101
|
Moatt JP, Fyfe MA, Heap E, Mitchell LJM, Moon F, Walling CA. Reconciling nutritional geometry with classical dietary restriction: Effects of nutrient intake, not calories, on survival and reproduction. Aging Cell 2019; 18:e12868. [PMID: 30456818 PMCID: PMC6352320 DOI: 10.1111/acel.12868] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/15/2018] [Accepted: 09/16/2018] [Indexed: 11/28/2022] Open
Abstract
Dietary restriction (DR) is one of the main experimental paradigms to investigate the mechanisms that determine lifespan and aging. Yet, the exact nutritional parameters responsible for DR remain unclear. Recently, the advent of the geometric framework of nutrition (GF) has refocussed interest from calories to dietary macronutrients. However, GF experiments focus on invertebrates, with the importance of macronutrients in vertebrates still widely debated. This has led to the suggestion of a fundamental difference in the mode of action of DR between vertebrates and invertebrates, questioning the suggestion of an evolutionarily conserved mechanism. The use of dietary dilution rather than restriction in GF studies makes comparison with traditional DR studies difficult. Here, using a novel nonmodel vertebrate system (the stickleback fish, Gasterosteus aculeatus), we test the effect of macronutrient versus calorie intake on key fitness‐related traits, both using the GF and avoiding dietary dilution. We find that the intake of macronutrients rather than calories determines both mortality risk and reproduction. Male mortality risk was lowest on intermediate lipid intakes, and female risk was generally reduced by low protein intakes. The effect of macronutrient intake on reproduction was similar between the sexes, with high protein intakes maximizing reproduction. Our results provide, to our knowledge, the first evidence that macronutrient, not caloric, intake predicts changes in mortality and reproduction in the absence of dietary dilution. This supports the suggestion of evolutionary conservation in the effect of diet on lifespan, but via variation in macronutrient intake rather than calories.
Collapse
Affiliation(s)
- Joshua P. Moatt
- Institute of Evolutionary Biology, School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Murray A. Fyfe
- Institute of Evolutionary Biology, School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Elizabeth Heap
- Edinburgh Genomics, Roslin Institute; University of Edinburgh; Edinburgh UK
| | - Luke J. M. Mitchell
- Institute of Evolutionary Biology, School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Fiona Moon
- Institute of Evolutionary Biology, School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Craig A. Walling
- Institute of Evolutionary Biology, School of Biological Sciences; University of Edinburgh; Edinburgh UK
| |
Collapse
|
102
|
Mirth CK, Nogueira Alves A, Piper MD. Turning food into eggs: insights from nutritional biology and developmental physiology of Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 31:49-57. [PMID: 31109673 DOI: 10.1016/j.cois.2018.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Nutrition plays a central role in fecundity, regulating the onset of reproductive maturity, egg production, and the survival and health of offspring from insects to humans. Although decades of research have worked to uncover how nutrition mediates these effects, it has proven difficult to disentangle the relative role of nutrients as the raw material for egg and offspring development versus their role in stimulating endocrine cascades necessary to drive development. This has been further complicated by the fact that both nutrients and the signalling cascades they regulate interact in complex ways to control fecundity. Separating the two effects becomes important when trying to understand how fecundity is regulated, and in devising strategies to offset the negative effects of nutrition on reproductive health. In this review, we use the extensive literature on egg development in the fruit fly Drosophila melanogaster to explore how the nutrients from food provide the building blocks and stimulate signalling cascades necessary for making an egg.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| | - André Nogueira Alves
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Matthew Dw Piper
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
103
|
Reese AT, Pereira FC, Schintlmeister A, Berry D, Wagner M, Hale LP, Wu A, Jiang S, Durand HK, Zhou X, Premont RT, Diehl AM, O'Connell TM, Alberts SC, Kartzinel TR, Pringle RM, Dunn RR, Wright JP, David LA. Microbial nitrogen limitation in the mammalian large intestine. Nat Microbiol 2018; 3:1441-1450. [PMID: 30374168 PMCID: PMC6264799 DOI: 10.1038/s41564-018-0267-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Resource limitation is a fundamental factor governing the composition and function of ecological communities. However, the role of resource supply in structuring the intestinal microbiome has not been established and represents a challenge for mammals that rely on microbial symbionts for digestion: too little supply might starve the microbiome while too much might starve the host. We present evidence that microbiota occupy a habitat that is limited in total nitrogen supply within the large intestines of 30 mammal species. Lowering dietary protein levels in mice reduced their faecal concentrations of bacteria. A gradient of stoichiometry along the length of the gut was consistent with the hypothesis that intestinal nitrogen limitation results from host absorption of dietary nutrients. Nitrogen availability is also likely to be shaped by host-microbe interactions: levels of host-secreted nitrogen were altered in germ-free mice and when bacterial loads were reduced via experimental antibiotic treatment. Single-cell spectrometry revealed that members of the phylum Bacteroidetes consumed nitrogen in the large intestine more readily than other commensal taxa did. Our findings support a model where nitrogen limitation arises from preferential host use of dietary nutrients. We speculate that this resource limitation could enable hosts to regulate microbial communities in the large intestine. Commensal microbiota may have adapted to nitrogen-limited settings, suggesting one reason why excess dietary protein has been associated with degraded gut-microbial ecosystems.
Collapse
Affiliation(s)
- Aspen T Reese
- Department of Biology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fátima C Pereira
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Advanced Isotope Research, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Advanced Isotope Research, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Anchi Wu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Xiyou Zhou
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Anna Mae Diehl
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Thomas M O'Connell
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Tyler R Kartzinel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | | | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
104
|
Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN 2018; 28:21-35. [DOI: 10.1016/j.clnesp.2018.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
|
105
|
Hill CM, Berthoud HR, Münzberg H, Morrison CD. Homeostatic sensing of dietary protein restriction: A case for FGF21. Front Neuroendocrinol 2018; 51:125-131. [PMID: 29890191 PMCID: PMC6175661 DOI: 10.1016/j.yfrne.2018.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Restriction of dietary protein intake increases food intake and energy expenditure, reduces growth, and alters amino acid, lipid, and glucose metabolism. While these responses suggest that animals 'sense' variations in amino acid consumption, the basic physiological mechanism mediating the adaptive response to protein restriction has been largely undescribed. In this review we make the case that the liver-derived metabolic hormone FGF21 is the key signal which communicates and coordinates the homeostatic response to dietary protein restriction. Support for this model centers on the evidence that FGF21 is induced by the restriction of dietary protein or amino acid intake and is required for adaptive changes in metabolism and behavior. FGF21 occupies a unique endocrine niche, being induced when energy intake is adequate but protein and carbohydrate are imbalanced. Collectively, the evidence thus suggests that FGF21 is the first known endocrine signal of dietary protein restriction.
