101
|
Han MJ, He QT, Yang M, Chen C, Yao Y, Liu X, Wang Y, Zhu ZL, Zhu KK, Qu C, Yang F, Hu C, Guo X, Zhang D, Chen C, Sun JP, Wang J. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and a Se-click reaction. Chem Sci 2021; 12:9114-9123. [PMID: 34276941 PMCID: PMC8261736 DOI: 10.1039/d1sc02653d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for investigating the dynamic properties of biomacromolecules. However, the success of protein smFRET relies on the precise and efficient labeling of two or more fluorophores on the protein of interest (POI), which has remained highly challenging, particularly for large membrane protein complexes. Here, we demonstrate the site-selective incorporation of a novel unnatural amino acid (2-amino-3-(4-hydroselenophenyl) propanoic acid, SeF) through genetic expansion followed by a Se-click reaction to conjugate the Bodipy593 fluorophore on calmodulin (CaM) and β-arrestin-1 (βarr1). Using this strategy, we monitored the subtle but functionally important conformational change of βarr1 upon activation by the G-protein coupled receptor (GPCR) through smFRET for the first time. Our new method has broad applications for the site-specific labeling and smFRET measurement of membrane protein complexes, and the elucidation of their dynamic properties such as transducer protein selection.
Collapse
Affiliation(s)
- Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Mengyi Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
| | - Yirong Yao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China Baohe District Anhui 230026 China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan Jinan Shandong 250022 China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Cheng Hu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Xuzhen Guo
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| |
Collapse
|
102
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
103
|
Yeou S, Lee NK. Contribution of a
DNA
Nick to
DNA
Bendability Depending on the Bending Force. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sanghun Yeou
- Department of Physics Pohang University of Science and Technology 77 Cheongam‐Ro, Nam‐Gu, Pohang Gyeongbuk 37673 Korea
| | - Nam Ki Lee
- Department of Chemistry Seoul National University Gwanak‐ro 1, Gwanak‐gu, Seoul 08826 Korea
| |
Collapse
|
104
|
Wilson H, Wang Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat Methods 2021; 18:816-820. [PMID: 34127856 DOI: 10.1038/s41592-021-01173-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2021] [Indexed: 02/03/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental modalities often resort to molecule immobilization for long observation times and do not always approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with ultrahigh resolving power in FRET efficiency. Importantly, single-molecule diffusivity is used to provide additional size and shape information for hydrodynamic profiling of individual molecules, which, together with the concurrently measured intramolecular conformation through FRET, enables a holistic and dynamic view of biomolecules and their complexes.
Collapse
Affiliation(s)
- Hugh Wilson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Quan Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
105
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
106
|
Valli J, Garcia-Burgos A, Rooney LM, Vale de Melo E Oliveira B, Duncan RR, Rickman C. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. J Biol Chem 2021; 297:100791. [PMID: 34015334 PMCID: PMC8246591 DOI: 10.1016/j.jbc.2021.100791] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Adrian Garcia-Burgos
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Liam M Rooney
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Beatriz Vale de Melo E Oliveira
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Rory R Duncan
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Colin Rickman
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
107
|
Fairlamb MS, Whitaker AM, Bain FE, Spies M, Freudenthal BD. Construction of a Three-Color Prism-Based TIRF Microscope to Study the Interactions and Dynamics of Macromolecules. BIOLOGY 2021; 10:biology10070571. [PMID: 34201434 PMCID: PMC8301196 DOI: 10.3390/biology10070571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Prism-based single-molecule total internal reflection fluorescence (prismTIRF) microscopes are excellent tools for studying macromolecular dynamics and interactions. Here, we provide an easy-to-follow guide for the design, assembly, and operation of a three-color prismTIRF microscope using commercially available components with the hope of assisting those who aim to implement TIRF imaging techniques in their laboratory. Abstract Single-molecule total internal reflection fluorescence (TIRF) microscopy allows for the real-time visualization of macromolecular dynamics and complex assembly. Prism-based TIRF microscopes (prismTIRF) are relatively simple to operate and can be easily modulated to fit the needs of a wide variety of experimental applications. While building a prismTIRF microscope without expert assistance can pose a significant challenge, the components needed to build a prismTIRF microscope are relatively affordable and, with some guidance, the assembly can be completed by a determined novice. Here, we provide an easy-to-follow guide for the design, assembly, and operation of a three-color prismTIRF microscope which can be utilized for the study of macromolecular complexes, including the multi-component protein–DNA complexes responsible for DNA repair, replication, and transcription. Our hope is that this article can assist laboratories that aspire to implement single-molecule TIRF techniques, and consequently expand the application of this technology.
Collapse
Affiliation(s)
- Max S. Fairlamb
- Department of Biochemistry and Molecular Biology and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.S.F.); (A.M.W.)
| | - Amy M. Whitaker
- Department of Biochemistry and Molecular Biology and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.S.F.); (A.M.W.)
| | - Fletcher E. Bain
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; (F.E.B.); (M.S.)
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; (F.E.B.); (M.S.)
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (M.S.F.); (A.M.W.)
