101
|
Abstract
Odorant receptors (ORs) located in the nasal epithelium, at the ciliated surface of olfactory sensory neurons, represent the initial step of a transduction cascade that leads to odor detection. ORs form the largest and most diverse family of G-protein-coupled receptors (GPCRs). They are encoded by a multigene family that has been partially characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila melanogaster and the nematode Caenorhabditis elegans. As new sequence data emerge, it is increasingly clear that OR primary structure can vary dramatically across phyla. Some chemoreceptors are encoded by genes with little sequence similarity to the prototypical ORs originally isolated in mammals. A large number of sequences are now available allowing a detailed study of the evolutionary implications of OR diversity across species. This review discusses the evolutionary implications of the divergent primary structures of chemoreceptors with identical functions.
Collapse
Affiliation(s)
- L Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| |
Collapse
|
102
|
Serizawa S, Ishii T, Nakatani H, Tsuboi A, Nagawa F, Asano M, Sudo K, Sakagami J, Sakano H, Ijiri T, Matsuda Y, Suzuki M, Yamamori T, Iwakura Y, Sakano H. Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 2000; 3:687-93. [PMID: 10862701 DOI: 10.1038/76641] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To study the mutually exclusive expression of odorant receptor (OR) genes, we generated transgenic mice that carried the murine OR gene MOR28. Expression of the transgene and the endogenous MOR28 was distinguished by using two different markers, beta-galactosidase and green fluorescent protein (GFP), respectively. Double staining of the olfactory epithelium revealed that the two genes were rarely expressed simultaneously in individual olfactory neurons. A similar exclusion was also observed between differently tagged but identical transgenes integrated into the same locus of one particular chromosome. Although allelic inactivation has been reported for the choice between the maternal and paternal alleles, this is the first demonstration of mutually exclusive activation among non-allelic OR gene members with identical coding and regulatory sequences. Such an unusual mode of gene expression, monoallelic and mutually exclusive, has previously been shown only for the antigen-receptor genes of the immune system.
Collapse
Affiliation(s)
- S Serizawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Hoppe R, Weimer M, Beck A, Breer H, Strotmann J. Sequence analyses of the olfactory receptor gene cluster mOR37 on mouse chromosome 4. Genomics 2000; 66:284-95. [PMID: 10873383 DOI: 10.1006/geno.2000.6205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor multigene family is organized in clusters spread throughout the genome. In the present study, we have sequenced two subregions of the mOR37 gene cluster on mouse chromosome 4. The resulting 100 kb of sequence revealed seven odorant receptor coding regions and one gene fragment. Sequence analyses reveal that the mOR37 gene cluster may represent a rather ancient cluster. The mOR37 genes exhibit a complex intron/exon structure, and some appear to be differentially spliced. All genes in the cluster share conserved sequence motifs 5' of their putative initial exons, which represent potential binding sites for transcription factors. The clustered organization and conserved sequence motifs suggest common expression control mechanisms for these genes.
Collapse
Affiliation(s)
- R Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, Stuttgart, D-70593, Germany
| | | | | | | | | |
Collapse
|
104
|
Cummings DM, Emge DK, Small SL, Margolis FL. Pattern of olfactory bulb innervation returns after recovery from reversible peripheral deafferentation. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000605)421:3<362::aid-cne5>3.0.co;2-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
105
|
Christophides GK, Mintzas AC, Komitopoulou K. Organization, evolution and expression of a multigene family encoding putative members of the odourant binding protein family in the medfly Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2000; 9:185-195. [PMID: 10762426 DOI: 10.1046/j.1365-2583.2000.00176.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A multigene family encoding male specific serum polypeptides (MSSPs) that show significant structural similarity to the family of insect odourant binding proteins, has been characterized in the medfly Ceratitis capitata. This family comprises seven members classified in three subgroups, MSSP-alpha, MSSP-beta and MSSP-gamma. The genes of subgroups alpha and beta are clustered in tandem in a 35-kb genomic region, and present an exceptionally high degree of similarity not only in their coding but also in the surrounding regions, while the genes of the gamma subgroup are drastically divergent. Although MSSPs are predominantly expressed in the male fat body, detailed expression studies suggest that individual members of this family are expressed in a distinct sex- and tissue-specific manner.
Collapse
Affiliation(s)
- G K Christophides
- Department of Genetics and Biotechnology, School of Biological Sciences, University of Athens, Athens, Greece
| | | | | |
Collapse
|
106
|
Affiliation(s)
- L B Buck
- Howard Hughes Medical Institute, Neurobiology Department, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
107
|
Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell 2000; 100:693-702. [PMID: 10761934 DOI: 10.1016/s0092-8674(00)80705-9] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.
Collapse
Affiliation(s)
- E Adler
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
108
|
Rouquier S, Blancher A, Giorgi D. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci U S A 2000; 97:2870-4. [PMID: 10706615 PMCID: PMC16022 DOI: 10.1073/pnas.040580197] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfactory receptors (ORs) located in the cell membrane of olfactory sensory neurons of the nasal epithelium are responsible for odor detection by binding specific odorant ligands. Primates are thought to have a reduced sense of smell (microsmatic) with respect to other mammals such as dogs or rodents. We have previously demonstrated that over 70% of the human OR genes have become nonfunctional pseudogenes, leading us to hypothesize that the reduced sense of smell could correlate with the loss of functional genes. To extend these results, we sampled the OR gene repertoire of 10 primate species, from prosimian lemur to human, in addition to mouse. About 221 previously unidentified primate sequences and 33 mouse sequences were analyzed. These sequences encode ORs distributed in seven families and 56 subfamilies. Analysis showed a high fraction ( approximately 50% on average) of pseudogenes in hominoids. In contrast, only approximately 27% of OR genes are pseudogenes in Old World monkeys, and New World monkeys are almost free of pseudogenes. The prosimian branch seems to have evolved differently from the other primates and has approximately 37% pseudogene content. No pseudogenes were found in mouse. With the exception of New World monkeys, we demonstrate that primates have a high fraction of OR pseudogenes compared with mouse. We hypothesize that under relaxed selective constraints, primates would have progressively accumulated pseudogenes with the highest level seen in hominoids. The fraction of pseudogenes in the OR gene repertoire could parallel the evolution of the olfactory sensory function.
