101
|
Abstract
Heterozygous carriers of loss-of-function germline mutations in the BRCA1 or BRCA2 breast cancer susceptibility genes have a predisposition to breast and ovarian cancer. Multiple functions have been ascribed to the products of these genes, linking them to pathways that inhibit progression to neoplasia. Various investigators have assigned roles for these tumor suppressor gene products in the cell functions of genome repair, transcription, and growth control. There is emerging evidence that BRCA1 may participate in ubiquitin E3 ligase activity. BRCA1 and BRCA2 have each been implicated in chromatin remodeling dynamics via protein partnering. Ubiquitin ligase and chromatin remodeling activities need not be mutually exclusive and both may function in DNA repair, transcriptional regulation, or cell cycle control. Here we highlight certain recent findings and currently unanswered questions regarding BRCA1 and BRCA2 in breast cancer.
Collapse
Affiliation(s)
- Dianne C Daniel
- Mount Sinai School of Medicine, Department of Pathology, New York, New York 10029, USA.
| |
Collapse
|
102
|
Daboussi F, Dumay A, Delacôte F, Lopez BS. DNA double-strand break repair signalling: the case of RAD51 post-translational regulation. Cell Signal 2002; 14:969-75. [PMID: 12359302 DOI: 10.1016/s0898-6568(02)00052-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA double-strand breaks (DSBs) are the major lethal lesion induced by ionizing radiation or by replication block. However, cells can take advantage of DSB-induced recombination in order to generate genetic diversity in physiological processes such as meiosis and V(D)J recombination. Two main alternative pathways compete for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). This review will briefly present the mechanisms and the enzymatic complex for HR and NHEJ. The signalling of the DSB through the ATM pathway will be presented. Then, we will focus on the case of the RAD51 protein, which plays a pivotal role in HR and is conserved from bacteria to humans. Post-translational regulation of RAD51 is presented. Two contrasting situations are discussed: one with up-regulation (expression of the oncogene BCR/ABL) and one with a down-regulation (expression of the oncogene BCL-2) of RAD51, associated with apoptosis inhibition and tumour predisposition.
Collapse
Affiliation(s)
- Fayza Daboussi
- UMR CEA/CNRS 217, CEA, Div des Sciences du Vivant, DRR, 60-68 Avenue du Général Leclerc, 92265, Fontenay-aux-Roses, Cedex, France
| | | | | | | |
Collapse
|
103
|
Abstract
We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory L-441, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | |
Collapse
|
104
|
Affiliation(s)
- Robert Ilaria
- Division of Hematology/Oncology, Department of Medicine, Simmons Cancer Center and the Hamon Center for Therapeutic Oncology Research, The University of Texas, Southwestern Medical Center, Dallas, TX 75390-8593, USA.
| |
Collapse
|
105
|
Brain J, Saksena A, Laneuville P. The kinase inhibitor STI571 reverses the Bcr-Abl induced point mutation frequencies observed in pre-leukemic P190(Bcr-Abl) transgenic mice. Leuk Res 2002; 26:1011-6. [PMID: 12363470 DOI: 10.1016/s0145-2126(01)00181-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic myelogenous leukemia (CML) and 25% of adult onset acute lymphoblastic leukemia (ALL) are associated with the expression of Bcr-Abl, a constitutively activated protein tyrosine kinase. Bcr-Abl associated leukemias are characterized by a high degree of chromosomal and genomic instability. It is unclear if the phenotype of genomic instability is a primary consequence of Bcr-Abl expression or if it is acquired secondarily. We have attempted to answer this question in previous studies by measuring the frequency of point mutations in double heterozygote transgenic mice derived from mating homozygous P190(Bcr-Abl) transgenic mice (line 623) and the Big Blue Mice((R)) (Stratagene). Our results showed a 2-3-fold increase in the point mutation frequency in pre-leukemic (i.e. about 100 days before the onset of leukemia) P190 mice, compared to control mice (C57/BL6). In the present report, we extended these prior studies to ascertain if Bcr-Abl induced point mutations is a reversible phenotype. Pre-leukemic P190(Bcr-Abl)/Big Blue double homozygous and C57/BL6 control mice were injected with the c-Abl specific kinase inhibitor STI571 for 10 consecutive days. We observed a decrease in the Bcr-Abl induced mutation frequencies in spleen and kidney tissue from mice treated with STI571. These results confirm that Bcr-Abl can directly and reversibly induce an increase in point mutation frequencies that could contribute to the genomic instability observed in Bcr-Abl positive leukemias.
