101
|
Abstract
The activation of Stat5 proteins (Stat5a and Stat5b) is one of the earliest signaling events mediated by IL-2 family cytokines, allowing the rapid delivery of signals from the membrane to the nucleus. Among STAT family proteins, Stat5a and Stat5b are the two most closely related STAT proteins. Together with other transcription factors and co-factors, they regulate the expression of the target genes in a cytokine-specific fashion. In addition to their activation by cytokines, activities of Stat5a and Stat5b, as well as other STAT proteins, are negatively controlled by CIS/SOCS/SSI family proteins. The outcome of Stat5 activation in regulating expression of target genes varies, depending upon the complexity of the promoter region of target genes and the other signaling pathways that are activated by each cytokine as well. Here, we mainly focus on the IL2-/IL-2 receptor system, as it is one of the best-studied systems that depend on Stat5-mediated signals. We will summarize what we have learned about the molecular mechanisms of how Stat5 is activated by IL-2 family cytokines from in vitro biochemical studies as well as the role that is played by Stat5 in each of the cytokine signaling pathways from in vivo gene-targeting analyses. Oncogene (2000).
Collapse
Affiliation(s)
- J X Lin
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bldg. 10/Rm. 7N252, 9000 Rockville Pike, Bethesda, Maryland MD 20892-1674, USA
| | | |
Collapse
|
102
|
Abstract
Cytokines represent a diverse group of molecules that transmit intercellular signals. These signals may either be autocrine (where the same cell both produces the cytokine and responds to it) or paracrine (where the cytokine is made by one cell and acts on another). Both these situations can occur simultaneously. Cytokines use multiple signaling pathways. This review will focus on signaling by type I cytokines and in particular on signaling by the IL-2 family of cytokines, as an illustrative example. The major signaling pathway that will be discussed is the Jak-STAT pathway, although other pathways will also be reviewed. The Jak-STAT pathway is a very rapid cytosol-to-nuclear signaling pathway that underscores how quickly extracellular signals can be transmitted to the nucleus. Aspects related to cytokine redundancy, pleiotropy, and specificity will be discussed.
Collapse
Affiliation(s)
- W J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | |
Collapse
|
103
|
Su L, David M. Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem 2000; 275:12661-6. [PMID: 10777558 DOI: 10.1074/jbc.275.17.12661] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interferon-alpha (IFNalpha) can activate several members of the signal transducers and activator of transcription (STAT) transcription factor family, a process that requires the tyrosine kinases Jak1 and Tyk2. Here we provide evidence that IFNalpha-mediated activation of various STAT proteins is regulated by distinct mechanisms. Piceatannol, previously reported as a Syk/ZAP70-specific kinase inhibitor, selectively inhibits the tyrosine phosphorylation of STAT3 and STAT5, but not of STAT1 and STAT2. This inhibition is paralleled by the loss of Jak1 and IFNAR1 tyrosine phosphorylation in response to IFNalpha, whereas Tyk2 and IFNAR2 tyrosine phosphorylation is unaffected. Last, the IFNalpha-induced serine phosphorylation of STAT1 and STAT3 is not inhibited by piceatannol but is sensitive to the Src kinase-specific inhibitor PP2. Thus, our results not only demonstrate that the IFNalpha/beta receptor utilizes distinct mechanisms to trigger the tyrosine phosphorylation of specific STAT proteins, but they also indicate a diverging pathway that leads to the serine phosphorylation of STAT1 and STAT3.
Collapse
Affiliation(s)
- L Su
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322, USA
| | | |
Collapse
|
104
|
Lord JD, McIntosh BC, Greenberg PD, Nelson BH. The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2533-41. [PMID: 10679091 DOI: 10.4049/jimmunol.164.5.2533] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies assessing the role of Stat5 in the IL-2 proliferative signal have produced contradictory, and thus inconclusive, results. One factor confounding many of these studies is the ability of IL-2R to deliver redundant mitogenic signals from different cytoplasmic tyrosines on the IL-2R beta-chain (IL-2Rbeta). Therefore, to assess the role of Stat5 in mitogenic signaling independent of any redundant signals, all cytoplasmic tyrosines were deleted from IL-2Rbeta except for Tyr510, the most potent Stat5-activating site. This deletion mutant retained the ability to induce Stat5 activation and proliferation in the T cell line CTLL-2 and the pro-B cell line BA/F3. A set of point mutations at or near Tyr510 that variably compromised Stat5 activation also compromised the proliferative signal and revealed a quantitative correlation between the magnitude of Stat5 activation and proliferation. Proliferative signaling by a receptor mutant with a weak Stat5 activating site could be rescued by overexpression of wt Stat5a or b. Additionally, the ability of this receptor mutant to induce c-myc, bcl-x, and bcl-2 was enhanced by overexpression of wt Stat5. By contrast, overexpression of a version of Stat5a lacking the C-terminal trans-activation domain inhibited the induction of these genes and cell proliferation. Thus, Stat5 is a critical component of the proliferative signal from Tyr510 of the IL-2R and regulates expression of both mitogenic and survival genes through its trans-activation domain.
Collapse
Affiliation(s)
- J D Lord
- Virginia Mason Research Center, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
105
|
Grundström S, Dohlsten M, Sundstedt A. IL-2 unresponsiveness in anergic CD4+ T cells is due to defective signaling through the common gamma-chain of the IL-2 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1175-84. [PMID: 10640728 DOI: 10.4049/jimmunol.164.3.1175] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repeated administration of the superantigen staphylococcal enterotoxin A to mice transduces a state of anergy in the CD4+ T cell compartment, characterized by inhibition of IL-2 production and clonal expansion in vivo. In contrast to what has been reported on anergic T cell clones in vitro, culture of in vivo anergized CD4+ T cells in the presence of exogenous IL-2 did not overcome the block in responsiveness. In this study, we demonstrate that CD4+ T cells from mice anergized with staphylococcal enterotoxin A also exhibit a reduced proliferative capacity in response to IL-7 and IL-15, cytokines that share a common gamma-chain with the IL-2R. Flow-cytometric analysis revealed only modest changes in the expression of the different IL-2R chains. In a number of experiments, our results also provide evidence that excludes a major role of the IL-2R alpha-chain in this system. According to these results, the inability of anergic cells to respond to IL-2 is not mainly due to a down-regulation of the high affinity IL-2R, but to a perturbation in intracellular signaling. Our study confirmed that the activation and tyrosine phosphorylation of Janus-associated kinase 3 and STAT5 were considerably weaker after anergy induction. Moreover, anergic CD4+ T cells showed significantly reduced DNA-binding ability to STAT5-specific elements. Taken together, we suggest that the observed IL-2 unresponsiveness in anergic CD4+ T cells could be due to a defect in signaling through the common gamma-chain of the IL-2R.
Collapse
|
106
|
Abstract
A variety of important cellular functions are regulated by cytokines. The Jak-STAT pathway is one of the important signaling pathways downstream of cytokine receptors. Following binding of a ligand to its cognate receptor, receptor-associated Jaks are activated. STAT proteins are then in turn activated by tyrosine phosphorylation by Jak kinases, allowing their dimerization and subsequent translocation into the nucleus, where they modulate expression of target genes. Indispensable functions of Jaks and STATs in cytokine signaling in vivo have been revealed through knockout mouse studies. Moreover, the recent discovery of the CIS/SOCS/JAB/SSI family of inhibitors has contributed to understanding how this pathway is negatively regulated.
Collapse
Affiliation(s)
- K Imada
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | | |
Collapse
|
107
|
Bittorf T, Seiler J, Lüdtke B, Büchse T, Jaster R, Brock J. Activation of STAT5 during EPO-directed suppression of apoptosis. Cell Signal 2000; 12:23-30. [PMID: 10676844 DOI: 10.1016/s0898-6568(99)00063-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ligand-dependent activation of the JAK/STAT (Januskinase/Signal Transducer and Activator of Transcription) pathway has been implicated in the explanation of cytokine-specific regulation of gene expression. Previous studies have reported conflicting results on the role of the transcription factor STAT5 in erythropoietin (EPO)-induced cellular responses. In this study we focused on the functional importance of STAT5 docking sites in the intracellular EPO receptor (EPOR) domain for the mediation of antiapoptotic activities. We demonstrate that EPO-dependent survival of erythroleukemic cell lines is accompanied by sustained STAT5 DNA-binding activity. The role of single tyrosine residues was dissected by the analysis of myeloid FDCP-1 cells stably expressing mutant EPOR proteins. The data show that receptors having a high potential to mediate antiapoptotic signals also effectively activate STAT5, whereas receptors lacking STAT5 docking sites are diminished in both activities. We conclude that the transcription factor STAT5 is functionally implicated in the EPO-dependent survival of cells.
