101
|
Single-molecule nonequilibrium periodic Mg2+-concentration jump experiments reveal details of the early folding pathways of a large RNA. Proc Natl Acad Sci U S A 2008; 105:6602-7. [PMID: 18448679 DOI: 10.1073/pnas.0801436105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The evolution of RNA conformation with Mg(2+) concentration ([Mg(2+)]) is typically determined from equilibrium titration measurements or nonequilibrium single [Mg(2+)]-jump measurements. We study the folding of single RNA molecules in response to a series of periodic [Mg(2+)] jumps. The 260-residue catalytic domain of RNase P RNA from Bacillus stearothermophilus is immobilized in a microfluidic flow chamber, and the RNA conformational changes are probed by fluorescence resonance energy transfer (FRET). The kinetics of population redistribution after a [Mg(2+)] jump and the observed connectivity of FRET states reveal details of the folding pathway that complement and transcend information from equilibrium or single-jump measurements. FRET trajectories for jumps from [Mg(2+)] = 0.01 to 0.1 mM exhibit two-state behavior whereas jumps from 0.01 mM to 0.4 mM exhibit two-state unfolding but multistate folding behavior. RNA molecules in the low and high FRET states before the [Mg(2+)] increase are observed to undergo dynamics in two distinct regions of the free energy landscape separated by a high barrier. We describe the RNA structural changes involved in crossing this barrier as a "hidden" degree of freedom because the changes do not alter the detected FRET value but do alter the observed dynamics. The associated memory prevents the populations from achieving their equilibrium values at the end of the 5- to 10-sec [Mg(2+)] interval, thereby creating a nonequilibrium steady-state condition. The capability of interrogating nonequilibrium steady-state RNA conformations and the adjustable period of [Mg(2+)]-jump cycles makes it possible to probe regions of the free energy landscape that are infrequently sampled in equilibrium or single-jump measurements.
Collapse
|
102
|
Sattin BD, Zhao W, Travers K, Chu S, Herschlag D. Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc 2008; 130:6085-7. [PMID: 18429611 DOI: 10.1021/ja800919q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All structured biological macromolecules must overcome the thermodynamic folding problem to populate a unique functional state among a vast ensemble of unfolded and alternate conformations. The exploration of cooperativity in protein folding has helped reveal and distinguish the underlying mechanistic solutions to this folding problem. Analogous dissections of RNA tertiary stability remain elusive, however, despite the central biological importance of folded RNA molecules and the potential to reveal fundamental properties of structured macromolecules via comparisons of protein and RNA folding. We report a direct quantitative measure of tertiary contact cooperativity in a folded RNA. We precisely measured the stability of an independently folding P4-P6 domain from the Tetrahymena thermophila group I intron by single molecule fluorescence resonance energy transfer (smFRET). Using wild-type and mutant RNAs, we found that cooperativity between the two tertiary contacts enhances P4-P6 stability by 3.2 +/- 0.2 kcal/mol.
Collapse
Affiliation(s)
- Bernie D Sattin
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
103
|
Abstract
The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.
Collapse
|
104
|
Langer JD, Roth CM, Béthune J, Stoops EH, Brügger B, Herten DP, Wieland FT. A Conformational Change in the α-subunit of Coatomer Induced by Ligand Binding to γ-COP Revealed by Single-pair FRET. Traffic 2008; 9:597-607. [DOI: 10.1111/j.1600-0854.2007.00697.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Winkleman A, Gotesman G, Yoffe A, Naaman R. Immobilizing a drop of water: fabricating highly hydrophobic surfaces that pin water droplets. NANO LETTERS 2008; 8:1241-1245. [PMID: 18331000 DOI: 10.1021/nl080317d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe the fabrication of a patterned, hydrophobic silicon substrate that can pin a water droplet despite its large contact angle. Arrays of nm tips in silicon were fabricated by reactive ion etching using polymer masks defined by photolithography. A droplet sitting on one class of these substrates did not fall even after the substrate was turned upside-down. The production allows the fabrication of large arrays of tips with a one-step simple etching process, along with silanization, to achieve a substrate with both very large contact and tilting angles.
Collapse
Affiliation(s)
- Adam Winkleman
- Department of Chemical Physics, Chemical Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
106
|
Deniz AA, Mukhopadhyay S, Lemke EA. Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 2008; 5:15-45. [PMID: 17519204 PMCID: PMC2094721 DOI: 10.1098/rsif.2007.1021] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single-molecule methods have matured into powerful and popular tools to probe the complex behaviour of biological molecules, due to their unique abilities to probe molecular structure, dynamics and function, unhindered by the averaging inherent in ensemble experiments. This review presents an overview of the burgeoning field of single-molecule biophysics, discussing key highlights and selected examples from its genesis to our projections for its future. Following brief introductions to a few popular single-molecule fluorescence and manipulation methods, we discuss novel insights gained from single-molecule studies in key biological areas ranging from biological folding to experiments performed in vivo.
Collapse
Affiliation(s)
- Ashok A Deniz
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
107
|
Lim TC, Bailey VJ, Ho YP, Wang TH. Intercalating dye as an acceptor in quantum-dot-mediated FRET. NANOTECHNOLOGY 2008; 19:075701. [PMID: 21817649 DOI: 10.1088/0957-4484/19/7/075701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery.
