101
|
Elahimehr R, Scheinok AT, McKay DB. Hematopoietic stem cells and solid organ transplantation. Transplant Rev (Orlando) 2016; 30:227-34. [PMID: 27553809 DOI: 10.1016/j.trre.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Solid organ transplantation provides lifesaving therapy for patients with end stage organ disease. In order for the transplanted organ to survive, the recipient must take a lifelong cocktail of immunosuppressive medications that increase the risk for infections, malignancies and drug toxicities. Data from many animal studies have shown that recipients can be made tolerant of their transplanted organ by infusing stem cells, particularly hematopoietic stem cells, prior to the transplant. The animal data have been translated into humans and now several clinical trials have demonstrated that infusion of hematopoietic stem cells, along with specialized conditioning regimens, can permit solid organ allograft survival without immunosuppressive medications. This important therapeutic advance has been made possible by understanding the immunologic mechanisms by which stem cells modify the host immune system, although it must be cautioned that the conditioning regimens are often severe and associated with significant morbidity. This review discusses the role of hematopoietic stem cells in solid organ transplantation, provides an understanding of how these stem cells modify the host immune system and describes how newer information about adaptive and innate immunity might lead to improvements in the use of hematopoietic stem cells to induce tolerance to transplanted organs.
Collapse
Affiliation(s)
- Reza Elahimehr
- Department of Medicine, Division of Nephrology/Hypertension, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew T Scheinok
- Department of Medicine, Division of Nephrology/Hypertension, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dianne B McKay
- Department of Medicine, Division of Nephrology/Hypertension, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
102
|
Mazurier C, Douay L. [In vitro generation of blood red cells from stem cells: a sketch of the future]. Biol Aujourdhui 2016; 210:9-17. [PMID: 27286576 DOI: 10.1051/jbio/2016008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 11/15/2022]
Abstract
Human adult pluripotent stem cells, stem cells of embryonic origin and induced pluripotent stem cells (iPS) provide cellular sources for new promising regenerative medicine approaches. Because these cells can be patient-specific, they allow considering a personalized medicine appropriate to the diagnosis of each. The generation of cultured red blood cells (cRBC) derived from stem cells is emblematic of personalized medicine. Indeed, these cells have the advantage of being selected according to a blood phenotype of interest and they may provide treatments to patients in situation of impossible transfusion (alloimmunized patients, rare phenotypes). Essential progresses have established proof of concept for this approach, still a concept some years ago. From adult stem cells, all steps of upstream research were successfully achieved, including the demonstration of the feasibility of injection into human. This leads us to believe that Red Blood Cells generated in vitro from stem cells will be the future players of blood transfusion. However, although theoretically ideal, these stem cells raise many biological challenges to overcome, although some tracks are identified.
Collapse
Affiliation(s)
- Christelle Mazurier
- INSERM, UMRS938, Prolifération et différenciation des cellules souches, 75012 Paris, France - Etablissement Français du Sang Ile de France, Unité d'ingénierie et de thérapie cellulaire, 94017 Créteil, France - UPMC Université ParisVI, UMRS938 CDR Saint-Antoine, Prolifération et différenciation des cellules souches, 75012 Paris, France
| | - Luc Douay
- INSERM, UMRS938, Prolifération et différenciation des cellules souches, 75012 Paris, France - Etablissement Français du Sang Ile de France, Unité d'ingénierie et de thérapie cellulaire, 94017 Créteil, France - UPMC Université ParisVI, UMRS938 CDR Saint-Antoine, Prolifération et différenciation des cellules souches, 75012 Paris, France - AP-HP, Hôpital Armand Trousseau et Saint-Antoine, Service d'Hématologie et Immunologie Biologiques, 75012 Paris, France
| |
Collapse
|
103
|
Hayek SS, MacNamara J, Tahhan AS, Awad M, Yadalam A, Ko YA, Healy S, Hesaroieh I, Ahmed H, Gray B, Sher SS, Ghasemzadeh N, Patel R, Kim J, Waller EK, Quyyumi AA. Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With Coronary Artery Disease. Circ Res 2016; 119:564-71. [PMID: 27267067 DOI: 10.1161/circresaha.116.308802] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
RATIONALE Peripheral arterial disease (PAD) is a clinical manifestation of extracoronary atherosclerosis. Despite sharing the same risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD. Decline in the number of bone marrow-derived circulating progenitor cells (PCs) is thought to contribute to the pathogenesis of atherosclerosis. Whether specific changes in PCs differentiate patients with both PAD and CAD from those with CAD alone is unknown. OBJECTIVE Determine whether differences exist in PCs counts of CAD patients with and without known PAD. METHODS AND RESULTS 1497 patients (mean age: 65 years; 62% men) with known CAD were identified in the Emory Cardiovascular Biobank. Presence of PAD (n=308) was determined by history, review of medical records, or imaging and was classified as carotid (53%), lower extremity (41%), upper extremity (3%), and aortic disease (33%). Circulating PCs were enumerated by flow cytometry. Patients with CAD and PAD had significantly lower PC counts compared with those with only CAD. In multivariable analysis, a 50% decrease in cluster of differentiation 34 (CD34+) or CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) counts was associated with a 31% (P=0.032) and 183% (P=0.002) increase in the odds of having PAD, respectively. CD34+ and CD34+/VEGFR2+ counts significantly improved risk prediction metrics for prevalent PAD. Low CD34+/VEGFR2+ counts were associated with a 1.40-fold (95% confidence interval, 1.03-1.91) and a 1.64-fold (95% confidence interval, 1.07-2.50) increases in the risk of mortality and PAD-related events, respectively. CONCLUSIONS PAD is associated with low CD34+ and CD34+/VEGFR2+ PC counts. Whether low PC counts are useful in screening for PAD needs to be investigated.
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - James MacNamara
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Ayman S Tahhan
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Mosaab Awad
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Adithya Yadalam
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Sean Healy
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Hina Ahmed
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Brandon Gray
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Salman S Sher
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Riyaz Patel
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Jinhee Kim
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA.
| |
Collapse
|
104
|
Bonte S, Snauwaert S, Vanhee S, Dolens AC, Taghon T, Vandekerckhove B, Kerre T. Humanized Mice to Study Human T Cell Development. Methods Mol Biol 2016; 1323:253-72. [PMID: 26294414 DOI: 10.1007/978-1-4939-2809-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
While in vitro models exist to study human T cell development, they still lack the precise environmental stimuli, such as the exact combination and levels of cytokines and chemokines, that are present in vivo. Moreover, studying the homing of hematopoietic stem (HSC) and progenitor (HPC) cells to the thymus can only be done using in vivo models. Although species-specific differences exist, "humanized" models are generated to circumvent these issues. In this chapter, we focus on the humanized mouse models that can be used to study early T cell development. Models that study solely mature T cells, such as the SCID-PBL (Tary-Lehmann et al., Immunol Today 16:529-533) are therefore not discussed here, but have recently been reviewed (Shultz et al., Nat Rev Immunol 12:786-798).