Collapse
Affiliation(s)
- Julia Brain
- Molecular Oncology Group, Division of Hematology, Department of Medicine, C6 Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Que., H3A 1A1, Montreal, Canada
| | | | | |
Collapse
|
106
|
Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002; 35:97-112. [PMID: 12203773 DOI: 10.1002/gcc.10111] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There is increasing evidence for the involvement of repetitive DNA sequences as facilitators of some of the recurrent chromosomal rearrangements observed in human tumors. The high densities of repetitive DNA, such as Alu elements, at some chromosomal translocation breakpoint regions has led to the suggestion that these sequences could provide hot spots for homologous recombination, and could mediate the translocation process and elevate the likelihood of other types of chromosomal rearrangements taking place. The Alu core sequence itself has been suggested to promote DNA strand exchange and genomic rearrangement, and it has striking sequence similarity to chi (which has been shown to stimulate recBCD-mediated recombination in Escherichia coli). Alu repeats have been shown to be involved in the generation of many constitutional gene mutations in meiotic cells, attributed to unequal homologous recombination and consequent deletions and/or duplication events. It has recently been demonstrated that similar deletion events can take place in neoplasia because several types of leukemia-associated chromosomal rearrangements frequently have submicroscopic deletions immediately adjacent to the translocation breakpoint regions. Significantly, these types of deletions appear to be more likely to take place when the regions subject to rearrangement contain a high density of Alu repeats. With the completion of the Human Genome Project, it will soon be possible to create more comprehensive maps of the distribution and densities of repetitive sequences, such as Alu, throughout the genome. Such maps will offer unique insights into the relative distribution of cancer translocation breakpoints and the localization of clusters of repetitive DNA.
Collapse
Affiliation(s)
- Elena Kolomietz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Princess Margaret Hospital and Ontario Cancer Institute, Toronto, Canada
| | | | | | | |
Collapse
|
107
|
Cong F, Tang J, Hwang BJ, Vuong BQ, Chu G, Goff SP. Interaction between UV-damaged DNA binding activity proteins and the c-Abl tyrosine kinase. J Biol Chem 2002; 277:34870-8. [PMID: 12107171 PMCID: PMC2894263 DOI: 10.1074/jbc.m204416200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Abl tyrosine kinase is activated by some forms of DNA damage, including ionizing radiation, but not UV radiation. The functions of this activation in the damage response pathways remain obscure. To identify potential targets of c-Abl kinase, we utilized the yeast two-hybrid system to screen a murine cDNA library. One c-Abl binding protein of particular interest was the large subunit (DDB1) of the heterodimeric complex with UV-damaged DNA binding activity (UV-DDB). This complex binds with high specificity to DNA damaged by UV, is absent in a subset of xeroderma pigmentosum group E cells, and is required for global genomic repair of UV-induced damage. The association of c-Abl with DDB1 required the kinase domain of c-Abl and preserved the interaction between DDB1 and the small subunit (DDB2) of the UV-DDB complex. Significantly, overexpression of c-Abl increased tyrosine phosphorylation of DDB2 and suppressed UV-DDB activity. Conversely, a dominant negative, kinase-deficient allele of c-Abl decreased tyrosine phosphorylation of DDB2 and dramatically stimulated UV-DDB activity. These results suggest that one role of c-Abl may be to negatively regulate UV-DDB activity by phosphorylation of DDB2.
Collapse
Affiliation(s)
- Feng Cong
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
| | - Jean Tang
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Byung Joon Hwang
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - Bao Q. Vuong
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York 10032
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California 94305
- To whom correspondence may be addressed: 269 Campus Dr., Center for Clinical Science Research 1140, Stanford, CA 94305. Tel.: 650-725-6442; Fax: 650-725-1420;
| | - Stephen P. Goff
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, New York, New York 10032
- To whom correspondence may be addressed: 701 West 168 St., Hammer Health Science Center 1310C, New York, NY 10032. Tel.: 212-305-3794; Fax: 212-305-8692;
| |
Collapse
|
108
|
Yin MB, Hapke G, Wu J, Azrak RG, Frank C, Wrzosek C, Rustum YM. Chk1 signaling pathways that mediated G(2)M checkpoint in relation to the cellular resistance to the novel topoisomerase I poison BNP1350. Biochem Biophys Res Commun 2002; 295:435-44. [PMID: 12150968 DOI: 10.1016/s0006-291x(02)00683-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel karenitecin, BNP1350, is a topoisomerase I-targeting anticancer agent with significant antitumor activity in vitro and in vivo. A BNP1350-resistant human head and neck carcinoma A253 cell line, denoted A253/BNPR, was developed. The A253/BNPR cell line was approximately 9-fold resistant to BNP1350 and 4-fold cross-resistant to another topoisomerase I inhibitor SN-38, the active metabolite of irinotecan. After drug treatment with equimolar concentrations of BNP1350 (0.7 microM) for 2h, activation of the DNA double-strand break repair protein complexes was similar in the two cell lines, suggesting that DNA dsb repair is not attributable to resistance to BNP1350 in the A253/BNPR cells. Cell cycle analysis indicates that the A253 cell line accumulated primarily in S phase, but G(2) phase accumulation was observed in the A253/BNPR cell line at 48 h after drug removal. Elevated chk1 phosphorylation at Ser(345) following DNA damage induced by BNP1350 was accompanied by G(2) accumulation in the A253/BNPR cell line, while exposure to equimolar concentrations of BNP1350 (0.7 microM) induced S-phase arrest and no increased phosphorylation of chk1 at Ser(345) in the A253 cell line. Under the same conditions, increased chk1 activity was observed in the A253/BNPR cell line, but not in the A253 cell line. Moreover, stimulated binding of 14-3-3 proteins to chk1 was observed in BNP1350-treated A253/BNPR cells. To confirm relationship between chk1 expression/phosphorylation and drug resistance to topo I poisons, we examined the effects of chk1 or chk2 antisense oligonucleotides on the cellular growth inhibition. Chk1 antisense oligonucleotide can sensitize the A253/BNPR cells to killing by topo I inhibitor BNP1350, but no significant sensitization of BNP1350-induced growth inhibition was observed in the drug-sensitive cell line. Chk2 antisense oligonucleotide has only a small sensitization effect on BNP1350-induced growth inhibition in both cell lines. The data indicate that the chk1 signaling pathways that mediate cell cycle checkpoint are associated with cellular resistance to BNP1350 in the A253/BNPR cell line.