Collapse
Affiliation(s)
- S Rouquier
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique Unité Propre de Recherche 1142, 141 rue de la Cardonille, 34396 Montpellier cédex 5, France
| | | | | |
Collapse
|
109
|
Glusman G, Sosinsky A, Ben-Asher E, Avidan N, Sonkin D, Bahar A, Rosenthal A, Clifton S, Roe B, Ferraz C, Demaille J, Lancet D. Sequence, structure, and evolution of a complete human olfactory receptor gene cluster. Genomics 2000; 63:227-45. [PMID: 10673334 DOI: 10.1006/geno.1999.6030] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) gene cluster on human chromosome 17p13.3 was subjected to mixed shotgun automated DNA sequencing. The resulting 412 kb of genomic sequence include 17 OR coding regions, 6 of which are pseudogenes. Six of the coding regions were discovered only upon genomic sequencing, while the others were previously reported as partial sequences. A comparison of DNA sequences in the vicinity of the OR coding regions revealed a common gene structure with an intronless coding region and at least one upstream noncoding exon. Potential gene control regions including specific pyrimidine:purine tracts and Olf-1 sites have been identified. One of the pseudogenes apparently has evolved into a CpG island. Four extensive CpG islands can be discerned within the cluster, not coupled to specific OR genes. The cluster is flanked at its telomeric end by an unidentified open reading frame (C17orf2) with no significant similarity to any known protein. A high proportion of the cluster sequence (about 60%) belongs to various families of interspersed repetitive elements, with a clear predominance of LINE repeats. The OR genes in the cluster belong to two families and seven subfamilies, which show a relatively high degree of intermixing along the cluster, in seemingly random orientations. This genomic organization may be best accounted for by a complex series of evolutionary events.
Collapse
Affiliation(s)
- G Glusman
- Department of Molecular Genetics and The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Sugino H, Hamada S, Yasuda R, Tuji A, Matsuda Y, Fujita M, Yagi T. Genomic organization of the family of CNR cadherin genes in mice and humans. Genomics 2000; 63:75-87. [PMID: 10662547 DOI: 10.1006/geno.1999.6066] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cadherin-related neuronal receptor (CNR) family is localized to the synaptic junction, and their cytoplasmic domains interact with Fyn-tyrosine kinase. Here, we describe the chromosomal locations and the orthologous genomic structures of CNR family members in mice and humans. In the genomic organization, distinct exons, each of which encodes the N-terminus of a different CNR ("variable region"), are clustered in a tandem array, and these exons are spliced to a common region composed of three exons ("constant region"). We also discovered three alternative versions of the transcripts; a single variable exon connects with three different C-terminal tails, comparable to class-switching in the immunoglobulin heavy chain. Thus the CNR family in the central nervous system has similarities to the immunoglobulin and T-cell receptor genes in the immune system.
Collapse
Affiliation(s)
- H Sugino
- Laboratory of Neurobiology and Behavioral Genetics, National Institute for Physiological Sciences, Myodaiji, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
111
|
Holtmaat AJ, Huizinga CT, Margolis FL, Gispen WH, Verhaagen J. Transgenic expression of B-50/GAP-43 in mature olfactory neurons triggers downregulation of native B-50/GAP-43 expression in immature olfactory neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:197-207. [PMID: 10640691 DOI: 10.1016/s0169-328x(99)00263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adult mammalian olfactory neuroepithelium is an unusual neural tissue, since it maintains its capacity to form new neurons throughout life. Newly formed neurons differentiate in the basal layers of the olfactory neuroepithelium and express B-50/GAP-43, a protein implicated in neurite outgrowth. During maturation these neurons migrate into the upper portion of the epithelium, upregulate expression of olfactory marker protein (OMP) and concomitantly downregulate the expression of B-50/GAP-43. Transgenic mice that exhibit OMP-promoter directed expression of B-50/GAP-43 in mature olfactory neurons display an unexpected decrease in the complement of B-50/GAP-43-positive cells in the lower region of the olfactory epithelium [A.J.G.D. Holtmaat, P.A. Dijkhuizen, A.B. Oestreicher, H. J. Romijn, N.M.T. Van der Lugt, A. Berns, F.L. Margolis, W.H. Gispen, J. Verhaagen, Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular growth, J. Neurosci. 15 (1995) 7953-7965]. We have investigated whether the decrement in B-50/GAP-43-positive cells in this region was due to a dislocation of the immature neurons to other regions of the olfactory epithelium or to a downregulation of B-50/GAP-43 synthesis in these immature neurons. In eight of nine independent transgenic mouse lines that express the transgene in different numbers of olfactory neurons, a decline in the number of B-50/GAP-43-expressing neurons in the basal portion of the olfactory neuroepithelium was observed, both at the protein level and the mRNA level. An alternative marker for immature cells, a juvenile form of tubulin, was normally expressed in this location, indicating that the olfactory epithelium of OMP-B-50/GAP-43 transgenic mice contains a normal complement of immature olfactory neurons and that most of these neurons display a downregulation of B-50/GAP-43 expression.
Collapse
Affiliation(s)
- A J Holtmaat
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
112
|
Abstract
The olfactory systems of various species solve the challenging problem of general molecular recognition in widely differing ways. Despite this variety, the molecular receptors are invariably G protein-coupled seven-transmembrane proteins, and are encoded by the largest gene families known to exist in a given animal genome. Receptor gene families have been identified in vertebrates and two invertebrate species, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The complexity of the odorant receptor repertoire is estimated in mouse and rat at 1000 genes, or 1 percent of the genome, surpassing that of the immunoglobulin and T cell receptor genes combined. Two distinct seven-transmembrane gene families may encode in rodents the chemosensory receptors of the vomeronasal organ, which is specialized in the detection of pheromones. Remarkably, these five receptor families have practically no sequence homology among them. Genetic manipulation experiments in mice imply that vertebrate odorant receptors may fulfill a dual role, also serving as address molecules that guide axons of olfactory sensory neurons to their precise target in the brain.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
113
|
Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J Neurosci 1999. [PMID: 10493742 DOI: 10.1523/jneurosci.19-19-08409.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have characterized two separate odorant receptor (OR) gene clusters to examine how olfactory neurons expressing closely linked and homologous OR genes project their axons to the olfactory bulb. Murine OR genes, MOR28, MOR10, and MOR83, share 75-95% similarities in the amino acid sequences and are tightly linked on chromosome 14. In situ hybridization has demonstrated that the three genes are expressed in the same zone, at the most dorsolateral and ventromedial portions of the olfactory epithelium, and are rarely expressed simultaneously in individual neurons. Furthermore, we have found that olfactory neurons expressing MOR28, MOR10, or MOR83 project their axons to very close but distinct subsets of glomeruli on the medial and lateral sides of the olfactory bulb. Similar results have been obtained with another murine OR gene cluster for A16 and MOR18 on chromosome 2, sharing 91% similarity in the amino acid sequences. These results may indicate an intriguing possibility that olfactory neurons expressing homologous OR genes within a cluster tend to converge their axons to proximal but distinct subsets of glomeruli. These lines of study will shed light on the molecular basis of topographical projection of olfactory neurons to the olfactory bulb.