- Correspondence:
| |
Collapse
|
108
|
Wu C, Shan Y, Wang S, Liu F. Dynamically probing ATP-dependent RNA helicase A-assisted RNA structure conversion using single molecule fluorescence resonance energy transfer. Protein Sci 2021; 30:1157-1168. [PMID: 33837988 DOI: 10.1002/pro.4081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
RNA helicase A (RHA) as a member of DExH-box subgroup of helicase superfamily II, participates in diverse biological processes involved in RNA metabolism in organisms, and these RNA-mediated biological processes rely on RNA structure conversion. However, how RHA regulate the RNA structure conversion was still unknown. In order to unveil the mechanism of RNA structure conversion mediated by RHA, single molecule fluorescence resonance energy transfer was adopted to in our assay, and substrates RNA were from internal ribosome entry site of foot-and-mouth disease virus genome. We first found that the RNA structure conversion by RHA against thermodynamic equilibrium in vitro, and the process of dsRNA YZ converted to dsRNA XY through a tripartite intermediate state. In addition, the rate of the RNA structure conversion and the distribution of dsRNA YZ and XY were affected by ATP concentrations. Our study provides real-time insight into ATP-dependent RHA-assisted RNA structure conversion at the single molecule level, the mechanism displayed by RHA may help in understand how RHA contributes to many biological functions, and the basic mechanistic features illustrated in our work also underlay more complex protein-assisted RNA structure conversions.
Collapse
Affiliation(s)
- Chengcheng Wu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China.,Computational Optics Laboratory, Jiangnan University, Wuxi, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
109
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
110
|
Song M, Khan IM, Wang Z. Research Progress of Optical Aptasensors Based on AuNPs in Food Safety. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02029-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
111
|
Zhang Y, Zhang Y, Song KH, Lin W, Sun C, Schatz GC, Zhang HF. Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. J Phys Chem Lett 2021; 12:3914-3921. [PMID: 33861598 PMCID: PMC8607629 DOI: 10.1021/acs.jpclett.1c00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We experimentally investigated several intramolecular coordinate and environmental changes as potential causes of single-molecule fluorescence spectral heterogeneities (smFSH). We developed a high-throughput single-molecule spectroscopy method to analyze more than 5000 single-molecule emission spectra from each of 9 commonly used fluorophores with different structural rigidities and deposited on substrates with different polarities. We observed an unexpectedly high smFSH from structurally rigid Rhodamine B compared with a structurally flexible Cyanine dye-Alexa Fluor 647. Based on experimentally measured smFSH, we ruled out the system's noise uncertainty, single-molecule spectral diffusion, and environmental polarity as the primary causes of the high smFSH. We found that the rotational flexibility of N,N-dialkylated groups contributed to the smFSH. With the high smFSH observed in structurally more rigid model fluorophores, we speculated that other intramolecular coordinate and environmental changes might also contribute to the high smFSH in Rhodamines.
Collapse
Affiliation(s)
- Yang Zhang
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
- Corresponding Author:
| | - Yu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Ki-Hee Song
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
| | - Wei Lin
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL60208, United States
| | - Hao F. Zhang
- Departments of Biomedical Engineering, Northwestern University, Evanston, IL60208, United States
| |
Collapse
|
112
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
113
|
Feng XA, Poyton MF, Ha T. Multicolor single-molecule FRET for DNA and RNA processes. Curr Opin Struct Biol 2021; 70:26-33. [PMID: 33894656 DOI: 10.1016/j.sbi.2021.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a useful tool for observing the dynamics of protein-nucleic acid interactions. Although most smFRET measurements have used two fluorophores, multicolor smFRET measurements using more than two fluorophores offer more information about how protein-nucleic acid complexes dynamically move, assemble, and disassemble. Multicolor smFRET experiments include three or more fluorophores and at least one donor-acceptor pair. This review highlights how multicolor smFRET is being used to probe the dynamics of three different classes of biochemical processes-protein-DNA interactions, chromatin remodeling, and protein translation.
Collapse
Affiliation(s)
- Xinyu A Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew F Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
114
|
Modelling single-molecule kinetics of helicase translocation using high-resolution nanopore tweezers (SPRNT). Essays Biochem 2021; 65:109-127. [PMID: 33491732 DOI: 10.1042/ebc20200027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Single-molecule picometer resolution nanopore tweezers (SPRNT) is a technique for monitoring the motion of individual enzymes along a nucleic acid template at unprecedented spatiotemporal resolution. We review the development of SPRNT and the application of single-molecule kinetics theory to SPRNT data to develop a detailed model of helicase motion along a single-stranded DNA substrate. In this review, we present three examples of questions SPRNT can answer in the context of the Superfamily 2 helicase Hel308. With Hel308, SPRNT's spatiotemporal resolution enables resolution of two distinct enzymatic substates, one which is dependent upon ATP concentration and one which is ATP independent. By analyzing dwell-time distributions and helicase back-stepping, we show, in detail, how SPRNT can be used to determine the nature of these observed steps. We use dwell-time distributions to discern between three different possible models of helicase backstepping. We conclude by using SPRNT's ability to discern an enzyme's nucleotide-specific location along a DNA strand to understand the nature of sequence-specific enzyme kinetics and show that the sequence within the helicase itself affects both step dwell-time and backstepping probability while translocating on single-stranded DNA.
Collapse
|
115
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
116
|
Abstract
Modern experimental kinetics of protein folding began in the early 1990s with the introduction of nanosecond laser pulses to trigger the folding reaction, providing an almost 106-fold improvement in time resolution over the stopped-flow method being employed at the time. These experiments marked the beginning of the "fast-folding" subfield that enabled investigation of the kinetics of formation of secondary structural elements and disordered loops for the first time, as well as the fastest folding proteins. When I started to work on this subject, a fast folding protein was one that folded in milliseconds. There were, moreover, no analytical theoretical models and no atomistic or coarse-grained molecular dynamics simulations to describe the mechanism. Two of the most important discoveries from my lab since then are a protein that folds in hundreds of nanoseconds, as determined from nanosecond laser temperature experiments, and the discovery that the theoretically predicted barrier crossing time is about the same for proteins that differ in folding rates by 104-fold, as determined from single molecule fluorescence measurements. We also developed what has been called the "Hückel model" of protein folding, which quantitatively explains a wide range of equilibrium and kinetic measurements. This retrospective traces the history of contributions to the "fast folding" subfield from my lab until about 3 years ago, when I left protein folding to spend the rest of my research career trying to discover an inexpensive drug for treating sickle cell disease.