Collapse
Affiliation(s)
- T Bittorf
- Institute of Medical Biochemistry, Medical Faculty, University of Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
108
|
Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol Cell Biol 2000; 20:389-401. [PMID: 10594041 PMCID: PMC85094 DOI: 10.1128/mcb.20.1.389-401.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/1999] [Accepted: 09/23/1999] [Indexed: 12/31/2022] Open
Abstract
We have defined the optimal binding sites for Stat5a and Stat5b homodimers and found that they share similar core TTC(T/C)N(G/A)GAA interferon gamma-activated sequence (GAS) motifs. Stat5a tetramers can bind to tandemly linked GAS motifs, but the binding site selection revealed that tetrameric binding also can be seen with a wide range of nonconsensus motifs, which in many cases did not allow Stat5a binding as a dimer. This indicates a greater degree of flexibility in the DNA sequences that allow binding of Stat5a tetramers than dimers. Indeed, in an oligonucleotide that could bind both dimers and tetramers, it was possible to design mutants that affected dimer binding without affecting tetramer binding. A spacing of 6 bp between the GAS sites was most frequently selected, demonstrating that this distance is favorable for Stat5a tetramer binding. These data provide insights into tetramer formation by Stat5a and indicate that the repertoire of potential binding sites for this transcription factor is broader than expected.
Collapse
Affiliation(s)
- E Soldaini
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
109
|
Davey HW, Park SH, Grattan DR, McLachlan MJ, Waxman DJ. STAT5b-deficient mice are growth hormone pulse-resistant. Role of STAT5b in sex-specific liver p450 expression. J Biol Chem 1999; 274:35331-6. [PMID: 10585399 DOI: 10.1074/jbc.274.50.35331] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transducer and transcriptional activator STAT5b is required to maintain the adult male pattern of liver gene expression and whole body pubertal growth rates, as demonstrated by the loss of these growth hormone (GH) pulse-dependent responses in mice with a targeted disruption of the STAT5b gene. The present study investigates whether these phenotypes of STAT5b-deficient mice result from impaired intracellular GH signaling associated with a loss of GH pulse responsiveness, as contrasted with a feminization of the pituitary GH secretory profile leading to the observed feminization of body growth and liver gene expression. Pulsatile GH replacement in hypophysectomized mice stimulated body weight gain in wild-type but not in STAT5b-deficient mice. Expression of the male-specific liver P450 enzyme CYP2D9, which is reduced to female levels in hypophysectomized male mice, was restored to male levels by GH pulse replacement in wild-type but not in STAT5b-deficient mice. Similarly, a female-specific liver CYP2B P450 enzyme that was up-regulated to female levels following hypophysectomy of males was suppressed to normal basal male levels by GH pulses only in wild-type hypophysectomized mice. Finally, urinary excretion of the male-specific, GH pulse-induced major urinary protein was restored to normal male levels following pulsatile GH treatment only in the case of wild-type hypophysectomized mice. STAT5b-deficient mice are thus GH pulse-resistant, supporting the proposed role of STAT5b as a key intracellular mediator of the stimulatory effects of plasma GH pulses on the male pattern of liver gene expression.
Collapse
Affiliation(s)
- H W Davey
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|
110
|
Su L, Rickert RC, David M. Rapid STAT phosphorylation via the B cell receptor. Modulatory role of CD19. J Biol Chem 1999; 274:31770-4. [PMID: 10542198 PMCID: PMC2772110 DOI: 10.1074/jbc.274.45.31770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the B cell receptor (BCR) initiates multiple signaling cascades which mediate different biological responses, depending on the stage of B cell differentiation, antigen binding affinity, and duration of stimulation. Aggregation of co-receptors such as CD19 with the antigen receptor has been suggested to modulate the signals necessary for the development and functioning of the humoral immune system. In this study, we demonstrate that engagement of the antigen receptor on peripheral blood B cells, but not naïve splenic B lymphocytes, leads to rapid phosphorylation of signal transducers and activators of transcription 1 (STAT1) on Tyr-701 and Ser-727. Interestingly, phosphorylation on tyrosine diminished with increased stimulation, whereas serine phosphorylation correlated directly with the level of BCR cross-linking. In contrast, phosphorylation of STAT3 occurs exclusively on serine and is sensitive to inhibitors of the PI3-kinase and the ERK1/2 pathways. Finally, we show that co-ligation of CD19 with the BCR results in increased tyrosine phosphorylation of STAT1 relative to BCR cross-linking alone, establishing CD19 as a positive modulator of BCR-mediated STAT activation.
Collapse
Affiliation(s)
- Leon Su
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322
| | - Robert C. Rickert
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322
| | - Michael David
- Department of Biology and UCSD Cancer Center, University of California San Diego, La Jolla, California 92093-0322
| |
Collapse
|
111
|
Restoration of Lymphoid Populations in a Murine Model of X-Linked Severe Combined Immunodeficiency by a Gene-Therapy Approach. Blood 1999. [DOI: 10.1182/blood.v94.9.3027] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
X-linked severe combined immunodeficiency (XSCID) is a life-threatening syndrome in which both cellular and humoral immunity are profoundly compromised. This disease results from mutations in theIL2RG gene, which encodes the common cytokine receptor γ chain, γc. Previously, we generated γc-deficient mice as a murine model of XSCID. We have now used lethally irradiated γc-deficient mice to evaluate a gene therapeutic approach for treatment of this disease. Transfer of the human γc gene to repopulating hematopoietic stem cells using an ecotropic retrovirus resulted in an increase in T cells, B cells, natural killer (NK) cells, and intestinal intraepithelial lymphocytes, as well as normalization of the CD4:CD8 T-cell ratio and of serum Ig levels. In addition, the restored cells could proliferate in response to interleukin-2 (IL-2). Thus, our results provide added support that gene therapy is a feasible therapeutic strategy for XSCID. Moreover, because we used a vector directing expression of human γc to correct a defect in γc-deficient mice, these data also indicate that human γc can cooperate with the distinctive cytokine receptor chains such as IL-2Rβ and IL-7R to mediate responses to murine cytokines in vivo.
Collapse
|
112
|
Restoration of Lymphoid Populations in a Murine Model of X-Linked Severe Combined Immunodeficiency by a Gene-Therapy Approach. Blood 1999. [DOI: 10.1182/blood.v94.9.3027.421k11_3027_3036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-linked severe combined immunodeficiency (XSCID) is a life-threatening syndrome in which both cellular and humoral immunity are profoundly compromised. This disease results from mutations in theIL2RG gene, which encodes the common cytokine receptor γ chain, γc. Previously, we generated γc-deficient mice as a murine model of XSCID. We have now used lethally irradiated γc-deficient mice to evaluate a gene therapeutic approach for treatment of this disease. Transfer of the human γc gene to repopulating hematopoietic stem cells using an ecotropic retrovirus resulted in an increase in T cells, B cells, natural killer (NK) cells, and intestinal intraepithelial lymphocytes, as well as normalization of the CD4:CD8 T-cell ratio and of serum Ig levels. In addition, the restored cells could proliferate in response to interleukin-2 (IL-2). Thus, our results provide added support that gene therapy is a feasible therapeutic strategy for XSCID. Moreover, because we used a vector directing expression of human γc to correct a defect in γc-deficient mice, these data also indicate that human γc can cooperate with the distinctive cytokine receptor chains such as IL-2Rβ and IL-7R to mediate responses to murine cytokines in vivo.
Collapse
|
113
|
Pollack BP, Kotenko SV, He W, Izotova LS, Barnoski BL, Pestka S. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J Biol Chem 1999; 274:31531-42. [PMID: 10531356 DOI: 10.1074/jbc.274.44.31531] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To expand our understanding of the role of Jak2 in cellular signaling, we used the yeast two-hybrid system to identify Jak2-interacting proteins. One of the clones identified represents a human homologue of the Schizosaccaromyces pombe Shk1 kinase-binding protein 1, Skb1, and the protein encoded by the Saccharomyces cerevisiae HSL7 (histone synthetic lethal 7) gene. Since no functional motifs or biochemical activities for this protein or its homologues had been reported, we sought to determine a biochemical function for this human protein. We demonstrate that this protein is a protein methyltransferase. This protein, designated JBP1 (Jak-binding protein 1), and its homologues contain motifs conserved among protein methyltransferases. JBP1 can be cross-linked to radiolabeled S-adenosylmethionine (AdoMet) and methylates histones (H2A and H4) and myelin basic protein. Mutants containing substitutions within a conserved region likely to be involved in AdoMet binding exhibit little or no activity. We mapped the JBP1 gene to chromosome 14q11.2-21. In addition, JBP1 co-immunoprecipitates with several other proteins, which serve as methyl group acceptors and which may represent physiological targets of this methyltransferase. Messenger RNA for JBP1 is widely expressed in human tissues. We have also identified and sequenced a homologue of JBP1 in Drosophila melanogaster. This report provides a clue to the biochemical function for this conserved protein and suggests that protein methyltransferases may have a role in cellular signaling.