Collapse
Affiliation(s)
- Ming-biao Yin
- Department of Pharmacology and Therapeutics, Grace Cancer Drug Center, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Foray N, Marot D, Randrianarison V, Venezia ND, Picard D, Perricaudet M, Favaudon V, Jeggo P. Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol Cell Biol 2002; 22:4020-32. [PMID: 12024016 PMCID: PMC133860 DOI: 10.1128/mcb.22.12.4020-4032.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity.
Collapse
Affiliation(s)
- Nicolas Foray
- Radiobiologie Cellulaire et Moléculaire, U350 Inserm, Institut Curie, 91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21:3314-33. [PMID: 12032772 DOI: 10.1038/sj.onc.1205317] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase oncogenes are formed as a result of mutations that induce constitutive kinase activity. Many of these tyrosine kinase oncogenes that are derived from genes, such as c-Abl, c-Fes, Flt3, c-Fms, c-Kit and PDGFRbeta, that are normally involved in the regulation of hematopoiesis or hematopoietic cell function. Despite differences in structure, normal function, and subcellular location, many of the tyrosine kinase oncogenes signal through the same pathways, and typically enhance proliferation and prolong viability. They represent excellent potential drug targets, and it is likely that additional mutations will be identified in other kinases, their immediate downstream targets, or in proteins regulating their function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Adult Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
111
|
Yoshida K, Komatsu K, Wang HG, Kufe D. c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol 2002; 22:3292-300. [PMID: 11971963 PMCID: PMC133797 DOI: 10.1128/mcb.22.10.3292-3300.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitously expressed c-Abl tyrosine kinase is activated in the apoptotic response of cells to DNA damage. The mechanisms by which c-Abl signals the induction of apoptosis are not understood. Here we show that c-Abl binds constitutively to the mammalian homolog of the Schizosaccharomyces pombe Rad9 cell cycle checkpoint protein. The SH3 domain of c-Abl interacts directly with the C-terminal region of Rad9. c-Abl phosphorylates the Rad9 Bcl-2 homology 3 domain (Tyr-28) in vitro and in cells exposed to DNA-damaging agents. The results also demonstrate that c-Abl-mediated phosphorylation of Rad9 induces binding of Rad9 to the antiapototic Bcl-x(L) protein. The regulation of Rad9 by c-Abl in the DNA damage response is further supported by the demonstration that the interaction between c-Abl and Rad9 contributes to DNA damage-induced apoptosis. These findings indicate that Rad9 is regulated by a c-Abl-dependent mechanism in the apoptotic response to genotoxic stress.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
112
|
Wu J, Yin MB, Hapke G, Tóth K, Rustum YM. Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topoisomerase I drug 7-ethyl-10-hydroxy-camptothecin. Mol Pharmacol 2002; 61:742-8. [PMID: 11901212 DOI: 10.1124/mol.61.4.742] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Camptothecins demonstrate a broad spectrum of antitumor activity. Although they are known to trap DNA topoisomerase I on DNA, form cleavable complexes, and generate DNA breaks upon collision with DNA or RNA polymerases, the precise mechanisms predictive for antitumor activity remain to be identified. Recent studies using panels of colorectal and breast cancer cell lines indicate that events downstream of cleavable complexes are more relevant. In this study, we chose SN-38, an active metabolite of irinotecan, to characterize DNA double strand breaks and repair mechanisms induced by this type of drugs using a human head and neck squamous cell carcinoma cell line A253. The results showed that 2-h exposure of cells to an IC(50) concentration of SN-38 induces biphasic DNA double-strand break (DSBs): an immediate phase, which was greatly reduced within 8 h, and a lagging phase, culminating 24 h after drug removal. Three DNA double-strand break repair protein complexes were activated: DNA-dependent protein kinase (DNA-PK), NBS1-MRE11-RAD50, and BRCA1. Aphidicolin, a DNA polymerase inhibitor, abolished both phase I DSBs and the activation of repair protein complexes, suggesting that they resulted from the collision between the cleavable complex and DNA polymerase of S-phase cells. This is in contrast to ionizing radiation-induced activation of DNA-PK and NBS1-MRE11-RAD50 complexes that occur predominantly among non-S-phase cells. The trigger for phase II DSBs cannot be abolished by aphidicolin. The data also indicate that DNA fragments in the size of 50 to 200 kilobases were detected in the lagging phase. This suggests that the late DNA DSBs were associated with apoptotic cell death.