Collapse
Affiliation(s)
- William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
117
|
Ploetz E, Schuurman-Wolters GK, Zijlstra N, Jager AW, Griffith DA, Guskov A, Gouridis G, Poolman B, Cordes T. Structural and biophysical characterization of the tandem substrate-binding domains of the ABC importer GlnPQ. Open Biol 2021; 11:200406. [PMID: 33823661 PMCID: PMC8025302 DOI: 10.1098/rsob.200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid and asparagine in Gram-positive bacteria. It features two extra-cytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from Lactococcus lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement (PIFE–FRET) and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE–FRET to monitor protein–protein interactions and conformational states simultaneously.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Chemistry, Center for Nanosciences (CeNS) and Center for Integrated Proteins Science Munich (CiPSM), Ludwig Maximilians-Universität München, Butenandtstraße 11, 81377 Munich, Germany
| | - Gea K Schuurman-Wolters
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Amarins W Jager
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Douglas A Griffith
- Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Albert Guskov
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Moscow Institute of Physics and Technology (MIPT), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russian Federation
| | - Giorgos Gouridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Bert Poolman
- Groningen Biomolecular Science and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Großhaderner Straße 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
118
|
Lu J, Zong S, Wang Z, Chen C, Zhang Y, Wang H, Cui Y. Dual-Labeled Graphene Quantum Dot-Based Förster Resonance Energy Transfer Nanoprobes for Single-Molecule Localization Microscopy. ACS OMEGA 2021; 6:8808-8815. [PMID: 33842752 PMCID: PMC8028002 DOI: 10.1021/acsomega.0c05417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Single-molecule localization microscopy (SMLM)-based super-resolution imaging techniques (e.g., photoactivated localization microscopy (PALM)/stochastic optical reconstruction microscopy (STORM)) require that the employed optical nanoprobes possess fluorescence intensity fluctuations under certain excitation conditions. Here, we present a dual-labeled graphene quantum dot (GQD)-based Förster resonance energy transfer (FRET) nanoprobe, which is suitable for SMLM imaging. The nanoprobe is constructed by attaching Alexa Fluor 488 (AF488) and Alexa Fluor 568 (AF568) dye molecules onto GQDs. Experimental results confirmed the FRET effect of the nanoprobes. Moreover, under a single 405 nm excitation, the FRET nanoprobe exhibits excellent blinking behavior. SMLM imaging of microtubules in MRC-5 cells is realized. The presented nanoprobe shows great potential in multicolor SMLM-based super-resolution imaging.
Collapse
Affiliation(s)
- Ju Lu
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Zhuyuan Wang
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Chen Chen
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yizhi Zhang
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Hong Wang
- Department
of Laboratory Medicine, The First Affiliated
Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiping Cui
- Advanced
Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
119
|
Direct single-molecule imaging for diagnostic and blood screening assays. Proc Natl Acad Sci U S A 2021; 118:2025033118. [PMID: 33790018 DOI: 10.1073/pnas.2025033118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Every year, over 100 million units of donated blood undergo mandatory screening for HIV, hepatitis B, hepatitis C, and syphilis worldwide. Often, donated blood is also screened for human T cell leukemia-lymphoma virus, Chagas, dengue, Babesia, cytomegalovirus, malaria, and other infections. Several billion diagnostic tests are performed annually around the world to measure more than 400 biomarkers for cardiac, cancer, infectious, and other diseases. Considering such volumes, every improvement in assay performance and/or throughput has a major impact. Here, we show that medically relevant assay sensitivities and specificities can be fundamentally improved by direct single-molecule imaging using regular epifluorescence microscopes. In current microparticle-based assays, an ensemble of bound signal-generating molecules is measured as a whole. By contrast, we acquire intensity profiles to identify and then count individual fluorescent complexes bound to targets on antibody-coated microparticles. This increases the signal-to-noise ratio and provides better discrimination over nonspecific effects. It brings the detection sensitivity down to the attomolar (10-18 M) for model assay systems and to the low femtomolar (10-16 M) for measuring analyte in human plasma. Transitioning from counting single-molecule peaks to averaging pixel intensities at higher analyte concentrations enables a continuous linear response from 10-18 to 10-5 M. Additionally, our assays are insensitive to microparticle number and volume variations during the binding reaction, eliminating the main source of uncertainties in standard assays. Altogether, these features allow for increased assay sensitivity, wide linear detection ranges, shorter incubation times, simpler assay protocols, and minimal reagent consumption.