Collapse
|
114
|
Kashiwadani H, Sasaki YF, Uchida N, Mori K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiol 1999; 82:1786-92. [PMID: 10515968 DOI: 10.1152/jn.1999.82.4.1786] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid-responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300-500 microm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In approximately 27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.
Collapse
Affiliation(s)
- H Kashiwadani
- Laboratory for Neuronal Recognition Molecules, Brain Science Institute, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
115
|
Sharon D, Glusman G, Pilpel Y, Khen M, Gruetzner F, Haaf T, Lancet D. Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 1999; 61:24-36. [PMID: 10512677 DOI: 10.1006/geno.1999.5900] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) subgenome harbors the largest known gene family in mammals, disposed in clusters on numerous chromosomes. We have carried out a comparative evolutionary analysis of the best characterized genomic OR gene cluster, on human chromosome 17p13. Fifteen orthologs from chimpanzee (localized to chromosome 19p15), as well as key OR counterparts from other primates, have been identified and sequenced. Comparison among orthologs and paralogs revealed a multiplicity of gene conversion events, which occurred exclusively within OR subfamilies. These appear to lead to segment shuffling in the odorant binding site, an evolutionary process reminiscent of somatic combinatorial diversification in the immune system. We also demonstrate that the functional mammalian OR repertoire has undergone a rapid decline in the past 10 million years: while for the common ancestor of all great apes an intact OR cluster is inferred, in present-day humans and great apes the cluster includes nearly 40% pseudogenes.
Collapse
Affiliation(s)
- D Sharon
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Interleukin-2 (IL-2) is a growth and differentiation factor critical for clonal T cell expansion and function. Produced exclusively in T cells, IL-2 transcription and synthesis occurs only after appropriate cellular activation via the clonotypic antigen-receptor and co-stimulatory molecules. IL-2 gene expression is initiated by the cooperative binding of different transcription factors and is predominantly controlled at the transcriptional level. Recently, it has been demonstrated that IL-2 transcriptional activity is normally confined to a single, randomly chosen allele. This monoallelic expression of a non-receptor gene product encoded at a non-imprinted, autosomal locus represents an unusual regulatory mode. Although the molecular mechanisms operational for IL-2 transcription have yet to be defined, allele-specific expression of the IL-2 locus constitutes an important expansion to the concept of stochastic gene expression.
Collapse
Affiliation(s)
- G A Holländer
- Pediatric Immunology Department of Research and The Children's University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland.
| |
Collapse
|
117
|
Feingold EA, Penny LA, Nienhuis AW, Forget BG. An olfactory receptor gene is located in the extended human beta-globin gene cluster and is expressed in erythroid cells. Genomics 1999; 61:15-23. [PMID: 10512676 DOI: 10.1006/geno.1999.5935] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An olfactory receptor gene was identified near the 3' breakpoint of a naturally occurring deletion (HPFH-1) in the human beta-globin gene cluster on chromosome 11p15.5. The gene encodes an amino acid sequence that is 40 to 51% identical to that of a set of olfactory receptors that have only recently been identified as a distinct family of receptors. There are two orthologous genes in the mouse that encode amino acid sequences that are 73 and 71% identical, respectively, to that encoded by the human gene. This olfactory receptor gene is expressed at the RNA level in human and murine erythroid cells at all stages of development. This aberrant expression is probably due to the location of the gene in the transcriptionally active chromatin domain of the extended beta-globin gene cluster in erythroid cells.
Collapse
Affiliation(s)
- E A Feingold
- Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
118
|
Abstract
Odorant receptors (ORs) comprise the largest family of G-protein-coupled receptors (GPCRs). They are located in the nasal epithelium, at the ciliated surface of olfactory sensory neurones, where the initial steps of the olfactory transduction cascade occur. ORs are encoded by a large and diverse multi-gene family, which has been characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila and Caenorhabditis elegans. Here, the range of diversity in OR and chemoreceptor structure is examined, noting that their functions are fundamentally similar to those of many neurotransmitter or neurohormone receptors. It is argued that ORs have emerged directly from other GPCRs independently in many species. According to this view, there is no structural prerequisite for OR identity and any GPCR has the potential to be or become an OR at a given point in evolution.
Collapse
Affiliation(s)
- L Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| | | |
Collapse
|
119
|
Tsuboi A, Yoshihara S, Yamazaki N, Kasai H, Asai-Tsuboi H, Komatsu M, Serizawa S, Ishii T, Matsuda Y, Nagawa F, Sakano H. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J Neurosci 1999; 19:8409-18. [PMID: 10493742 PMCID: PMC6783044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We have characterized two separate odorant receptor (OR) gene clusters to examine how olfactory neurons expressing closely linked and homologous OR genes project their axons to the olfactory bulb. Murine OR genes, MOR28, MOR10, and MOR83, share 75-95% similarities in the amino acid sequences and are tightly linked on chromosome 14. In situ hybridization has demonstrated that the three genes are expressed in the same zone, at the most dorsolateral and ventromedial portions of the olfactory epithelium, and are rarely expressed simultaneously in individual neurons. Furthermore, we have found that olfactory neurons expressing MOR28, MOR10, or MOR83 project their axons to very close but distinct subsets of glomeruli on the medial and lateral sides of the olfactory bulb. Similar results have been obtained with another murine OR gene cluster for A16 and MOR18 on chromosome 2, sharing 91% similarity in the amino acid sequences. These results may indicate an intriguing possibility that olfactory neurons expressing homologous OR genes within a cluster tend to converge their axons to proximal but distinct subsets of glomeruli. These lines of study will shed light on the molecular basis of topographical projection of olfactory neurons to the olfactory bulb.