Collapse
Affiliation(s)
- Jiaxi Wu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
113
|
Ayora S, Piruat JI, Luna R, Reiss B, Russo VEA, Aguilera A, Alonso JC. Characterization of two highly similar Rad51 homologs of Physcomitrella patens. J Mol Biol 2002; 316:35-49. [PMID: 11829501 DOI: 10.1006/jmbi.2001.5336] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The moss Physcomitrella patens, which is a land plant with efficient homologous recombination, encodes two Rad51 proteins (PpaRad51.1 and PpaRad51.2). The PpaRad51.1 and PpaRad51.2 proteins, which share 94 % identity between them, interact with themselves and with each other. Both proteins bind ssDNA and dsDNA in a Mg(2+) and pH-dependent manner, with a stoichiometry of one PpaRad51.1 monomer per 3(+/-1) nt or bp and one PpaRad51.2 monomer per 1(+/-0.5) nt or bp, respectively. At neutral pH, a 1.6-fold excess of both proteins is required for ssDNA and dsDNA binding. PpaRad51.1 and PpaRad51.2 show ssDNA-dependent ATPase activity and efficiently promote strand annealing in a nucleotide-independent but in a Mg(2+)-dependent manner. Both proteins promote joint-molecule formation, DNA strand invasion and are able to catalyse strand exchange in the presence of Mg(2+) and ATP. No further increase in the activities is observed when both proteins are present in the same reaction. None of the PpaRad51 gene products complement the DNA repair and recombination phenotype of Saccharomyces cerevisiae rad51delta mutants. However, PpaRad51.1 confers a dominant-negative DNA repair phenotype, and both PpaRad51 proteins reduce the levels of double-strand break-induced recombination when overexpressed in S. cerevisiae wt cells. These results suggest that both PpaRad51 proteins are bona fide Rad51 proteins that may contribute, in a different manner, to homologous recombination, and that they might replace ScRad51 in a hypothetical yeast protein complex inactivating different functions required for recombinational repair.
Collapse
Affiliation(s)
- Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Campus Universidad Autónoma de Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the last decade, many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here, we discuss homologous recombination as another mechanism that can result in a loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
Affiliation(s)
| | - Robert H. Schiestl
- Department of Pathology, UCLA Medical School, Los Angeles, CA 90095, USA
| |
Collapse
|
115
|
Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T. Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 2002; 115:153-64. [PMID: 11801733 DOI: 10.1242/jcs.115.1.153] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After exposure of mammalian cells to DNA damage, the endogenous Rad51 recombination protein is concentrated in multiple discrete foci, which are thought to represent nuclear domains for recombinational DNA repair. Overexpressed Rad51 protein forms foci and higher-order nuclear structures, even in the absence of DNA damage, in cells that do not undergo DNA replication synthesis. This correlates with increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21. Following DNA damage, constitutively Rad51-overexpressing cells show reduced numbers of DNA breaks and chromatid-type chromosome aberrations and a greater resistance to apoptosis. In contrast, Rad51 antisense inhibition reduces p21 protein levels and sensitizes cells to etoposide treatment. Downregulation of p21 inhibits Rad51 foci formation in both normal and Rad51-overexpressing cells. Collectively, our results show that Rad51 expression, Rad51 foci formation and p21 expression are interrelated, suggesting a functional link between mammalian Rad51 protein and p21-mediated cell cycle regulation. This mechanism may contribute to a highly effective recombinational DNA repair in cell cycle-arrested cells and protection against DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Elke Raderschall
- Max Planck Institute of Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8:1052-65. [PMID: 11687884 DOI: 10.1038/sj.cdd.4400874] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 03/02/2001] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Collapse
Affiliation(s)
- K K Khanna
- The Queensland Institute of Medical Research, and Department of Pathology and Surgery, University of Queensland, PO Royal Brisbane Hospital, Brisbane, Qld4029, Australia
| | | | | | | |
Collapse
|
117
|
Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ, Boothman DA. When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 2001; 11:352-72. [PMID: 11677660 DOI: 10.1053/srao.2001.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular responses to ionizing radiation (IR) include (a) activation of signal transduction enzymes; (b) stimulation of DNA repair, most notably DNA double strand break (DSB) repair by homologous or nonhomologous recombinatorial pathways; (c) activation of transcription factors and subsequent IR-inducible transcript and protein changes; (d) cell cycle checkpoint delays in G(1), S, and G(2) required for repair or for programmed cell death of severely damaged cells; (e) activation of zymogens needed for programmed cell death (although IR is a poor inducer of such responses in epithelial cells); and (f) stimulation of IR-inducible proteins that may mediate bystander effects influencing signal transduction, DNA repair, angiogenesis, the immune response, late responses to IR, and possibly adaptive survival responses. The overall response to IR depends on the cell's inherent genetic background, as well as its ability to biochemically and genetically respond to IR-induced damage. To improve the anti-tumor efficacy of IR, our knowledge of these pleiotropic responses must improve. The most important process for the survival of a tumor cell following IR is the repair of DNA double strand breaks (DSBs). Using yeast two-hybrid analyses along with other molecular and cellular biology techniques, we cloned transcripts/proteins that are involved in, or presumably affect, nonhomologous DNA double strand break end-joining (NHEJ) repair mediated by the DNA-PK complex. Using Ku70 as bait, we isolated a number of Ku-binding proteins (KUBs). We identified the first X-ray-inducible transcript/protein (xip8, Clusterin (CLU)) that associates with DNA-PK. A nuclear form of CLU (nCLU) prevented DNA-PK-mediated end joining, and stimulated cell death in response to IR or when overexpressed in the absence of IR. Structure-function analyses using molecular and cellular (including green fluorescence-tagged protein trafficking) biology techniques showed that nCLU appears to be an inactive protein residing in the cytoplasm of epithelial cells. Following IR injury, nCLU levels increase and an as yet undefined posttranslational modification appears to alter the protein, exposing nuclear localization sequences (NLSs) and coiled-coil domains. The modified protein translocates to the nucleus and triggers cell death, presumably through its interaction specifically with Ku70. Understanding nCLU responses, as well as the functions of the KUBs, will be important for understanding DSB repair. Knowledge of DSB repair may be used to improve the antitumor efficacy of IR, as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- K S Leskov
- Department of Human Oncology, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO, Pierce AJ, Fishel R, Skorski T. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell 2001; 8:795-806. [PMID: 11684015 DOI: 10.1016/s1097-2765(01)00357-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RAD51 is one of six mitotic human homologs of the E. coli RecA protein (RAD51-Paralogs) that play a central role in homologous recombination and repair of DNA double-strand breaks (DSBs). Here we demonstrate that RAD51 is important for resistance to cisplatin and mitomycin C in cells expressing the BCR/ABL oncogenic tyrosine kinase. BCR/ABL significantly enhances the expression of RAD51 and several RAD51-Paralogs. RAD51 overexpression is mediated by a STAT5-dependent transcription as well as by inhibition of caspase-3-dependent cleavage. Phosphorylation of the RAD51 Tyr-315 residue by BCR/ABL appears essential for enhanced DSB repair and drug resistance. Induction of the mammalian RecA homologs establishes a unique mechanism for DNA damage resistance in mammalian cells transformed by an oncogenic tyrosine kinase.
Collapse
Affiliation(s)
- A Slupianek
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Saintigny Y, Dumay A, Lambert S, Lopez BS. A novel role for the Bcl-2 protein family: specific suppression of the RAD51 recombination pathway. EMBO J 2001; 20:2596-607. [PMID: 11350949 PMCID: PMC125251 DOI: 10.1093/emboj/20.10.2596] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The oncogenic role of Bcl-2 is generally attributed to its protective effect against apoptosis. Here, we show a novel role for Bcl-2: the specific inhibition of the conservative RAD51 recombination pathway. Bcl-2 or Bcl-X(L) overexpression inhibits UV-C-, gamma-ray- or mutant p53-induced homologous recombination (HR). Moreover, Bcl-2 recombination inhibition is independent of the role of p53 in G1 arrest. At an acute double-strand break in the recombination substrate, Bcl-2 specifically inhibits RAD51-dependent gene conversion without affecting non-conservative recombination. Bcl-2 consistently thwarts recombination stimulated by RAD51 overexpression and alters Rad51 protein by post-translation modification. Moreover, a mutant (G145A)Bcl-2, which is defective in Bax interaction and in apoptosis repression, also inhibits recombination, showing that the death and recombination repression functions of Bcl-2 are separable. Inhibition of error-free repair pathways by Bcl-2 results in elevated frequencies of mutagenesis. The Bcl-2 gene therefore combines two separable cancer-prone phenotypes: apoptosis repression and a genetic instability/mutator phenotype. This dual phenotype could represent a mammalian version of the bacterial SOS repair system.