Collapse
|
120
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
121
|
Basu A, Bobrovnikov DG, Ha T. DNA mechanics and its biological impact. J Mol Biol 2021; 433:166861. [PMID: 33539885 DOI: 10.1016/j.jmb.2021.166861] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Almost all nucleoprotein interactions and DNA manipulation events involve mechanical deformations of DNA. Extraordinary progresses in single-molecule, structural, and computational methods have characterized the average mechanical properties of DNA, such as bendability and torsional rigidity, in high resolution. Further, the advent of sequencing technology has permitted measuring, in high-throughput, how such mechanical properties vary with sequence and epigenetic modifications along genomes. We review these recent technological advancements, and discuss how they have contributed to the emerging idea that variations in the mechanical properties of DNA play a fundamental role in regulating, genome-wide, diverse processes involved in chromatin organization.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
122
|
FRET theoretical predictions concerning freely diffusive dyes inside spherical container: how to choose the best pair? Photochem Photobiol Sci 2021; 20:275-283. [PMID: 33721256 DOI: 10.1007/s43630-021-00016-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
FRET has been massively used to see if biomolecules were bounded or not by labelling both biomolecules by one dye of a FRET pair. This should give a digital answer to the question (fluorescence of the acceptor: high FRET efficency: molecules associated, fluorescence of the donor: low FRET efficency: molecules dissociated). This has been used, inter alia, at the single-molecule scale in containers, such as liposomes. One perspective of the field is to reduce the container's size to study the effect of confinement on binding. The problem is that if the two dyes are encapsulated inside a small liposome, they could have a significant probability to be close one from the other one (and thus to undergo a high FRET efficiency event without binding). This is why we suggest here a theoretical model which gives mean FRET efficiency as a function of liposome radius (the model applies to any spherical container) and Förster radius to help the experimentalist to choose their experimental set-up. Besides, the influence of side effect on mean FRET efficiency has been studied as well. We show here that if this "background FRET" is most of the time non-quantitative, it can remain significant and which makes data analysis trickier. We could show as well that if this background FRET obviously increases when liposome radius decreases, this variation was lower than the one which could be expected because of side effect. We show as well the FRET efficiency function distribution which let the experimentalist know the probability to get one FRET efficiency value.
Collapse
|
123
|
Paudyal N, Bhatia NK, Jayaraman V. Single molecule FRET methodology for investigating glutamate receptors. Methods Enzymol 2021; 652:193-212. [PMID: 34059282 DOI: 10.1016/bs.mie.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single molecule Förster Resonance Energy Transfer (smFRET) allows us to measure variation in distances between donor and acceptor fluorophores attached to a protein, providing the conformational landscape of the protein with respect to this specific distance. smFRET can be performed on freely diffusing molecules or on tethered molecules. Here, we describe the tethered method used to study ionotropic glutamate receptors, which allows us to track the changes in FRET as a function of time, thus providing information on the conformations sampled and kinetics of conformational changes in the millisecond to second time scale. Strategies for attaching fluorophores to the proteins, methods for acquiring and analyzing the smFRET trajectories, and limitations are discussed.
Collapse
Affiliation(s)
- Nabina Paudyal
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nidhi Kaur Bhatia
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
124
|
Kawai K, Fujitsuka M, Maruyama A. Single-Molecule Study of Redox Reaction Kinetics by Observing Fluorescence Blinking. Acc Chem Res 2021; 54:1001-1010. [PMID: 33539066 DOI: 10.1021/acs.accounts.0c00754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in fluorescence microscopy allow us to track chemical reactions at the single-molecule level. Single-molecule measurements make it possible to minimize the amount of sample needed for analysis and diagnosis. Signal amplification is often applied to ultralow-level biomarker detection. Polymerase chain reaction (PCR) is used to detect DNA/RNA, and enzyme-linked immunosorbent assay (ELISA) can sensitively probe antigen-antibody interactions. While these techniques are brilliant and will continue to be used in the future, single-molecule-level measurements would allow us to reduce the time and cost needed to amplify signals.The kinetics of chemical reactions have been studied mainly using ensemble-averaged methods. However, they can hardly distinguish time-dependent fluctuations and static heterogeneity of the kinetics. The information hidden in ensemble-averaged measurements would be extractable from a single-molecule experiment. Thus, single-molecule measurement would provide unique opportunities to investigate unrevealed phenomena and to elucidate the questions in chemistry, physics, and life sciences. Redox reaction, which is triggered by electron transfer, is among the most fundamental and ubiquitous chemical reactions. The redox reaction of a fluorescent molecule results in the formation of radical ions, which are normally nonemissive. In single-molecule-level measurements, the redox reaction causes the fluctuation of fluorescence signals between the bright ON-state and the dark OFF-state, in a phenomenon called blinking. The duration of the OFF-state (τOFF) corresponds to the lifetime of the radical ion state, and its reaction kinetics can be measured as 1/τOFF. Thus, the kinetics of redox reactions of fluorescent molecules can be accessed at the single-molecule level by monitoring fluorescence blinking. One of the key aspects of single-molecule analysis based on blinking is its robustness. A blinking signal with a certain regular pattern enables single fluorescent molecules to be distinguished and resolved from the random background signal.In this Account, we summarize the recent studies on the single-molecule measurement of redox reaction kinetics, with a focus on our group's recent progress. We first introduce the control of redox blinking to increase the photostability of fluorescent molecules. We then demonstrate the control of redox blinking, which allows us to detect target DNA by monitoring the function of a molecular beacon-type probe, and we investigate antigen-antibody interactions at the single-molecule level. By tracing the time-dependent changes in blinking patterns, redox blinking is shown to be adaptable to tracking the structural switching dynamics of RNA, the preQ1 riboswitch. This Account ends with a discussion of our ongoing work on the control of fluorescent blinking. We also discuss the development of devices that allow single-molecule-level analysis in a high-throughput fashion.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
125
|
Wolf S, Sohmen B, Hellenkamp B, Thurn J, Stock G, Hugel T. Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations. Chem Sci 2021; 12:3350-3359. [PMID: 34164105 PMCID: PMC8179424 DOI: 10.1039/d0sc06134d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.