Collapse
Affiliation(s)
- B P Pollack
- Department of Molecular Genetics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | |
Collapse
|
114
|
Aman MJ, Migone TS, Sasaki A, Ascherman DP, Zhu MH, Soldaini E, Imada K, Miyajima A, Yoshimura A, Leonard WJ. CIS associates with the interleukin-2 receptor beta chain and inhibits interleukin-2-dependent signaling. J Biol Chem 1999; 274:30266-72. [PMID: 10514520 DOI: 10.1074/jbc.274.42.30266] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CIS is a cytokine-induced SH2-containing protein that was originally cloned as an interleukin (IL)-3-inducible gene. CIS is known to associate with the IL-3 receptor beta chain and erythropoietin receptor and to inhibit signaling mediated by IL-3 and erythropoietin. We now demonstrate that CIS also interacts with the IL-2 receptor beta chain (IL-2Rbeta). This interaction requires the A region of IL-2Rbeta (residues 313-382), which also mediates the association of IL-2Rbeta with Lck and Jak3. Correspondingly, CIS inhibits functions associated with both of these kinases: Lck-mediated phosphorylation of IL-2Rbeta and IL-2-mediated activation of Stat5. Thus, we demonstrate that CIS can negatively control at least two independent IL-2 signaling pathways. Although a functional SH2 binding domain of CIS was not required for its interaction with IL-2Rbeta in vitro, its phosphotyrosine binding capability was essential for the inhibitory action of CIS. On this basis, we have generated a mutant form of CIS protein with an altered SH2 domain that acts as a dominant negative and should prove useful in further understanding CIS action.
Collapse
Affiliation(s)
- M J Aman
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Arnould C, Philippe C, Bourdon V, Gr goire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999; 8:1741-9. [PMID: 10441338 DOI: 10.1093/hmg/8.9.1741] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acute promyelocytic leukaemia (APL) exhibits a characteristic t(15;17) translocation that fuses the promyelocytic leukaemia (PML) gene on 15q22 to the retinoic acid receptor alpha (RARA) gene on 17q12-q21.1. In a small subset of acute promyelocytic-like leukaemias (APL-L), RARA is fused to a different partner: the pro-myelocytic leukaemia zinc finger (PLZF) gene on 11q23, the nucleophosmin (NPM) gene on 5q35 or the nuclear mitotic apparatus (NuMA) gene on 11q13. We report on the molecular characterization of a RARA gene re-arrangement in a patient with APL-L and demonstrate that the signal transducer and activator of transcription STAT5b gene is fused with RARA. STAT5b belongs to the janus kinase (JAK)-STAT signalling pathway. Remarkably, the STAT5b component of the chimeric protein is delocalized from the cytoplasm to the nucleus, where it displays a microspeckled pattern. Therefore, unusual features of this APL-L might result from dysregulation of the JAK/STAT5 signal transducing pathways in the patient leukaemic cells. In this study, we identified STAT5b as a new gene fused to RARA in leukaemia; this is the first human tumour bearing a structurally abnormal STAT gene.
Collapse
Affiliation(s)
- C Arnould
- Laboratoire de Génétique, UPRES-INRA 952, CHRU, Rue du Morvan, 54511 Vandoeuvre les Nancy, France
| | | | | | | | | | | |
Collapse
|
116
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
117
|
Friedrich K, Kammer W, Erhardt I, Brändlein S, Sebald W, Moriggl R. Activation of STAT5 by IL-4 relies on Janus kinase function but not on receptor tyrosine phosphorylation, and can contribute to both cell proliferation and gene regulation. Int Immunol 1999; 11:1283-94. [PMID: 10421786 DOI: 10.1093/intimm/11.8.1283] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have investigated mechanisms and consequences of STAT5 activation through the human IL-4 receptor (IL-4R). By functionally expressing receptor mutants in the murine pro-B cell line Ba/F3, we could show that phosphorylated tyrosine residues within the IL-4R alpha chain are dispensable for IL-4-induced STAT5 activity. However, disruption of a membrane-proximal proline-rich sequence motif ('box1') in either subunit of the bipartite IL-4R abolished not only ligand-induced tyrosine phosphorylation of Janus kinases JAK1 and JAK3, but also IL-4-triggered activation of STAT5 and concomitant cell proliferation. A dominant-negative version of STAT5b, but not of STAT5a, interfered with IL-4-induced DNA synthesis in Ba/F3 cells, suggesting an involvement of STAT5b in the control of cell proliferation through IL-4R. Reporter gene experiments finally showed that transcription from promoters of STAT5 target genes can be specifically induced by challenging cells with IL-4, and that both STAT5a and STAT5b can contribute to IL-4-triggered transcriptional control.
Collapse
Affiliation(s)
- K Friedrich
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Physiologische Chemie II, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.
Collapse
|
119
|
Dominant Negative Mutants Implicate STAT5 in Myeloid Cell Proliferation and Neutrophil Differentiation. Blood 1999. [DOI: 10.1182/blood.v93.12.4154] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSTAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.
Collapse
|
120
|
Grimley PM, Dong F, Rui H. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev 1999; 10:131-57. [PMID: 10743504 DOI: 10.1016/s1359-6101(99)00011-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stat5a and Stat5b are discretely encoded transcription factors that mediate signals for a broad spectrum of cytokines. Their activation is often an integral component of redundant cytokine signal cascades involving complex cross-talk and pleiotropic gene regulation by Stat5 has been implicated in cellular functions of proliferation, differentiation and apoptosis with relevance to processes of hematopoiesis and immunoregulation, reproduction, and lipid metabolism. Although Stat5a and Stat5b show peptide sequence similarities of > 90%, targeted gene disruptions in mice yield distinctive phenotypes. Prolactin-directed mammary gland maturation fails without functional Stat5a, while disruption of Stat5b in males mitigates growth hormone effects on hepatic function and body mass. The molecular basis for this biologic dichotomy is probably multifaceted. Limited structural dissimilarities between the Stat5a and Stat5b transactivation domains, or subtle differences in the DNA-binding affinities of Stat5 dimer pairs undoubtedly influence gene regulation, but cell-dependent asymmetries in availability of phosphorylated Stat5 can be an underlying factor. Differences in serine phosphorylation(s) of Stat5a and Stat5b, or Stat5 associations with adaptor proteins or co-transcription factors are other potential sources of functional disparity and the signal amplitude, frequency or duration also can be significant. In addition to Stat5 signal attenuation by phosphatase actions or classical feedback inhibition, truncated forms of Stat5 lacking in transactivation capacity may compete upstream for activation and diminish access of full length molecules to DNA binding sites.
Collapse
Affiliation(s)
- P M Grimley
- Department of Pathology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20854, USA
| | | | | |
Collapse
|
121
|
Caldenhoven E, van Dijk TB, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP. Activation of a functionally distinct 80-kDa STAT5 isoform by IL-5 and GM-CSF in human eosinophils and neutrophils. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:95-101. [PMID: 10356357 DOI: 10.1006/mcbr.1999.0114] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-5 (IL-5), IL-3, and granulocyte macrophage colony-stimulating factor (GM-CSF) are hematopoietic cytokines which signal through a common beta subunit (betac) of a heterodimeric receptor. Among the intracellular signaling pathways activated via betac is the JAK/STAT pathway. We show that different STAT5 isoforms are activated by IL-5 and GM-CSF in eosinophils, neutrophils, and differentiated eosinophilic HL-60 cells. Whereas IL-5 activated the wild-type STAT5A and STAT5B proteins in HL60-eos cells, a carboxyl-terminally truncated 80-kDa STAT5 isoform was activated in mature eosinophils and neutrophils. Surprisingly, while both isoforms bind strongly to an element from the beta-casein promoter, only p80 STAT5 binds to the ICAM1-IRE. Consequently, a carboxyl-terminal truncated STAT5 is capable of blocking STAT3-mediated transcription of an IREtkCAT reporter construct. The cell type-specific expression of these functionally distinct STAT5 isoforms might contribute to the pleiotropic effects of IL-5 and GM-CSF on different target cells.
Collapse
Affiliation(s)
- E Caldenhoven
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
122
|
Nakamura N, Fujii M, Tsukahara T, Arai M, Ohashi T, Wakao H, Kannagi M, Yamamoto N. Human T-cell leukemia virus type 1 Tax protein induces the expression of STAT1 and STAT5 genes in T-cells. Oncogene 1999; 18:2667-75. [PMID: 10348340 DOI: 10.1038/sj.onc.1202608] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax transforms normal T-cells in the presence of interleukin (IL)-2 in vitro. STAT is a family of transcription factors that play a pivotal role in cytokine-induced functions of a various type of cells. We investigated the involvement of STATs in the transformation of T-cells by HTLV-1. HTLV-1-transformed T-cell lines expressed higher amounts of STAT1, STAT3 and STAT5 RNA and proteins than virus-negative T cells. The expression of STAT1 and STAT5 in a human T-cell line was induced by Tax. IL-2 induced the DNA binding activity of STAT3 and STAT5 of a HTLV-1-transformed cell line and then stimulated its proliferation. In contrast, IL-2 did neither in a cell line lacking STAT3 and STAT5. The expression of STAT1, STAT3 and STAT5 mRNAs were also induced by a T-cell mitogen in normal human peripheral blood mononuclear cells. Our results suggest that the induction of STAT1 and STAT5 by Tax enhances cytokine-induced functions of virus-infected T-cells, hence the induction may play a role in IL-2-dependent transformation steps of T-cells by HTLV-1.