Collapse
Affiliation(s)
- Sarah Bonte
- The Department of Hematology and Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent University, 9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
105
|
Kobayashi I, Katakura F, Moritomo T. Isolation and characterization of hematopoietic stem cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:86-94. [PMID: 26801099 DOI: 10.1016/j.dci.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Despite 400 million years of evolutionary divergence, hematopoiesis is highly conserved between mammals and teleost fish. All types of mature blood cells including the erythroid, myeloid, and lymphoid lineages show a high degree of similarity to their mammalian counterparts at the morphological and molecular level. Hematopoietic stem cells (HSCs) are cells that are capable of self-renewal and differentiating into all hematopoietic lineages over the lifetime of an organism. The study of HSCs has been facilitated through bone marrow transplantation experiments developed in the mouse model. In the last decade, the zebrafish and clonal ginbuna carp (Carassius auratus langsdorfii) have emerged as new models for the study of HSCs. This review highlights the recent progress and future prospects of studying HSCs in teleost fish. Transplantation assays using these teleost models have demonstrated the presence of HSCs in the kidney, which is the major hematopoietic organ in teleost fish. Moreover, it is possible to purify HSCs from the kidney utilizing fluorescent dyes or transgenic animals. These teleost models will provide novel insights into the universal mechanisms of HSC maintenance, homeostasis, and differentiation among vertebrates.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
106
|
Cimato TR, Furlage RL, Conway A, Wallace PK. Simultaneous measurement of human hematopoietic stem and progenitor cells in blood using multicolor flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 90:415-23. [PMID: 26663713 DOI: 10.1002/cyto.b.21354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells are the source of all inflammatory cell types. Discovery of specific cell surface markers unique to human hematopoietic stem (HSC) and progenitor (HSPC) cell populations has facilitated studies of their development from stem cells to mature cells. The specific marker profiles of HSCs and HSPCs can be used to understand their role in human inflammatory diseases. The goal of this study is to simultaneously measure HSCs and HSPCs in normal human venous blood using multicolor flow cytometry. Our secondary aim is to determine how G-CSF mobilization alters the quantity of each HSC and HSPC population. Here we show that cells within the CD34+ fraction of human venous blood contains cells with the same cell surface markers found in human bone marrow samples. Mobilization with G-CSF significantly increases the quantity of total CD34+ cells, blood borne HSCs, multipotent progenitors, common myeloid progenitors, and megakaryocyte erythroid progenitors as a percentage of total MNCs analyzed. The increase in blood borne common lymphoid and granulocyte macrophage progenitors with G-CSF treatment did not reach significance. G-CSF treatment predominantly increased the numbers of HSCs and multipotent progenitors in the total CD34+ cell population; common myeloid progenitors and megakaryocyte erythroid progenitors were enriched relative to total MNCs analyzed, but not relative to total CD34+ cells. Our findings illustrate the utility of multicolor flow cytometry to quantify circulating HSCs and HSPCs in venous blood samples from human subjects. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Thomas R Cimato
- Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.
| | - Rosemary L Furlage
- Departments of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Alexis Conway
- Departments of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Paul K Wallace
- Departments of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
107
|
Association of CD34+ and CD90+ Stem Cells of Cord Blood with Neonatal Factors: A Cross-sectional Study. Indian J Pediatr 2016; 83:114-9. [PMID: 26245655 DOI: 10.1007/s12098-015-1839-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize the primitive stem cell content of cord blood with regard to neonatal parameters. METHODS In this cross-sectional study, CD34+ and CD90+ cells content were enumerated by flow-cytometry method. Their associations with various neonatal parameters like birth weight, gender, gestational age and mode of delivery were analyzed by univariate analysis. Multivariable linear regression model was then developed to further explain the effect of neonatal factors on these primitive cell counts. RESULTS From a total of 106 recruited subjects, gender of the neonate did not have any influence on the expression of these proteins (CD34 and CD90) of cord blood stem cells or progenitors. Multi variable linear regression analysis using CD34+ and CD90+ cell counts as dependent variables revealed that birth weight and the mode of delivery were significant predictors of these cell counts. CONCLUSIONS The present study suggests that birth weight and mode of delivery of the neonates influences cord blood stem cell yield.
Collapse
|
108
|
McCracken MN, George BM, Kao KS, Marjon KD, Raveh T, Weissman IL. Normal and Neoplastic Stem Cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:1-9. [PMID: 28416577 PMCID: PMC5766001 DOI: 10.1101/sqb.2016.81.030965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A stem cell is broadly defined as a cell that retains the capacity to self-renew, a feature that confers the ability to continuously make identical daughter cells or additional cells that will differentiate into downstream progeny. This highly regulated genetic program to retain "stemness" is under active investigation. Research in our laboratory has explored similarities and differences in embryonic, tissue-specific, and neoplastic stem cells and their terminally differentiated counterparts. In this review, we will focus on the contributions of our laboratory, in particular on the studies that identified the mouse hematopoietic stem cell (HSC) and the human leukemic stem cell. These studies have led to significant improvements in both preclinical and clinical research, including improved clinical bone marrow transplantation protocols, isolation of nonleukemic HSCs, a cancer immunotherapy currently in clinical trials, and development of a HSC reporter mouse. These studies and the current follow-up research by us and others will continue to identify the properties, function, and regulation of both normal and neoplastic stem cells.
Collapse
Affiliation(s)
- Melissa N McCracken
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, California 94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| |
Collapse
|
109
|
Stephan A, Fabri M. The NET, the trap and the pathogen: neutrophil extracellular traps in cutaneous immunity. Exp Dermatol 2015; 24:161-6. [PMID: 25421224 DOI: 10.1111/exd.12599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/20/2022]
Abstract
Neutrophil extracellular traps (NETs), large chromatin structures casted with various proteins, are externalized by neutrophils upon induction by both self- and non-self-stimuli. It has become clear that NETs are potent triggers of inflammation in autoimmune skin diseases. Moreover, the ability of NETs to trap pathogens suggests a crucial role in innate host defense. However, the outcome of the encounter between pathogens and NETs remains highly controversial. Here, we discuss recent insights into the morphology and formation of NETs, their role in skin inflammation and how NETs might contribute to host protection in skin infection.