Collapse
Affiliation(s)
- A Tsuboi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Clonal selection, a central principle in immunology, is predicated on one lymphocyte making one kind of antibody or T cell receptor. At loci encoding antigen receptors only one allele is used, and this has been shown in normal lymphocytes from frogs to humans. Fish antibody chains, however, are encoded by multiple loci, and at some of these loci the gene segments are already rearranged in the germline. The differences in germline organization and the uncoupling of rearrangement and expression raise questions as to whether some of the early vertebrates might be an exception to the clonal selection theory.
Collapse
Affiliation(s)
- E Hsu
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203-2098, USA
| | | |
Collapse
|
121
|
Jin W, Horner HT, Palmer RG, Shoemaker RC. Analysis and mapping of gene families encoding beta-1,3-glucanases of soybean. Genetics 1999; 153:445-52. [PMID: 10471725 PMCID: PMC1460737 DOI: 10.1093/genetics/153.1.445] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligonucleotide primers designed for conserved sequences from coding regions of beta-1,3-glucanase genes from different species were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing and cross-hybridization of amplification products indicated that at least 12 classes of beta-1,3-glucanase genes exist in the soybean. Members of classes mapped to 34 loci on five different linkage groups using an F(2) population of 56 individuals. beta-1,3-Glucanase genes are clustered onto regions of five linkage groups. Data suggest that more closely related genes are clustered together on one linkage group or on duplicated regions of linkage groups. Northern blot analyses performed on total RNA from root, stem, leaf, pod, flower bud, and hypocotyl using DNA probes for the different classes of beta-1,3-glucanase genes revealed that the mRNA levels of all classes were low in young leaves. SGlu2, SGlu4, SGlu7, and SGlu12 mRNA were highly accumulated in young roots and hypocotyls. SGlu7 mRNA also accumulated in pods and flower buds.
Collapse
Affiliation(s)
- W Jin
- Interdepartmental Plant Physiology Program and Department of Botany, Zoology/Genetics and USDA ARS CICG Research Unit, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
122
|
Strotmann J, Hoppe R, Conzelmann S, Feinstein P, Mombaerts P, Breer H. Small subfamily of olfactory receptor genes: structural features, expression pattern and genomic organization. Gene 1999; 236:281-91. [PMID: 10452948 DOI: 10.1016/s0378-1119(99)00275-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Olfactory receptors of the OR37 subfamily are characterized by distinct sequence features and are expressed in neurons segregated in a restricted area of the olfactory epithelium. In the present study, we have characterized the complement of OR37-like genes in the mouse. Five OR37-like genes were identified. They reside within only 60kb of DNA on chromosome 4. About 70kb distant from this cluster, two additional olfactory receptor genes are located, which are members of distinct receptor subfamilies. Phylogenetic analysis demonstrated that the two physically linked receptors are closely related to the OR37 subfamily. Studies of gene expression showed that both genes are also expressed in clustered neuron populations located in the typical OR37 region of the epithelium. These data suggest the involvement of locus-dependent mechanisms for the spatial control of OR gene expression.
Collapse
Affiliation(s)
- J Strotmann
- Institute of Physiology, University Stuttgart-Hohenheim, Garbenstrasse 30, D-70593, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Transmembrane signaling events at the dendrites and axons of olfactory receptor neurons mediate distinct functions. Whereas odorant recognition and chemosensory transduction occur at the dendritic membranes of olfactory neurons, signal propagation, axon sorting and target innervation are functions of their axons. The roles of G proteins in transmembrane signaling at the dendrites have been studied extensively, but axonal G proteins have not been investigated in detail. We used immunohistochemistry to visualize expression of alpha subunits of G(o) and G(i2) in the mouse olfactory system. G(o) is expressed ubiquitously on axons of olfactory receptor neurons throughout the olfactory neuroepithelium and in virtually all glomeruli in the main olfactory bulb. In contrast, expression of G(i2) is restricted to a sub-population of olfactory neurons, along the dorsal septum and the dorsal recess of the nasal cavity, which projects primarily to medial regions of the olfactory bulb, with the exception of glomeruli adjacent to the pathway of the vomeronasal nerve. In contrast to the overlapping expression patterns of G(o) and G(i2) in the main olfactory system, neurons expressing G(o) and those expressing G(i2) in the accessory olfactory bulb are more clearly separated, in agreement with previous studies. Vomeronasal axons terminating in glomeruli in the rostral region of the accessory olfactory bulb express G(i2), whereas those projecting to the caudal region express G(o). Characterization of the expression patterns of G(i2) and G(o) in the olfactory projection is essential for future studies aimed at relating transmembrane signaling events to signal propagation, axon sorting and target innervation.
Collapse
Affiliation(s)
- K S Wekesa
- Department of Zoology, Box 7617, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | |
Collapse
|
124
|
Otaki JM, Firestein S. Neurestin: putative transmembrane molecule implicated in neuronal development. Dev Biol 1999; 212:165-81. [PMID: 10419693 DOI: 10.1006/dbio.1999.9310] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have cloned a novel cDNA encoding a putative transmembrane protein, neurestin, from the rat olfactory bulb. Neurestin was identified based on a sequence similar to that of the second extracellular loops of odorant receptors in the cysteine-rich CC box located immediately after EGF-like motifs. Neurestin shows homology to a neuregulin gene product, human gamma-heregulin, a Drosophila receptor-type pair-rule gene product, Odd Oz (Odz) / Ten(m), and Ten(a), suggesting a possible function in synapse formation and morphogenesis. Recently, a mouse neurestin homolog has independently been cloned as DOC4 from the NIH-3T3 cell line. Northern blot analysis showed that neurestin is highly expressed in the brain and also in other tissues at much lower levels. In situ hybridization studies showed that neurestin is expressed in many types of neurons, including pyramidal cells in the cerebral cortex and tufted cells in the olfactory bulb during development. In adults, neurestin is mainly expressed in olfactory and hippocampal granule cells, which are known to be generated throughout adulthood. Nonetheless, in adults the expression of neurestin was experimentally induced in external tufted cells during regeneration of olfactory sensory neurons. These results suggest a role for neurestin in neuronal development and regeneration in the central nervous system.