Collapse
Affiliation(s)
- Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | |
Collapse
|
106
|
Ng SH, Simpson SJ, Simmons LW. Macronutrients and micronutrients drive trade‐offs between male pre‐ and postmating sexual traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soon Hwee Ng
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia Crawley Western Australia Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental SciencesThe University of Sydney Sydney New South Wales Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia Crawley Western Australia Australia
| |
Collapse
|
107
|
Does Calorie Restriction in Primates Increase Lifespan? Revisiting Studies on Macaques (
Macaca mulatta
) and Mouse Lemurs (
Microcebus murinus
). Bioessays 2018; 40:e1800111. [DOI: 10.1002/bies.201800111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Indexed: 01/16/2023]
|
108
|
Jensen K, Silverman J. Frequently mated males have higher protein preference in German cockroaches. Behav Ecol 2018. [DOI: 10.1093/beheco/ary104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kim Jensen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Bioscience, Aarhus University, Vejlsøvej, Silkeborg, Denmark
| | - Jules Silverman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
109
|
Guo S, Hou R, Garber PA, Raubenheimer D, Righini N, Ji W, Jay O, He S, Wu F, Li F, Li B. Nutrient‐specific compensation for seasonal cold stress in a free‐ranging temperate colobine monkey. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Song‐Tao Guo
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Rong Hou
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Paul A. Garber
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign Urbana Illinois
| | - David Raubenheimer
- The Charles Perkins Centre and School of Life and Environmental SciencesUniversity of Sydney Sydney NSW Australia
| | - Nicoletta Righini
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign Urbana Illinois
- Laboratorio de Ecología FuncionalInstituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES‐UNAM) Morelia Michoacan Mexico
| | - Wei‐Hong Ji
- Human and Wildlife Interactions Research GroupInstitute of Natural Mathematical SciencesMassey University Albany, Auckland New Zealand
| | - Ollie Jay
- The Charles Perkins Centre and School of Life and Environmental SciencesUniversity of Sydney Sydney NSW Australia
| | - Shu‐Jun He
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Fan Wu
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Fang‐Fang Li
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Bao‐Guo Li
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
- Xi’an Branch of Chinese Academy of Sciences Xi’an China
| |
Collapse
|
110
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
111
|
Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction. NPJ Aging Mech Dis 2018; 4:5. [PMID: 29675265 PMCID: PMC5904217 DOI: 10.1038/s41514-018-0024-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 11/12/2022] Open
Abstract
Dietary restriction (DR) extends animal lifespan, but imposes fitness costs. This phenomenon depends on dietary essential amino acids (EAAs) and TOR signalling, which exert systemic effects. However, the roles of specific tissues and cell-autonomous transcriptional regulators in diverse aspects of the DR phenotype are unknown. Manipulating relevant transcription factors (TFs) specifically in lifespan-limiting tissues may separate the lifespan benefits of DR from the early-life fitness costs. Here, we systematically analyse transcription across organs of Drosophila subjected to DR or low TOR and predict regulatory TFs. We predict and validate roles for the evolutionarily conserved GATA family of TFs, and identify conservation of this signal in mice. Importantly, restricting knockdown of the GATA TF srp to specific fly tissues recapitulated the benefits but not the costs of DR. Together, our data indicate that the GATA TFs mediate effects of dietary amino acids on lifespan, and that by manipulating them in specific tissues it is possible to reap the fitness benefits of EAAs, decoupled from a cost to longevity. Ageing human populations present a huge societal challenge, providing motivation to find ways to improve health in old age. Dietary restriction (DR), is one way to improve late-life health of animals from worms to mammals, and perhaps humans. This effect was first oberved over 80 years ago, but the underlying mechanism has proven elusive. In this study, gene expression was profiled in diverse tissues of flies subjected to DR, and from these results a role for proteins called GATA transcription factors was predicted. Reducing expression of GATA transcription factors altered the effect of diet on lifespan, and targeting this knockdown to specific tissues reduced side-effects commonly associated with longevity. Therefore this study predicts that targeting GATA transcription factors in specific tissues may promote the benefits, but not costs, of DR.
Collapse
|
112
|
Coogan SCP, Raubenheimer D, Zantis SP, Machovsky‐Capuska GE. Multidimensional nutritional ecology and urban birds. Ecosphere 2018. [DOI: 10.1002/ecs2.2177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sean C. P. Coogan
- School of Life and Environmental Sciences and the Charles Perkins Centre University of Sydney Sydney NSW 2006 Australia
- Department of Renewable Resources University of Alberta Edmonton Alberta T6G 2H1 Canada
| | - David Raubenheimer
- School of Life and Environmental Sciences and the Charles Perkins Centre University of Sydney Sydney NSW 2006 Australia
| | - Simon P. Zantis
- School of Life and Environmental Sciences and the Charles Perkins Centre University of Sydney Sydney NSW 2006 Australia
| | - Gabriel E. Machovsky‐Capuska
- School of Life and Environmental Sciences and the Charles Perkins Centre University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
113
|
Poissonnier LA, Lihoreau M, Gomez-Moracho T, Dussutour A, Buhl C. A theoretical exploration of dietary collective medication in social insects. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:78-87. [PMID: 28826630 DOI: 10.1016/j.jinsphys.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Animals often alter their food choices following a pathogen infection in order to increase immune function and combat the infection. Whether social animals that collect food for their brood or nestmates adjust their nutrient intake to the infection states of their social partners is virtually unexplored. Here we develop an individual-based model of nutritional geometry to examine the impact of collective nutrient balancing on pathogen spread in a social insect colony. The model simulates a hypothetical social insect colony infected by a horizontally transmitted parasite. Simulation experiments suggest that collective nutrition, by which foragers adjust their nutrient intake to simultaneously address their own nutritional needs as well as those of their infected nestmates, is an efficient social immunity mechanism to limit contamination when immune responses are short. Impaired foraging in infected workers can favour colony resilience when pathogen transmission rate is low (by reducing contacts with the few infected foragers) or trigger colony collapse when transmission rate is fast (by depleting the entire pool of foragers). Our theoretical examination of dietary collective medication in social insects suggests a new possible mechanism by which colonies can defend themselves against pathogens and provides a conceptual framework for experimental investigations of the nutritional immunology of social animals.