Collapse
|
110
|
Ward D, Carter D, Homer M, Marucci L, Gampel A. Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture. Haematologica 2015; 101:286-96. [PMID: 26589912 DOI: 10.3324/haematol.2015.133637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34(+) cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Deborah Carter
- School of Biochemistry, Faculty of Medical and Veterinary Science, University of Bristol, UK
| | - Martin Homer
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Lucia Marucci
- Department of Engineering Mathematics, Faculty of Engineering, University of Bristol
| | - Alexandra Gampel
- School of Biochemistry, Faculty of Medical and Veterinary Science, University of Bristol, UK
| |
Collapse
|
111
|
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 2015; 33:1256-1263. [PMID: 26551060 PMCID: PMC4842001 DOI: 10.1038/nbt.3408] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Genome editing with targeted nucleases and DNA donor templates homologous to the break site has proven challenging in human hematopoietic stem and progenitor cells (HSPCs), and particularly in the most primitive, long-term repopulating cell population. Here we report that combining electroporation of zinc finger nuclease (ZFN) mRNA with donor template delivery by adeno-associated virus (AAV) serotype 6 vectors directs efficient genome editing in HSPCs, achieving site-specific insertion of a GFP cassette at the CCR5 and AAVS1 loci in mobilized peripheral blood CD34+ HSPCs at mean frequencies of 17% and 26%, respectively, and in fetal liver HSPCs at 19% and 43%, respectively. Notably, this approach modified the CD34+CD133+CD90+ cell population, a minor component of CD34+ cells that contains long-term repopulating hematopoietic stem cells (HSCs). Genome-edited HSPCs also engrafted in immune-deficient mice long-term, confirming that HSCs are targeted by this approach. Our results provide a strategy for more robust application of genome-editing technologies in HSPCs.
Collapse
|
112
|
He B, Li X, Yu H, Zhou Z. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus. J Diabetes 2015; 7:762-73. [PMID: 25799887 DOI: 10.1111/1753-0407.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.
Collapse
Affiliation(s)
- Binbin He
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Haibo Yu
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
113
|
Mah IK, Soloff R, Hedrick SM, Mariani FV. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway. Stem Cell Reports 2015; 5:866-880. [PMID: 26527382 PMCID: PMC4649379 DOI: 10.1016/j.stemcr.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate. PRKCi, a polarity protein, regulates expansion of various stem/progenitor cells PRKCi acts in this capacity via a Notch-dependent pathway Thus, PRKCi acts as a link between polarity and stem cell self-renewal Inhibition of aPKCs may be generally useful for expanding progenitor populations
Collapse
Affiliation(s)
- In Kyoung Mah
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Rachel Soloff
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Hedrick
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca V Mariani
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA.
| |
Collapse
|
114
|
Kuchma MD, Kyryk VM, Svitina HM, Shablii YM, Lukash LL, Lobyntseva GS, Shablii VA. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based on Their Immunophenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:418752. [PMID: 26347038 PMCID: PMC4540977 DOI: 10.1155/2015/418752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022]
Abstract
We have investigated the characteristics of human hematopoietic progenitor cells (HPCs) with the CD34(+)CD45(low)SSC(low) phenotype from full-term placental tissue (FTPT) as compared to cord blood (CB) and fetal liver (FL) cells. We demonstrated the presence of cell subpopulations at various stages of the differentiation with such immunophenotypes as CD34(+/low)CD45(low/-), CD34(++)CD45(low/-), CD34(+++)CD45(low/-), CD34(+/low)CD45(hi), and CD34(++)CD45(hi) in both first trimester placental tissue (FiTPT) and FTPT which implies their higher phenotypic heterogeneity compared to CB. HPCs of the FTPT origin expressed the CD90 antigen at a higher level compared to its expression by the CB HPCs and the CD133 antigen expression being at the same level in both cases. The HPCs compartment of FTPT versus CB contained higher number of myeloid and erythroid committed cells but lower number of myeloid and lymphoid ones compared to FL HPCs. HPCs of the FTPT and CB origin possess similar potentials for the multilineage differentiation in vitro and similar ratios of myeloid and erythroid progenitors among the committed cells. This observation suggests that the active hematopoiesis occurs in the FTPT. We obtained viable HPCs from cryopreserved placental tissue fragments allowing us to develop procedures for banking and testing of placenta-derived HPCs for clinical use.
Collapse
Affiliation(s)
- Maria D. Kuchma
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv 03680, Ukraine
| | - Vitaliy M. Kyryk
- State Institute of Genetics and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Vyshgorodska Street 67, Kyiv 04114, Ukraine
| | - Hanna M. Svitina
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
| | - Yulia M. Shablii
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
| | - Lubov L. Lukash
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv 03680, Ukraine
| | | | | |
Collapse
|
115
|
Abstract
Determining the developmental pathway leading to erythrocytes and being able to isolate their progenitors are crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Here we show that the human erythrocyte progenitor (hEP) can be prospectively isolated from adult bone marrow. We found three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage(-) CD34(+) CD38(+) IL-3Rα(-) CD45RA(-)) population. Both CD71(-) CD105(-) and CD71(+) CD105(-) MEPs, at least in vitro, still retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter subpopulation is skewed in differentiation toward the erythroid lineage. Notably, the proliferative and differentiation output of the CD71(intermediate(int)/+) CD105(+) subset of cells within the MEP population was completely restricted to the erythroid lineage with the loss of MegK potential. CD71(+) CD105(-) MEPs are erythrocyte-biased MEPs (E-MEPs) and CD71(int/+) CD105(+) cells are EPs. These previously unclassified populations may facilitate further understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
Collapse
|
116
|
Mahajan MM, Cheng B, Beyer AI, Mulvaney US, Wilkinson MB, Fomin ME, Muench MO. A quantitative assessment of the content of hematopoietic stem cells in mouse and human endosteal-bone marrow: a simple and rapid method for the isolation of mouse central bone marrow. BMC HEMATOLOGY 2015; 15:9. [PMID: 26161262 PMCID: PMC4496931 DOI: 10.1186/s12878-015-0031-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Isolation of bone marrow cells, including hematopoietic stem cells, is a commonly used technique in both the research and clinical settings. A quantitative and qualitative assessment of cell populations isolated from mouse and human bone marrow was undertaken with a focus on the distribution of hematopoietic cells between the central bone marrow (cBM) and endosteal bone marrow (eBM). METHODS Two approaches to cBM isolation from the hind legs were compared using the C57BL/6J and BALB/cJ strains of laboratory mice. The content of hematopoietic stem cells in eBM was compared to cBM from mice and human fetal bone marrow using flow cytometry. Enzymatic digestion was used to isolate eBM and its effects on antigen expression was evaluated using flow cytometry. Humanized immunodeficient mice were used to evaluate the engraftment of human precursors in the cBM and eBM and the effects of in vivo maturation on the fetal stem cell phenotype were determined. RESULTS The two methods of mouse cBM isolation yielded similar numbers of cells from the femur, but the faster single-cut method recovered more cells from the tibia. Isolation of eBM increased the yield of mouse and human stem cells. Enzymatic digestion used to isolate eBM did, however, have a detrimental effect on detecting the expression of the human HSC-antigens CD4, CD90 and CD93, whereas CD34, CD38, CD133 and HLA-DR were unaffected. Human fetal HSCs were capable of engrafting the eBM of immunodeficient mice and their pattern of CD13, CD33 and HLA-DR expression partially changed to an adult pattern of expression about 1 year after transplantation. CONCLUSIONS A simple, rapid and efficient method for the isolation of cBM from the femora and tibiae of mice is detailed. Harvest of tibial cBM yielded about half as many cells as from the femora, representing 6.4 % and 13 %, respectively, of the total cBM of a mouse based on our analysis and a review of the literature. HSC populations were enriched within the eBM and the yield of HSCs from the mouse and human long bones was increased notably by harvest of eBM.