Collapse
Affiliation(s)
- Teck Chuan Lim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | | | |
Collapse
|
108
|
Wu C, Zheng Y, Szymanski C, McNeill J. Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2008; 112:1772-1781. [PMID: 19221582 PMCID: PMC2600541 DOI: 10.1021/jp074149+] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report on the fluorescence properties and the combined effects of energy diffusion and energy transfer in polyfluorene nanoparticles doped with a variety of fluorescent dyes. As the doping host, polyfluorene possesses extraordinary "light harvesting" ability, resulting in higher per-particle brightness as compared to dye-loaded silica nanoparticles of similar dimensions. Both the steady-state fluorescence spectra and time-resolved fluorescence measurements indicate highly efficient energy transfer from the host polymer to the acceptor dye molecules. A model that takes into account the combined effects of energy diffusion, Förster transfer, and particle size was developed. Comparisons of experimental data to the model results elucidate the importance of particle size and energy diffusion within the polymer in determining the optical properties of the doped conjugated polymer nanoparticles. Fluorescence quantum yields of ~40% and peak extinction coefficients of 1.5 × 10(9) M(-1)cm(-1) were determined for aqueous suspensions of ~30 nm diameter polymer nanoparticles doped with perylene or coumarin 6 (2 wt %). Photobleaching experiments indicate that energy transfer phenomena strongly influence the photostability of these dye-doped nanoparticles. Significant features of these nanoparticles include the high brightness, highly red-shifted emission spectrum, and excellent photostability, which are promising for biological labeling and sensing applications. In addition, the nanoparticles are a useful model system for studying energy transfer in dense, nanostructured, multichromophoric systems.
Collapse
Affiliation(s)
- Changfeng Wu
- Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
| | - Yueli Zheng
- Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
| | - Craig Szymanski
- Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
| | - Jason McNeill
- Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
109
|
Wu C, Zheng Y, Szymanski C, McNeill J. Energy Transfer in a Nanoscale Multichromophoric System: Fluorescent Dye-Doped Conjugated Polymer Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2008. [PMID: 19221582 DOI: 10.1021/jp074149] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the fluorescence properties and the combined effects of energy diffusion and energy transfer in polyfluorene nanoparticles doped with a variety of fluorescent dyes. As the doping host, polyfluorene possesses extraordinary "light harvesting" ability, resulting in higher per-particle brightness as compared to dye-loaded silica nanoparticles of similar dimensions. Both the steady-state fluorescence spectra and time-resolved fluorescence measurements indicate highly efficient energy transfer from the host polymer to the acceptor dye molecules. A model that takes into account the combined effects of energy diffusion, Förster transfer, and particle size was developed. Comparisons of experimental data to the model results elucidate the importance of particle size and energy diffusion within the polymer in determining the optical properties of the doped conjugated polymer nanoparticles. Fluorescence quantum yields of ~40% and peak extinction coefficients of 1.5 × 10(9) M(-1)cm(-1) were determined for aqueous suspensions of ~30 nm diameter polymer nanoparticles doped with perylene or coumarin 6 (2 wt %). Photobleaching experiments indicate that energy transfer phenomena strongly influence the photostability of these dye-doped nanoparticles. Significant features of these nanoparticles include the high brightness, highly red-shifted emission spectrum, and excellent photostability, which are promising for biological labeling and sensing applications. In addition, the nanoparticles are a useful model system for studying energy transfer in dense, nanostructured, multichromophoric systems.
Collapse
Affiliation(s)
- Changfeng Wu
- Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina 29634
| | | | | | | |
Collapse
|
110
|
Shirude PS, Balasubramanian S. Single molecule conformational analysis of DNA G-quadruplexes. Biochimie 2008; 90:1197-206. [PMID: 18295608 PMCID: PMC2746965 DOI: 10.1016/j.biochi.2008.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/25/2008] [Indexed: 11/18/2022]
Abstract
Single molecule fluorescence resonance energy transfer (FRET) can be employed to study conformational heterogeneity and real-time dynamics of biological macromolecules. Here we present single molecule studies on human genomic DNA G-quadruplex sequences that occur in the telomeres and in the promoter of a proto-oncogene. The findings are discussed with respect to the proposed biological function(s) of such motifs in living cells.
Collapse
|
111
|
A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics. J Mol Biol 2008; 378:943-53. [PMID: 18402978 DOI: 10.1016/j.jmb.2008.01.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/21/2022]
Abstract
The process of large RNA folding is believed to proceed from many collapsed structures to a unique functional structure requiring precise organization of nucleotides. The diversity of possible structures and stabilities of large RNAs could result in non-exponential folding kinetics (e.g. stretched exponential) under conditions where the molecules have not achieved their native state. We describe a single-molecule fluorescence resonance energy transfer (FRET) study of the collapsed-state region of the free energy landscape of the catalytic domain of RNase P RNA from Bacillus stearothermophilus (C(thermo)). Ensemble measurements have shown that this 260 residue RNA folds cooperatively to its native state at >or=1 mM Mg(2+), but little is known about the conformational dynamics at lower ionic strength. Our measurements of equilibrium conformational fluctuations reveal simple exponential kinetics that reflect a small number of discrete states instead of the expected inhomogeneous dynamics. The distribution of discrete dwell times, collected from an "ensemble" of 300 single molecules at each of a series of Mg(2+) concentrations, fit well to a double exponential, which indicates that the RNA conformational changes can be described as a four-state system. This finding is somewhat unexpected under [Mg(2+)] conditions in which this RNA does not achieve its native state. Observation of discrete well-defined conformations in this large RNA that are stable on the seconds timescale at low [Mg(2+)] (<0.1 mM) suggests that even at low ionic strength, with a tremendous number of possible (weak) interactions, a few critical interactions may produce deep energy wells that allow for rapid averaging of motions within each well, and yield kinetics that are relatively simple.