Collapse
Affiliation(s)
- N Nakamura
- Department of Microbiology, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Delespine-Carmagnat M, Bouvier G, Allée G, Fagard R, Bertoglio J. Biochemical analysis of interleukin-2 receptor beta chain phosphorylation by p56(lck). FEBS Lett 1999; 447:241-6. [PMID: 10214954 DOI: 10.1016/s0014-5793(99)00301-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tyrosine phosphorylation of multiple proteins, including the receptor itself, is an initial event in IL-2 signaling and leads to recruitment of SH2 or PTB domain-containing proteins to the receptor. In this study, we have used subdomains of the IL-2 receptor beta chain (IL-2Rbeta) expressed in Escherichia coli as GST fusion proteins to identify the tyrosine residues that could be phosphorylated by p56(lck), one of the critical tyrosine kinases activated by IL-2. We report that recombinant p56(lck) phosphorylates in vitro tyrosine residues within the IL-2Rbeta chain but not those within the IL-2Rgamma chain. p56(lck) phosphorylates tyrosine residues 355, 358 and 361 but not 338 of the IL-2Rbeta chain acidic subdomain. Interestingly, phosphorylation of Tyr-358 appears to require the presence of either Tyr-355 or Tyr-361. p56(lck) also phosphorylates very efficiently the two tyrosines present in the IL-2Rbeta chain C-terminal region, Tyr-392 and Tyr-510. We also investigated the association of p56(lck) with the IL-2Rbeta chain which was found to depend on a short stretch of the IL-2Rbeta chain acidic subdomain, and to be independent of the presence of its tyrosine residues.
Collapse
|
124
|
John S, Vinkemeier U, Soldaini E, Darnell JE, Leonard WJ. The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 1999; 19:1910-8. [PMID: 10022878 PMCID: PMC83984 DOI: 10.1128/mcb.19.3.1910] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stat5a and Stat5b are rapidly activated by a wide range of cytokines and growth factors, including interleukin-2 (IL-2). We have previously shown that these signal transducers and activators of transcription (STAT proteins) are key regulatory proteins that bind to two tandem gamma interferon-activated site (GAS) motifs within an IL-2 response element (positive regulatory region III [PRRIII]) in the human IL-2Ralpha promoter. In this study, we demonstrate cooperative binding of Stat5 to PRRIII and explore the molecular basis underlying this cooperativity. We demonstrate that formation of a tetrameric Stat5 complex is essential for the IL-2-inducible activation of PRRIII. Stable tetramer formation of Stat5 is mediated through protein-protein interactions involving a tryptophan residue conserved in all STATs and a lysine residue in the Stat5 N-terminal domain (N domain). The functional importance of tetramer formation is shown by the decreased levels of transcriptional activation associated with mutations in these residues. Moreover, the requirement for STAT protein-protein interactions for gene activation from a promoter with tandemly linked GAS motifs can be relieved by strengthening the avidity of protein-DNA interactions for the individual binding sites. Taken together, these studies demonstrate that a dimeric but tetramerization-deficient Stat5 protein can activate only a subset of target sites. For functional activity on a wider range of potential recognition sites, N-domain-mediated oligomerization is essential.
Collapse
Affiliation(s)
- S John
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | |
Collapse
|
125
|
Watowich SS, Liu KD, Xie X, Lai SY, Mikami A, Longmore GD, Goldsmith MA. Oligomerization and scaffolding functions of the erythropoietin receptor cytoplasmic tail. J Biol Chem 1999; 274:5415-21. [PMID: 10026152 PMCID: PMC2388248 DOI: 10.1074/jbc.274.9.5415] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signal transduction by the erythropoietin receptor (EPOR) is activated by ligand-mediated receptor homodimerization. However, the relationship between extracellular and intracellular domain oligomerization remains poorly understood. To assess the requirements for dimerization of receptor cytoplasmic sequences for signaling, we overexpressed mutant EPORs in combination with wild-type (WT) EPOR to drive formation of heterodimeric (i.e. WT-mutant) receptor complexes. Dimerization of the membrane-proximal portion of the EPOR cytoplasmic region was found to be critical for the initiation of mitogenic signaling. However, dimerization of the entire EPOR cytoplasmic region was not required. To examine this process more closely, we generated chimeras between the intracellular and transmembrane portions of the EPOR and the extracellular domains of the interleukin-2 receptor beta and gammac chains. These chimeras allowed us to assess more precisely the signaling role of each receptor chain because only heterodimers of WT and mutant receptor chimeras form in the presence of interleukin-2. Coexpression studies demonstrated that a functional receptor complex requires the membrane-proximal region of each receptor subunit in the oligomer to permit activation of JAK2 but only one membrane-distal tail to activate STAT5 and to support cell proliferation. Thus, this study defines key relationships involved in the assembly and activation of the EPOR signal transduction complex which may be applicable to other homodimeric cytokine receptors.
Collapse
Affiliation(s)
| | - Kathleen D. Liu
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
| | - Xiaoling Xie
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Stephen Y. Lai
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
| | - Aki Mikami
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Gregory D. Longmore
- Departments of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mark A. Goldsmith
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100 and the Department of Medicine, School of Medicine, University of California, San Francisco, California 94143
- To whom correspondence should be addressed: Gladstone Institute of Virology and Immunology, P. O. Box 419100, San Francisco, CA 94141-9100. Tel.: 415-695-3775; Fax: 415-826-1514; E-mail:
| |
Collapse
|
126
|
Herrington J, Rui L, Luo G, Yu-Lee LY, Carter-Su C. A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J Biol Chem 1999; 274:5138-45. [PMID: 9988763 DOI: 10.1074/jbc.274.8.5138] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms regulating the cellular distribution of STAT family transcription factors remain poorly understood. To identify regions of Stat5B required for ligand-induced nuclear accumulation, we constructed a cDNA encoding green fluorescent protein (GFP) fused to the N terminus of Stat5B and performed site-directed mutagenesis. When co-expressed with growth hormone (GH) receptor in COS-7 cells, GFP-Stat5B is tyrosyl-phosphorylated, forms dimers, and binds DNA in response to GH in a manner indistinguishable from untagged Stat5B. In multiple cell types, laser scanning confocal imaging of GFP-Stat5B co-expressed with GH receptor shows that GFP-Stat5B undergoes a rapid, dramatic accumulation in the nucleus upon GH stimulation. We introduced alanine substitutions in several regions of Stat5B and assayed for GH-dependent nuclear localization. Only the mutation that prevented binding to DNA (466VVVI469) abrogated GH-stimulated nuclear localization. This mutant fusion protein is tyrosyl-phosphorylated and dimerizes in response to GH. These results suggest that either high affinity binding to DNA contributes to nuclear accumulation of Stat5B or that this region is crucial for two functions, namely accumulation of Stat5B in the nucleus and DNA binding. Thus, we have identified a mutant Stat5 defective in nuclear localization despite its ability to be tyrosyl-phosphorylated and to dimerize.
Collapse
Affiliation(s)
- J Herrington
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | | | |
Collapse
|
127
|
Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 1999; 274:2672-81. [PMID: 9915797 DOI: 10.1074/jbc.274.5.2672] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic peroxisome proliferation induced by structurally diverse non-genotoxic carcinogens is mediated by the nuclear receptor peroxisome proliferator-activated receptor (PPARalpha) and can be inhibited by growth hormone (GH). GH-stimulated Janus kinase-signal transducer and activator of transcription 5b (JAK2/STAT5b) signaling and the PPAR activation pathway were reconstituted in COS-1 cells to investigate the mechanism for this GH inhibitory effect. Activation of STAT5b signaling by either GH or prolactin inhibited, by up to 80-85%, ligand-induced, PPARalpha-dependent reporter gene transcription. GH failed to inhibit 15-deoxy-Delta12, 14-prostaglandin-J2-stimulated gene transcription mediated by an endogenous COS-1 PPAR-related receptor. GH inhibition of PPARalpha activity required GH receptor and STAT5b and was not observed using GH-activated STAT1 in place of STAT5b. GH inhibition was not blocked by the mitogen-activated protein kinase pathway inhibitor PD98059. STAT5b-PPARalpha protein-protein interactions could not be detected by anti-STAT5b supershift analysis of PPARalpha-DNA complexes. The GH inhibitory effect required the tyrosine phosphorylation site (Tyr-699) of STAT5b, an intact STAT5b DNA binding domain, and the presence of a COOH-terminal trans-activation domain. Moreover, GH inhibition was reversed by a COOH-terminal-truncated, dominant-negative STAT5b mutant. STAT5b must thus be nuclear and transcriptionally active to mediate GH inhibition of PPARalpha activity, suggesting an indirect inhibition mechanism, such as competition for an essential PPARalpha coactivator or STAT5b-dependent synthesis of a more proximal PPARalpha inhibitor. The cross-talk between STAT5b and PPARalpha signaling pathways established by these findings provides new insight into the mechanisms of hormonal and cytokine regulation of hepatic peroxisome proliferation.