Collapse
Affiliation(s)
- Maya M Mahajan
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Betty Cheng
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Usha S Mulvaney
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Matt B Wilkinson
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Ave., San Francisco, CA USA.,Department of Laboratory Medicine, University of California, San Francisco, CA USA
| |
Collapse
|
117
|
Webb CF, Ratliff ML, Powell R, Wirsig-Wiechmann CR, Lakiza O, Obara T. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures. Biochem Biophys Res Commun 2015; 463:1334-1340. [PMID: 26111446 DOI: 10.1016/j.bbrc.2015.06.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a-/- kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development.
Collapse
Affiliation(s)
- Carol F Webb
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Ratliff
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Olga Lakiza
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
118
|
Høyem MR, Måløy F, Jakobsen P, Brandsdal BO. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division. J Theor Biol 2015; 380:203-19. [PMID: 25997796 DOI: 10.1016/j.jtbi.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/30/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Abstract
We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells.
Collapse
Affiliation(s)
| | - Frode Måløy
- Department of Computer Science, University of Stavanger, Norway
| | - Per Jakobsen
- Department of Mathematics and Statistics, University of Tromsø, Norway
| | | |
Collapse
|
119
|
Xenograft models for normal and malignant stem cells. Blood 2015; 125:2630-40. [DOI: 10.1182/blood-2014-11-570218] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
Abstract
The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.
Collapse
|
120
|
Gu A, Torres-Coronado M, Tran CA, Vu H, Epps EW, Chung J, Gonzalez N, Blanchard S, DiGiusto DL. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist. Hum Gene Ther Methods 2015; 25:221-31. [PMID: 25003230 DOI: 10.1089/hgtb.2014.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.
Collapse
Affiliation(s)
- Angel Gu
- 1 Laboratory for Cellular Medicine, Beckman Research Institute , City of Hope, CA 91010
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ho MSH, Medcalf RL, Livesey SA, Traianedes K. The dynamics of adult haematopoiesis in the bone and bone marrow environment. Br J Haematol 2015; 170:472-86. [PMID: 25854627 DOI: 10.1111/bjh.13445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system.
Collapse
Affiliation(s)
- Miriel S H Ho
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia.,Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, The Alfred Hospital Prahran, Prahran, Victoria, Australia
| | - Stephen A Livesey
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| | - Kathy Traianedes
- Clinical Neurosciences, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia.,Department of Medicine, The University of Melbourne, St Vincent's Hospital Melbourne, Prahran, Victoria, Australia
| |
Collapse
|
122
|
Jiang J, Bu X, Liu M, Cheng P. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury. Neural Regen Res 2015; 7:46-53. [PMID: 25806058 PMCID: PMC4354115 DOI: 10.3969/j.issn.1673-5374.2012.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023] Open
Abstract
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.
Collapse
Affiliation(s)
- Jindou Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xingyao Bu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Meng Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| | - Peixun Cheng
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou 450003, Henan Province, China
| |
Collapse
|
123
|
Gaddes ER, Gydush G, Li S, Chen N, Dong C, Wang Y. Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface. Biomacromolecules 2015; 16:1382-9. [PMID: 25789558 DOI: 10.1021/acs.biomac.5b00165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural biomolecules are often used to functionalize materials to achieve desired cell-material interactions. However, their applications can be limited owing to denaturation during the material functionalization process. Therefore, efforts have been made to develop synthetic ligands with polyvalence as alternatives to natural affinity biomolecules for the synthesis of functional materials and the control of cell-material interactions. This work was aimed at investigating the capability of a hydrogel functionalized with a novel polyvalent aptamer in inducing cell attachment in dynamic flow and releasing the attached cells in physiological conditions through a hybridization reaction. The results show that the polyvalent aptamer could induce cell attachment on the hydrogel in dynamic flow. Moreover, cell attachment on the hydrogel surface was significantly influenced by the value of shear stress. The cell density on the hydrogel was increased from 40 cells/mm(2) to nearly 700 cells/mm(2) when the shear stress was decreased from 0.05 to 0.005 Pa. After the attachment onto the hydrogel surface, approximately 95% of the cells could be triggered to detach within 20 min by using an oligonucleotide complementary sequence that displaced polyvalent aptamer strands from the hydrogel surface. While it was found that the cell activity was reduced, the live/dead staining results show that ≥98% of the detached cells were viable. Therefore, this work has suggested that the polyvalent aptamer is a promising synthetic ligand for the functionalization of materials for regulated cell attachment.
Collapse
Affiliation(s)
- Erin R Gaddes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| | - Gregory Gydush
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| | - Shihui Li
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| | - Niancao Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| | - Cheng Dong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-6804, United States
| |
Collapse
|
124
|
Woo SR, Oh YT, An JY, Kang BG, Nam DH, Joo KM. Glioblastoma specific antigens, GD2 and CD90, are not involved in cancer stemness. Anat Cell Biol 2015; 48:44-53. [PMID: 25806121 PMCID: PMC4371180 DOI: 10.5115/acb.2015.48.1.44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant World Health Organization grade IV brain tumor. GBM patients have a poor prognosis because of its resistance to standard therapies, such as chemotherapy and radiation. Since stem-like cells have been associated with the treatment resistance of GBM, novel therapies targeting the cancer stem cell (CSC) population is critically required. However, GBM CSCs share molecular and functional characteristics with normal neural stem cells (NSCs). To elucidate differential therapeutic targets of GBM CSCs, we compared surface markers of GBM CSCs with adult human NSCs and found that GD2 and CD90 were specifically overexpressed in GBM CSCs. We further tested whether the GBM CSC specific markers are associated with the cancer stemness using primarily cultured patient-derived GBM cells. However, results consistently indicated that GBM cells with or without GD2 and CD90 had similar in vitro sphere formation capacity, a functional characteristics of CSCs. Therefore, GD2 and CD90, GBM specific surface markers, might not be used as specific therapeutic targets for GBM CSCs, although they could have other clinical utilities.
Collapse
Affiliation(s)
- Seon Rang Woo
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| | - Young Taek Oh
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea
| | - Jae Yeol An
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bong Gu Kang
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea. ; Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center and Sungkyunkwan University School of Medicine, Seoul, Korea. ; Center for Molecular Medicine, Samsung Biomedical Research Institute, Seoul, Korea. ; Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
125
|
Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4. Stem Cells Int 2015; 2015:389628. [PMID: 25755671 PMCID: PMC4337757 DOI: 10.1155/2015/389628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
Shortage of red blood cells (RBCs, erythrocytes) can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs), but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs) by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.