Collapse
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Benedikt Sohmen
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Björn Hellenkamp
- Engineering and Applied Sciences, Columbia University New York USA
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
126
|
Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats. Nat Commun 2021; 12:204. [PMID: 33420051 PMCID: PMC7794359 DOI: 10.1038/s41467-020-20426-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Expansions of CAG/CTG trinucleotide repeats in DNA are the cause of at least 17 degenerative human disorders, including Huntington’s Disease. Repeat instability is thought to occur via the formation of intrastrand hairpins during replication, repair, recombination, and transcription though relatively little is known about their structure and dynamics. We use single-molecule Förster resonance energy transfer to study DNA three-way junctions (3WJs) containing slip-outs composed of CAG or CTG repeats. 3WJs that only have repeats in the slip-out show two-state behavior, which we attribute to conformational flexibility at the 3WJ branchpoint. When the triplet repeats extend into the adjacent duplex, additional dynamics are observed, which we assign to interconversion of positional isomers. We propose a branchpoint migration model that involves conformational rearrangement, strand exchange, and bulge-loop movement. This migration has implications for how repeat slip-outs are processed by the cellular machinery, disease progression, and their development as drug targets. DNA three-way junctions are branched structures formed during replication, repair, and recombination, and are involved in models of repeat expansion. Here the authors use single-molecule Förster resonance energy transfer to reveal the dynamics of DNA three-way junctions containing slip-outs composed of CAG or CTG repeats.
Collapse
|
127
|
Tassis K, Vietrov R, de Koning M, de Boer M, Gouridis G, Cordes T. Single-molecule studies of conformational states and dynamics in the ABC importer OpuA. FEBS Lett 2021; 595:717-734. [PMID: 33314056 DOI: 10.1002/1873-3468.14026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022]
Abstract
The current model of active transport via ABC importers is mostly based on structural, biochemical and genetic data. We here establish single-molecule Förster resonance energy transfer (smFRET) assays to monitor the conformational states and heterogeneity of the osmoregulatory type I ABC importer OpuA from Lactococcus lactis. We present data probing both intradomain distances that elucidate conformational changes within the substrate-binding domain (SBD) OpuAC, and interdomain distances between SBDs or transmembrane domains. Using this methodology, we studied ligand-binding mechanisms, as well as ATP and glycine betaine dependences of conformational changes. Our work expands the scope of smFRET investigations towards a class of so far unstudied ABC importers, and paves the way for a full understanding of their transport cycle in the future.
Collapse
Affiliation(s)
- Konstantinos Tassis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Ruslan Vietrov
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, Netherlands Proteomics Centre & Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Matthijs de Koning
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Giorgos Gouridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium.,Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion-Crete, Greece
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
128
|
Basu A, Bobrovnikov DG, Qureshi Z, Kayikcioglu T, Ngo TTM, Ranjan A, Eustermann S, Cieza B, Morgan MT, Hejna M, Rube HT, Hopfner KP, Wolberger C, Song JS, Ha T. Measuring DNA mechanics on the genome scale. Nature 2021; 589:462-467. [PMID: 33328628 PMCID: PMC7855230 DOI: 10.1038/s41586-020-03052-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Mechanical deformations of DNA such as bending are ubiquitous and have been implicated in diverse cellular functions1. However, the lack of high-throughput tools to measure the mechanical properties of DNA has limited our understanding of how DNA mechanics influence chromatin transactions across the genome. Here we develop 'loop-seq'-a high-throughput assay to measure the propensity for DNA looping-and determine the intrinsic cyclizabilities of 270,806 50-base-pair DNA fragments that span Saccharomyces cerevisiae chromosome V, other genomic regions, and random sequences. We found sequence-encoded regions of unusually low bendability within nucleosome-depleted regions upstream of transcription start sites (TSSs). Low bendability of linker DNA inhibits nucleosome sliding into the linker by the chromatin remodeller INO80, which explains how INO80 can define nucleosome-depleted regions in the absence of other factors2. Chromosome-wide, nucleosomes were characterized by high DNA bendability near dyads and low bendability near linkers. This contrast increases for deeper gene-body nucleosomes but disappears after random substitution of synonymous codons, which suggests that the evolution of codon choice has been influenced by DNA mechanics around gene-body nucleosomes. Furthermore, we show that local DNA mechanics affect transcription through TSS-proximal nucleosomes. Overall, this genome-scale map of DNA mechanics indicates a 'mechanical code' with broad functional implications.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dmitriy G Bobrovnikov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zan Qureshi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Tunc Kayikcioglu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thuy T M Ngo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastian Eustermann
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Basilio Cieza
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miroslav Hejna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - H Tomas Rube
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun S Song
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
129
|
Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020; 5:3721-3738. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The existence of contaminants in food poses a serious threat to human health. In recent years, aptamer sensors (aptasensors) have been developed rapidly for the detection of food contaminants because of their high specificity, design flexibility, and high efficiency. However, the development of high-throughput, highly sensitive, on-site, and cost-effective methods for simultaneous detection of food contaminants is still restricted due to multiple signal overlap or mutual interference and cross-reaction between different analytes with similar molecular structures. To overcome these problems, this Review summarizes some effective strategies from the articles published in recent years about multiplexed aptasensors for the simultaneous detection of food contaminants. This work focuses on the application of multiplexed aptasensors to simultaneously detect antibiotics, pathogens, and mycotoxins in food. These aptasensors mainly contain fluorescent aptasensors, electrochemical aptasensors, surface-enhanced Raman scattering-based aptasensors, microfluidic chip aptasensors, and paper-based multiplexed aptasensors. In addition, this Review also covers the application of nucleic acid cycle amplification and nanomaterial amplification strategies to improve the detection sensitivity. Finally, the limitations and challenges in the design of multiplexed aptasensor are also taken into account.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Hongyang Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, P.R. China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ning Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| |
Collapse
|
130
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
131
|
Li J, Zhang L, Johnson-Buck A, Walter NG. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat Commun 2020; 11:5833. [PMID: 33203879 PMCID: PMC7673028 DOI: 10.1038/s41467-020-19673-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically necessitate human expert screening, which is time-consuming and introduces potential for user-dependent expectation bias. Here, we use deep learning to develop a rapid, automatic SMFM trace selector, termed AutoSiM, that improves the sensitivity and specificity of an assay for a DNA point mutation based on single-molecule recognition through equilibrium Poisson sampling (SiMREPS). The improved performance of AutoSiM is based on accepting both more true positives and fewer false positives than the conventional approach of hidden Markov modeling (HMM) followed by hard thresholding. As a second application, the selector is used for automated screening of single-molecule Förster resonance energy transfer (smFRET) data to identify high-quality traces for further analysis, and achieves ~90% concordance with manual selection while requiring less processing time. Finally, we show that AutoSiM can be adapted readily to novel datasets, requiring only modest Transfer Learning.