Collapse
|
112
|
Pljevaljcić G, Millar DP. Single-molecule fluorescence methods for the analysis of RNA folding and ribonucleoprotein assembly. Methods Enzymol 2008; 450:233-52. [PMID: 19152863 DOI: 10.1016/s0076-6879(08)03411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Goran Pljevaljcić
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
113
|
Chapter 7 Application of Single-Molecule Spectroscopy in Studying Enzyme Kinetics and Mechanism. Methods Enzymol 2008; 450:129-57. [DOI: 10.1016/s0076-6879(08)03407-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
114
|
Chen G, Wen JD, Tinoco I. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. RNA (NEW YORK, N.Y.) 2007; 13:2175-88. [PMID: 17959928 PMCID: PMC2080604 DOI: 10.1261/rna.676707] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/09/2007] [Indexed: 05/03/2023]
Abstract
RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen at approximately 10 and approximately 5 piconewtons (pN), with ensemble rate constants of approximately 0.1 sec(-1), by stepwise force-drop experiments. Folding studies of the isolated 5'-hairpin construct suggested that the 5'-hairpin within the pseudoknot forms first, followed by formation of the 3'-stem. Stepwise formation of the pseudoknot structure at low forces are in contrast with the one-step unfolding at high forces of approximately 46 pN, at an average rate of approximately 0.05 sec(-1). In the constant-force folding trajectories at approximately 10 pN and approximately 5 pN, transient formation of nonnative structures were observed, which is direct experimental evidence that folding of both the hairpin and pseudoknot takes complex pathways. Possible nonnative structures and folding pathways are discussed.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
115
|
Abstract
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.
Collapse
|
116
|
Cao Y, Balamurali MM, Sharma D, Li H. A functional single-molecule binding assay via force spectroscopy. Proc Natl Acad Sci U S A 2007; 104:15677-81. [PMID: 17895384 PMCID: PMC2000387 DOI: 10.1073/pnas.0705367104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Indexed: 11/18/2022] Open
Abstract
Protein-ligand interactions, including protein-protein interactions, are ubiquitously essential in biological processes and also have important applications in biotechnology. A wide range of methodologies have been developed for quantitative analysis of protein-ligand interactions. However, most of them do not report direct functional/structural consequence of ligand binding. Instead they only detect the change of physical properties, such as fluorescence and refractive index, because of the colocalization of protein and ligand, and are susceptible to false positives. Thus, important information about the functional state of protein-ligand complexes cannot be obtained directly. Here we report a functional single-molecule binding assay that uses force spectroscopy to directly probe the functional consequence of ligand binding and report the functional state of protein-ligand complexes. As a proof of principle, we used protein G and the Fc fragment of IgG as a model system in this study. Binding of Fc to protein G does not induce major structural changes in protein G but results in significant enhancement of its mechanical stability. Using mechanical stability of protein G as an intrinsic functional reporter, we directly distinguished and quantified Fc-bound and Fc-free forms of protein G on a single-molecule basis and accurately determined their dissociation constant. This single-molecule functional binding assay is label-free, nearly background-free, and can detect functional heterogeneity, if any, among protein-ligand interactions. This methodology opens up avenues for studying protein-ligand interactions in a functional context, and we anticipate that it will find broad application in diverse protein-ligand systems.
Collapse
Affiliation(s)
- Yi Cao
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - M. M. Balamurali
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Deepak Sharma
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
117
|
Zhang H, Shu D, Huang F, Guo P. Instrumentation and metrology for single RNA counting in biological complexes or nanoparticles by a single-molecule dual-view system. RNA (NEW YORK, N.Y.) 2007; 13:1793-802. [PMID: 17698643 PMCID: PMC1986819 DOI: 10.1261/rna.587607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Limited by the spatial resolution of optical microscopy, direct detection or counting of single components in biological complexes or nanoparticles is challenging, especially for RNA, which is conformationally versatile and structurally flexible. We report here the assembly of a customized single-molecule dual-viewing total internal reflection fluorescence imaging system for direct counting of RNA building blocks. The RNA molecules were labeled with a single fluorophore by in vitro transcription in the presence of a fluorescent AMP. Precise calculation of identical or mixed pRNA building blocks of one, two, three, or six copies within the bacteriophage phi29 DNA packaging motor or other complexes was demonstrated by applying a photobleaching assay and evaluated by binomial distribution. The dual-viewing system for excitation and recording at different wavelengths simultaneously will enable the differentiation of different complexes with different labels or relative motion of each labeled component in motion machines.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
118
|
Bates M, Huang B, Dempsey GT, Zhuang X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007; 317:1749-53. [PMID: 17702910 PMCID: PMC2633025 DOI: 10.1126/science.1146598] [Citation(s) in RCA: 982] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent advances in far-field optical nanoscopy have enabled fluorescence imaging with a spatial resolution of 20 to 50 nanometers. Multicolor super-resolution imaging, however, remains a challenging task. Here, we introduce a family of photo-switchable fluorescent probes and demonstrate multicolor stochastic optical reconstruction microscopy (STORM). Each probe consists of a photo-switchable "reporter" fluorophore that can be cycled between fluorescent and dark states, and an "activator" that facilitates photo-activation of the reporter. Combinatorial pairing of reporters and activators allows the creation of probes with many distinct colors. Iterative, color-specific activation of sparse subsets of these probes allows their localization with nanometer accuracy, enabling the construction of a super-resolution STORM image. Using this approach, we demonstrate multicolor imaging of DNA model samples and mammalian cells with 20- to 30-nanometer resolution. This technique will facilitate direct visualization of molecular interactions at the nanometer scale.
Collapse
Affiliation(s)
- Mark Bates
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
119
|
Lu Y, Paige MF. An Ensemble and Single-molecule Fluorescence Spectroscopy Investigation of Calcium Green 1, a Calcium-ion Sensor. J Fluoresc 2007; 17:739-48. [PMID: 17638063 DOI: 10.1007/s10895-007-0185-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
The calcium-ion indicator dye, Calcium Green 1 (CG-1), has been characterized using a combination of ensemble and single-molecule optical spectroscopy measurements. In terms of ensemble measurements, CG-1 demonstrated a strong increase in fluorescence emission as a function of increasing [Ca(2+)]. This was accompanied by a change in the relative proportions of two chemical forms of the dye, each with a different fluorescence lifetime, which were found to co-exist in solution. From single-molecule fluorescence measurements, it was found that the fluorescence intensity and photobleaching time (on-time) of each CG-1 molecule was invariant with [Ca(2+)] and that changes in ensemble fluorescence intensity simply correlates with the number of fluorescent molecules in solution. These results are compared with that of the related system, Calcium Green 2 (CG-2), and the mechanisms of operation of these two indicator dyes are discussed.
