation of the rearing and release of these transgenic insects. They have also led to some elegant demonstrations of genetic sexing mechanisms in Drosophila melanogaster with the expectation that similar systems be extended into pest insect species. These developments and issues are discussed in this short review.
Collapse
Affiliation(s)
- Peter W Atkinson
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
144
|
Abstract
Recent advances in insect genetic engineering have opened up new possibilities in the genetic control of insect vectors of human diseases. We outline the current state of the sterile insect technique and show how the use of engineered dominant lethals can greatly increase the effectiveness of this approach. We consider alternative strategies based on the use of conditional dominant lethals that are not always active in the environment.
Collapse
Affiliation(s)
- Luke Alphey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | |
Collapse
|
145
|
Heinrich JC, Li X, Henry RA, Haack N, Stringfellow L, Heath ACG, Scott MJ. Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. INSECT MOLECULAR BIOLOGY 2002; 11:1-10. [PMID: 11841497 DOI: 10.1046/j.0962-1075.2001.00301.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Australian sheep blowfly, Lucilia cuprina, is the most important economic insect pest for the sheep industries in Australia and New Zealand. piggyBac-mediated germ-line transformation of L. cuprina was achieved with a helper plasmid that had the Drosophila melanogaster hsp70 promoter controlling expression of the transposase and a piggyBac vector with an EGFP marker gene. Two transformant lines were obtained, at a frequency of approximately 1-2% per fertile G0. One of these lines has a single copy of the transgene, the other most likely has four copies. This is the first report of germ-line transformation of L. cuprina and is an important step towards the generation of engineered strains that would be suitable for male-only release eradication/suppression programmes.
Collapse
Affiliation(s)
- J C Heinrich
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
146
|
Ryu JR, Olson LK, Arnosti DN. Cell-type specificity of short-range transcriptional repressors. Proc Natl Acad Sci U S A 2001; 98:12960-5. [PMID: 11687630 PMCID: PMC60807 DOI: 10.1073/pnas.231394998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repressors can be classified as short- or long-range, according to their range of activity. Functional analysis of identified short-range repressors has been carried out largely in transgenic Drosophila, but it is not known whether general properties of short-range repressors are evident in other types of assays. To study short-range transcriptional repressors in cultured cells, we created chimeric tetracycline repressors based on Drosophila transcriptional repressors Giant, Drosophila C-terminal-binding protein (dCtBP), and Knirps. We find that Giant and dCtBP are efficient repressors in Drosophila and mammalian cells, whereas Knirps is active only in insect cells. The restricted activity of Knirps, in contrast to that of Giant, suggests that not all short-range repressors possess identical activities, consistent with recent findings showing that short-range repressors act through multiple pathways. The mammalian repressor Kid is more effective than either Giant or dCtBP in mammalian cells but is inactive in Drosophila cells. These results indicate that species-specific factors are important for the function of the Knirps and Kid repressors. Giant and dCtBP repress reporter genes in a variety of contexts, including genes that were introduced by transient transfection, carried on episomal elements, or stably integrated. This broad activity indicates that the context of the target gene is not critical for the ability of short-range repressors to block transcription, in contrast to other repressors that act only on stably integrated genes.
Collapse
Affiliation(s)
- J R Ryu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
147
|
Zakharkin SO, Headley VV, Kumar NK, Buck NA, Wheeler DE, Benes H. Female-specific expression of a hexamerin gene in larvae of an autogenous mosquito. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5713-22. [PMID: 11722555 DOI: 10.1046/j.0014-2956.2001.02514.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fourth-instar larvae of the autogenous mosquito, Aedes atropalpus, synthesize three hexamerins or hexameric storage proteins which are distinguished by different methionine and aromatic amino-acid contents. One protein, Hexamerin-1.2 (AatHex-1.2) is only found in female larvae and pupae. In order to investigate the molecular basis for this sex-specific accumulation, we have cloned and sequenced the cDNA encoding AatHex-1.2 and isolated and sequenced over 1 kb of the 5' flanking region of the AatHex-1.2 gene. The AatHex-1.2 transcript encodes a 81.6-kDa hexamerin subunit which contains 19.8% phenylalanine, tyrosine and tryptophan and 8.6% methionine residues. The single-copy AatHex-1.2 gene consists of three exons and two small introns located at its 5' end. A 2.3-kb AatHex-1.2 mRNA accumulates only in female larvae and pupae and is expressed at very low levels in adult female mosquitoes. The temporal expression profile of this transcript is typical of other mosquito hexamerin genes, with rapid disappearance of the mRNA shortly after pupation. Hence this is the first observation of exclusively female-specific gene activity during preadult development of an insect. In the 5' flanking region of the AatHex-1.2 gene, we identified putative binding sites for transcription factors, such as GATA, C/EBP and Doublesex, typically involved in fat body- and female-specific gene activity in Diptera. These findings suggest that mechanisms for sex-specific transcription in the fat body may be well conserved between flies and mosquitoes.
Collapse
Affiliation(s)
- S O Zakharkin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
148
|
Allen ML, O'Brochta DA, Atkinson PW, Levesque CS. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2001; 38:701-710. [PMID: 11580043 DOI: 10.1603/0022-2585-38.5.701] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different heat shock regimes, two of which produced transformed individuals. These individuals were mated with wild-type mosquitoes and produced offspring which expressed the dominant EGFP gene in Mendelian ratios predicted for the stable integration of a gene at a single locus. The two transformed lines displayed distinct patterns of phenotypic expression, the expression of which has remained stable after fifteen generations. In these transgenic lines both the Hermes element and flanking plasmid DNA integrated into the Culex genome, as has been previously seen in Hermes-mediated transgenic strains of Aedes aegypti (L.). The high frequency of Culex transformation together with the dependence on the presence of Hermes transposase suggests that, as for Ae. aegypti, this mode of transposition into the germ-line genome occurs by an alternate mechanisms to the cut and paste type of transposition seen for this element in other insect species and in the somatic nuclei of mosquitoes. This is the first report of the genetic transformation of a species in the genus Culex and demonstrates that this medically important mosquito species can now, along with several other Culicine and Anopheline mosquito species, be genetically manipulated.
Collapse
Affiliation(s)
- M L Allen
- Department of Entomology, University of California, Riverside 92521, USA
| | | | | | | |
Collapse
|
149
|
Abstract
We have engineered two new versions of the doxycycline (dox) inducible system for use in Drosophila. In the first system, we have used the ubiquitously expressed Drosophila actin5C promoter to express the Tet-Off transactivator (tTA) in all tissue. Induction of a luciferase target transgene begins 6 h after placing the flies on dox-free food. Feeding drug-free food to mothers results in universal target gene expression in their embryos. Larvae raised on regular food also show robust expression of a target reporter gene. In the second version, we have used the Gal4-UAS system to spatially limit expression of the transactivator. Dox withdrawal results in temporally- and spatially-restricted, inducible expression of luciferase in the adult head and embryo. Both the actin5C and Gal4-UAS versions produce more than 100-fold induction of luciferase in the adult, with virtually no leaky expression in the presence of drug. Reporter gene expression is also undetectable in larvae or embryos from mothers fed dox-containing food. Such tight control may be due to the incorporation of Drosophila insulator elements (SCS and SCS') into the transgenic vectors. These systems offer a practical, effective alternative to currently available expression systems in the Drosophila research community.
Collapse
Affiliation(s)
- M J Stebbins
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|