Collapse
Affiliation(s)
- Laure-Anne Poissonnier
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France.
| | - Tamara Gomez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Camille Buhl
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
114
|
Kane AE, Sinclair DA, Mitchell JR, Mitchell SJ. Sex differences in the response to dietary restriction in rodents. CURRENT OPINION IN PHYSIOLOGY 2018; 6:28-34. [PMID: 31231711 DOI: 10.1016/j.cophys.2018.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dietary restriction (DR) remains the most reproducible and consistent laboratory intervention to extend lifespan and improve health in mammals. DR has been primarily characterized in males due to issues of cost, perceived heightened variability amongst females, and the misconception that the reproductive system is the only important difference between sexes in mammals. In reality, existing data point to clear sex differences in mammalian responses to DR. Here we discuss recent advances in our understanding of sex differences in the responses to DR in rodent models.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah J Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
115
|
Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, Simpson SJ, Buhl J. Collective foraging in spatially complex nutritional environments. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0238. [PMID: 28673915 DOI: 10.1098/rstb.2016.0238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 11/12/2022] Open
Abstract
Nutrition impinges on virtually all aspects of an animal's life, including social interactions. Recent advances in nutritional ecology show how social animals often trade-off individual nutrition and group cohesion when foraging in simplified experimental environments. Here, we explore how the spatial structure of the nutritional landscape influences these complex collective foraging dynamics in ecologically realistic environments. We introduce an individual-based model integrating key concepts of nutritional geometry, collective animal behaviour and spatial ecology to study the nutritional behaviour of animal groups in large heterogeneous environments containing foods with different abundance, patchiness and nutritional composition. Simulations show that the spatial distribution of foods constrains the ability of individuals to balance their nutrient intake, the lowest performance being attained in environments with small isolated patches of nutritionally complementary foods. Social interactions improve individual regulatory performances when food is scarce and clumpy, but not when it is abundant and scattered, suggesting that collective foraging is favoured in some environments only. These social effects are further amplified if foragers adopt flexible search strategies based on their individual nutritional state. Our model provides a conceptual and predictive framework for developing new empirically testable hypotheses in the emerging field of social nutrition.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, 118 route de Narbonne, Toulouse 31200, France
| | - Michael A Charleston
- School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Mathematics and Statistics, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Fiona J Clissold
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jerome Buhl
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Southern Australia 5005, Australia
| |
Collapse
|
116
|
Simpson SJ, Raubenheimer D, Cogger VC, Macia L, Solon-Biet SM, Le Couteur DG, George J. The nutritional geometry of liver disease including non-alcoholic fatty liver disease. J Hepatol 2018; 68:316-325. [PMID: 29122389 DOI: 10.1016/j.jhep.2017.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans.
Collapse
Affiliation(s)
- Stephen J Simpson
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia.
| | - David Raubenheimer
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - Victoria C Cogger
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; Centre for Education and Research on Ageing and the ANZAC Research Institute, Concord Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Medical Sciences, Sydney Medical School, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - David G Le Couteur
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia; Centre for Education and Research on Ageing and the ANZAC Research Institute, Concord Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
117
|
Gibbs VK, Brewer RA, Miyasaki ND, Patki A, Smith DL. Sex-dependent Differences in Liver and Gut Metabolomic Profiles With Acarbose and Calorie Restriction in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2018; 73:157-165. [PMID: 28651373 PMCID: PMC5861978 DOI: 10.1093/gerona/glx127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023] Open
Abstract
Acarbose, an alpha-glucosidase inhibitor used in treating type 2 diabetes, impairs complex carbohydrate digestion and absorption and extends life span in mice (without a requisite reduction in food intake). To assess sex-differential effects coincident with calorie restriction versus a nonrestricted longevity enhancing intervention, we evaluated the metabolite profiles (by liquid chromatography-mass spectroscopy) from livers and cecal contents of C57BL/6J mice (n = 4/sex/group), which were maintained for 10 months under one of the three diet treatments: ad libitum control diet (CON), ad libitum control diet containing 0.1% acarbose (ACA), or 40% calorie restriction using the control diet (CR). Principal component analysis revealed sex-differential profiles with ACA in livers. Of the identified metabolites (n = 621) in liver, CR significantly altered ~44% (males:187↑/131↓, females:74↑/148↓) compared with CON, in contrast with ACA (M:165↑/61↓, F:52↑/60↓). Dissimilarity in ACA-F liver metabolites was observed for ~50% of common metabolites from ACA-M and CR-M/F. CR resulted in fewer significant cecal metabolite differences (n = 615 metabolites; M:86↑/66↓, F:51↑/48↓ vs CON), relative to ACA treatment (M:32↑/189↓, F:36↑/137↓). Metabolomic profiling identifies sex-differential and tissue-specific effects with amino acid metabolism sub-pathways including those involving tryptophan, branch-chain and sulfur amino acids, and the urea cycle, as well as bile acid, porphyrin, and cofactor metabolism pathways.
Collapse
Affiliation(s)
- Victoria K Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham
- Nutrition Obesity Research Center, University of Alabama at Birmingham
- Department of Biology, Birmingham-Southern College, Alabama
| | - Rachel A Brewer
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Nathan D Miyasaki
- Department of Nutrition Sciences, University of Alabama at Birmingham
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham
- Nutrition Obesity Research Center, University of Alabama at Birmingham
| |
Collapse
|
118
|
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217:93-106. [PMID: 29074705 PMCID: PMC5748989 DOI: 10.1083/jcb.201707168] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels-most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK)-play important roles in regulating physiological decisions to reproduce, grow, and age. In this review, we discuss the connections between reproductive senescence and somatic aging and give an overview of the involvement of nutrient-sensing pathways in controlling both reproductive function and lifespan. Although the molecular mechanisms that affect these processes can be influenced by distinct tissue-, temporal-, and pathway-specific signaling events, the progression of reproductive aging and somatic aging is systemically coordinated by integrated nutrient-sensing signaling pathways regulating somatic tissue maintenance in conjunction with reproductive capacity.
Collapse
Affiliation(s)
- Nicole M Templeman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
119
|
Roura E, Navarro M. Physiological and metabolic control of diet selection. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fact that most farm animals have no dietary choice under commercial practices translates the dietary decisions to the carers. Thus, a lack of understanding of the principles of dietary choices is likely to result in a high toll for the feed industry. In healthy animals, diet selection and, ultimately, feed intake is the result of factoring together the preference for the feed available with the motivation to eat. Both are dynamic states and integrate transient stimulus derived from the nutritional status, environmental and social determinants of the animal with hard-wired genetic mechanisms. Peripheral senses are the primary inputs that determine feed preferences. Some of the sensory aspects of feed, such as taste, are innate and genetically driven, keeping the hedonic value of feed strictly associated with a nutritional frame. Sweet, umami and fat tastes are all highly appetitive. They stimulate reward responses from the brain and reinforce dietary choices related to essential nutrients. In contrast, aroma (smell) recognition is a plastic trait and preferences are driven mostly by learned experience. Maternal transfer through perinatal conditioning and the individual’s own innate behaviour to try or to avoid novel feed (often termed as neophobia) are known mechanisms where the learning process strongly affects preferences. In addtition, the motivation to eat responds to episodic events fluctuating in harmony with the eating patterns. These signals are driven mainly by gastrointestinal hormones (such as cholecystokinin [CCK] and glucagon-like peptide 1 [GLP-1]) and load. In addition, long-term events generate mechanisms for a sustainable nutritional homeostasis managed by tonic signals from tissue stores (i.e. leptin and insulin). Insulin and leptin are known to affect appetite by modulating peripheral sensory inputs. The study of chemosensory mechanisms related to the nutritional status of the animal offers novel tools to understand the dynamic states of feed choices so as to meet nutritional and hedonic needs. Finally, a significant body of literature exists regarding appetite driven by energy and amino acids in farm animals. However, it is surprising that there is scarcity of knowledge regarding what and how specific dietary nutrients may affect satiety. Thus, a better understanding on how bitter compounds and excess dietary nutrients (i.e. amino acids) play a role in no-choice animal feeding is an urgent topic to be addressed so that right choices can be made on the animal’s behalf.