Collapse
Affiliation(s)
- Yin Lu
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
120
|
Kim J, Dukkipati V, Pang SW, Larson RG. Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level. NANOSCALE RESEARCH LETTERS 2007. [PMCID: PMC3246225 DOI: 10.1007/s11671-007-9057-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein’s search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several methods for doing so have been developed over the last two decades, including the use of forces derived from light, magnetic and electric fields, and hydrodynamic flow. Here we review the immobilization and stretching mechanisms for several of these techniques along with examples of single-molecule DNA–protein interaction assays that can be performed with each of them.
Collapse
Affiliation(s)
- JiHoon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| | - VenkatRam Dukkipati
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Stella W Pang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
121
|
Shang J, Geva E. Computational Study of a Single Surface-Immobilized Two-Stranded Coiled-Coil Polypeptide. J Phys Chem B 2007; 111:4178-88. [PMID: 17397215 DOI: 10.1021/jp067138+] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The equilibrium structure and dynamics of a two-stranded coiled-coil polypeptide are investigated via Langevin dynamics simulations. An off-lattice model of the polypeptide chain is employed, which gives rise to a well-defined helical dimer native state and two-state folding kinetics. The behavior of the freely diffusing and surface-immobilized polypeptide is studied under different surface and denaturation conditions. The effect of surface immobilization on the distributions of structural and dynamical properties is considered in detail. The relationship between the simulation results and recent single-molecule fluorescence resonance energy transfer experiments performed on the two-stranded coiled-coil from the yeast transcription factor GCN4 (Jia et al. Chem. Phys. 1999, 247, 69; Talaga et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13021) is discussed.
Collapse
Affiliation(s)
- Jianyuan Shang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
122
|
Shang J, Geva E. Extracting the Time Scales of Conformational Dynamics from Single-Molecule Single-Photon Fluorescence Statistics. J Phys Chem B 2007; 111:4220-6. [PMID: 17391019 DOI: 10.1021/jp067657c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quenching rate of a fluorophore attached to a macromolecule can be rather sensitive to its conformational state. The decay of the corresponding fluorescence lifetime autocorrelation function can therefore provide unique information on the time scales of conformational dynamics. The conventional way of measuring the fluorescence lifetime autocorrelation function involves evaluating it from the distribution of delay times between photoexcitation and photon emission. However, the time resolution of this procedure is limited by the time window required for collecting enough photons in order to establish this distribution with sufficient signal-to-noise ratio. Yang and Xie have recently proposed an approach for improving the time resolution, which is based on the argument that the autocorrelation function of the delay time between photoexcitation and photon emission is proportional to the autocorrelation function of the square of the fluorescence lifetime [Yang, H.; Xie, X. S. J. Chem. Phys. 2002, 117, 10965]. In this paper, we show that the delay-time autocorrelation function is equal to the autocorrelation function of the square of the fluorescence lifetime divided by the autocorrelation function of the fluorescence lifetime. We examine the conditions under which the delay-time autocorrelation function is approximately proportional to the autocorrelation function of the square of the fluorescence lifetime. We also investigate the correlation between the decay of the delay-time autocorrelation function and the time scales of conformational dynamics. The results are demonstrated via applications to a two-state model and an off-lattice model of a polypeptide.
Collapse
Affiliation(s)
- Jianyuan Shang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
123
|
Karymov MA, Krasnoslobodtsev AV, Lyubchenko YL. Dynamics of synaptic SfiI-DNA complex: single-molecule fluorescence analysis. Biophys J 2007; 92:3241-50. [PMID: 17277188 PMCID: PMC1852356 DOI: 10.1529/biophysj.106.095778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single-molecule analysis was applied to study the dynamics of synaptic and presynaptic DNA-protein complexes (binding of two DNA and one DNA duplex, respectively). In the approach used in this study, the protein was tethered to a surface, allowing a freely diffusing fluorescently labeled DNA to bind to the protein, thus forming a presynaptic complex. The duration of fluorescence burst is the measure of the characteristic lifetime of the complex. To study the formation of the synaptic complex, the two SfiI-bound duplexes with the labeled donor and acceptor were used. The synaptic complex formation by these duplexes was detected by the fluorescence resonance energy transfer approach. The duration of the fluorescence resonance energy transfer burst is the measure of the characteristic lifetime of the synaptic complex. We showed that both synaptic and presynaptic complexes have characteristic dissociation times in the range of milliseconds, with the synaptic SfiI-DNA complex having the shorter dissociation time. Comparison of the off-rate data for the synaptic complex with the rate of DNA cleavage led to the hypothesis that the complex is very dynamic, so the formation of an enzymatically active synaptic complex is a rather rare event in these series of conformational transitions.
Collapse
Affiliation(s)
- Mikhail A Karymov
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
124
|
Greenleaf WJ, Woodside MT, Block SM. High-resolution, single-molecule measurements of biomolecular motion. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2007; 36:171-90. [PMID: 17328679 PMCID: PMC1945240 DOI: 10.1146/annurev.biophys.36.101106.101451] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.
Collapse
Affiliation(s)
- William J. Greenleaf
- Department of Applied Physics, Stanford University, Stanford, California 94305–5030
| | - Michael T. Woodside
- National Institute for Nanotechnology, National Research Council of Canada, Edmonton AB, T6G 2V4, Canada
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Steven M. Block
- Department of Applied Physics, Stanford University, Stanford, California 94305–5030
- Department of Biological Sciences, Stanford University, Stanford, California 94305–5030;
| |
Collapse
|
125
|
Brownlee C. Ready for their close-ups: investigating single molecules. ACS Chem Biol 2006; 1:741-3. [PMID: 17240969 DOI: 10.1021/cb6004799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Bokinsky G, Nivón LG, Liu S, Chai G, Hong M, Weeks KM, Zhuang X. Two distinct binding modes of a protein cofactor with its target RNA. J Mol Biol 2006; 361:771-84. [PMID: 16872630 PMCID: PMC2633024 DOI: 10.1016/j.jmb.2006.06.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/18/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022]
Abstract
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.