Collapse
Affiliation(s)
- J M Otaki
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA.
| | | |
Collapse
|
125
|
Abstract
The accumulation of hundreds of olfactory receptor (OR) sequences, along with the recent availability of detailed models of other G-protein-coupled receptors, allows us to analyze the OR amino acid variability patterns in a structural context. A Fourier analysis of 197 multiply aligned olfactory receptor sequences showed an alpha-helical periodicity in the variability profile. This was particularly pronounced in the more variable transmembranal segments 3, 4, and 5. Rhodopsin-based homology modeling demonstrated that the inferred variable helical faces largely point to the interior of the receptor barrel. We propose that a set of 17 hypervariable residues, which point to the barrel interior and are more extracellularly disposed, constitute the odorant complementarity determining regions. While 12 of these residues coincide with established ligand-binding contact positions in other G-protein-coupled receptors, the rest are suggested to form an olfactory-unique aspect of the binding pocket. Highly conserved olfactory receptor-specific sequence motifs, found in the second and third intracellular loops, may comprise the G-protein recognition epitope. The prediction of olfactory receptor functional sites provides concrete suggestions of site-directed mutagenesis experiments for altering ligand and G-protein specificity.
Collapse
Affiliation(s)
- Y Pilpel
- Department of Molecular Genetics and Crown Human Genome Center, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
126
|
Bulger M, van Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M, von Doorninck JH. Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci U S A 1999; 96:5129-34. [PMID: 10220430 PMCID: PMC21828 DOI: 10.1073/pnas.96.9.5129] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mouse and human, the beta-globin genes reside in a linear array that is associated with a positive regulatory element located 5' to the genes known as the locus control region (LCR). The sequences of the mouse and human beta-globin LCRs are homologous, indicating conservation of an essential function in beta-globin gene regulation. We have sequenced regions flanking the beta-globin locus in both mouse and human and found that homology associated with the LCR is more extensive than previously known, making up a conserved block of approximately 40 kb. In addition, we have identified DNaseI-hypersensitive sites within the newly sequenced regions in both mouse and human, and these structural features also are conserved. Finally, we have found that both mouse and human beta-globin loci are embedded within an array of odorant receptor genes that are expressed in olfactory epithelium, and we also identify an olfactory receptor gene located 3' of the beta-globin locus in chicken. The data demonstrate an evolutionarily conserved genomic organization for the beta-globin locus and suggest a possible role for the beta-globin LCR in control of expression of these odorant receptor genes and/or the presence of mechanisms to separate regulatory signals in different tissues.
Collapse
Affiliation(s)
- M Bulger
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The initial step in olfactory discrimination involves the interaction of odorous ligands with specific receptors on the surface of olfactory sensory neurons. The foundation for a molecular understanding of odor recognition in vertebrates was provided by the identification of a family of genes encoding putative odorant receptors, by Buck & Axel in 1991. Odorant receptor (OR) genes from the largest gene family in the vertebrate genome. This review summarizes progress over the past seven years. Major new insights are: Olfaction is accomplished in vertebrates by a very large number of receptors; olfactory sensory neurons express a small subset of the OR repertoire; in rat and mouse, axons of neurons expressing the same OR converge onto defined glomeruli in the olfactory bulb.
Collapse
Affiliation(s)
- P Mombaerts
- Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
128
|
Hunt CR, Parsian AJ, Goswami PC, Kozak CA. Characterization and expression of the mouse Hsc70 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:315-25. [PMID: 10095055 DOI: 10.1016/s0167-4781(98)00285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A genomic clone encoding the mouse Hsc70 gene has been isolated and characterized by DNA sequence analysis. The gene is approximately 3. 9 kb in length and contains eight introns, the fifth, sixth and eighth of which encode the three U14 snoRNAs. The gene has been located on Chr 9 in the order Fli1-Itm1-Olfr7-Hsc70(Rnu14)-Cbl by genetic analysis. Expression of Hsc70 is universal in all tissues of the mouse, but is slightly elevated in liver, skeletal muscle and kidney tissue, while being depressed in testes. In cultured mouse NIH 3T3 cells or human HeLa cells, Hsc70 mRNA levels are low under normal conditions, but can be induced 8-fold higher in both lines by treatment with the amino acid analog azetidine. A similar induction is seen in cells treated with the proteosome inhibitor MG132 suggesting that elevated Hsc70 expression may be coupled to protein degradation. Surprisingly, expression of the human Hsc70 gene is also regulated by cell-cycle position being 8-10-fold higher in late G1/S-phase cells as opposed to the levels in early G1-phase cells.
Collapse
Affiliation(s)
- C R Hunt
- Washington University School of Medicine, Radiation Oncology Center, 4511 Forest Park Blvd., St. Louis, MO 63108, USA.
| | | | | | | |
Collapse
|
129
|
Brand-Arpon V, Rouquier S, Massa H, de Jong PJ, Ferraz C, Ioannou PA, Demaille JG, Trask BJ, Giorgi D. A genomic region encompassing a cluster of olfactory receptor genes and a myosin light chain kinase (MYLK) gene is duplicated on human chromosome regions 3q13-q21 and 3p13. Genomics 1999; 56:98-110. [PMID: 10036190 DOI: 10.1006/geno.1998.5690] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The olfactory receptor (OR) multigene family is widely distributed in the human genome. We characterize here a new cluster of four OR genes (HGMW-approved symbols OR7E20P, OR7E6P, OR7E21P, and OR7E22P) on human chromosome 3p13 that is contained in an approximately 250-kb region. This region has been physically mapped, and a 106-kb portion containing the OR genes has been sequenced. All the OR sequences are disrupted by frameshifts and stop codons and appear to have arisen through local duplications. A myosin light chain kinase pseudogene (HGMW-approved symbol MYLKP) lies at one end of the OR gene cluster. Sequences spanning the entire region are also present at 3q13-q21, the site of the functional MYLK gene. This region duplicated locally before the divergence of primates, and the two paralogous copies were later separated to sites on either side of the centromere. This study increases our understanding of the evolution of the human genome. The 3p13 cluster is the first example of a tandem array of OR pseudogenes, and duplications of such clusters may account for the accumulation of a large number of pseudogenes in the human genome.