Collapse
|
120
|
Jang T, Lee KP. Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J Exp Biol 2018; 221:jeb.181115. [DOI: 10.1242/jeb.181115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023]
Abstract
Protein and carbohydrate are the two major macronutrients that exert profound influences over fitness in many organisms, including Drosophila melanogaster. Our understanding of how these macronutrients shape the components of fitness in D. melanogaster has been greatly enhanced by the use of nutritional geometry, but most nutritional geometric analyses on this species have been conducted using semi-synthetic diets that are not chemically well-defined. Here we combined the use of nutritional geometry and chemically defined diets to compare the patterns of larval and adult life-history traits expressed across 34 diets systematically varying in protein:carbohydrate (P:C) ratio and in protein plus carbohydrate (P+C) concentration. The shape of the response surfaces constructed for all larval and adult traits differed significantly from one another, with the nutritional optima being identified at P:C 1:4 for lifespan (P+C 120 g l−1), 1:2 for egg-to-adult viability (120 g l−1), 1:1 for female body mass at adult eclosion (240 g l−1) and lifetime fecundity (360 g l−1), 2:1 for larval developmental rate (60 g l−1), and 8:1 for egg production rate (120 g l−1). Such divergence in nutritional optima among life-history traits indicates that D. melanogaster confined to a single diet cannot maximize the expression of these traits simultaneously and thus may face a life-history trade-off. Our data provide the most comprehensive and nutritionally explicit analysis of the impacts of macronutrients on life-history traits in D. melanogaster and support the emerging notion that the fundamental trade-offs among life-history traits are mediated by macronutrients.
Collapse
Affiliation(s)
- Taehwan Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
121
|
Senior AM, Nakagawa S, Raubenheimer D, Simpson SJ, Noble DWA. Dietary restriction increases variability in longevity. Biol Lett 2017; 13:rsbl.2017.0057. [PMID: 28298596 DOI: 10.1098/rsbl.2017.0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/20/2017] [Indexed: 11/12/2022] Open
Abstract
Nutritional environments, particularly those experienced during early life, are hypothesized to affect longevity. A recent cross-taxa meta-analysis found that, depending upon circumstance, average longevity may be increased or decreased by early-life dietary restriction. Unstudied are the effects of diet during development on among-individual variance in longevity. Here, we address this issue using emerging methods for meta-analysis of variance. We found that, in general, standard deviation (s.d.) in longevity is around 8% higher under early-life dietary restriction than a standard diet. The effects became especially profound when dietary insults were experienced prenatally (s.d. increased by 29%) and/or extended into adulthood (s.d. increased by 36.6%). Early-life dietary restriction may generate variance in longevity as a result of increased variance in resource acquisition or allocation, but the mechanisms underlying these largely overlooked patterns clearly warrant elucidation.
Collapse
Affiliation(s)
- A M Senior
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia .,School of Mathematics and Statistics, The University of Sydney, New South Wales 2006, Australia
| | - S Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - D Raubenheimer
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - D W A Noble
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
122
|
Simpson SJ, Le Couteur DG, James DE, George J, Gunton JE, Solon-Biet SM, Raubenheimer D. The Geometric Framework for Nutrition as a tool in precision medicine. ACTA ACUST UNITED AC 2017; 4:217-226. [PMID: 29276791 PMCID: PMC5734128 DOI: 10.3233/nha-170027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fundamental questions in nutrition include, “What constitutes a nutritionally balanced diet?”, “What are the consequences of failing to achieve diet balance?”, and “How does diet balance change across the lifecourse and with individual circumstances?”. Answering these questions requires coming to grips with the multidimensionality and dynamic nature of nutritional requirements, foods and diets, and the complex relationships between nutrition and health, while at the same time avoiding becoming overwhelmed by complexity. Here we illustrate the use of an integrating framework for taming the complexity of nutrition, the Geometric Framework for Nutrition (GFN), and show how this might be used to untap the full potential for nutrition to provide targeted primary interventions and treatments for the chronic diseases of aging. We first briefly introduce the concepts behind GFN, then provide an example of how GFN has been used to relate nutrition to various behavioural, physiological and health outcomes in a large mouse experiment, and end by suggesting a translational pathway to human health.
Collapse
Affiliation(s)
- Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| | - David E James
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| | - Jacob George
- Sydney Medical School, The University of Sydney, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Jenny E Gunton
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia.,Centre for Diabetes Obesity and Endocrinology Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
123
|
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2017; 7:15410-20. [PMID: 26919253 PMCID: PMC4941250 DOI: 10.18632/oncotarget.7645] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis
Collapse
Affiliation(s)
- Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard W Hanson
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan A Berger
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Trubitsyn
- Institute of Biology and Soil Sciences of Far Eastern Brach of Russian Academy of Science, Vladivostok, Russia
| |
Collapse
|
124
|
.Mirth CK, Piper MDW. Matching complex dietary landscapes with the signalling pathways that regulate life history traits. Curr Opin Genet Dev 2017; 47:9-16. [DOI: 10.1016/j.gde.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
|
125
|
Moatt JP, Hambly C, Heap E, Kramer A, Moon F, Speakman JR, Walling CA. Body macronutrient composition is predicted by lipid and not protein content of the diet. Ecol Evol 2017; 7:10056-10065. [PMID: 29238536 PMCID: PMC5723615 DOI: 10.1002/ece3.3529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022] Open
Abstract
Diet is an important determinant of fitness-related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness-related traits are less well understood. An obvious candidate is body composition, given its well-known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first-generation laboratory population of a freshwater fish, the three-spine stickleback (Gasterosteus aculeatus). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein-to-lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high-protein diets.