Collapse
Affiliation(s)
- Gregory Bokinsky
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Messina TC, Kim H, Giurleo JT, Talaga DS. Hidden Markov model analysis of multichromophore photobleaching. J Phys Chem B 2006; 110:16366-76. [PMID: 16913765 PMCID: PMC1995553 DOI: 10.1021/jp063367k] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interpretation of single-molecule measurements is greatly complicated by the presence of multiple fluorescent labels. However, many molecular systems of interest consist of multiple interacting components. We investigate this issue using multiply labeled dextran polymers that we intentionally photobleach to the background on a single-molecule basis. Hidden Markov models allow for unsupervised analysis of the data to determine the number of fluorescent subunits involved in the fluorescence intermittency of the 6-carboxy-tetramethylrhodamine labels by counting the discrete steps in fluorescence intensity. The Bayes information criterion allows us to distinguish between hidden Markov models that differ by the number of states, that is, the number of fluorescent molecules. We determine information-theoretical limits and show via Monte Carlo simulations that the hidden Markov model analysis approaches these theoretical limits. This technique has resolving power of one fluorescing unit up to as many as 30 fluorescent dyes with the appropriate choice of dye and adequate detection capability. We discuss the general utility of this method for determining aggregation-state distributions as could appear in many biologically important systems and its adaptability to general photometric experiments.
Collapse
Affiliation(s)
- Troy C. Messina
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Hiyun Kim
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Jason T. Giurleo
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - David S. Talaga
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
128
|
Ritort F. Single-molecule experiments in biological physics: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R531-R583. [PMID: 21690856 DOI: 10.1088/0953-8984/18/32/r01] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Collapse
Affiliation(s)
- F Ritort
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
129
|
Abstract
The kinetics and mechanisms of transcription are now being investigated by a repertoire of single-molecule techniques, including optical and magnetic tweezers, high-sensitivity fluorescence techniques, and atomic force microscopy. Single-molecule techniques complement traditional biochemical and crystallographic approaches, are capable of detecting the motions and dynamics of individual RNAP molecules and transcription complexes in real time, and make it possible to directly measure RNAP binding to and unwinding of template DNA, as well as RNAP translocation along the DNA during transcript synthesis.
Collapse
Affiliation(s)
- Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
130
|
Abstract
The evolution of RNA sequence needs to satisfy three requirements: folding, structure, and function. Studies on folding during transcription are related directly to folding in the cell. Understanding RNA folding during transcription requires the elucidation of structure formation and structural changes of the RNA, and the consideration of intrinsic properties of the RNA polymerase and other proteins that interact with the RNA. This review summarizes the research progress in this area and outlines the enormous challenges facing this field. Significant advancement requires the development of new experimental methods and theoretical considerations in all aspects of transcription and RNA folding.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
131
|
Gao M, Sotomayor M, Villa E, Lee EH, Schulten K. Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 2006; 8:3692-706. [PMID: 16896432 DOI: 10.1039/b606019f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces play an essential role in cellular processes as input, output, and signals. Various protein complexes in the cell are designed to handle, transform and use such forces. For instance, proteins of muscle and the extracellular matrix can withstand considerable stretching forces, hearing-related and mechanosensory proteins can transform weak mechanical stimuli into electrical signals, and regulatory proteins are suited to forcing DNA into loops to control gene expression. Here we review the structure-function relationship of four protein complexes with well defined and representative mechanical functions. The first example is titin, a protein that confers passive elasticity on muscle. The second system is the elastic extracellular matrix protein, fibronectin, and its cellular receptor integrin. The third protein system is the transduction apparatus in hearing and other mechanical senses, likely containing cadherin and ankyrin repeats. The last system is the lac repressor protein, which regulates gene expression by looping DNA. This review focuses on atomic level descriptions of the physical mechanisms underlying the various mechanical functions of the stated proteins.
Collapse
Affiliation(s)
- Mu Gao
- Beckman Institute, Department of Physics, Center for Biophysics and Computational Biology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
132
|
Myong S, Stevens BC, Ha T. Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 2006; 14:633-43. [PMID: 16615904 DOI: 10.1016/j.str.2006.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 01/28/2006] [Accepted: 02/06/2006] [Indexed: 11/29/2022]
Abstract
In a typical structure-function relation study, the primary structure of proteins or nucleic acids is changed by mutagenesis and its functional effect is measured via biochemical means. Single-molecule spectroscopy has begun to give a whole new meaning to the "structure-function relation" by measuring the real-time conformational changes of individual biological macromolecules while they are functioning. This review discusses a few recent examples: untangling internal chemistry and conformational dynamics of a ribozyme, branch migration landscape of a Holliday junction at a single-step resolution, tRNA selection and dynamics in a ribosome, repetitive shuttling and snapback of a helicase, and discrete rotation of an ATP synthase.
Collapse
Affiliation(s)
- Sua Myong
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
133
|
Shi J, Gafni A, Steel D. Simulated data sets for single molecule kinetics: some limitations and complications of data analysis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:633-45. [PMID: 16676175 DOI: 10.1007/s00249-006-0067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/30/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
When the fluorescence intensity of a chromophore attached to or bound in an enzyme relates to a specific reactive step in the enzymatic reaction, a single molecule fluorescence study of the process reveals a time sequence in the fluorescence emission that can be analyzed to derive kinetic and mechanistic information. Reports of various experimental results and corresponding theoretical studies have provided a basis for interpreting these data and understanding the methodology. We have found it useful to parallel experiments with Monte Carlo simulations of potential models hypothesized to describe the reaction kinetics. The simulations can be adapted to include experimental limitations, such as limited data sets, and complexities such as dynamic disorder, where reaction rates appear to change over time. By using models that are known a priori, the simulations reveal some of the challenges of interpreting finite single-molecule data sets by employing various statistical signatures that have been identified.