Collapse
Affiliation(s)
- Y C Zhou
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
128
|
Zhu M, John S, Berg M, Leonard WJ. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell 1999; 96:121-30. [PMID: 9989503 DOI: 10.1016/s0092-8674(00)80965-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using the coiled-coil region of Stat5b as the bait in a yeast two-hybrid screen, we identified the association of Nmi, a protein of unknown function previously reported as an N-Myc interactor. We further show that Nmi interacts with all STATs except Stat2. We evaluated two cytokine systems, IL-2 and IFNgamma, and demonstrate that Nmi augments STAT-mediated transcription in response to these cytokines. Interestingly, Nmi lacks an intrinsic transcriptional activation domain; instead, Nmi enhances the association of CBP/p300 coactivator proteins with Stat1 and Stat5, and together with CBP/p300 can augment IL-2- and IFNgamma-dependent transcription. Therefore, our data not only reveal that Nmi can potentiate STAT-dependent transcription, but also suggest that it can augment coactivator protein recruitment to at least some members of a group of sequence-specific transcription factors.
Collapse
Affiliation(s)
- M Zhu
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | |
Collapse
|
129
|
Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW, Leonard WJ. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med 1998; 188:2067-74. [PMID: 9841920 PMCID: PMC2212377 DOI: 10.1084/jem.188.11.2067] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have analyzed the immune system in Stat5-deficient mice. Although Stat5a-/- splenocytes have a partial defect in anti-CD3-induced proliferation that can be overcome by high dose interleukin (IL)-2, we now demonstrate that defective proliferation in Stat5b-/- splenocytes cannot be corrected by this treatment. Interestingly, this finding may be at least partially explained by diminished expression of the IL-2 receptor beta chain (IL-2Rbeta), which is a component of the receptors for both IL-2 and IL-15, although other defects may also exist. Similar to the defect in proliferation in activated splenocytes, freshly isolated splenocytes from Stat5b-/- mice exhibited greatly diminished proliferation in response to IL-2 and IL-15. This results from both a decrease in the number and responsiveness of natural killer (NK) cells. Corresponding to the diminished proliferation, basal as well as IL-2- and IL-15-mediated boosting of NK cytolytic activity was also greatly diminished. These data indicate an essential nonredundant role for Stat5b for potent NK cell-mediated proliferation and cytolytic activity.
Collapse
Affiliation(s)
- K Imada
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Ota J, Kimura F, Sato K, Wakimoto N, Nakamura Y, Nagata N, Suzu S, Yamada M, Shimamura S, Motoyoshi K. Association of CrkL with STAT5 in hematopoietic cells stimulated by granulocyte-macrophage colony-stimulating factor or erythropoietin. Biochem Biophys Res Commun 1998; 252:779-786. [PMID: 9837784 DOI: 10.1006/bbrc.1998.9445] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CrkL is an adapter protein comprising Src homology (SH) 2 and SH3 domains. We investigated the molecule(s) associated with CrkL in factor-dependent cell lines. In the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent cell lines TF-1 and UT-7, an approximately 95-kDa tyrosine-phosphorylated protein was precipitated along with CrkL after GM-CSF stimulation. The same protein was also observed when we used the erythropoietin (EPO)-dependent cell line UT-7/EPO, in an EPO stimulation-dependent manner. We identified it as STAT5 (signal transducer and activator of transcription 5, 96 kDa) by STAT5-specific antibodies. The direct binding of the SH2 domain of CrkL to STAT5 was demonstrated in far Western blotting and pull-down experiments using the glutathione S-transferase (GST) fusion construct CrkL-SH2. The addition of the oligopeptide containing phosphotyrosine 694 in STAT5A impaired the association between GST-CrkL-SH2 and STAT5. Furthermore, in a gel shift assay using prolactin-inducible element (PIE) as the probe, the DNA binding activity of STAT5 was inhibited by the interaction with GST-CrkL-SH2 in vitro. Finally, we found that STAT5 associated with CrkL did not bind to PIE sequence. These results suggest that CrkL participates in the Janus kinase (JAK)-STAT pathway by direct association with STAT5.
Collapse
Affiliation(s)
- J Ota
- Biochemical Research Laboratory, Morinaga Milk Industry
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Lischke A, Moriggl R, Brändlein S, Berchtold S, Kammer W, Sebald W, Groner B, Liu X, Hennighausen L, Friedrich K. The interleukin-4 receptor activates STAT5 by a mechanism that relies upon common gamma-chain. J Biol Chem 1998; 273:31222-9. [PMID: 9813029 DOI: 10.1074/jbc.273.47.31222] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-4 signaling proceeds via cytoplasmic activation of the Janus kinases JAK1 and JAK3 and the signal transducer and activator of transcription STAT6. We show that the IL-4 receptor, like other cytokine receptor systems utilizing the common receptor gamma-chain (gammac), is also connected to a signaling pathway that involves STAT5. Both STAT5a and STAT5b become tyrosine-phosphorylated and acquire specific DNA-binding properties in response to IL-4 receptor stimulation in the murine pro-B cell line Ba/F3. In preactivated human T cells, STAT5 became activated in an IL-4-dependent fashion as assayed by IL-4-induced STAT5 translocation from the cytoplasm to the cell nucleus and by binding to cognate DNA. Moreover, stimulation of preactivated human T cells by IL-4 led to specific transcriptional up-regulation of STAT5 target genes. IL-4 receptor-mediated STAT5 activation is dependent on the presence of gammac and JAK3 within the receptor complex. In COS-7 cells, the JAK/STAT pathway leading from the IL-4 receptor to STAT5-dependent regulation of a reporter gene relied largely on coexpression of JAK3. In Ba/F3 cells, studies on signal transduction evoked by directed specific receptor homo- or heterodimerization revealed that STAT5 activation can be triggered exclusively by IL-4R heterodimers containing gammac.
Collapse
Affiliation(s)
- A Lischke
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Physiologische Chemie II, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
De-Fraja C, Conti L, Magrassi L, Govoni S, Cattaneo E. Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. J Neurosci Res 1998; 54:320-30. [PMID: 9819137 DOI: 10.1002/(sici)1097-4547(19981101)54:3<320::aid-jnr3>3.0.co;2-r] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence and activation of members of the Janus Kinases/Signal Transducers and Activator of Transcription proteins in response to specific cytokines is currently the focus of intense investigation in the hematopoietic system. Although some evidence suggests that cytokines might play an important role in brain development and brain pathologies, very limited information is available on the presence of the JAK/STAT proteins in the Central Nervous System. Here we provide Western blot and immunohistochemistry data on the presence of Jak2 in vivo in the immature brain, its expression being greater in early stages of the embryonic life and gradually diminishing towards adulthood. Conversely, Jak1 was found expressed at a lower level compared to Jak2 and not modulated during brain maturation. Western blot data also show that specific members of the STAT family, the cytoplasmic substrates of the Janus Kinases, are present in vivo and that the extent of their expression is modulated differently at various stages. In particular, Stat6 protein levels were markedly attenuated at advanced stages of differentiation, as well as in the adult brain, with respect to early embryonic life. On the contrary, Stat3 levels did not vary. Analysis of Statl and Stat5 proteins showed a more complex expression pattern. These data indicate that members of the JAK/STAT proteins are present and modulated in vivo in the embryonic and postnatal brain, therefore supporting their role in the modulation of gene expression during the different stages of brain maturation.
Collapse
Affiliation(s)
- C De-Fraja
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | |
Collapse
|
133
|
Migone TS, Rodig S, Cacalano NA, Berg M, Schreiber RD, Leonard WJ. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol Cell Biol 1998; 18:6416-22. [PMID: 9774657 PMCID: PMC109227 DOI: 10.1128/mcb.18.11.6416] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-K) plays an important role in signaling via a wide range of receptors such as those for antigen, growth factors, and a number of cytokines, including interleukin-2 (IL-2). PI 3-K has been implicated in both IL-2-induced proliferation and prevention of apoptosis. A number of potential mechanisms for the recruitment of PI 3-K to the IL-2 receptor have been proposed. We now have found that tyrosine residues in the IL-2 receptor beta chain (IL-2Rbeta) are unexpectedly not required for the recruitment of the p85 component of PI 3-K. Instead, we find that Jak1, which associates with membrane-proximal regions of the IL-2Rbeta cytoplasmic domain, is essential for efficient IL-2Rbeta-p85 interaction, although some IL-2Rbeta-p85 association can be seen in the absence of Jak1. We also found that Jak1 interacts with p85 in the absence of IL-2Rbeta and that IL-2Rbeta and Jak1 cooperate for the efficient recruitment and tyrosine phosphorylation of p85. This is the first report of a PI 3-K-Jak1 interaction, and it implicates Jak1 in an essential IL-2 signaling pathway distinct from the activation of STAT proteins.