Collapse
Affiliation(s)
| | | | | | - Bernard S. Lopez
- UMR217 CNRS-CEA, CEA, Direction des Sciences du Vivant, Département de Radiobiologie et Radiopathologie, 60–68 Avenue du Général Leclerc, 92 265 Fontenay aux Roses, Cedex, France
Corresponding author e-mail:
Y.Saintigny and A.Dumay contributed equally to this work
| |
Collapse
|
120
|
Gasior SL, Olivares H, Ear U, Hari DM, Weichselbaum R, Bishop DK. Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proc Natl Acad Sci U S A 2001; 98:8411-8. [PMID: 11459983 PMCID: PMC37451 DOI: 10.1073/pnas.121046198] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the RecA family of recombinases from bacteriophage T4, Escherichia coli, yeast, and higher eukaryotes function in recombination as higher-order oligomers assembled on tracts of single-strand DNA (ssDNA). Biochemical studies have shown that assembly of recombinase involves accessory factors. These studies have identified a class of proteins, called recombination mediator proteins, that act by promoting assembly of recombinase on ssDNA tracts that are bound by ssDNA-binding protein (ssb). In the absence of mediators, ssb inhibits recombination reactions by competing with recombinase for DNA-binding sites. Here we briefly review mediated recombinase assembly and present results of new in vivo experiments. Immuno-double-staining experiments in Saccharomyces cerevisiae suggest that Rad51, the eukaryotic recombinase, can assemble at or near sites containing ssb (replication protein A, RPA) during the response to DNA damage, consistent with a need for mediator activity. Correspondingly, mediator gene mutants display defects in Rad51 assembly after DNA damage and during meiosis, although the requirements for assembly are distinct in the two cases. In meiosis, both Rad52 and Rad55/57 are required, whereas either Rad52 or Rad55/57 is sufficient to promote assembly of Rad51 in irradiated mitotic cells. Rad52 promotes normal amounts of Rad51 assembly in the absence of Rad55 at 30 degrees C but not 20 degrees C, accounting for the cold sensitivity of rad55 null mutants. Finally, we show that assembly of Rad51 is induced by radiation during S phase but not during G(1), consistent with the role of Rad51 in repairing the spontaneous damage that occurs during DNA replication.
Collapse
Affiliation(s)
- S L Gasior
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
121
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
122
|
Abstract
The process of homologous recombinational repair (HRR) is a major DNA repair pathway that acts on double-strand breaks and interstrand crosslinks, and probably to a lesser extent on other kinds of DNA damage. HRR provides a mechanism for the error-free removal of damage present in DNA that has replicated (S and G2 phases). Thus, HRR acts in a critical way, in coordination with the S and G2 checkpoint machinery, to eliminate chromosomal breaks before the cell division occurs. Many of the human HRR genes, including five Rad51 paralogs, have been identified, and knockout mutants for most of these genes are available in chicken DT40 cells. In the mouse, most of the knockout mutations cause embryonic lethality. The Brca1 and Brca2 breast cancer susceptibility genes appear to be intimately involved in HRR, but the mechanistic basis is unknown. Biochemical studies with purified proteins and cell extracts, combined with cytological studies of nuclear foci, have begun to establish an outline of the steps in mammalian HRR. This pathway is subject to complex regulatory controls from the checkpoint machinery and other processes, and there is increasing evidence that loss of HRR gene function can contribute to tumor development. This review article is meant to be an update of our previous review [Biochimie 81 (1999) 87].
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-441, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | |
Collapse
|
123
|
Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 2001; 7:273-82. [PMID: 11239456 DOI: 10.1016/s1097-2765(01)00175-7] [Citation(s) in RCA: 524] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.
Collapse
Affiliation(s)
- A A Davies
- Imperial Cancer Research Fund, Clare Hall Laboratories, Hertfordshire EN6 3LD, South Mimms, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
124
|
Cans C, Mangano R, Barilá D, Neubauer G, Superti-Furga G. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem Pharmacol 2000; 60:1203-15. [PMID: 11007959 DOI: 10.1016/s0006-2952(00)00434-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine phosphorylation is usually associated with cytoplasmic events. Yet, over the years, many reports have accumulated on tyrosine phosphorylation of individual molecules in the nucleus, and several tyrosine kinases and phosphatases have been found to be at least partially nuclear. The question arises as to whether nuclear tyrosine phosphorylation represents a collection of loose ends of events originating in the cytoplasm or if there may be intranuclear signaling circuits relying on tyrosine phosphorylation to regulate specific processes. The recent discovery of a mechanism causing nuclear tyrosine phosphorylation has prompted us to review the cumulative evidence for nuclear tyrosine phosphorylation pathways and their possible role. While we found that no complex nuclear function has yet been shown to rely upon intranuclear tyrosine phosphorylation in an unambiguous fashion, we found a very high number of compelling observations on individual molecules that suggest underlying networks linking individual events. A systematic proteomics approach to nuclear tyrosine phosphorylation should help chart possible interaction pathways.