Collapse
Affiliation(s)
- Joshua P. Moatt
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Catherine Hambly
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Elizabeth Heap
- Edinburgh GenomicsRoslin InstituteUniversity of EdinburghEdinburghUK
| | - Anna Kramer
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Fiona Moon
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - John R. Speakman
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesGuangzhou ShiChina
| | - Craig A. Walling
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
126
|
Vekhnik VA. The Edible Dormouse (Glis glis, Gliridae, Rodentia) in the Periphery of Its Distribution Range: Body Size and Life History Parameters. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017090163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
127
|
Aw WC, Garvin MR, Melvin RG, Ballard JWO. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS One 2017; 12:e0187554. [PMID: 29166659 PMCID: PMC5699850 DOI: 10.1371/journal.pone.0187554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
128
|
Raizel R, da Mata Godois A, Coqueiro AY, Voltarelli FA, Fett CA, Tirapegui J, de Paula Ravagnani FC, de Faria Coelho-Ravagnani C. Pre-season dietary intake of professional soccer players. Nutr Health 2017; 23:215-222. [PMID: 29037118 DOI: 10.1177/0260106017737014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite the well-documented importance of nutrition in optimizing performance and health, the dietary intake of soccer players has attracted little attention. AIM We aimed to assess the pre-season dietary intake of professional soccer players and its adequacy in macro and micronutrients. METHODS The pre-season dietary intake of 19 male athletes was assessed using a semi-structured 3-day food record. To determine dietary adequacy and excess, energy and macronutrient intake were compared with the Brazilian dietary reference values for athletes, and micronutrients were compared with the Estimated Average Requirement - EAR (minimum recommendation) and Tolerable Upper Intake Level - UL (maximum recommendation). RESULTS Mean daily energy intake (40.74±12.81 kcal/kg) was adequate. However, there was a low carbohydrate intake (5.44±1.86 g/kg/day) and a high amount of protein and fat (1.91±0.75 and 1.27±0.50 g/kg/day, respectively). Sodium intake (3141.77±939.76 mg/day) was higher than UL (2300 mg/day), while the majority of players showed daily intake of vitamin A (74%), vitamin D (100%), folate (58%), calcium and magnesium (68%) below the EAR (625, 10 and 320 µg/day, 800 and 330 mg/day, respectively). CONCLUSION The dietary intake of professional soccer players was adequate in energy, but inadequate in macro and micronutrients, which suggests the need to improve nutritional practices to sustain the physical demands of soccer during pre-season.
Collapse
Affiliation(s)
- Raquel Raizel
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Audrey Yule Coqueiro
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | | - Julio Tirapegui
- 1 Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
129
|
Polak M, Simmons LW, Benoit JB, Ruohonen K, Simpson SJ, Solon-Biet SM. Nutritional geometry of paternal effects on embryo mortality. Proc Biol Sci 2017; 284:20171492. [PMID: 29021174 PMCID: PMC5647300 DOI: 10.1098/rspb.2017.1492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Well-established causal links exist between maternal nutritional deficits and embryo health and viability. By contrast, environmental effects operating through the father that could influence embryo mortality have seldom been examined. Yet, ejaculates can require non-trivial resource allocation, and seminal plasma components are increasingly recognized to exert wide-ranging effects on females and offspring, so paternal dietary effects on the embryo should be expected. We test for effects of varying levels of protein (P), carbohydrate (C) and caloric load in adult male diet on embryo mortality in Drosophila melanogaster We demonstrate that macronutrient balance and caloric restriction exert significant effects, and that nutritional effects are more impactful when a prior mating has occurred. Once-mated males produced embryos with marginally elevated mortality under high-caloric densities and a 1 : 8 P : C ratio. In contrast, embryos produced by twice-mated males were significantly more likely to die under male caloric restriction, an outcome that may have resulted from shifts in ejaculate quality and/or epigenetic paternal effects. Body nutrient reserves were strongly and predictably altered by diet, and body condition, in turn, was negatively related to embryo mortality. Thus, sire nutritional history and resultant shifts in metabolic state predict embryo viability and post-fertilization fitness outcomes.
Collapse
Affiliation(s)
- Michal Polak
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 42551-0006, USA
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley WA 2009, Australia
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati OH 42551-0006, USA
| | - Kari Ruohonen
- Cargill Aqua Nutrition, Hanaveien17, 4327 Sandnes, Norway
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney NSW 2006, Australia
| | | |
Collapse
|
130
|
Brown-Borg HM, Buffenstein R. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev 2017; 39:87-95. [PMID: 27570078 DOI: 10.1016/j.arr.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
With few exceptions, nutritional and dietary interventions generally impact upon both old-age quality of life and longevity. The life prolonging effects, commonly observed with dietary restriction reportedly are linked to alterations in protein intake and specifically limiting the dietary intake of certain essential amino acids. There is however a paucity of data methodically evaluating the various essential amino acids on health- and lifespan and the mechanisms involved. Rodent diets containing either lower methionine content, or tryptophan, than that found in commercially available chow, appear to elicit beneficial effects. It is unclear whether all of these favorable effects associated with restricted intake of methionine and tryptophan are due to their specific unique properties or if restriction of other essential amino acids, or proteins in general, may produce similar results. Considerably more work remains to be done to elucidate the mechanisms by which limiting these vital molecules may delay the onset of age-associated diseases and improve quality of life at older ages.
Collapse
|
131
|
Larson KR, Russo KA, Fang Y, Mohajerani N, Goodson ML, Ryan KK. Sex Differences in the Hormonal and Metabolic Response to Dietary Protein Dilution. Endocrinology 2017; 158:3477-3487. [PMID: 28938440 DOI: 10.1210/en.2017-00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
Abstract
Consumption of a low-protein, high-carbohydrate diet induces a striking increase in circulating fibroblast growth factor-21 (FGF21), which is associated with improved cardiometabolic health and increased longevity. Increased lifespan during this dietary protein "dilution" has been explained by resource-mediated trade-offs between reproduction and survival, such that fecundity is optimized at a greater relative intake of proteins/carbohydrates. The magnitude of this trade-off is thought to be sex-dependent. In this study, we tested the hypothesis that metabolic responses to dietary protein dilution are likewise dependent on sex. We maintained age-matched adult male and female C57BL/6J mice on isocaloric diets containing 22% fat and differing in the ratio of protein/carbohydrate. The normal protein (NP) control diet contained 18% protein and 60% carbohydrate by kcal. The protein diluted (PD) diet contained 4% protein and 74% carbohydrate. Consistent with previous reports, PD males gained less weight and less fat than did normal protein controls and exhibited both improved glucose tolerance and decreased plasma lipids. In contrast, these metabolic benefits were absent among age-matched females maintained on the same diets. Likewise, whereas circulating FGF21 was increased up to 66-fold among PD male mice, this was substantially blunted among female counterparts. Sex differences in energy balance, glucose control, and plasma FGF21 were reversed upon ovariectomy. Collectively, our findings support that female mice are relatively less sensitive to the metabolic improvements observed following dietary protein dilution. This is accompanied by blunted circulating levels of FGF21 and requires an intact female reproductive system.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Kimberly A Russo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Niloufar Mohajerani
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| |
Collapse
|
132
|
Piper MDW, Partridge L. Drosophila as a model for ageing. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2707-2717. [PMID: 28964875 DOI: 10.1016/j.bbadis.2017.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been a key model in developing our current understanding of the molecular mechanisms of ageing. Of particular note is its role in establishing the evolutionary conservation of reduced insulin and IGF-1-like signaling in promoting healthy ageing. Capitalizing on its many advantages for experimentation, more recent work has revealed how precise nutritional and genetic interventions can improve fly lifespan without obvious detrimental side effects. We give a brief summary of these recent findings as well as examples of how they may modify ageing via actions in the gut and muscle. These discoveries highlight how expanding our understanding of metabolic and signaling interconnections will provide even greater insight into how these benefits may be harnessed for anti-ageing interventions.