Collapse
Affiliation(s)
- Jieming Li
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA
- Bristol-Myers Squibb Company, New Brunswick, NJ, USA
| | - Leyou Zhang
- Department of Physics, The University of Michigan, Ann Arbor, MI, USA
- Google, Pittsburgh, PA, USA
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
132
|
Kirk J, Lee JY, Lee Y, Kang C, Shin S, Lee E, Song JJ, Hohng S. Yeast Chd1p Unwraps the Exit Side DNA upon ATP Binding to Facilitate the Nucleosome Translocation Occurring upon ATP Hydrolysis. Biochemistry 2020; 59:4481-4487. [PMID: 33174727 DOI: 10.1021/acs.biochem.0c00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chromodomain-helicase-DNA-binding protein 1 (CHD1) remodels chromatin by translocating nucleosomes along DNA, but its mechanism remains poorly understood. We use single-molecule fluorescence experiments to clarify the mechanism by which yeast CHD1 (Chd1p) remodels nucleosomes. We find that binding of ATP to Chd1p induces transient unwrapping of the DNA on the exit side of the nucleosome, facilitating nucleosome translocation. ATP hydrolysis is required to induce nucleosome translocation. The unwrapped DNA after translocation is then rewrapped after the release of the hydrolyzed nucleotide and phosphate, revealing that each step of the ATP hydrolysis cycle is responsible for a distinct step of nucleosome remodeling. These results show that Chd1p remodels nucleosomes via a mechanism that is unique among the other ATP-dependent chromatin remodelers.
Collapse
Affiliation(s)
- Jaewon Kirk
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Yeon Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chanshin Kang
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
133
|
Sow M, Steuer H, Adekanye S, Ginés L, Mandal S, Gilboa B, Williams OA, Smith JM, Kapanidis AN. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. NANOSCALE 2020; 12:21821-21831. [PMID: 33103692 PMCID: PMC8329943 DOI: 10.1039/d0nr05931e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The fluorescent nitrogen-vacancy (NV) defect in diamond has remarkable photophysical properties, including high photostability which allows stable fluorescence emission for hours; as a result, there has been much interest in using nanodiamonds (NDs) for applications in quantum optics and biological imaging. Such applications have been limited by the heterogeneity of NDs and our limited understanding of NV photophysics in NDs, which is partially due to the lack of sensitive and high-throughput methods for photophysical analysis of NDs. Here, we report a systematic analysis of NDs using two-color wide-field epifluorescence imaging coupled to high-throughput single-particle detection of single NVs in NDs with sizes down to 5-10 nm. By using fluorescence intensity ratios, we observe directly the charge conversion of single NV center (NV- or NV0) and measure the lifetimes of different NV charge states in NDs. We also show that we can use changes in pH to control the main NV charge states in a direct and reversible fashion, a discovery that paves the way for performing pH nanosensing with a non-photobleachable probe.
Collapse
Affiliation(s)
- Maabur Sow
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Horst Steuer
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | - Sanmi Adekanye
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Laia Ginés
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Soumen Mandal
- School of Physics and Astronomy, Cardiff UniversityCardiff CF24 3AAUK
| | - Barak Gilboa
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| | | | - Jason M. Smith
- Department of Materials, University of OxfordParks RoadOxford OX1 3PHUK
| | - Achillefs N. Kapanidis
- Biological Physics Research Group, Department of Physics, University of OxfordOxford OX1 3PUUK
| |
Collapse
|
134
|
Martin-Fernandez ML. A brief history of the octopus imaging facility to celebrate its 10th anniversary. J Microsc 2020; 281:3-15. [PMID: 33111321 DOI: 10.1111/jmi.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.
Collapse
Affiliation(s)
- M L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, U.K
| |
Collapse
|
135
|
Yang L, Jang SJ. Theoretical investigation of non-Förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems. J Chem Phys 2020; 153:144305. [PMID: 33086841 DOI: 10.1063/5.0023709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rates of exciton transfer within dyads of perylene diimide and terrylene diimide connected by oligophenylene bridge units have been shown to deviate significantly from those of Förster's resonance energy transfer theory, according to single molecule spectroscopy experiments. The present work provides a detailed computational and theoretical study investigating the source of such a discrepancy. Electronic spectroscopy data are calculated by time-dependent density functional theory and then compared with experimental results. Electronic couplings between the exciton donor and the acceptor are estimated based on both the transition density cube method and transition dipole approximation. These results confirm that the delocalization of the exciton to the bridge parts contributes to significant enhancement of donor-acceptor electronic coupling. Mechanistic details of exciton transfer are examined by estimating the contributions of the bridge electronic states, vibrational modes of the dyads commonly coupled to both donor and acceptor, inelastic resonance energy transfer mechanism, and dark exciton states. These analyses suggest that the contribution of common vibrational modes serves as the main source of deviation from Förster's spectral overlap expression.