Collapse
Affiliation(s)
- V Brand-Arpon
- IGH, CNRS UPR 1142, 141 rue de la Cardonille, Montpellier Cédex 5, 34396, France
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 1999; 22:327-38. [PMID: 10069338 DOI: 10.1016/s0896-6273(00)81093-4] [Citation(s) in RCA: 783] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although insects have proven to be valuable models for exploring the function, organization, and development of the olfactory system, the receptor molecules that bind odors have not been identified in any insect. We have developed a novel search algorithm, used it to search the Drosophila genomic sequence database, and identified a large multigene family encoding seven transmembrane domain proteins that are expressed in olfactory organs. We show that expression is restricted to subsets of olfactory receptor neurons (ORNs) for a number of these genes. Different members of the family initiate expression at different times during antennal development. Some of the genes are not expressed in a mutant of the Acj6 POU-domain transcription factor, a mutant in which a subset of ORNs show abnormal odorant specificities.
Collapse
Affiliation(s)
- P J Clyne
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
131
|
Amadou C, Kumánovics A, Jones EP, Lambracht-Washington D, Yoshino M, Lindahl KF. The mouse major histocompatibility complex: some assembly required. Immunol Rev 1999; 167:211-21. [PMID: 10319263 DOI: 10.1111/j.1600-065x.1999.tb01394.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have assembled a contig of 81 yeast artificial chromosome clones that spans 8 Mb and contains the entire major histocompatibility complex (Mhc) from mouse strain C57BL/6 (H2b), and we are in the process of assembling an Mhc contig of bacterial artificial chromosome (BAC) clones from strain 129 (H2bc), which differs from C57BL/6 in the H2-Q and H2-T regions. The current BAC contig extends from Tapasin to D17Leh89 with gaps in the class II, H2-Q, and distal H2-M regions. Only four BAC clones were required to link the class I genes of the H2-Q and H2-T regions, and no new class I gene was found in the previous gap. The proximal 1 Mb of the H2-M region has been analyzed in detail and is ready for sequencing; it includes 21 class I genes or fragments, at least 14 olfactory receptor-like genes, and a number of non-class I genes that clearly establish a conserved synteny with the class I regions of the human and rat Mhc.
Collapse
Affiliation(s)
- C Amadou
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | | | |
Collapse
|
132
|
O'Leary DD, Yates PA, McLaughlin T. Molecular development of sensory maps: representing sights and smells in the brain. Cell 1999; 96:255-69. [PMID: 9988220 DOI: 10.1016/s0092-8674(00)80565-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- D D O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
133
|
|
134
|
Krautwurst D, Yau KW, Reed RR. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 1998; 95:917-26. [PMID: 9875846 DOI: 10.1016/s0092-8674(00)81716-x] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The recognition of odorants by olfactory receptors represents the first stage in odor discrimination. Here, we report the generation of an expression library containing a large and diverse repertoire of mouse olfactory receptor sequences in the transmembrane II-VII region. From this library, 80 chimeric receptors were tested against 26 odorants after transfection into HEK-293 cells. Three receptors were identified to respond to micromolecular concentrations of carvone, (-) citronellal, and limonene, respectively. We also found that the mouse I7 receptor, unlike the rat I7 receptor, prefers heptanal instead of octanal, as a result of a single valine-to-isoleucine substitution. This finding represents the beginning of a molecular understanding of odorant recognition. The identification, on a large scale, of cognate receptor-odorant interactions should provide insight into olfactory coding mechanisms.
Collapse
Affiliation(s)
- D Krautwurst
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
135
|
Sharon D, Glusman G, Pilpel Y, Horn-Saban S, Lancet D. Genome dynamics, evolution, and protein modeling in the olfactory receptor gene superfamily. Ann N Y Acad Sci 1998; 855:182-93. [PMID: 9929603 DOI: 10.1111/j.1749-6632.1998.tb10564.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The human olfactory subgenome represents several hundred olfactory receptor (OR) genes in a dozen or more clusters on several chromosomes. One OR gene cluster on human chromosome 17 has been characterized by us in detail. Based on a large-scale DNA sequence analysis, we have identified events of gene duplication and fusion as well as the generation of pseudogenes. The latter instances of 'gene death' could underlie the widespread phenomenon of human specific anosmias. Sixteen OR coding regions were found on this cluster, and six of them are pseudogenes. One of these pseudogenes, OR17-23, was found to be an intact open reading frame in an old world monkey. This may be a reflection of an OR repertoire diminution in man. A homology model of the OR protein was constructed by utilizing the rich information available on approximately 200 OR sequences. The putative odorant complementarity determining regions (CDR) was found to consist of 20 hypervariable residues facing an interior caving defined by transmembrane helices 3, 4 and 5. Such a model could be useful in analyzing additional OR gene sequences in the human genome in terms of odorant binding.
Collapse
Affiliation(s)
- D Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
136
|
Buettner JA, Glusman G, Ben-Arie N, Ramos P, Lancet D, Evans GA. Organization and evolution of olfactory receptor genes on human chromosome 11. Genomics 1998; 53:56-68. [PMID: 9787077 DOI: 10.1006/geno.1998.5422] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Olfactory receptors (OR) are encoded by a large multigene family including hundreds of members dispersed throughout the human genome. Cloning and mapping studies have determined that a large proportion of the olfactory receptor genes are located on human chromosomes 6, 11, and 17, as well as distributed on other chromosomes. In this paper, we describe and characterize the organization of olfactory receptor genes on human chromosome 11 by using degenerate PCR-based probes to screen chromosome 11-specific and whole genome clone libraries for members of the OR gene family. OR genes were identified by DNA sequencing and then localized to regions of chromosome 11. Physical maps of several gene clusters were constructed to determine the chromosomal relationships between various members of the family. This work identified 25 new OR genes located on chromosome 11 in at least seven distinct regions. Three of these regions contain gene clusters that include additional members of this gene family not yet identified by sequencing. Phylogenetic analysis of the newly described OR genes suggests a mechanism for the generation of genetic diversity.
Collapse
Affiliation(s)
- J A Buettner
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75235-8591, USA
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Recent studies have shed light on the different relationships between odorant receptor expression and the specification of neural identity in the olfactory systems of vertebrates and invertebrates. In mice, neuronal identity and axon guidance are specified by the single expressed olfactory receptor, whereas in C. elegans, neuronal identity appears to be independent of receptor expression.