Collapse
Affiliation(s)
- Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Köln 50931, Germany; Institute of Healthy Ageing, Department GEE, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
133
|
Wahl D, Coogan SCP, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. [PMID: 28932108 PMCID: PMC5598548 DOI: 10.2147/cia.s145247] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Sean CP Coogan
- Charles Perkins Centre, University of Sydney, Sydney
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James B Haran
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney
- Faculty of Veterinary Science
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging’s Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| |
Collapse
|
134
|
Thyroid function and ischemic heart disease: a Mendelian randomization study. Sci Rep 2017; 7:8515. [PMID: 28819171 PMCID: PMC5561103 DOI: 10.1038/s41598-017-07592-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022] Open
Abstract
To clarify the role of thyroid function in ischemic heart disease (IHD) we assessed IHD risk and risk factors according to genetically predicted thyroid stimulating hormone (TSH), free thyroxine (FT4) and thyroid peroxidase antibody (TPOAb) positivity. Separate-sample instrumental variable analysis with genetic instruments (Mendelian randomization) was used in an extensively genotyped case (n = 64,374)-control (n = 130,681) study, CARDIoGRAMplusC4D. Associations with lipids, diabetes and adiposity were assessed using the Global Lipids Genetics Consortium Results (n = 196,475), the DIAbetes Genetics Replication And Meta-analysis case (n = 34,380)-control (n = 114,981) study, and the Genetic Investigation of ANthropometric Traits (body mass index in 152,893 men and 171,977 women, waist-hip ratio in 93,480 men and 116,741 women). Genetically predicted thyroid function was not associated with IHD (odds ratio (OR) per standard deviation for TSH 1.05, 95% confidence interval (CI) 0.97 to 1.12; for FT4 1.01, 95% CI 0.91 to 1.12; for TPOAb positivity 1.10, 95% CI 0.83 to 1.46) or after Bonferroni correction with risk factors, except for an inverse association of FT4 with low-density lipoprotein-cholesterol. The associations were generally robust to sensitivity analyses using a weighted median method and MR Egger. This novel study provides little indication that TSH, FT4 or TPOAb positivity affects IHD, despite potential effects on its risk factors.
Collapse
|
135
|
Schooling CM. Tachykinin neurokinin 3 receptor antagonists: a new treatment for cardiovascular disease? Lancet 2017; 390:709-711. [PMID: 28359648 DOI: 10.1016/s0140-6736(16)31648-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Great progress has been made in reducing cardiovascular mortality over the past 50 years. Nevertheless, prevalence is rising in some settings and remains higher in men than in women, even with the same level of established risk factors. To gain new insights, researchers are now considering cardiovascular disease in relation to the well known evolutionary biology model of growth and reproduction trading off against longevity, with trials of calorie restriction underway. However, calorie restriction has not been as successful as expected in primates and it is increasingly realised that effects on the reproductive axis might also be important. In this paper, the modulation of the reproductive axis using existing agents that have such properties-tachykinin neurokinin 3 receptor antagonists-is proposed as a way of reducing cardiovascular disease and combating a leading cause of global morbidity and mortality.
Collapse
Affiliation(s)
- C Mary Schooling
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
136
|
Macartney EL, Crean AJ, Bonduriansky R. Adult dietary protein has age- and context-dependent effects on male post-copulatory performance. J Evol Biol 2017; 30:1633-1643. [PMID: 28386961 DOI: 10.1111/jeb.13087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
The highly conserved effect of dietary protein restriction on lifespan and ageing is observed in both sexes and across a vast range of taxa. This extension of lifespan is frequently accompanied by a reduction in female fecundity, and it has been hypothesized that individuals may reallocate resources away from reproduction and into somatic maintenance. However, effects of dietary protein restriction on male reproduction are less consistent, suggesting that these effects may depend on other environmental parameters. Using the neriid fly, Telostylinus angusticollis, we examined age-specific effects of adult dietary protein restriction on male post-copulatory reproductive performance (fecundity and offspring viability). To explore the context dependence of these effects, we simultaneously manipulated male larval diet and adult mating history. We found that protein-restricted males sired less viable offspring at young ages, but offspring viability increased with paternal age and eventually exceeded that of fully fed males. The number of eggs laid by females was not affected by male dietary protein, whereas egg hatching success was subject to a complex interaction of male adult diet, age, larval diet and mating history. These findings suggest that effects of protein restriction on male reproduction are highly context dependent and cannot be explained by a simple reallocation of resources from reproduction to somatic maintenance. Rather, these effects appear to involve changes in the scheduling of male reproductive investment with age.
Collapse
Affiliation(s)
- E L Macartney
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia
| | - A J Crean
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia.,Faculty of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - R Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
137
|
Williams AC, Hill LJ. Meat and Nicotinamide: A Causal Role in Human Evolution, History, and Demographics. Int J Tryptophan Res 2017; 10:1178646917704661. [PMID: 28579800 PMCID: PMC5417583 DOI: 10.1177/1178646917704661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/15/2023] Open
Abstract
Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B3 / nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the 'de novo' tryptophan-to-kynurenine-nicotinamide 'immune tolerance' pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
138
|
Buccarello L, Grignaschi G, Di Giancamillo A, Domeneghini C, Melcangi RC, Borsello T. Neuroprotective effects of low fat-protein diet in the P301L mouse model of tauopathy. Neuroscience 2017; 354:208-220. [PMID: 28456717 DOI: 10.1016/j.neuroscience.2017.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the pathological aggregation of tau protein in the human brain. Although numerous studies in mouse models of Alzheimer disease (AD) have shown a correlation among diet, beta-amyloid and AD onset, little is known about the impact of diet on Tau. We investigated whether a low fat-protein diet (LFPD) may improve lifespan, cognitive and locomotor activity in P301L-tg mouse model of tauopathy. Our data indicate that LFPD has a beneficial effect on these parameters. Tg mice fed with standard diet shown a decrease in body weight, food intake and survival rate if compared to wild type animals. In contrast, LFPD counteracted weight loss, increased mortality and ameliorated cognitive and locomotor performances in tg mice. LFPD also reduced the abnormal accumulation of agglomerates of P-Tau (pathological features of tauopathies) and the expression of apoptotic markers (i.e., TUNEL immunopositive neurons) in the prefrontal cerebral cortex and hippocampus of P301L-tg mice. Interestingly, some of these effects are sex-dependent. For instance, tg females, but not males, fed with LFPD had a significant increase of body weight and a reduction of P-Tau agglomerates compared to tg fed with standard diet. These changes correlated with a more pronounced improvement of cognition and locomotor activity in females than in male tg fed with LFPD. Altogether, these results suggest a sex dependent neuroprotective effect of LFPD in P301L-tg mice, suggesting that lifestyle intervention strategies may be clinically relevant for delaying the onset of cognitive impairment and dementia, especially in females.