Collapse
Affiliation(s)
- T S Migone
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| | | | | | | | | | | |
Collapse
|
134
|
Verdier F, Rabionet R, Gouilleux F, Beisenherz-Huss C, Varlet P, Muller O, Mayeux P, Lacombe C, Gisselbrecht S, Chretien S. A sequence of the CIS gene promoter interacts preferentially with two associated STAT5A dimers: a distinct biochemical difference between STAT5A and STAT5B. Mol Cell Biol 1998; 18:5852-60. [PMID: 9742102 PMCID: PMC109171 DOI: 10.1128/mcb.18.10.5852] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two distinct genes encode the closely related signal transducer and activator of transcription proteins STAT5A and STAT5B. The molecular mechanisms of gene regulation by STAT5 and, particularly, the requirement for both STAT5 isoforms are still undetermined. Only a few STAT5 target genes, among them the CIS (cytokine-inducible SH2-containing protein) gene, have been identified. We cloned the human CIS gene and studied the human CIS gene promoter. This promoter contains four STAT binding elements organized in two pairs. By electrophoretic mobility shift assay studies using nuclear extracts of UT7 cells stimulated with erythropoietin, we showed that these four sequences bound to STAT5-containing complexes that exhibited different patterns and affinities: the three upstream STAT binding sequences bound to two distinct STAT5-containing complexes (C0 and C1) and the downstream STAT box bound only to the slower-migrating C1 band. Using nuclear extracts from COS-7 cells transfected with expression vectors for the prolactin receptor, STAT5A, and/or STAT5B, we showed that the C1 complex was composed of a STAT5 tetramer and was dependent on the presence of STAT5A. STAT5B lacked this property and bound with a stronger affinity than did STAT5A to the four STAT sequences as a homodimer (C0 complex). This distinct biochemical difference between STAT5A and STAT5B was confirmed with purified activated STAT5 recombinant proteins. Moreover, we showed that the presence on the same side of the DNA helix of a second STAT sequence increased STAT5 binding and that only half of the palindromic STAT binding sequence was sufficient for the formation of a STAT5 tetramer. Again, STAT5A was essential for this cooperative tetrameric association. This property distinguishes STAT5A from STAT5B and could be essential to explain the transcriptional regulation diversity of STAT5.
Collapse
Affiliation(s)
- F Verdier
- Institut Cochin de Génétique Moléculaire (ICGM), Institut National de la Santé et de la Recherche Médicale (INSERM U363), Hopital Cochin, Université René Descartes, F75014 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M, Miyajima A, Kitamura T. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18:3871-9. [PMID: 9632771 PMCID: PMC108971 DOI: 10.1128/mcb.18.7.3871] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
STAT (signal transducers and activators of transcription) proteins are transcription factors which are activated by phosphorylation on tyrosine residues upon stimulation by cytokines. Seven members of the STAT family are known, including the closely related STAT5A and STAT5B, which are activated by various cytokines. Except for prolactin-dependent beta-casein production in mammary gland cells, the biological consequences of STAT5 activation in various systems are not clear. We applied PCR-driven random mutagenesis and a retrovirus-mediated expression screening system to identify constitutively active forms of STAT5. By this strategy, we have identified a constitutively active STAT5 mutant which has two amino acid substitutions; one is located upstream of the putative DNA binding domain (H299R), and the other is located in the transactivation domain (S711F). The mutant STAT5 was constitutively phosphorylated on tyrosine residues, localized in the nucleus, and was transcriptionally active. Expression of the mutant STAT5 partially dispenses with interleukin 3 (IL-3) as a growth stimulant of IL-3-dependent cell lines. Further analyses of the mutant STAT5 have demonstrated that both of the mutations are required for nuclear localization, efficient transcriptional activation, and induction of IL-3-independent growth of an IL-3-dependent cell line, Ba/F3, and have indicated that a molecular basis for the constitutive activation is the stability of the phosphorylated form of the mutant STAT5.
Collapse
Affiliation(s)
- M Onishi
- Departments of Cell Signaling, DNAX Research Institute of Molecular and Cell Biology, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Schröder P, Meyer L, Wheeler TT, Thiesen HJ, Seyfert HM. Cloning and sequencing of the bovine STAT5A cDNA reveals significant sequence divergence with ovine. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:99-105. [PMID: 9689910 DOI: 10.1016/s0167-4781(98)00054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transcription factors STAT5 mediates prolactin signals in mammary epithelial cells. The cDNA of bovine STAT5A was cloned, sequenced and compared to other species. The encoded protein proves to be > 95% homologous to other mammals. We show that the STAT5A mRNA of the closely related ovine species contains an extended (by 130 nt) 5'-untranslated region, being encoded by an extra-exon, and accounts, possibly, for improved translation efficiency.
Collapse
Affiliation(s)
- P Schröder
- Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
137
|
Saltzman A, Stone M, Franks C, Searfoss G, Munro R, Jaye M, Ivashchenko Y. Cloning and characterization of human Jak-2 kinase: high mRNA expression in immune cells and muscle tissue. Biochem Biophys Res Commun 1998; 246:627-33. [PMID: 9618263 DOI: 10.1006/bbrc.1998.8685] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the cloning and sequence analysis of the mRNA coding for full-length human Janus kinase 2 (Jak2). The human form of Jak2 is 1132 amino acids in length with a M(r) of 131 KDa. It has 95% sequence similarity to pig and rat Jak2. The highest level of mRNA expression was found in the spleen, peripheral blood leukocytes, and testis. Also a significantly high level of Jak2 mRNA was found in heart and skeletal muscle. Northern blot analysis showed three mRNA species in all tissues tested, except heart and skeletal muscle, of 7.6, 5.9, and 4.8 Kb. In skeletal muscle and heart, three mRNA species of 7.6, 4.8, and 3.9 Kb were identified. The catalytic domain of the human Jak2 was expressed and its specificity for phosphorylating peptide substrates derived from the gp130, STAT, and Jak3 molecules was determined and compared to that for human Jak1 and Jak3.
Collapse
Affiliation(s)
- A Saltzman
- Gene Medicine Department, Rhône-Poulenc Rorer Central Research, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Cytokines and interferons are molecules that play central roles in the regulation of a wide array of cellular functions in the lympho-hematopoietic system. These factors stimulate proliferation, differentiation, and survival signals, as well as specialized functions in host resistance to pathogens. Although cytokines are known to activate multiple signaling pathways that together mediate these important functions, one of these pathways, the Jak-STAT pathway, is the focus of this chapter. This pathway is triggered by both cytokines and interferons, and it very rapidly allows the transduction of an extracellular signal into the nucleus. The pathway uses a novel mechanism in which cytosolic latent transcription factors, known as signal transducers and activators of transcription (STATs), are tyrosine phosphorylated by Janus family tyrosine kinases (Jaks), allowing STAT protein dimerization and nuclear translocation. STATs then can modulate the expression of target genes. The basic biology of this system, including the range of known Jaks and STATs, is discussed, as are the defects in animals and humans lacking some of these signaling molecules.
Collapse
Affiliation(s)
- W J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA. ;
| | | |
Collapse
|
139
|
Zhu MH, Berry JA, Russell SM, Leonard WJ. Delineation of the regions of interleukin-2 (IL-2) receptor beta chain important for association of Jak1 and Jak3. Jak1-independent functional recruitment of Jak3 to Il-2Rbeta. J Biol Chem 1998; 273:10719-25. [PMID: 9553136 DOI: 10.1074/jbc.273.17.10719] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-2 (IL-2) induces heterodimerization of the IL-2 receptor beta (IL-2Rbeta) and gammac chains of its receptor and activates the Janus family tyrosine kinases, Jak1 and Jak3. Whereas Jak1 associates with IL-2Rbeta, Jak3 associates primarily with gammac but also with IL-2Rbeta. We analyzed four IL-2Rbeta mutations that diminish IL-2-induced proliferation and found that each also decreased IL-2-induced signal transducer and activator of transcription (STAT) activation. For this reason, and because the mutations were in the IL-2Rbeta membrane-proximal region, we investigated and found that each mutation diminished IL-2Rbeta association with both Jak1 and Jak3. This suggested that these Jaks might interact with the same region of IL-2Rbeta; however, certain IL-2Rbeta internal deletions and C-terminal truncations differentially affected the association of Jak1 and Jak3. Interestingly, just as Jak1-IL-2Rbeta association is Jak3-independent and functionally important, we show that Jak3-IL-2Rbeta association is Jak1-independent and implicate this association as being important for IL-2-induced Stat5 activation. Moreover, Jak1 and Jak3 could associate only in the presence of IL-2Rbeta, suggesting that these kinases can simultaneously bind to IL-2Rbeta. Thus, our data not only demonstrate that somewhat more distal as well as membrane-proximal cytoplasmic regions of a type I cytokine receptor are important for Jak kinase association but also suggest that two IL-2Rbeta-Jak kinase interactions are important for IL-2 signaling.