Collapse
Affiliation(s)
- F A Ebrahimi
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142, USA
| | | |
Collapse
|
138
|
Affiliation(s)
- A Chess
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
139
|
Peichel CL, Kozak CA, Luyten FP, Vogt TF. Evaluation of mouse Sfrp3/Frzb1 as a candidate for the lst, Ul, and Far mutants on chromosome 2. Mamm Genome 1998; 9:385-7. [PMID: 9545497 DOI: 10.1007/s003359900775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C L Peichel
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
140
|
Robertson HM. Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 1998; 8:449-63. [PMID: 9582190 DOI: 10.1101/gr.8.5.449] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The str family of genes encoding seven-transmembrane G-protein-coupled or serpentine receptors related to the ODR-10 diacetyl chemoreceptor is very large, with at least 197 members in the Caenorhabditis elegans genome. The closely related stl family has 43 genes, and both families are distantly related to the srd family with 55 genes. Analysis of the structures of these genes indicates that a third of them are clearly or likely pseudogenes. Preliminary surveys of other candidate chemoreceptor families indicates that as many as 800 genes and pseudogenes or 6% of the genome might encode 550 functional chemoreceptors constituting 4% of the C. elegans protein complement. Phylogenetic analyses of the str and stl families, and comparisons with a few orthologs in Caenorhabditis briggsae, reveal ongoing processes of gene duplication, diversification, and movement. The reconstructed ancestral gene structures for these two families have eight introns each, four of which are homologous. Mapping of intron distributions on the phylogenetic tree reveals that each intron has been lost many times independently. Most of these introns were lost individually, which might best be explained by precise in-frame deletions involving nonhomologous recombination between short direct repeats at their termini. [Alignment of the putatively functional proteins in the str and stl families is available from Pfam (http://genome. wustl.edu/Pfam); alignments of all translations are available at http://cshl.org/gr; alignments of the genes are available from the author at hughrobe@uiuc.edu]
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
141
|
Carver EA, Issel-Tarver L, Rine J, Olsen AS, Stubbs L. Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies. Mamm Genome 1998; 9:349-54. [PMID: 9545490 DOI: 10.1007/s003359900768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved olfactory receptor genes, each representing separate, recently identified canine gene subfamilies. Three of the four canine genes detected related gene clusters in regions of mouse Chromosomes (Chrs) 2, 9, and 10, near previously mapped mouse olfactory genes, while one detected a formerly unidentified gene cluster located on mouse Chr 6. In addition, we have localized two human gene clusters with homology to the canine gene, CfOLF4, within the established physical map of Chr 19p. Combined with recently published studies, these data link the four conserved olfactory gene subfamilies to homologous regions of the human, dog, and mouse genomes.
Collapse
Affiliation(s)
- E A Carver
- Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8077, USA
| | | | | | | | | |
Collapse
|
142
|
Abstract
Olfactory neurons expressing a given odorant receptor project with precision to 2 of the 1800 glomeruli within the olfactory bulb to create a topographic map of odor quality. We demonstrate that deletions or nonsense mutations in the P2 odorant receptor gene cause the axons of these cells to wander rather than converge on a specific glomerulus. Receptor substitution experiments that replace the P2 gene with the coding region of the P3 gene result in the projection of P3-->P2 axons to a glomerulus touching the wild-type P3 glomerulus. These data, along with additional receptor substitutions, indicate that the odorant receptor plays an instructive role in the establishment of the topographic map.
Collapse
Affiliation(s)
- F Wang
- Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
143
|
Rouquier S, Taviaux S, Trask BJ, Brand-Arpon V, van den Engh G, Demaille J, Giorgi D. Distribution of olfactory receptor genes in the human genome. Nat Genet 1998; 18:243-50. [PMID: 9500546 DOI: 10.1038/ng0398-243] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate that members of the olfactory receptor (OR) gene family are distributed on all but a few human chromosomes. Through FISH analysis, we show that OR sequences reside at more than 25 locations in the human genome. Their distribution is biased for terminal bands. Flow-sorted chromosomes were used to isolate 87 OR sequences derived from 16 chromosomes. Their sequence-relationships are indicative of the inter- and intrachromosomal duplications responsible for OR family expansion. The human genome has accumulated a striking number of dysfunctional copies: 72% of the sequences are pseudogenes. ORF-containing sequences predominate on chromosomes 7, 16 and 17.
Collapse
|
144
|
Velten F, Rogel-Gaillard C, Renard C, Pontarotti P, Tazi-Ahnini R, Vaiman M, Chardon P. A first map of the porcine major histocompatibility complex class I region. TISSUE ANTIGENS 1998; 51:183-94. [PMID: 9510374 DOI: 10.1111/j.1399-0039.1998.tb02963.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A map of the SLA complex, or swine major histocompatibility complex (MHC), class I region was constructed by alignment of yeast artificial chromosomes (YACs) harboring MHC class I genes as well as anchor genes already mapped within the human MHC complex (HLA). Five YACs containing 9 anchor genes built a contig of about 1.0-1.2 Mb between the SLA class III BAT1 locus and the olfactory receptor-like genes OLF42. Ten different SLA class I sequences, including putative allelic forms of published classical and non-classical SLA class I genes, were assigned to the 400-kb enclosing centromeric part of the contig. Three additional YACs comprising the OLF89 genes and two YACs containing the butyrophilin gene were located telomeric to the contig. Comparison between the human and porcine MHC complexes showed a perfect conserved order of anchor genes, whereas no orthologous relationships were found for the class I loci.
Collapse
Affiliation(s)
- F Velten
- Laboratoire mixte INRA-CEA de Radiobiologie appliquée, Domaine de Vilvert, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Discrimination of odorants is thought to arise from the selective expression of one of a small number of individual receptors in any single olfactory neuron. Receptor genes are expressed in a small subset of neurons throughout a zonally restricted region of the sensory epithelium. We demonstrate that a 6.7 kb region upstream of the M4 olfactory receptor coding region was sufficient to direct expression in olfactory epithelium. Moreover, reporter expression recapitulated the zonal restriction and distributed neuronal expression observed for endogenous olfactory receptors. Transgenic lines were obtained that directed expression in two different receptor zones, one of which was identical to the endogenous M4 receptor. When the reporter was expressed in the same zone as the endogenous M4 receptor, the two expression patterns were, in large part, nonoverlapping. These results suggest a model in which important regulatory elements are located in close proximity to transcription initiation sites of the olfactory receptor genes and receive information defining zonal patterning via long-range processes.