Collapse
Affiliation(s)
- Lucia Buccarello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy; Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Italy
| | - Giuliano Grignaschi
- Department of Animal Welfare, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Alessia Di Giancamillo
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Italy
| | - Cinzia Domeneghini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy.
| |
Collapse
|
139
|
Faiman R, Solon-Biet S, Sullivan M, Huestis DL, Lehmann T. The contribution of dietary restriction to extended longevity in the malaria vector Anopheles coluzzii. Parasit Vectors 2017; 10:156. [PMID: 28340627 PMCID: PMC5366120 DOI: 10.1186/s13071-017-2088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Variation in longevity has long been of interest in vector biology because of its implication in disease transmission through vectorial capacity. Recent studies suggest that Anopheles coluzzii adults persist during the ~7 month dry season via aestivation. Recently there has been a growing body of evidence linking dietary restriction and low ratio of dietary protein to carbohydrate with extended longevity of animals. Here, we evaluated the effects of dietary restriction and the protein : carbohydrate ratio on longevity of An. coluzzii. RESULTS In our experiment, we combined dietary regimes with temperature and relative humidity to assess their effects on An. coluzzii longevity, in an attempt to simulate aestivation under laboratory conditions. Our results showed significant effects of both the physical and the dietary variables on longevity, but that diet regimen had a considerably greater effect than those of the physical conditions. Higher temperature and lower humidity reduced longevity. At 22 °C dietary protein (blood) shortened longevity when sugar was not restricted (RH = 85%), but extended longevity when sugar was restricted (RH = 50%). CONCLUSIONS Dietary restriction extended longevity in accord with predictions, but protein : carbohydrate ratio had a negligible effect. We identified conditions that significantly extend longevity in malaria vectors, however, the extent of increase in longevity was insufficient to simulate aestivation.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.
| | | | - Margery Sullivan
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| | - Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.,Office of Global Health Diplomacy, U.S. Department of State, 1800 G Street NW, Suite 10300, Washington, DC, 20006, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
140
|
Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, Zhao L, Simpson SJ. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metab 2017; 25:522-534. [PMID: 28273475 PMCID: PMC6200423 DOI: 10.1016/j.cmet.2017.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations.
Collapse
Affiliation(s)
- François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon Cedex 07, France.
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S4K1, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S4K1, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Won-Jae Lee
- School of Biological Science, Institute of Molecular Biology and Genetics, National Creative Research Initiative Center for Hologenomics, Seoul National University, Seoul 151-742, South Korea
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, B-1200 Brussels, Belgium
| | - Martin Schwarzer
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, F-69364 Lyon Cedex 07, France
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
141
|
Arganda S, Bouchebti S, Bazazi S, Le Hesran S, Puga C, Latil G, Simpson SJ, Dussutour A. Parsing the life-shortening effects of dietary protein: effects of individual amino acids. Proc Biol Sci 2017; 284:20162052. [PMID: 28053059 PMCID: PMC5247493 DOI: 10.1098/rspb.2016.2052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/05/2016] [Indexed: 11/12/2022] Open
Abstract
High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan.
Collapse
Affiliation(s)
- Sara Arganda
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
- Department of Biology, Boston University, Boston, MA, USA
| | - Sofia Bouchebti
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sepideh Bazazi
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Sophie Le Hesran
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Camille Puga
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Stephen J Simpson
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
142
|
Schultzhaus JN, Nixon JJ, Duran JA, Carney GE. Diet alters Drosophila melanogaster mate preference and attractiveness. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
143
|
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2016; 1389:92-107. [PMID: 28009055 DOI: 10.1111/nyas.13302] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging.
Collapse
Affiliation(s)
- Robert C Brooks
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia
| | - Michael G Garratt
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
144
|
Studnicki M, Woźniak G, Stępkowski D. The Calculator of Anti-Alzheimer's Diet. Macronutrients. PLoS One 2016; 11:e0168385. [PMID: 27992612 PMCID: PMC5167378 DOI: 10.1371/journal.pone.0168385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022] Open
Abstract
The opinions about optimal proportions of macronutrients in a healthy diet have changed significantly over the last century. At the same time nutritional sciences failed to provide strong evidence backing up any of the variety of views on macronutrient proportions. Herein we present an idea how these proportions can be calculated to find an optimal balance of macronutrients with respect to prevention of Alzheimer’s Disease (AD) and dementia. These calculations are based on our published observation that per capita personal income (PCPI) in the USA correlates with age-adjusted death rates for AD (AADR). We have previously reported that PCPI through the period 1925–2005 correlated with AADR in 2005 in a remarkable, statistically significant oscillatory manner, as shown by changes in the correlation coefficient R (Roriginal). A question thus arises what caused the oscillatory behavior of Roriginal? What historical events in the life of 2005 AD victims had shaped their future with AD? Looking for the answers we found that, considering changes in the per capita availability of macronutrients in the USA in the period 1929–2005, we can mathematically explain the variability of Roriginal for each quarter of a human life. On the basis of multiple regression of Roriginal with regard to the availability of three macronutrients: carbohydrates, total fat, and protein, with or without alcohol, we propose seven equations (referred to as “the calculator” throughout the text) which allow calculating optimal changes in the proportions of macronutrients to reduce the risk of AD for each age group: youth, early middle age, late middle age and late age. The results obtained with the use of “the calculator” are grouped in a table (Table 4) of macronutrient proportions optimal for reducing the risk of AD in each age group through minimizing Rpredicted−i.e., minimizing the strength of correlation between PCPI and future AADR.