Collapse
|
126
|
Manohar R, Li Y, Fohrer H, Guzik L, Stolz DB, Chandran UR, LaFramboise WA, Lagasse E. Identification of a candidate stem cell in human gallbladder. Stem Cell Res 2015; 14:258-69. [PMID: 25765520 DOI: 10.1016/j.scr.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022] Open
Abstract
There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.
Collapse
Affiliation(s)
- Rohan Manohar
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Yaming Li
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Helene Fohrer
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Lynda Guzik
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| | - Donna Beer Stolz
- Center for Biological Imaging, Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.
| | - William A LaFramboise
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA; Clinical Genomics Facility, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA.
| |
Collapse
|
127
|
Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2015; 141:4656-66. [PMID: 25468935 DOI: 10.1242/dev.106575] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| |
Collapse
|
128
|
Wu C, Li B, Lu R, Koelle SJ, Yang Y, Jares A, Krouse AE, Metzger M, Liang F, Loré K, Wu CO, Donahue RE, Chen ISY, Weissman I, Dunbar CE. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 2014; 14:486-499. [PMID: 24702997 DOI: 10.1016/j.stem.2014.01.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 01/15/2023]
Abstract
Analysis of hematopoietic stem cell function in nonhuman primates provides insights that are relevant for human biology and therapeutic strategies. In this study, we applied quantitative genetic barcoding to track the clonal output of transplanted autologous rhesus macaque hematopoietic stem and progenitor cells over a time period of up to 9.5 months. We found that unilineage short-term progenitors reconstituted myeloid and lymphoid lineages at 1 month but were supplanted over time by multilineage clones, initially myeloid restricted, then myeloid-B clones, and then stable myeloid-B-T multilineage, long-term repopulating clones. Surprisingly, reconstitution of the natural killer (NK) cell lineage, and particularly the major CD16(+)/CD56(-) peripheral blood NK compartment, showed limited clonal overlap with T, B, or myeloid lineages, and therefore appears to be ontologically distinct. Thus, in addition to providing insights into clonal behavior over time, our analysis suggests an unexpected paradigm for the relationship between NK cells and other hematopoietic lineages in primates.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Li
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samson J Koelle
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Jares
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan E Krouse
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank Liang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin O Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert E Donahue
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| | - Irvin S Y Chen
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cynthia E Dunbar
- Hematology Branch; National Heart, Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
129
|
Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol 2014; 169:290-303. [PMID: 22250888 DOI: 10.1111/j.1476-5381.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy has emerged as a promising therapy for cardiovascular disease. Particularly, bone marrow (BM)-derived cells have been most extensively investigated and have shown encouraging results in preclinical studies. Clinical trials, however, have demonstrated split results in post-myocardial infarction cardiac repair. Mechanistically, transdifferentiation of BM-derived cells into cardiovascular tissue demonstrated by earlier studies is now known to play a minor role in functional recovery, and humoral and paracrine effects turned out to be main mechanisms responsible for tissue regeneration and functional recovery. With this advancement in the mechanistic insight of BM-derived cells, new efforts have been made to identify cell population, which can be readily isolated and obtained in sufficient quantity without mobilization and have higher therapeutic potential. Recently, haematopoietic CD31(+) cells, which are more prevalent in bone marrow and peripheral blood, have been revealed to have angiogenic and vasculogenic activities and strong potential for therapeutic neovascularization in ischaemic tissues. This article will cover the recent advances in BM-derived cell-based therapy and implication of CD31(+) cells.
Collapse
Affiliation(s)
- Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
130
|
Main H, Radenkovic J, Kosobrodova E, McKenzie D, Bilek M, Lendahl U. Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate. Cell Mol Life Sci 2014; 71:3841-57. [PMID: 24623559 PMCID: PMC11113427 DOI: 10.1007/s00018-014-1595-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023]
Abstract
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.
Collapse
Affiliation(s)
- Heather Main
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
131
|
Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe S, Farrow S, Poudel P, Burden F, Jansen SB, Astle WJ, Attwood A, Bariana T, de Bono B, Breschi A, Chambers JC, Consortium BRIDGE, Choudry FA, Clarke L, Coupland P, van der Ent M, Erber WN, Jansen JH, Favier R, Fenech ME, Foad N, Freson K, van Geet C, Gomez K, Guigo R, Hampshire D, Kelly AM, Kerstens HH, Kooner JS, Laffan M, Lentaigne C, Labalette C, Martin T, Meacham S, Mumford A, Nürnberg S, Palumbo E, van der Reijden BA, Richardson D, Sammut SJ, Slodkowicz G, Tamuri AU, Vasquez L, Voss K, Watt S, Westbury S, Flicek P, Loos R, Goldman N, Bertone P, Read RJ, Richardson S, Cvejic A, Soranzo N, Ouwehand WH, Stunnenberg HG, Frontini M, Rendon A. Transcriptional diversity during lineage commitment of human blood progenitors. Science 2014; 345:1251033. [PMID: 25258084 PMCID: PMC4254742 DOI: 10.1126/science.1251033] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Lu Chen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Joost H.A. Martens
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Giovanni Canu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sara P. Garcia
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Iain C. Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewa Bielczyk-Maczynska
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sophia Coe
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Pawan Poudel
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sjoert B.G. Jansen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Antony Attwood
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Tadbir Bariana
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom
| | - Bernard de Bono
- CHIME Institute, University College London, Archway Campus, London, United Kingdom
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Alessandra Breschi
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - John C. Chambers
- Imperial College Healthcare NHS Trust, DuCane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | | | - Fizzah A. Choudry
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Coupland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Martijn van der Ent
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Wendy N. Erber
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rémi Favier
- Assistance Publique-Hopitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1009, Villejuif, France
| | - Matthew E. Fenech
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nicola Foad
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Chris van Geet
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Keith Gomez
- The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom
| | - Roderic Guigo
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - Daniel Hampshire
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne M. Kelly
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Jaspal S. Kooner
- Imperial College Healthcare NHS Trust, DuCane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Michael Laffan
- Department of Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
| | - Claire Lentaigne
- Department of Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
| | - Charlotte Labalette
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Tiphaine Martin
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Twin Research & Genetic Epidemiology, Genetics & Molecular Medicine Division, St Thomas’ Hospital, King’s College, London, United Kingdom
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Sylvia Nürnberg
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Emilio Palumbo
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen J. Sammut