Collapse
Affiliation(s)
- M H Zhu
- Laboratory of Molecular Immunology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
140
|
Abstract
Apoptosis involves the activation of a cascade of interleukin-1beta converting enzyme-like proteases (caspases), a group of cysteine proteases related to the prototype interleukin-1beta-converting enzyme (caspase-1). These proteases cleave specific intracellular targets such as poly(ADP-ribose) polymerase, DNA-dependent protein kinase, and nuclear lamins. We show here that apoptosis can be induced by double-stranded RNA. The induction of apoptosis by double-stranded RNA and other agents leads to the cleavage by a caspase of the signal transducer and activator of transcription factor, STAT1 which is pivotal in the signal transduction pathways of the interferons and many other cytokines and growth factors. The product of this cleavage is no longer able to mediate interferon-activated signal transduction and the cleavage event may play a role in regulating the apoptosis response itself.
Collapse
Affiliation(s)
- P King
- Division of Biochemistry, Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | |
Collapse
|
141
|
Cella N, Groner B, Hynes NE. Characterization of Stat5a and Stat5b homodimers and heterodimers and their association with the glucocortiocoid receptor in mammary cells. Mol Cell Biol 1998; 18:1783-92. [PMID: 9528750 PMCID: PMC121408 DOI: 10.1128/mcb.18.4.1783] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lactogenic hormones, i.e., prolactin and glucocorticoids, act in concert to stimulate transcription factors responsible for hormone-dependent milk protein gene expression. In the mammary gland, prolactin activates Stat5a and Stat5b and glucocorticoids activate the glucocorticoid receptor (GR). Immunoprecipitation experiments revealed that in mammary cells, Stat5a, Stat5b, and the GR are physically associated in vivo. The association is not dependent on lactogenic hormone treatment and is evident at all stages of mammary gland development. Immunodepletion experiments indicated that a fraction of GR and Stat5 proteins are not associated, suggesting that there are different intracellular pools of these proteins. Lactogenic hormone treatment of HC11 mammary cells resulted in tyrosine phosphorylation of Stat5a and Stat5b, dimerization, and rapid nuclear translocation of both Stat5 proteins. Following hormone treatment, Stat5a-Stat5b heterodimers were detected by their coimmunoprecipitation. In addition, immunodepletion experiments followed by gel shift analyses revealed the presence of active Stat5a and Stat5b homodimers. In mammary cells, Stat5b homodimers are less abundant than Stat5a homodimers. Although the GR does not bind the Stat5 DNA binding site directly, it could be detected with the Stat5-DNA complex. These results suggest that glucocorticoids affect milk protein gene expression via association of the GR with Stat5. Thus, there is a functional coupling between Stat-dependent and nuclear hormone receptor-dependent gene transcription.
Collapse
Affiliation(s)
- N Cella
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
142
|
Zamorano J, Wang HY, Wang R, Shi Y, Longmore GD, Keegan AD. Regulation of Cell Growth by IL-2: Role of STAT5 in Protection from Apoptosis But Not in Cell Cycle Progression. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.7.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cytokines play an essential role in the regulation of lymphocyte survival and growth. We have analyzed the pathways activated by IL-2 that lead to protection from apoptosis and cell proliferation. IL-2 can act as a long-term growth factor in 32D cells expressing the wild-type human (hu)IL-2Rβ. By contrast, cells expressing a truncated form of the huIL-2Rβ, which is able to induce Bcl-2 and c-myc expression but not STAT5 activation, were not protected from apoptosis by IL-2; consequently, they could not be grown long term in the presence of IL-2. However, IL-2 promoted cell cycle progression in cells bearing the truncated huIL-2Rβ with percentages of viable cells in the G0/G1, S, and G2/M phases similar to cells expressing the wild-type huIL-2Rβ. Transplantation of a region from the erythropoietin receptor, which contains a docking site for STAT5 (Y343) to the truncated huIL-2Rβ, restored the ability of IL-2 to signal both activation of STAT5 and protection from apoptosis. By contrast, transplantation of a region from the huIL-4Rα containing STAT6 docking sites did not confer protection from apoptosis. These results indicate that the IL-2-induced cell cycle progression can be clearly distinguished from protection from apoptosis and that STAT5 participates in the regulation of apoptosis.
Collapse
Affiliation(s)
- José Zamorano
- *Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20855; and
| | - Helen Y. Wang
- *Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20855; and
| | - Rouxiang Wang
- *Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20855; and
| | - Yufang Shi
- *Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20855; and
| | - Gregory D. Longmore
- †Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Achsah D. Keegan
- *Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20855; and
| |
Collapse
|
143
|
Yoshida H, Nishina H, Takimoto H, Marengère LE, Wakeham AC, Bouchard D, Kong YY, Ohteki T, Shahinian A, Bachmann M, Ohashi PS, Penninger JM, Crabtree GR, Mak TW. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 1998; 8:115-24. [PMID: 9462517 DOI: 10.1016/s1074-7613(00)80464-1] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NF-ATc1 is a member of a family of genes that encodes the cytoplasmic component of the nuclear factor of activated T cells (NF-AT). In activated T cells, nuclear NF-AT binds to the promoter regions of multiple cytokine genes and induces their transcription. The role of NF-ATc1 was investigated in recombination activating gene-1 (RAG-1)-deficient blastocyst complementation assays using homozygous NF-ATc1-/- mutant ES cell lines. NF-ATc1-/-/RAG-1-/- chimeric mice showed reduced numbers of thymocytes and impaired proliferation of peripheral lymphocytes, but normal production of IL-2. Induction in vitro of Th2 responses, as demonstrated by a decrease in IL-4 and IL-6 production, was impaired in mutant T cells. These data indicate that NF-ATc1 plays roles in the development of T lymphocytes and in the differentiation of the Th2 response.
Collapse
Affiliation(s)
- H Yoshida
- The Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Meyer WK, Reichenbach P, Schindler U, Soldaini E, Nabholz M. Interaction of STAT5 dimers on two low affinity binding sites mediates interleukin 2 (IL-2) stimulation of IL-2 receptor alpha gene transcription. J Biol Chem 1997; 272:31821-8. [PMID: 9395528 DOI: 10.1074/jbc.272.50.31821] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stimulation of the interleukin 2 receptor alpha (IL-2Ralpha) gene by IL-2 is important for the proliferation of antigen-activated T lymphocytes. IL-2 regulates IL-2Ralpha transcription via a conserved 51-nucleotide IL-2 responsive enhancer. Mouse enhancer function depends on cooperative activity of three distinct sites. Two of these are weak binding sites for IL-2-activated STAT5 (signal transducer and activator of transcription) proteins, and mutational analysis indicates that binding of STAT5 to both sites is required for IL-2 responsiveness of the enhancer. The STAT5 dimers interact to form a STAT5 tetramer. The efficiency of tetramerization depends on the relative rotational orientation of the two STAT motifs on the DNA helix. STAT5 tetramerization on enhancer mutants correlates well with the IL-2 responsiveness of these mutants. This provides strong evidence that interactions between STAT dimers binding to a pair of weak binding sites play a biological role by controlling the activity of a well characterized, complex cytokine-responsive enhancer.
Collapse
Affiliation(s)
- W K Meyer
- Lymphocyte Biology Unit, Swiss Institute for Experimental Cancer Research (ISREC), 155 Chemin des Boveresses, CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
145
|
Zhou YJ, Hanson EP, Chen YQ, Magnuson K, Chen M, Swann PG, Wange RL, Changelian PS, O'Shea JJ. Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci U S A 1997; 94:13850-5. [PMID: 9391116 PMCID: PMC28396 DOI: 10.1073/pnas.94.25.13850] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytokines are critically important for the growth and development of a variety of cells. Janus kinases (JAKs) associate with cytokine receptors and are essential for transmitting downstream cytokine signals. However, the regulation of the enzymatic activity of the JAKs is not well understood. Here, we investigated the role of tyrosine phosphorylation of JAK3 in regulating its kinase activity by analyzing mutations of tyrosine residues within the putative activation loop of the kinase domain. Specifically, tyrosine residues 980 and 981 of JAK3 were mutated to phenylalanine individually or doubly. We found that JAK3 is autophosphorylated on multiple sites including Y980 and Y981. Compared with the activity of wild-type (WT) JAK3, mutant Y980F demonstrated markedly decreased kinase activity, and optimal phosphorylation of JAK3 on other sites was dependent on Y980 phosphorylation. The mutant Y980F also exhibited reduced phosphorylation of its substrates, gammac and STAT5A. In contrast, mutant Y981F had greatly increased kinase activity, whereas the double mutant, YY980/981FF, had intermediate activity. These results indicate that Y980 positively regulates JAK3 kinase activity whereas Y981 negatively regulates JAK3 kinase activity. These observations in JAK3 are similar to the findings in the kinase that is closely related to the JAK family, ZAP-70; mutations of tyrosine residues within the putative activation loop of ZAP-70 also have opposing actions. Thus, it will be important to determine whether this feature of regulation is unique to JAK3 or if it is also a feature of other JAKs. Given the importance of JAKs and particularly JAK3, it will be critical to fully dissect the positive and negative regulatory function of these and other tyrosine residues in the control of kinase activity and hence cytokine signaling.