Collapse
Affiliation(s)
- Lei Yang
- Center for Molecular Systems and Organic Devices, Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
136
|
Li J, Gu J, Lin C, Zhou J, Wang S, Lei J, Wen F, Sun B, Zhou J. Conformational Dynamics of Nonenveloped Circovirus Capsid to the Host Cell Receptor. iScience 2020; 23:101547. [PMID: 33083716 PMCID: PMC7519355 DOI: 10.1016/j.isci.2020.101547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/12/2020] [Accepted: 09/07/2020] [Indexed: 10/25/2022] Open
Abstract
Circovirus, comprising one capsid protein, is the smallest nonenveloped virus and induces lymphopenia. Circovirus can be used to explore the cell adhesion mechanism of nonenveloped viruses. We developed a single-molecule fluorescence resonance energy transfer (smFRET) assay to directly visualize the capsid's conformational feature. The capsid underwent reversible dynamic transformation between three conformations. The cell surface receptor heparan sulfate (HS) altered the dynamic equilibrium of the capsid to the high-FRET state, revealing the HS-binding region. Neutralizing antibodies restricted capsid transition to a low-FRET state, masking the HS-binding domain. The lack of positively charged amino acids in the HS-binding site reduced cell surface affinity and attenuated virus infectivity via conformational changes. These intrinsic characteristics of the capsid suggested that conformational dynamics is critical for the structural changes occurring upon cell surface receptor binding, supporting a dynamics-based mechanism of receptor binding.
Collapse
Affiliation(s)
- Jiarong Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cui Lin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shengnan Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Lei
- Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
137
|
Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape. Nat Commun 2020; 11:4531. [PMID: 32913225 PMCID: PMC7484762 DOI: 10.1038/s41467-020-18283-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022] Open
Abstract
RNAs begin to fold and function during transcription. Riboswitches undergo cotranscriptional switching in the context of transcription elongation, RNA folding, and ligand binding. To investigate how these processes jointly modulate the function of the folate stress-sensing Fusobacterium ulcerans ZTP riboswitch, we apply a single-molecule vectorial folding (VF) assay in which an engineered superhelicase Rep-X sequentially releases fluorescently labeled riboswitch RNA from a heteroduplex in a 5′-to-3′ direction, at ~60 nt s−1 [comparable to the speed of bacterial RNA polymerase (RNAP)]. We demonstrate that the ZTP riboswitch is kinetically controlled and that its activation is favored by slower unwinding, strategic pausing between but not before key folding elements, or a weakened transcription terminator. Real-time single-molecule monitoring captures folding riboswitches in multiple states, including an intermediate responsible for delayed terminator formation. These results show how individual nascent RNAs occupy distinct channels within the folding landscape that controls the fate of the riboswitch. Many RNAs become functional before their synthesis completes. Here the authors employ a single-molecule vectorial folding assay mimicking RNA transcription and show that the ZTP riboswitch is kinetically controlled and activated by slower unwinding and strategic pausing.
Collapse
|
138
|
Bandyopadhyay D, Mishra PP. Real-Time Monitoring of the Multistate Conformational Dynamics of Polypurine Reverse Hoogsteen Hairpin To Capture Their Triplex-Affinity for Gene Silencing by smFRET Microspectroscopy. J Phys Chem B 2020; 124:8230-8239. [DOI: 10.1021/acs.jpcb.0c05493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
139
|
Zhang L, Wu S, Feng Y, Wang D, Jia X, Liu Z, Liu J, Wang W. Ligand-bound glutamine binding protein assumes multiple metastable binding sites with different binding affinities. Commun Biol 2020; 3:419. [PMID: 32747735 PMCID: PMC7400645 DOI: 10.1038/s42003-020-01149-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022] Open
Abstract
Protein dynamics plays key roles in ligand binding. However, the microscopic description of conformational dynamics-coupled ligand binding remains a challenge. In this study, we integrate molecular dynamics simulations, Markov state model (MSM) analysis and experimental methods to characterize the conformational dynamics of ligand-bound glutamine binding protein (GlnBP). We show that ligand-bound GlnBP has high conformational flexibility and additional metastable binding sites, presenting a more complex energy landscape than the scenario in the absence of ligand. The diverse conformations of GlnBP demonstrate different binding affinities and entail complex transition kinetics, implicating a concerted ligand binding mechanism. Single molecule fluorescence resonance energy transfer measurements and mutagenesis experiments are performed to validate our MSM-derived structure ensemble as well as the binding mechanism. Collectively, our study provides deeper insights into the protein dynamics-coupled ligand binding, revealing an intricate regulatory network underlying the apparent binding affinity.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Shaowen Wu
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Yitao Feng
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Dan Wang
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Xilin Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Liu
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianwei Liu
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Institutes of Biomedical Sciences, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China.
| |
Collapse
|
140
|
Liu YL, Perillo EP, Ang P, Kim M, Nguyen DT, Blocher K, Chen YA, Liu C, Hassan AM, Vu HT, Chen YI, Dunn AK, Yeh HC. Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS NANO 2020; 14:7927-7939. [PMID: 32668152 PMCID: PMC7456512 DOI: 10.1021/acsnano.9b08045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Nanostring Technologies, Seattle, Washington 98109, United States
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Computer Science, Duke University, Durham, North Carolina 27705, United States
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Huong T Vu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
141
|
Bacic L, Sabantsev A, Deindl S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr Opin Struct Biol 2020; 65:61-68. [PMID: 32634693 DOI: 10.1016/j.sbi.2020.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/30/2023]
Abstract
Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
142
|
DNA surface exploration and operator bypassing during target search. Nature 2020; 583:858-861. [PMID: 32581356 DOI: 10.1038/s41586-020-2413-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/07/2020] [Indexed: 11/08/2022]
Abstract
Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA1-5. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI hops one or two grooves (10-20 bp) every 200-700 μs. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein-DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT-FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude.