- Department of Oncology, Addenbrooke’s Cambridge University Hospital NHS Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cancer Research United Kingdom, Cambridge Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Greg Slodkowicz
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Asif U. Tamuri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Louella Vasquez
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katrin Voss
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stephen Watt
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sarah Westbury
- School of Clinical Sciences, University of Bristol, United Kingdom
| | - Paul Flicek
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Remco Loos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Bertone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Heidelberg, Germany
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sylvia Richardson
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
132
|
Maan ZN, Rennert RC, Koob TJ, Januszyk M, Li WW, Gurtner GC. Cell recruitment by amnion chorion grafts promotes neovascularization. J Surg Res 2014; 193:953-962. [PMID: 25266600 DOI: 10.1016/j.jss.2014.08.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/07/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonhealing wounds are a significant health burden. Stem and progenitor cells can accelerate wound repair and regeneration. Human amniotic membrane has demonstrated efficacy in promoting wound healing, though the underlying mechanisms remain unknown. A dehydrated human amnion chorion membrane (dHACM) was tested for its ability to recruit hematopoietic progenitor cells to a surgically implanted graft in a murine model of cutaneous ischemia. METHODS dHACM was subcutaneously implanted under elevated skin (ischemic stimulus) in either wild-type mice or mice surgically parabiosed to green fluorescent protein (GFP) + reporter mice. A control acellular dermal matrix, elevated skin without an implant, and normal unwounded skin were used as controls. Wound tissue was harvested and processed for histology and flow cytometric analysis. RESULTS Implanted dHACMs recruited significantly more progenitor cells compared with controls (*P < 0.05) and displayed in vivo SDF-1 expression with incorporation of CD34 + progenitor cells within the matrix. Parabiosis modeling confirmed the circulatory origin of recruited cells, which coexpressed progenitor cell markers and were localized to foci of neovascularization within implanted matrices. CONCLUSIONS In summary, dHACM effectively recruits circulating progenitor cells, likely because of stromal derived factor 1 (SDF-1) expression. The recruited cells express markers of "stemness" and localize to sites of neovascularization, providing a partial mechanism for the clinical efficacy of human amniotic membrane in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C Rennert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - William W Li
- Angiogenesis Foundation, Cambridge, Massachusetts
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
133
|
Li L, Torres-Coronado M, Gu A, Rao A, Gardner AM, Epps EW, Gonzalez N, Tran CA, Wu X, Wang JH, DiGiusto DL. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin. Stem Cells Transl Med 2014; 3:1199-208. [PMID: 25107584 DOI: 10.5966/sctm.2014-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.
Collapse
Affiliation(s)
- Lijing Li
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Mónica Torres-Coronado
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Angel Gu
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Anitha Rao
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Agnes M Gardner
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Elizabeth W Epps
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Nancy Gonzalez
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Chy-Anh Tran
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Xiwei Wu
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Jin-Hui Wang
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - David L DiGiusto
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| |
Collapse
|
134
|
Haus DL, Nguyen HX, Gold EM, Kamei N, Perez H, Moore HD, Anderson AJ, Cummings BJ. CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice. Stem Cell Res 2014; 13:214-26. [PMID: 25082219 PMCID: PMC5675021 DOI: 10.1016/j.scr.2014.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 06/14/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Common methods for the generation of human embryonic-derived neural stem cells (hNSCs) result in cells with potentially compromised safety profiles due to maintenance of cells in conditions containing non-human proteins (e.g. in bovine serum or on mouse fibroblast feeders). Additionally, sufficient expansion of resulting hNSCs for scaling out or up in a clinically relevant time frame has proven to be difficult. Here, we report a strategy that produces hNSCs in completely “Xeno-Free” culture conditions. Furthermore, we have enriched the hNSCs for the cell surface marker CD133 via magnetic sorting, which has led to an increase in the expansion rate and neuronal fate specification of the hNSCs in vitro. Critically, we have also confirmed neural lineage specificity upon sorted hNSC transplantation into the immunodeficient NOD-scid mouse brain. The future use or adaptation of these protocols has the potential to better facilitate the advancement of pre-clinical strategies from the bench to the bedside.
Collapse
Affiliation(s)
- Daniel L Haus
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine, CA 92697-1750, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697-1750, USA
| | - Eric M Gold
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine, CA 92697-1750, USA
| | - Noriko Kamei
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697-1750, USA
| | - Harvey Perez
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697-1750, USA
| | - Harry D Moore
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK; Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; Physical and Medical Rehabilitation, University of California, Irvine, CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine, CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697-1750, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-1750, USA; Physical and Medical Rehabilitation, University of California, Irvine, CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine, CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697-1750, USA.
| |
Collapse
|
135
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
136
|
Bartholdy B, Christopeit M, Will B, Mo Y, Barreyro L, Yu Y, Bhagat TD, Okoye-Okafor UC, Todorova TI, Greally JM, Levine RL, Melnick A, Verma A, Steidl U. HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin Invest 2014; 124:1158-67. [PMID: 24487588 DOI: 10.1172/jci71264] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by disruption of HSC and progenitor cell differentiation. Frequently, AML is associated with mutations in genes encoding epigenetic modifiers. We hypothesized that analysis of alterations in DNA methylation patterns during healthy HSC commitment and differentiation would yield epigenetic signatures that could be used to identify stage-specific prognostic subgroups of AML. We performed a nano HpaII-tiny-fragment-enrichment-by-ligation-mediated-PCR (nanoHELP) assay to compare genome-wide cytosine methylation profiles between highly purified human long-term HSC, short-term HSC, common myeloid progenitors, and megakaryocyte-erythrocyte progenitors. We observed that the most striking epigenetic changes occurred during the commitment of short-term HSC to common myeloid progenitors and these alterations were predominantly characterized by loss of methylation. We developed a metric of the HSC commitment–associated methylation pattern that proved to be highly prognostic of overall survival in 3 independent large AML patient cohorts, regardless of patient treatment and epigenetic mutations. Application of the epigenetic signature metric for AML prognosis was superior to evaluation of commitment-based gene expression signatures. Together, our data define a stem cell commitment–associated methylome that is independently prognostic of poorer overall survival in AML.
Collapse
|
137
|
Gago-Lopez N, Awaji O, Zhang Y, Ko C, Nsair A, Liem D, Stempien-Otero A, MacLellan W. THY-1 receptor expression differentiates cardiosphere-derived cells with divergent cardiogenic differentiation potential. Stem Cell Reports 2014; 2:576-91. [PMID: 24936447 PMCID: PMC4050474 DOI: 10.1016/j.stemcr.2014.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/26/2023] Open
Abstract
Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90(+), expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90(-) and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation.