Collapse
Affiliation(s)
- Y J Zhou
- Lymphocyte Cell Biology Section, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E. Identification of Stat 5B as a substrate of the insulin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:411-7. [PMID: 9428692 DOI: 10.1111/j.1432-1033.1997.0411a.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have screened a human placenta library using the yeast two-hybrid system to identify proteins that interact with the cytoplasmic domain of the insulin receptor. Doing so, we trapped a cDNA clone which encodes the Stat 5B region comprising amino acids 469 to 786. We show that interaction between Stat 5B and the receptor requires a functional insulin-receptor kinase, Tyr960 of insulin receptor is implicated in the interaction with Stat 5B, whereas asparagine and proline forming the NPEY960-motif are not, and Stat 5B mutated at Thr684, a potential phosphorylation site of mitogen-activated protein kinase, loses its ability to interact with the insulin receptor. Further, we found that insulin promotes rapid tyrosine phosphorylation of endogenous Stat 5B in 293 EBNA cells overexpressing insulin receptor and in NHIR cells. Taken together, our findings suggest that Stat 5B corresponds to a substrate for the insulin-receptor kinase, and this widens the repertoire of insulin-signaling pathways.
Collapse
Affiliation(s)
- D Sawka-Verhelle
- Institut National de la Santé et de la Recherche Médicale U145, Nice, France
| | | | | | | | | |
Collapse
|
147
|
Liu KD, Gaffen SL, Goldsmith MA, Greene WC. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr Biol 1997; 7:817-26. [PMID: 9382798 DOI: 10.1016/s0960-9822(06)00369-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cytokines mediate a variety of effector cell functions, including cellular proliferation, differentiation, and modulation of the immune response. Many cytokines activate receptor-associated Janus kinases (JAKs) that promote tyrosine phosphorylation of signal transducers and activators of transcription (STAT) factors. Although JAK activation has been correlated with phosphorylation, the role of this tyrosine phosphorylation in the regulation of JAK1 and JAK3 remains unclear. Furthermore, the relative roles of JAK1 and JAK3 in the activation of STAT5 by interleukin-2 (IL-2) remain poorly understood. RESULTS We targeted two conserved tyrosine residues within the activation loop of the JAK1 and JAK3 kinase domains for substitution with phenylalanines. In an overexpression system, the catalytic function of JAK1 strictly required the presence of the first of these tyrosines, Y1033. In contrast, JAK3 retained catalytic activity when either or both of these activation-loop tyrosines were mutated. Analysis of JAK1/3 chimeras demonstrated that JAK activity was also controlled by intramolecular interactions involving the amino-terminal domain of the JAK as well as by the inherent signaling properties of the kinase domain. Finally, we have reconstituted IL-2-dependent STAT5 induction in a cell line that lacks detectable expression of JAK1 and JAK3. Catalytically active versions of both JAK1 and JAK3 must be present for effective induction of STAT5. CONCLUSIONS JAK1 and JAK3 are differentially regulated by specific tyrosines within their respective activation loops. Additionally, the amino-terminal domain of JAK3 appears to contain regulatory sequences that modify the function of the kinase domain. Finally, both JAK1 and JAK3 must retain catalytic function for IL-2-induced STAT5 activation.
Collapse
Affiliation(s)
- K D Liu
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA
| | | | | | | |
Collapse
|
148
|
Rosenthal LA, Winestock KD, Finbloom DS. IL-2 and IL-7 induce heterodimerization of STAT5 isoforms in human peripheral blood T lymphoblasts. Cell Immunol 1997; 181:172-81. [PMID: 9398404 DOI: 10.1006/cimm.1997.1208] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite differences in T cell responses induced by interleukin (IL)-2 and IL-7, both cytokines modulate T cell functions by activation of signal transducers and activators of transcription (STAT) proteins. We examined the contribution of the two isoforms of STAT5, STAT5A and STAT5B, to IL-2- and IL-7-induced activation of human peripheral blood T lymphoblasts. Both cytokines induced assembly of STAT5A and STAT5B containing complexes capable of binding to the interferon-gamma activation sequence (GAS), and these complexes rapidly translocated (within 1 min) into the nucleus of IL-2- or IL-7-treated cells. The kinetics of this translocation were delayed in IL-7-treated as compared to IL-2-treated cells. IL-2 and IL-7 were equivalent in their ability to induce tyrosine phosphorylation of STAT5A and STAT5B and to facilitate binding of these STATs to an immobilized GAS element. Both IL-2 and IL-7 induced substantial amounts of STAT5A/STAT5B heterodimerization. Moreover, we observed constitutive association of STAT3 with each STAT5 isomer. These data suggest that IL-2 and IL-7 induce assembly of STAT heterodimers in a similar manner and that subsequent cellular responses may be driven by induction of similar sets of genes.
Collapse
Affiliation(s)
- L A Rosenthal
- Division of Cytokine Biology, Food and Drug Administration, Bethesda, Maryland 20892-4555, USA
| | | | | |
Collapse
|
149
|
Nakajima H, Liu XW, Wynshaw-Boris A, Rosenthal LA, Imada K, Finbloom DS, Hennighausen L, Leonard WJ. An indirect effect of Stat5a in IL-2-induced proliferation: a critical role for Stat5a in IL-2-mediated IL-2 receptor alpha chain induction. Immunity 1997; 7:691-701. [PMID: 9390692 DOI: 10.1016/s1074-7613(00)80389-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stat5a was identified as a prolactin-induced transcription factor but also is activated by other cytokines, including interleukin-2 (IL-2) and IL-7. We have now analyzed the immune system of Stat5a-deficient mice. Stat5a-/- splenocytes exhibited defective IL-2-induced expression of the IL-2 receptor alpha chain (IL-2R alpha), a protein that together with IL-2R beta and the common cytokine receptor gamma chain (gamma(c)) mediates high-affinity IL-2 binding. Correspondingly, Stat5a-/- splenocytes exhibited markedly decreased proliferation to IL-2, although maximal proliferation was still achieved at IL-2 concentrations high enough to titrate intermediate-affinity IL-2R beta/gamma(c) receptors. Thus, defective Stat5a expression results in diminished proliferation by an indirect mechanism, resulting from defective receptor expression. Correspondingly, we show that Stat5a is essential for maximal responsiveness to antigenic stimuli in vivo, underscoring the physiological importance of IL-2-induced IL-2R alpha expression.
Collapse
Affiliation(s)
- H Nakajima
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Wheeler TT, Kuys YM, Broadhurst MM, Molenaar AJ. Mammary Stat5 abundance and activity are not altered with lactation state in cows. Mol Cell Endocrinol 1997; 133:141-9. [PMID: 9406860 DOI: 10.1016/s0303-7207(97)00161-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stat5 is a key intracellular mediator of prolactin signalling and can activate transcription of milk proteins in response to prolactin. Therefore, in animals such as mice where lactation is dependent on prolactin, Stat5 is likely to play an important role in establishing or maintaining lactation in the mammary gland. However, little is known about its role in lactation in the dairy cow. In order to address this, the levels of Stat5a and Stat5b protein, mRNA and Stat5 DNA-binding activity were measured in mammary tissue from mice and cows at different lactational states. In the cow, Stat5a and Stat5b protein and mRNA levels, as well as Stat5 DNA-binding activity were unaltered between pregnancy and established lactation. In contrast, in the mouse Stat5a and Stat5b protein, as well as Stat5 DNA-binding activity were clearly increased during lactation whereas Stat5a and Stat5b mRNA levels were highest during pregnancy as has been previously described. In both species only a minority of the epithelial cell nuclei were Stat5 positive during established lactation. These results suggest that there are significant differences in the biological role of Stat5 in controlling lactation between ruminants and rodents.
Collapse
Affiliation(s)
- T T Wheeler
- Dairy Science Group, New Zealand Pastoral Agriculture Research Institute, Ruakura Research Centre, Hamilton.
| | | | | | | |
Collapse
|