Collapse
Affiliation(s)
- Jue Shi
- Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
134
|
Brender JR, Dertouzos J, Ballou DP, Massey V, Palfey BA, Entsch B, Steel DG, Gafni A. Conformational dynamics of the isoalloxazine in substrate-free p-hydroxybenzoate hydroxylase: single-molecule studies. J Am Chem Soc 2006; 127:18171-8. [PMID: 16366570 DOI: 10.1021/ja055171o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Hydroxybenzoate hydroxylase (PHBH) is a homodimeric enzyme in which each subunit noncovalently binds one molecule of FAD in the active site. PHBH is a model system for how flavoenzymes regulate reactions with oxygen. We report single-molecule fluorescence studies of PHBH in the absence of substrate that provide data consistent with the hypothesis that a critical step in substrate binding is the movement of the isoalloxazine between an "in" conformation and a more exposed or "open" conformation. The isoalloxazine is observed to move between these conformations in the absence of substrate. Studies with the Y222A mutant form of PHBH suggest that the exposed conformation is fluorescent while the in-conformation is quenched. Finally, we note that many of the single-molecule-fluorescence trajectories reveal a conformational heterogeneity, with populations of the enzyme characterized by either fast or slow switching between the in- and open-conformations. Our data also allow us to hypothesize a model in which one flavin in the dimer inhibits the motion of the other.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Biophysics Research Division, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48104, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Barsegov V, Thirumalai D. Influence of surface interactions on folding and forced unbinding of semiflexible chains. J Phys Chem B 2005; 109:21979-88. [PMID: 16853856 DOI: 10.1021/jp053803n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the folding and forced unbinding transitions of adsorbed semiflexible polymer chains using theory and simulations. These processes describe, at an elementary level, a number of biologically relevant phenomena that include adhesive interactions between proteins and tethering of receptors to cell walls. The binding interface is modeled as a solid surface, and the wormlike chain (WLC) is used for the semiflexible chain (SC). Using Langevin simulations, in the overdamped limit we examine the ordering kinetics of racquet-like and toroidal structures in the presence of an attractive interaction between the surface and the polymer chain. For a range of interactions, temperature, and the persistence length, l(p), we obtained the monomer density distribution, n(x), (x is the perpendicular distance of a tagged chain end from the surface) for all of the relevant morphologies. There is a single peak in n(x) inside the range of attractive forces, b, for chains in the extended conformations, whereas in racquet and toroidal structures there is an additional peak at x approximately b. The simulated results for n(x) are in good agreement with theory. The formation of toroids on the surface appears to be a first-order transition as evidenced by the bimodal distribution in n(x). The theoretical result underestimates the simulated n(x) for x << b and follows n(x) closely for x >/= b; the calculated density agrees exactly with n(x) in the range x << b. The chain-surface interaction is probed by subjecting the surface structures to a pulling force, f. The average extension, x( f), as a function of f exhibits a sigmoidal profile with sharp all-or-none transition at the unfolding force threshold f = f(c) which increases for more structured states. Simulated x(f) compare well with the theoretical predictions. The critical force, f(c), is a function of l(s)/l(c) for a fixed temperature, where l(c) and l(s) are the length scales that express the strength of the intramolecular and SC-surface attraction, respectively. For a fixed l(s), f(c) increases as l(p) decreases.
Collapse
Affiliation(s)
- V Barsegov
- Biophysics Program, Institute for Physical Science and Technology, and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
136
|
Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. NATURE MATERIALS 2005; 4:826-31. [PMID: 16379073 DOI: 10.1038/nmat1508] [Citation(s) in RCA: 592] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (approximately 50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Mechanical Engineering Department and Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
137
|
Huggins W, Ghosh SK, Nanda K, Wollenzien P. Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. J Mol Biol 2005; 354:358-74. [PMID: 16242153 DOI: 10.1016/j.jmb.2005.09.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
UV light-induced RNA photocrosslinks are formed at a limited number of specific sites in the Escherichia coli and in other eubacterial 16 S rRNAs. To determine if unusually favorable internucleotide geometries could explain the restricted crosslinking patterns, parameters describing the internucleotide geometries were calculated from the Thermus thermophilus 30 S subunit X-ray structure and compared to crosslinking frequencies. Significant structural adjustments between the nucleotide pairs usually are needed for crosslinking. Correlations between the crosslinking frequencies and the geometrical parameters indicate that nucleotide pairs closer to the orientation needed for photoreaction have higher crosslinking frequencies. These data are consistent with transient conformational changes during crosslink formation in which the arrangements needed for photochemical reaction are attained during the electronic excitation times. The average structural rearrangement for UVA-4-thiouridine (s4U)-induced crosslinking is larger than that for UVB or UVC-induced crosslinking; this is associated with the longer excitation time for s4U and is also consistent with transient conformational changes. The geometrical parameters do not completely predict the crosslinking frequencies, implicating other aspects of the tertiary structure or conformational flexibility in determining the frequencies and the locations of the crosslinking sites. The majority of the UVB/C and UVA-s4U-induced crosslinks are located in four regions in the 30 S subunit, within or at the ends of RNA helix 34, in the tRNA P-site, in the distal end of helix 28 and in the helix 19/helix 27 region. These regions are implicated in different aspects of tRNA accommodation, translocation and in the termination reaction. These results show that photocrosslinking is an indicator for sites where there is internucleotide conformational flexibility and these sites are largely restricted to parts of the 30 S subunit associated with ribosome function.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Binding Sites
- Cross-Linking Reagents
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/radiation effects
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation/radiation effects
- Nucleotides/chemistry
- Nucleotides/metabolism
- Nucleotides/radiation effects
- Photochemistry
- Protein Conformation/radiation effects
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/radiation effects
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/radiation effects
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
138
|
Woźniak AK, Nottrott S, Kühn-Hölsken E, Schröder GF, Grubmüller H, Lührmann R, Seidel CAM, Oesterhelt F. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA (NEW YORK, N.Y.) 2005; 11:1545-54. [PMID: 16199764 PMCID: PMC1370838 DOI: 10.1261/rna.2950605] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The kink-turn (k-turn), a new RNA structural motif found in the spliceosome and the ribosome, serves as a specific protein recognition element and as a structural building block. While the structure of the spliceosomal U4 snRNA k-turn/15.5K complex is known from a crystal structure, it is unclear whether the k-turn also exists in this folded conformation in the free U4 snRNA. Thus, we investigated the U4 snRNA k-turn by single-molecule FRET measurements in the absence and presence of the 15.5K protein and its dependence on the Na(+) and Mg(2+) ion concentration. We show that the unfolded U4 snRNA k-turn introduces a kink of 85 degrees +/- 15 degrees in an RNA double helix. While Na(+) and Mg(2+) ions induce this more open conformation of the k-turn, binding of the 15.5K protein was found to induce the tightly kinked conformation in the RNA that increases the kink to 52 degrees +/- 15 degrees . By comparison of the measured FRET distances with a computer-modeled structure, we show that this strong kink is due to the k-turn motif adopting its folded conformation. Thus, in the free U4 snRNA, the k-turn exists only in an unfolded conformation, and its folding is induced by binding of the 15.5K protein.