Collapse
Affiliation(s)
- C Cans
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
125
|
Akhmedov AT, Lopez BS. Human 100-kDa homologous DNA-pairing protein is the splicing factor PSF and promotes DNA strand invasion. Nucleic Acids Res 2000; 28:3022-30. [PMID: 10931916 PMCID: PMC108454 DOI: 10.1093/nar/28.16.3022] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins promoting homologous pairing could be involved in various fundamental biological processes. Previously we detected two mammalian nuclear proteins of 100 and 75 kDa able to promote homologous DNA pairing. Here we report isolation and characterisation of the human (h) 100-kDa DNA-pairing protein, hPOMp100, from HeLa nuclei. The peptide sequences of hPOMp100 revealed identity to the human splicing factor PSF and a DNA-binding subunit of p100/p52 heterodimer of unknown function. Bacterially expressed PSF promotes DNA pairing identical to that of hPOMp100. hPOMp100/PSF binds not only RNA but also both single-stranded (ss) and double-stranded (ds) DNA and facilitates the renaturation of complementary ssDNAs. More important, the protein promotes the incorporation of a ss oligonucleotide into a homologous superhelical dsDNA, D-loop formation. A D-loop is the first heteroduplex DNA intermediate generated between recombining DNA molecules. Moreover, this reaction could be implicated in re-establishing stalled replication forks. Consistent with this hypothesis, DNA-pairing activity of hPOMp100/PSF is associated with cellular proliferation. Significantly, phosphorylation of hPOMp100/PSF by protein kinase C inhibits its binding to RNA but stimulates its binding to DNA and D-loop formation and may represent a regulatory mechanism to direct this multifunctional protein to DNA metabolic pathways.
Collapse
Affiliation(s)
- A T Akhmedov
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland.
| | | |
Collapse
|
126
|
Fritz E, Friedl AA, Zwacka RM, Eckardt-Schupp F, Meyn MS. The yeast TEL1 gene partially substitutes for human ATM in suppressing hyperrecombination, radiation-induced apoptosis and telomere shortening in A-T cells. Mol Biol Cell 2000; 11:2605-16. [PMID: 10930457 PMCID: PMC14943 DOI: 10.1091/mbc.11.8.2605] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homozygous mutations in the human ATM gene lead to a pleiotropic clinical phenotype of ataxia-telangiectasia (A-T) patients and correlating cellular deficiencies in cells derived from A-T donors. Saccharomyces cerevisiae tel1 mutants lacking Tel1p, which is the closest sequence homologue to the ATM protein, share some of the cellular defects with A-T. Through genetic complementation of A-T cells with the yeast TEL1 gene, we provide evidence that Tel1p can partially compensate for ATM in suppressing hyperrecombination, radiation-induced apoptosis, and telomere shortening. Complementation appears to be independent of p53 activation. The data provided suggest that TEL1 is a functional homologue of human ATM in yeast, and they help to elucidate different cellular and biochemical pathways in human cells regulated by the ATM protein.
Collapse
Affiliation(s)
- E Fritz
- GSF, National Research Center for Environment and Health, Institute of Radiobiology, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
127
|
Yoshida K, Weichselbaum R, Kharbanda S, Kufe D. Role for Lyn tyrosine kinase as a regulator of stress-activated protein kinase activity in response to DNA damage. Mol Cell Biol 2000; 20:5370-80. [PMID: 10891478 PMCID: PMC85989 DOI: 10.1128/mcb.20.15.5370-5380.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular response to DNA damage includes activation of the nuclear Lyn protein tyrosine kinase. Using cells deficient in Lyn expression, the present studies demonstrate that Lyn is required in part for induction of the stress-activated protein kinase (SAPK) in the response to 1-beta-D-arabinofuranosylcytosine (ara-C) and other genotoxic agents. By contrast, exposure of Lyn-deficient cells to ara-C, ionizing radiation, or cisplatin had no effect on activation of extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase. Similar findings were obtained in cells stably expressing a kinase-inactive, dominant-negative Lyn(K-R) mutant. Coexpression studies demonstrate that Lyn, but not Lyn(K-R), induces SAPK activity. In addition, the results demonstrate that Lyn activates SAPK by an MKK7-dependent, SEK1-independent mechanism. As MEKK1 functions upstream to MKK7 and SAPK, the finding that a dominant-negative MEKK1(K-M) mutant blocks Lyn-induced SAPK activity supports involvement of the MEKK1-->MKK7 pathway. The results also demonstrate that inhibition of Lyn-induced SAPK activity abrogates the apoptotic response of cells to genotoxic stress. These findings indicate that activation of SAPK by DNA damage is mediated in part by Lyn and that the Lyn-->MEKK1-->MKK7-->SAPK pathway is functional in the induction of apoptosis by genotoxic agents.