Collapse
|
143
|
Morten MJ, Steinmark IE, Magennis SW. Probing DNA Dynamics: Stacking‐Induced Fluorescence Increase (SIFI) versus FRET. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael J. Morten
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - I. Emilie Steinmark
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Steven W. Magennis
- School of ChemistryUniversity of Glasgow Joseph Black Building University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
144
|
QuanTI-FRET: a framework for quantitative FRET measurements in living cells. Sci Rep 2020; 10:6504. [PMID: 32300110 PMCID: PMC7162988 DOI: 10.1038/s41598-020-62924-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Förster Resonance Energy Transfer (FRET) allows for the visualization of nanometer-scale distances and distance changes. This sensitivity is regularly achieved in single-molecule experiments in vitro but is still challenging in biological materials. Despite many efforts, quantitative FRET in living samples is either restricted to specific instruments or limited by the complexity of the required analysis. With the recent development and expanding utilization of FRET-based biosensors, it becomes essential to allow biologists to produce quantitative results that can directly be compared. Here, we present a new calibration and analysis method allowing for quantitative FRET imaging in living cells with a simple fluorescence microscope. Aside from the spectral crosstalk corrections, two additional correction factors were defined from photophysical equations, describing the relative differences in excitation and detection efficiencies. The calibration is achieved in a single step, which renders the Quantitative Three-Image FRET (QuanTI-FRET) method extremely robust. The only requirement is a sample of known stoichiometry donor:acceptor, which is naturally the case for intramolecular FRET constructs. We show that QuanTI-FRET gives absolute FRET values, independent of the instrument or the expression level. Through the calculation of the stoichiometry, we assess the quality of the data thus making QuanTI-FRET usable confidently by non-specialists.
Collapse
|
145
|
Berrocal-Martin R, Sanchez-Cano C, Chiu CKC, Needham RJ, Sadler PJ, Magennis SW. Metallation-Induced Heterogeneous Dynamics of DNA Revealed by Single-Molecule FRET. Chemistry 2020; 26:4980-4987. [PMID: 31999015 DOI: 10.1002/chem.202000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/09/2022]
Abstract
The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.
Collapse
Affiliation(s)
- Raul Berrocal-Martin
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Cookson K C Chiu
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
146
|
Goch W, Bal W. Stochastic or Not? Method To Predict and Quantify the Stochastic Effects on the Association Reaction Equilibria in Nanoscopic Systems. J Phys Chem A 2020; 124:1421-1428. [PMID: 31999920 DOI: 10.1021/acs.jpca.9b09441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stochastic nature of chemical reaction and impact of the stochasticity on their evolution is soundly documented. Both theoretical predictions and emerging experimental evidence indicate the influence of stochastic effects on the equilibrium state of association reaction. In this work simple mathematical formulas are introduced to estimate these effects. First, the dependence of the ratio of observed reactants (apparent association constant, equivalent of macroscopic association constant in stochastic analysis) on the volume and the number of molecules of reagents is discussed and the limiting factors of this effect are shown. Next, the apparent association constant is approximated for nanoscale systems by closed-form formulas derived for this purpose. Finally, an estimation for the macroscopic constant value from the apparent one is provided and validated on the published experimental data. This work was inspired by chemical reactions occurring in biological compartments, but the results can be used for all systems belonging to the stochastic regime of chemical reactions.
Collapse
Affiliation(s)
- Wojciech Goch
- Department of Physical Chemistry, Faculty of Pharmacy , The Medical University of Warsaw , 02-097 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawinskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
147
|
|
148
|
Bartnik K, Barth A, Pilo-Pais M, Crevenna AH, Liedl T, Lamb DC. A DNA Origami Platform for Single-Pair Förster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation. J Am Chem Soc 2020; 142:815-825. [PMID: 31800234 DOI: 10.1021/jacs.9b09093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Förster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.
Collapse
Affiliation(s)
- Kira Bartnik
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Anders Barth
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Mauricio Pilo-Pais
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Alvaro H Crevenna
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Tim Liedl
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| |
Collapse
|
149
|
|
150
|
Zelger-Paulus S, Hadzic MCAS, Sigel RKO, Börner R. Encapsulation of Fluorescently Labeled RNAs into Surface-Tethered Vesicles for Single-Molecule FRET Studies in TIRF Microscopy. Methods Mol Biol 2020; 2113:1-16. [PMID: 32006303 DOI: 10.1007/978-1-0716-0278-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions. Further, the encapsulation allows to keep reaction partners (reactants and products) in close proximity and enables higher temperatures otherwise leading to desorption of the direct immobilized biomolecules.Here, we describe a detailed protocol for the encapsulation of a catalytically active RNA starting from surface passivation over RNA encapsulation to data evaluation of single-molecule FRET experiments in TIRF microscopy. We present an optimized procedure that preserves RNA functionality and applies to investigations of, e.g., large ribozymes and RNAs, where direct immobilization is structurally not possible.
Collapse
Affiliation(s)
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany.
| |
Collapse
|