Collapse
Affiliation(s)
- Anna K Woźniak
- Heinrich-Heine-Universität Düsseldorf, Institut für molekulare Physikalische Chemie, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Steinmeyer R, Noskov A, Krasel C, Weber I, Dees C, Harms GS. Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization. J Fluoresc 2005; 15:707-21. [PMID: 16341788 DOI: 10.1007/s10895-005-2978-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/22/2005] [Indexed: 11/28/2022]
Abstract
Three promising variants of autofluorescent proteins have been analyzed photophysically for their proposed use in single-molecule microscopy studies in living cells to compare their superiority to other fluorescent proteins previously reported regarding the number of photons emitted. The first variant under investigation the F46L mutant of eYFP has a 10% greater photon emission rate and >50% slower photobleaching rate on average than the standard eYFP fluorophore. The monomeric red fluorescent protein (mRFP) has a fivefold lower photon emission rate, likely due to the monomeric content, and also a tenfold faster photobleaching rate than the DsRed fluorescent protein. In contrast, the previously reported eqfp611 has a 50% lower emission rate yet photobleaches more than a factor 2 slowly. We conclude that the F46L YFP and the eqfp611 are superior new options for single molecule imaging and tracking studies in living cells. Studies were also performed on the effects of forced quenching of multiple fluorescent proteins in sub-micrometer regions that would show the effects of dimerization at low concentration levels of fluorescent proteins and also indicate corrections to stoichiometry patterns with fluorescent proteins previously in print. We also introduce properties at the single molecule level of new FRET pairs with combinations of fluorescent proteins and artificial fluorophores.
Collapse
Affiliation(s)
- Ralf Steinmeyer
- Rudolf-Virchow-Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Street, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
140
|
Shang J, Geva E. A Computational Study of the Correlations between Structure and Dynamics in Free and Surface-Immobilized Single Polymer Chains. J Phys Chem B 2005; 109:16340-9. [PMID: 16853077 DOI: 10.1021/jp052275c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The correlations between structure and dynamics in free and surface-immobilized polymers were investigated via Langevin dynamics simulations of a free-jointed homopolymer. A detailed analysis was performed for a polymer in free solution and a polymer attached to a surface. The cases of repulsive and attractive surfaces, as well as poor and good solvents, were considered. The analysis focuses on properties that are particularly relevant to single molecule measurements, namely: (1) the distribution of end-to-end distance, (2) the correlations between the conformational structure and the time scale of its motion, (3) the correlations, at equilibrium, between the end-to-end distance and its displacement, and (4) the correlation between the initial coil conformation and the collapse pathway into the globular state. The differences and similarities between this model and a previously considered model of a protein, with two-state folding kinetics and a well-defined native state, are also discussed.
Collapse
Affiliation(s)
- Jianyuan Shang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
141
|
Adilakshmi T, Ramaswamy P, Woodson SA. Protein-independent Folding Pathway of the 16S rRNA 5′ Domain. J Mol Biol 2005; 351:508-19. [PMID: 16023137 DOI: 10.1016/j.jmb.2005.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.
Collapse
Affiliation(s)
- Tadepalli Adilakshmi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-7865, USA
| | | | | |
Collapse
|
142
|
Hodak JH, Downey CD, Fiore JL, Pardi A, Nesbitt DJ. Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. Proc Natl Acad Sci U S A 2005; 102:10505-10. [PMID: 16024731 PMCID: PMC1180751 DOI: 10.1073/pnas.0408645102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Docking kinetics and equilibrium of fluorescently labeled RNA molecules are studied with single-molecule FRET methods. Time-resolved FRET is used to monitor docking/undocking transitions for RNAs containing a single GAAA tetraloop-receptor tertiary interaction connected by a flexible single-stranded linker. The rate constants for docking and undocking are measured as a function of Mg2+, revealing a complex dependence on metal ion concentration. Despite the simplicity of this model system, conformational heterogeneity similar to that noted in more complex RNA systems is observed; relatively rapid docking/undocking transitions are detected for approximately two-thirds of the RNA molecules, with significant subpopulations exhibiting few or no transitions on the 10- to 30-s time scale for photobleaching. The rate constants are determined from analysis of probability densities, which allows a much wider range of time scales to be analyzed than standard histogram procedures. The data for the GAAA tetraloop receptor are compared with kinetic and equilibrium data for other RNA tertiary interactions.