Collapse
Affiliation(s)
- Marcin Studnicki
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Grażyna Woźniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warszawa, Poland
| | - Dariusz Stępkowski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warszawa, Poland
- * E-mail:
| |
Collapse
|
145
|
The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS One 2016; 11:e0166175. [PMID: 27832138 PMCID: PMC5104383 DOI: 10.1371/journal.pone.0166175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022] Open
Abstract
Nutrition influences skin structure; however, a systematic investigation into how energy and macronutrients (protein, carbohydrate and fat) affects the skin has yet to be conducted. We evaluated the associations between macronutrients, energy intake and skin structure in mice fed 25 experimental diets and a control diet for 15 months using the Geometric Framework, a novel method of nutritional analysis. Skin structure was associated with the ratio of dietary macronutrients eaten, not energy intake, and the nature of the effect differed between the sexes. In males, skin structure was primarily associated with protein intake, whereas in females carbohydrate intake was the primary correlate. In both sexes, the dermis and subcutaneous fat thicknesses were inversely proportional. Subcutaneous fat thickness varied positively with fat intake, due to enlarged adipocytes rather than increased adipocyte number. We therefore demonstrated clear interactions between skin structure and macronutrient intakes, with the associations being sex-specific and dependent on dietary macronutrient balance.
Collapse
|
146
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
147
|
Bowman E, Tatar M. Reproduction regulates Drosophila nutrient intake through independent effects of egg production and sex peptide: Implications for aging. ACTA ACUST UNITED AC 2016; 4:55-61. [PMID: 28035342 PMCID: PMC5166518 DOI: 10.3233/nha-1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: The ratio of protein to carbohydrate (P:C) consumed influences reproduction and lifespan, outcomes that are often maximized by different P:C intake. OBJECTIVE: Determine if reproduction in female Drosophila drives elevated P:C intake. Distinguish whether such a preference is driven by egg production or from male-derived sex peptides in seminal fluid. METHODS: Intake of protein and carbohydrate was measured in a diet-choice assay. Macronutrient intake was calculated for mated and unmated fertile females, mated and unmated sterile females, and both types of female when mated to wildtype males and to males lacking sex peptide. RESULTS: Mated females have high P:C intake relative to unmated females and mated, sterile females. Fertile females mated to wildtype males and to males lacking sex peptide have high P:C intake, but sterile females have similar, low P:C intake when unmated and when mated to males lacking sex peptide. CONCLUSIONS: The metabolic demands of egg production and sex peptides are individually sufficient to drive elevated P:C intake in adult female Drosophila. Reproductive state can thus modulate how animals consume macronutrients, which in turn can impact their health and aging.
Collapse
Affiliation(s)
- Elizabeth Bowman
- Department of Ecology and Evolutionary Biology, Brown University, RI, USA; Department of Epidemiology, Marion County (Indiana) Public Health Department, IN, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University , RI, USA
| |
Collapse
|
148
|
Corrales-Carvajal VM, Faisal AA, Ribeiro C. Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off. eLife 2016; 5. [PMID: 27770569 PMCID: PMC5108593 DOI: 10.7554/elife.19920] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient-deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection. DOI:http://dx.doi.org/10.7554/eLife.19920.001 When making decisions, animals, including humans, do not always choose the same option. One reason for this is that their “internal state” changes the value of different options. This is particularly evident when deciding what type of food to eat. Depending on which nutrients the animal needs, it will choose to eat different foods. Amino acids are key nutrients that affect health, lifespan and reproduction. Female fruit flies that have recently mated, for example, eat more amino acids in order to obtain the raw materials required to produce eggs. Despite the importance of amino acids, little was known about how animal behavior changes in response to a lack of this nutrient. Corrales-Carvajal et al. used a video tracking system to measure the time that fruit flies – some of which had a need for amino acids – spent feeding on patches of yeast (which are rich in amino acids) versus patches of sucrose. Recently mated females – and virgins that had been fed a diet lacking in amino acids – consumed more yeast than sucrose, whereas virgin females that were not amino acid deficient showed the opposite pattern. To bias the fly toward eating the right food for their needs, several aspects of the fly’s behavior changed, including the number and length of individual feeding bouts. These different behaviors did not all change at the same time. The pattern of exploration taken by the flies also depended on their need for amino acids. Amino acid deficient flies spent most of their time near known yeast patches. By contrast, fully fed flies adopted a riskier foraging strategy, moving away from known sources of food to explore their environment more widely. In common with humans, the flies relied upon their sense of smell to efficiently identify different types of food. Overall, the results presented by Corrales-Carvajal et al. provide us with a detailed understanding about how changes to the internal state of the fly affect its behavior. The next step will be to use the powerful genetic tools available for studying fruit flies to reveal the neural circuits and molecular mechanisms that help animals find the types of food that they need. DOI:http://dx.doi.org/10.7554/eLife.19920.002
Collapse
Affiliation(s)
- Verónica María Corrales-Carvajal
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Aldo A Faisal
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Department of Computing, Imperial College London, London, United Kingdom.,Integrative Biology Division, MRC Clinical Sciences Centre, London, United Kingdom
| | - Carlos Ribeiro
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
149
|
Solon-Biet SM, Cogger VC, Pulpitel T, Heblinski M, Wahl D, McMahon AC, Warren A, Durrant-Whyte J, Walters KA, Krycer JR, Ponton F, Gokarn R, Wali JA, Ruohonen K, Conigrave AD, James DE, Raubenheimer D, Morrison CD, Le Couteur DG, Simpson SJ. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework. Cell Metab 2016; 24:555-565. [PMID: 27693377 DOI: 10.1016/j.cmet.2016.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is the first known endocrine signal activated by protein restriction. Although FGF21 is robustly elevated in low-protein environments, increased FGF21 is also seen in various other contexts such as fasting, overfeeding, ketogenic diets, and high-carbohydrate diets, leaving its nutritional context and physiological role unresolved and controversial. Here, we use the Geometric Framework, a nutritional modeling platform, to help reconcile these apparently conflicting findings in mice confined to one of 25 diets that varied in protein, carbohydrate, and fat content. We show that FGF21 was elevated under low protein intakes and maximally when low protein was coupled with high carbohydrate intakes. Our results explain how elevation of FGF21 occurs both under starvation and hyperphagia, and show that the metabolic outcomes associated with elevated FGF21 depend on the nutritional context, differing according to whether the animal is in a state of under- or overfeeding.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia; Faculty of Medicine, University of Sydney, Sydney 2006, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Marika Heblinski
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia
| | - Alessandra Warren
- Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia
| | | | - Kirsty A Walters
- ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia; School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney 2052, Australia
| | - James R Krycer
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Fleur Ponton
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Department of Biological Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Rahul Gokarn
- Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia
| | - Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia
| | | | - Arthur D Conigrave
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Faculty of Medicine, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia; Sydney Medical School, University of Sydney, Sydney 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia
| | | | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Ageing and Alzheimers Institute, Centre for Education and Research on Ageing, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, Australia; Faculty of Medicine, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
150
|
Senior AM, Grueber CE, Machovsky-Capuska G, Simpson SJ, Raubenheimer D. Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mamm Biol 2016. [DOI: 10.1016/j.mambio.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|