Collapse
Affiliation(s)
- Nuria Gago-Lopez
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195-6422, USA
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Obinna Awaji
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Yiqiang Zhang
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195-6422, USA
| | - Christopher Ko
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Ali Nsair
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - David Liem
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - April Stempien-Otero
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195-6422, USA
| | - W. Robb MacLellan
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195-6422, USA
- Department of Medicine and Physiology, Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| |
Collapse
|
138
|
Ivanovs A, Rybtsov S, Anderson R, Turner M, Medvinsky A. Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Reports 2014; 2:449-56. [PMID: 24749070 PMCID: PMC3986508 DOI: 10.1016/j.stemcr.2014.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022] Open
Abstract
In various vertebrate species, the dorsal aorta (Ao) is the site of specification of adult hematopoietic stem cells (HSCs). It has been observed that the upregulation of essential hematopoietic transcription factors and the formation of specific intra-aortic hematopoietic cell clusters occur predominantly in the ventral domain of the Ao (AoV). In the mouse, the first HSCs emerge in the AoV. Here, we demonstrate that in the human embryo the first definitive HSCs also emerge asymmetrically and are localized to the AoV, which thus identifies a functional niche for developing human HSCs. Using magnetic cell separation and xenotransplantations, we show that the first human HSCs are CD34(+)VE-cadherin(+)CD45(+)C-KIT(+)THY-1(+)Endoglin(+)RUNX1(+)CD38(-/lo)CD45RA(-). This population harbors practically all committed hematopoietic progenitors and is underrepresented in the dorsal domain of the Ao (AoD) and urogenital ridges (UGRs). The present study provides a foundation for analysis of molecular mechanisms underpinning embryonic specification of human HSCs.
Collapse
Affiliation(s)
- Andrejs Ivanovs
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Stanislav Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Marc L. Turner
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
- Scottish National Blood Transfusion Service, Edinburgh EH17 7QT, Scotland, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, Scotland, UK
- Corresponding author
| |
Collapse
|
139
|
Methods for functional analysis of stem cells. Methods Mol Biol 2014; 1109:65-72. [PMID: 24473778 DOI: 10.1007/978-1-4614-9437-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hematopoietic stem cells (HSC) are rare, multipotent cells characterized by their ability to self-renew and to generate all blood cells throughout life. Major advances have been made in the area of HSC research as a result of the development of different techniques that allowed HSC identification, purification, and analysis of biological functions. This chapter presents methods that are currently used to analyze HSC functions in vitro based on their characteristics.
Collapse
|
140
|
Marker-independent method for isolating slow-dividing cancer stem cells in human glioblastoma. Neoplasia 2014; 15:840-7. [PMID: 23814495 DOI: 10.1593/neo.13662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a devastating brain tumor with a poor survival outcome. It is generated and propagated by a small subpopulation of rare and hierarchically organized cells that share stem-like features with normal stem cells but, however, appear dysregulated in terms of self-renewal and proliferation and aberrantly differentiate into cells forming the bulk of the disorganized cancer tissues. The complexity and heterogeneity of human GBMs underlie the lack of standardized and effective treatments. This study is based on the assumption that available markers defining cancer stem cells (CSCs) in all GBMs are not conclusive and further work is required to identify the CSC. We implemented a method to isolate CSCs independently from cell surface markers: four patient-derived GBM neurospheres containing stem, progenitors, and differentiated cells were labeled with PKH-26 fluorescent dye that reliably selects for cells that divide at low rate. Through in vitro and in vivo assays, we investigated the growth and self-renewal properties of the two different compartments of high- and slow-dividing cells. Our data demonstrate that only slow-dividing cells retain the ability of a long-lasting self-renewal capacity after serial in vitro passaging, while high-dividing cells eventually exhaust. Moreover, orthotopic transplantation assay revealed that the incidence of tumors generated by the slow-dividing compartment is significantly higher in the four patient-derived GBM neurospheres analyzed. Importantly, slow-dividing cells feature a population made up of homogeneous stem cells that sustain tumor growth and therefore represent a viable target for GBM therapy development.
Collapse
|
141
|
Gottipamula S, Ashwin KM, Muttigi MS, Kannan S, Kolkundkar U, Seetharam RN. Isolation, expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions. Cell Tissue Res 2014; 356:123-35. [PMID: 24448665 DOI: 10.1007/s00441-013-1783-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) heralded a new beginning for regenerative medicine and generated tremendous interest as the most promising source for therapeutic application. Most cell therapies require stringent regulatory compliance and prefer the use of serum-free media (SFM) or xeno-free media (XFM) for the MSC production process, starting from the isolation onwards. Here, we report on serum-free isolation and expansion of MSCs and compare them with cells grown in conventional fetal bovine serum (FBS)-containing media as a control. The isolation, proliferation and morphology analysis demonstrated significant differences between MSCs cultured in various SFM/XFM in addition to their difference with FBS controls. BD Mosaic™ Mesenchymal Stem Cell Serum-Free media (BD-SFM) and Mesencult-XF (MSX) supported the isolation, sequential passaging, tri-lineage differentiation potential and acceptable surface marker expression profile of BM-MSCs. Further, MSCs cultured in SFM showed higher immune suppression and hypo-immunogenicity properties, making them an ideal candidate for allogeneic cell therapy. Although cells cultured in control media have a significantly higher proliferation rate, BM-MSCs cultured in BD-SFM or MSX media are the preferred choice to meet regulatory requirements as they do not contain bovine serum. While BM-MSCs cultured in BD-SFM and MSX media adhered to all MSC characteristics, in the case of few parameters, the performance of cells cultured in BD-SFM was superior to that of MSX media. Pre-clinical safety and efficiency studies are required before qualifying SFM or XFM media-derived MSCs for therapeutic applications.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- Stempeutics Research Pvt. Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, India
| | | | | | | | | | | |
Collapse
|
142
|
Sonoda Y. Human CD34-negative Hematopoietic Stem Cells. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-1001-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
143
|
Abstract
Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed.