Collapse
Affiliation(s)
- Jose H Hodak
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
143
|
Abstract
The development of single-molecule detection and manipulation has allowed us to monitor the behavior of individual biological molecules and molecular complexes in real time. This approach significantly expands our capability to characterize complex dynamics of biological processes, allowing transient intermediate states and parallel kinetic pathways to be directly observed. Exploring this capability to elucidate complex dynamics, recent single-molecule experiments on RNA folding and catalysis have improved our understanding of the folding energy landscape of RNA and allowed us to better dissect complex RNA catalytic reactions, including translation by the ribosome.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
144
|
Tinnefeld P, Sauer M. Branching Out of Single‐Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology. Angew Chem Int Ed Engl 2005; 44:2642-2671. [PMID: 15849689 DOI: 10.1002/anie.200300647] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells.
Collapse
Affiliation(s)
- Philip Tinnefeld
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| | - Markus Sauer
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| |
Collapse
|
145
|
Tinnefeld P, Sauer M. Neue Wege in der Einzelmolekül-Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300647] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
146
|
Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys J 2005; 89:690-702. [PMID: 15821166 PMCID: PMC1366567 DOI: 10.1529/biophysj.104.054064] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a "spectroscopic ruler" to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface.
Collapse
Affiliation(s)
- Mark E Bowen
- The Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
147
|
Cosa G, Harbron EJ, Zeng Y, Liu HW, O'Connor DB, Eta-Hosokawa C, Musier-Forsyth K, Barbara PF. Secondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein. Biophys J 2005; 87:2759-67. [PMID: 15454467 PMCID: PMC1304694 DOI: 10.1529/biophysj.104.043083] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse transcription of the HIV-1 RNA genome involves several complex nucleic acid rearrangement steps that are catalyzed by the HIV-1 nucleocapsid protein (NC), including for example, the annealing of the transactivation response (TAR) region of the viral RNA to the complementary region (TAR DNA) in minus-strand strong-stop DNA. We report herein single-molecule fluorescence resonance energy transfer measurements on single immobilized TAR DNA hairpins and hairpin mutants complexed with NC (i.e., TAR DNA/NC). Using this approach we have explored the conformational distribution and dynamics of the hairpins in the presence and absence of NC protein. The data demonstrate that NC shifts the equilibrium secondary structure of TAR DNA hairpins from a fully "closed" conformation to essentially one specific "partially open" conformation. In this specific conformation, the two terminal stems are "open" or unwound and the other stems are closed. This partially open conformation is arguably a key TAR DNA intermediate in the NC-induced annealing mechanism of TAR DNA.
Collapse
Affiliation(s)
- Gonzalo Cosa
- Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Smith GJ, Sosnick TR, Scherer NF, Pan T. Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA (NEW YORK, N.Y.) 2005; 11:234-239. [PMID: 15613536 PMCID: PMC1370712 DOI: 10.1261/rna.7180305] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/09/2004] [Indexed: 05/24/2023]
Abstract
We present an efficient method of introducing fluorophore labels at selected locations in a large RNA. The method is based on specific and highly efficient hybridization between a fluorophore-containing DNA oligonucleotide and a modular hairpin loop replacing a functionally unimportant hairpin loop in the RNA. We demonstrate its feasibility using a 255-nucleotide RNA derived from the catalytic domain of RNase P from Bacillus subtilis. Hybridization of the DNA oligonucleotide to the modular hairpin loop minimally perturbs the structure and function of this RNA. This labeling scheme should be applicable in studies of RNA conformational dynamics by ensemble and single molecule fluorescence methods.
Collapse
Affiliation(s)
- Glenna J Smith
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
149
|
Pljevaljcić G, Millar DP, Deniz AA. Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophys J 2005; 87:457-67. [PMID: 15240479 PMCID: PMC1304366 DOI: 10.1529/biophysj.103.036087] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule fluorescence resonance energy transfer studies of freely diffusing hairpin ribozymes with different combinations of helical junction and loop elements reveal striking differences in their folding behavior. We examined a series of six different ribozymes consisting of two-, three- and four-way junction variants, as well as corresponding constructs with one of the two loops removed. Our results highlight the varying contributions of preformed secondary structure elements to tertiary folding of the hairpin ribozyme. Of the three helical junction variants studied, the four-way junction strongly favored folding to a docked conformation of the two loops, required for catalytic activity. Moreover, the four-way junction was uniquely able to fold to a similar compact structure even in the absence of specific loop-loop docking interactions. A key feature of the data is the observation of broadening/tailing in the fluorescence resonance energy transfer histogram peak for a single-loop mutant of the four-way junction at higher Mg(2+) concentrations, not observed for any of the other single-loop variants. This feature is consistent with interconversion between compact and extended structures, which we estimate takes place on the 100-micros timescale using a simple model for the peak shape. This unique ability of the four-way junction ribozyme to populate an undocked conformation with native-like structure (a quasi-docked state) likely contributes to its greater tertiary structure stability, with the quasi-docked state acting as an intermediate and facilitating the subsequent formation of the specific hydrogen bonding network during docking of the two loops. The inability of two- and three-way junction ribozymes to fully populate a docked conformation reveals the importance of correct helical junction geometry as well as loop elements for effective ribozyme folding.
Collapse
Affiliation(s)
- Goran Pljevaljcić
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, California
| | | | | |
Collapse
|
150
|
Wang D, Geva E. Protein Structure and Dynamics from Single-Molecule Fluorescence Resonance Energy Transfer. J Phys Chem B 2005; 109:1626-34. [PMID: 16851134 DOI: 10.1021/jp0478864] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pros and cons of single-molecule vs ensemble-averaged fluorescence resonance energy transfer (FRET) experiments, performed on proteins, are explored with the help of Langevin dynamics simulations. An off-lattice model of the polypeptide chain is employed, which gives rise to a well-defined native state and two-state folding kinetics. A detailed analysis of the distribution of the donor-acceptor distance is presented at different points along the denaturation curve, along with its dependence on the averaging time window. We show that unique information on the correlation between structure and dynamics, which can only be obtained from single-molecule experiments, is contained in the correlation between the donor-acceptor distance and its displacement. The latter is shown to provide useful information on the free energy landscape of the protein, which is complementary to that obtained from the distribution of donor-acceptor distances.
Collapse
Affiliation(s)
- Dong Wang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|