Collapse
|
146
|
Qasba P, Reed RR. Tissue and zonal-specific expression of an olfactory receptor transgene. J Neurosci 1998; 18:227-36. [PMID: 9412503 PMCID: PMC6793424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Discrimination of odorants is thought to arise from the selective expression of one of a small number of individual receptors in any single olfactory neuron. Receptor genes are expressed in a small subset of neurons throughout a zonally restricted region of the sensory epithelium. We demonstrate that a 6.7 kb region upstream of the M4 olfactory receptor coding region was sufficient to direct expression in olfactory epithelium. Moreover, reporter expression recapitulated the zonal restriction and distributed neuronal expression observed for endogenous olfactory receptors. Transgenic lines were obtained that directed expression in two different receptor zones, one of which was identical to the endogenous M4 receptor. When the reporter was expressed in the same zone as the endogenous M4 receptor, the two expression patterns were, in large part, nonoverlapping. These results suggest a model in which important regulatory elements are located in close proximity to transcription initiation sites of the olfactory receptor genes and receive information defining zonal patterning via long-range processes.
Collapse
Affiliation(s)
- P Qasba
- The Howard Hughes Medical Institute, Departments of Molecular Biology and Genetics and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
147
|
Alenius M, Bohm S. Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection. J Biol Chem 1997; 272:26083-6. [PMID: 9334170 DOI: 10.1074/jbc.272.42.26083] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe here the cloning of mouse complementary DNAs encoding a novel protein, Rb-8 neural cell adhesion molecule (RNCAM), with a predicted extracellular region of five immunoglobulin C2-type domains followed by two fibronectin type III domains. Alternative splicing is likely to generate two RNCAM isoforms, which are differently attached to the cell membrane. These structural features and overall sequence identity identify this protein as a novel member of a cell adhesion molecule subgroup together with vertebrate neural cell adhesion molecule, Aplysia cell adhesion molecule, and Drosophila fasciclin II. In insects, fasciclin II is present on a restricted subset of embryonic central nervous system axons where it controls selective axon fasciculation. Intriguingly, RNCAM likewise is expressed in subsets of olfactory and vomeronasal neurons with topographically defined axonal projections. The spatial expression RNCAM corresponds precisely to that of certain odorant receptor expression zones of the olfactory epithelium. These expression patterns thus render RNCAM the first described cell adhesion molecule with a potential regulatory role in formation of selective axonal projections important for olfactory sensory information coding.
Collapse
Affiliation(s)
- M Alenius
- Department of Cell and Molecular Biology, Umeâ University, Umeâ, S-901 87 Sweden
| | | |
Collapse
|
148
|
OCAM: A new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 1997. [PMID: 9221781 DOI: 10.1523/jneurosci.17-15-05830.1997] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Zone-to-zone projection of olfactory and vomeronasal sensory axons underlies the topographic and functional mapping of chemoreceptor expression zones of the sensory epithelia onto zonally arranged glomeruli in the main and accessory olfactory bulbs. Here we identified OCAM (R4B12 antigen), an axonal surface glycoprotein expressed by subsets of both olfactory and vomeronasal axons in a zone-specific manner. OCAM is a novel homophilic adhesion molecule belonging to the immunoglobulin superfamily with striking structural homology to neural cell adhesion molecule. In both the main and accessory olfactory systems, OCAM mRNA is expressed by sensory neurons in restricted chemoreceptor expression zones, and OCAM protein-expressing axons project to the glomeruli in the corresponding zones of the main and accessory bulbs. OCAM protein is expressed on subsets of growing sensory axons in explant cultures even in the absence of the target bulb. These results demonstrate a precisely coordinated zonal expression of chemoreceptors and OCAM and suggest that OCAM may play important roles in selective fasciculation and zone-to-zone projection of the primary olfactory axons.
Collapse
|
149
|
Abstract
The vomeronasal organ of mammals is an olfactory sensory structure that detects pheromones. It contains two subsets of sensory neurons that differentially express G alpha(o) and G alpha(i2). By comparing gene expression in single neurons, we identified a novel multigene family that codes for a diverse array of candidate pheromone receptors (VRs) expressed by the G alpha(o)+ subset. Different VRs are expressed by different neurons, but those neurons are interspersed, suggesting a distributed mode of sensory coding. Chromosome mapping experiments suggest an evolutionary connection between genes encoding VRs and receptors for volatile odorants. However, a dramatically different structure for VRs and the existence of variant VR mRNA forms indicate that there are diverse strategies to detect functionally distinct sensory stimuli.
Collapse
Affiliation(s)
- H Matsunami
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
150
|
Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Molecular cloning and chromosomal mapping of olfactory receptor genes expressed in the male germ line: evidence for their wide distribution in the human genome. Biochem Biophys Res Commun 1997; 237:283-7. [PMID: 9268701 DOI: 10.1006/bbrc.1997.7043] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Olfactory receptor genes constitute the largest family of G protein-coupled receptors. We have previously shown that members of this family are expressed during spermatogenesis, and that the corresponding proteins are displayed on mature sperm cells. In each mammalian species, a restricted subset of olfactory receptors is expressed in male germ cells and displays a pattern of expression suggestive of their potential implication in the control of sperm physiology. In addition to the cDNA fragments available previously, we now report the molecular cloning of two olfactory receptor cDNAs from a human testis library. Five olfactory receptor genes expressed in germ cells were localized in the human genome by radiation hybrid mapping. Three of the genes map to the short arm of chromosome 19 (19p13.1-19p31.3), one to chromosome 11 (11q22.1-22.3), and one to chromosome 17 (17q21-22). The former two localizations fall within clusters previously identified for members of the putative olfactory receptor gene family expressed in olfactory mucosa. Similarly, sequence analysis has revealed that these testicular genes share no distinctive structural features from the other, non-testicular, members of the family. The expression of a subset of olfactory receptor genes in the male germ line is therefore not correlated to their belonging to a specific structural subgroup, or to a specific gene cluster or chromosomal segment.
Collapse
Affiliation(s)
- P Vanderhaeghen
- I.R.I.B.H.N., Department of Medical Genetics, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, Brussels, B-1070, Belgium.
| | | | | | | |
Collapse
|