Collapse
Affiliation(s)
- Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
144
|
Poole J, Mavromatis K, Binongo JN, Khan A, Li Q, Khayata M, Rocco E, Topel M, Zhang X, Brown C, Corriere MA, Murrow J, Sher S, Clement S, Ashraf K, Rashed A, Kabbany T, Neuman R, Morris A, Ali A, Hayek S, Oshinski J, Yoon YS, Waller EK, Quyyumi AA. Effect of progenitor cell mobilization with granulocyte-macrophage colony-stimulating factor in patients with peripheral artery disease: a randomized clinical trial. JAMA 2013; 310:2631-9. [PMID: 24247554 PMCID: PMC9136711 DOI: 10.1001/jama.2013.282540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Many patients with peripheral artery disease (PAD) have walking impairment despite therapy. Experimental studies in animals demonstrate improved perfusion in ischemic hind limb after mobilization of bone marrow progenitor cells (PCs), but whether this is effective in patients with PAD is unknown. OBJECTIVE To investigate whether therapy with granulocyte-macrophage colony-stimulating factor (GM-CSF) improves exercise capacity in patients with intermittent claudication. DESIGN, SETTING, AND PARTICIPANTS In a phase 2 double-blind, placebo-controlled study, 159 patients (median [SD] age, 64 [8] years; 87% male, 37% with diabetes) with intermittent claudication were enrolled at medical centers affiliated with Emory University in Atlanta, Georgia, between January 2010 and July 2012. INTERVENTIONS Participants were randomized (1:1) to received 4 weeks of subcutaneous injections of GM-CSF (leukine), 500 μg/day 3 times a week, or placebo. Both groups were encouraged to walk to claudication daily. MAIN OUTCOMES AND MEASURES The primary outcome was peak treadmill walking time (PWT) at 3 months. Secondary outcomes were PWT at 6 months and changes in circulating PC levels, ankle brachial index (ABI), and walking impairment questionnaire (WIQ) and 36-item Short-Form Health Survey (SF-36) scores. RESULTS Of the 159 patients randomized, 80 were assigned to the GM-CSF group. The mean (SD) PWT at 3 months increased in the GM-CSF group from 296 (151) seconds to 405 (248) seconds (mean change, 109 seconds [95% CI, 67 to 151]) and in the placebo group from 308 (161) seconds to 376 (182) seconds (change of 56 seconds [95% CI, 14 to 98]), but this difference was not significant (mean difference in change in PWT, 53 seconds [95% CI, -6 to 112], P = .08). At 3 months, compared with placebo, GM-CSF improved the physical functioning subscore of the SF-36 questionnaire by 11.4 (95% CI, 6.7 to 16.1) vs 4.8 (95% CI, -0.1 to 9.6), with a mean difference in change for GM-CSF vs placebo of 7.5 (95% CI, 1.0 to 14.0; P = .03). Similarly, the distance score of the WIQ improved by 12.5 (95% CI, 6.4 to 18.7) vs 4.8 (95% CI, -0.2 to 9.8) with GM-CSF compared with placebo (mean difference in change, 7.9 [95% CI, 0.2 to 15.7], P = .047). There were no significant differences in the ABI, WIQ distance and speed scores, claudication onset time, or mental or physical component scores of the SF-36 between the groups. CONCLUSIONS AND RELEVANCE Therapy with GM-CSF 3 times a week did not improve treadmill walking performance at the 3-month follow-up. The improvements in some secondary outcomes with GM-CSF suggest that it may warrant further study in patients with claudication. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01041417.
Collapse
Affiliation(s)
- Joseph Poole
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Kreton Mavromatis
- Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - José N Binongo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Ali Khan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Qunna Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mohamed Khayata
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth Rocco
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Matthew Topel
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Xin Zhang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Charlene Brown
- Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Matthew A Corriere
- Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, Georgia6Division of Vascular and Endovascular Surgery, Emory University School of Medicine, Atlanta, Georgia
| | | | - Salman Sher
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie Clement
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Khuram Ashraf
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Amr Rashed
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Tarek Kabbany
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Robert Neuman
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Alanna Morris
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Arshad Ali
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Salim Hayek
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - John Oshinski
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Young-sup Yoon
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia7Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
145
|
Cell detachment: Post-isolation challenges. Biotechnol Adv 2013; 31:1664-75. [DOI: 10.1016/j.biotechadv.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 12/16/2022]
|
146
|
Abstract
PURPOSE OF REVIEW Many surface antigens have been previously used to identify hematopoietic stem cells or cellular elements of the hematopoietic niche. However, to date, not a single surface marker has been identified as a common marker expressed on murine and human hematopoietic stem cells and on cells of the hematopoietic niche. Recently, a few laboratories, including ours, recognized the importance of CD166 as a functional marker on both stem cells and osteoblasts and have begun to characterize the role of CD166 in hematopoiesis. RECENT FINDINGS Expression of CD166 on hematopoietic cells and cells in the marrow microenvironment was first reported more than a decade ago. Lately, however, a more prominent role for CD166 in normal hematopoiesis and in cancer biology including metastasis began to emerge. This review will cover the significance of CD166 in identifying normal hematopoietic stem cells and cells of the hematopoietic niche and highlight how CD166-mediated homophilic interactions between both cell types may be critical for stem cell function. SUMMARY The conserved homology between murine and human CD166 and its involvement in metastasis provides an excellent bridge for translational investigations aimed at enhancing stem cell engraftment and clinical utility of stem cells and at using CD166 as a therapeutic target in cancer.
Collapse
|
147
|
BLT-humanized C57BL/6 Rag2-/-γc-/-CD47-/- mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 2013; 122:4013-20. [PMID: 24021673 DOI: 10.1182/blood-2013-06-506949] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of C57BL/6 Rag2(-/-)γc(-/-) mice as recipients for xenotransplantation with human immune systems (humanization) has been problematic because C57BL/6 SIRPα does not recognize human CD47, and such recognition is required to suppress macrophage-mediated phagocytosis of transplanted human hematopoietic stem cells (HSCs). We show that genetic inactivation of CD47 on the C57BL/6 Rag2(-/-)γc(-/-) background negates the requirement for CD47-signal recognition protein α (SIRPα) signaling and induces tolerance to transplanted human HSCs. These triple-knockout, bone marrow, liver, thymus (TKO-BLT) humanized mice develop organized lymphoid tissues including mesenteric lymph nodes, splenic follicles and gut-associated lymphoid tissue that demonstrate high levels of multilineage hematopoiesis. Importantly, these mice have an intact complement system and showed no signs of graft-versus-host disease (GVHD) out to 29 weeks after transplantation. Sustained, high-level HIV-1 infection was observed via either intrarectal or intraperitoneal inoculation. TKO-BLT mice exhibited hallmarks of human HIV infection including CD4(+) T-cell depletion, immune activation, and development of HIV-specific B- and T-cell responses. The lack of GVHD makes the TKO-BLT mouse a significantly improved model for long-term studies of pathogenesis, immune responses, therapeutics, and vaccines to human pathogens.
Collapse
|
148
|
Tsukamoto A, Uchida N, Capela A, Gorba T, Huhn S. Clinical translation of human neural stem cells. Stem Cell Res Ther 2013; 4:102. [PMID: 23987648 PMCID: PMC3854682 DOI: 10.1186/scrt313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development.
Collapse
|
149
|
Nolde MJ, Cheng EC, Guo S, Lin H. Piwi genes are dispensable for normal hematopoiesis in mice. PLoS One 2013; 8:e71950. [PMID: 24058407 PMCID: PMC3751959 DOI: 10.1371/journal.pone.0071950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 01/23/2023] Open
Abstract
Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized “piwi” refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34+ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis.
Collapse
Affiliation(s)
- Mona J. Nolde
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ee-chun Cheng
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Shangqin Guo
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
150
|
Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther 2013; 13:437-45. [PMID: 23394377 DOI: 10.1517/14712598.2013.761968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. AREAS COVERED In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. EXPERT OPINION Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.
Collapse
Affiliation(s)
- Janet Chung
- Beckman Research Institute of City of Hope, Department of Molecular and Cell Biology, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|