Collapse
Affiliation(s)
- K Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
128
|
Kharbanda S, Pandey P, Yamauchi T, Kumar S, Kaneki M, Kumar V, Bharti A, Yuan ZM, Ghanem L, Rana A, Weichselbaum R, Johnson G, Kufe D. Activation of MEK kinase 1 by the c-Abl protein tyrosine kinase in response to DNA damage. Mol Cell Biol 2000; 20:4979-89. [PMID: 10866655 PMCID: PMC85948 DOI: 10.1128/mcb.20.14.4979-4989.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents and regulates induction of the stress-activated c-Jun N-terminal protein kinase (SAPK). Here we show that nuclear c-Abl associates with MEK kinase 1 (MEKK-1), an upstream effector of the SEK1-->SAPK pathway, in the response of cells to genotoxic stress. The results demonstrate that the nuclear c-Abl binds to MEKK-1 and that c-Abl phosphorylates MEKK-1 in vitro and in vivo. Transient-transfection studies with wild-type and kinase-inactive c-Abl demonstrate c-Abl kinase-dependent activation of MEKK-1. Moreover, c-Abl activates MEKK-1 in vitro and in response to DNA damage. The results also demonstrate that c-Abl induces MEKK-1-mediated phosphorylation and activation of SEK1-SAPK in coupled kinase assays. These findings indicate that c-Abl functions upstream of MEKK-1-dependent activation of SAPK in the response to genotoxic stress.
Collapse
Affiliation(s)
- S Kharbanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
The study of double-strand chromosome break repair by homologous and nonhomologous recombination is a growth industry. In the past year, there have been important advances both in understanding the connection between recombination and DNA replication and in linking recombination with origins of human cancer. At the same time, a combination of biochemical, genetic, molecular biological, and cytological approaches have provided a clearer vision of the specific functions of a variety of recombination proteins.
Collapse
Affiliation(s)
- J E Haber
- MS029 Rosentiel Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
130
|
Bashkirov VI, King JS, Bashkirova EV, Schmuckli-Maurer J, Heyer WD. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 2000; 20:4393-404. [PMID: 10825202 PMCID: PMC85806 DOI: 10.1128/mcb.20.12.4393-4404.2000] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
131
|
Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000; 405:473-7. [PMID: 10839544 DOI: 10.1038/35013083] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are recessive genetic disorders with susceptibility to cancer and similar cellular phenotypes. The protein product of the gene responsible for A-T, designated ATM, is a member of a family of kinases characterized by a carboxy-terminal phosphatidylinositol 3-kinase-like domain. The NBS1 protein is specifically mutated in patients with Nijmegen breakage syndrome and forms a complex with the DNA repair proteins Rad50 and Mrel1. Here we show that phosphorylation of NBS1, induced by ionizing radiation, requires catalytically active ATM. Complexes containing ATM and NBS1 exist in vivo in both untreated cells and cells treated with ionizing radiation. We have identified two residues of NBS1, Ser 278 and Ser 343 that are phosphorylated in vitro by ATM and whose modification in vivo is essential for the cellular response to DNA damage. This response includes S-phase checkpoint activation, formation of the NBS1/Mrel1/Rad50 nuclear foci and rescue of hypersensitivity to ionizing radiation. Together, these results demonstrate a biochemical link between cell-cycle checkpoints activated by DNA damage and DNA repair in two genetic diseases with overlapping phenotypes.
Collapse
Affiliation(s)
- S Zhao
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 78245-3207, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Whang YE, Tran C, Henderson C, Syljuasen RG, Rozengurt N, McBride WH, Sawyers CL. c-Abl is required for development and optimal cell proliferation in the context of p53 deficiency. Proc Natl Acad Sci U S A 2000; 97:5486-91. [PMID: 10805805 PMCID: PMC25855 DOI: 10.1073/pnas.97.10.5486] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-Abl tyrosine kinase and the p53 tumor suppressor protein interact functionally and biochemically in cellular genotoxic stress response pathways and are implicated as downstream mediators of ATM (ataxia-telangiectasia mutated). This fact led us to study genetic interactions in vivo between c-Abl and p53 by examining the phenotype of mice and cells deficient in both proteins. c-Abl-null mice show high neonatal mortality and decreased B lymphocytes, whereas p53-null mice are prone to tumor development. Surprisingly, mice doubly deficient in both c-Abl and p53 are not viable, suggesting that c-Abl and p53 together contribute to an essential function required for normal development. Fibroblasts lacking both c-Abl and p53 were similar to fibroblasts deficient in p53 alone, showing loss of the G(1)/S cell-cycle checkpoint and similar clonogenic survival after ionizing radiation. Fibroblasts deficient in both c-Abl and p53 show reduced growth in culture, as manifested by reduction in the rate of proliferation, saturation density, and colony formation, compared with fibroblasts lacking p53 alone. This defect could be restored by reconstitution of c-Abl expression. Taken together, these results indicate that the ATM phenotype cannot be explained solely by loss of c-Abl and p53 and that c-Abl contributes to enhanced proliferation of p53-deficient cells. Inhibition of c-Abl function may be a therapeutic strategy to target p53-deficient cells selectively.
Collapse
Affiliation(s)
- Y E Whang
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Marsh TC, Cole ES, Stuart KR, Campbell C, Romero DP. RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila. Genetics 2000; 154:1587-96. [PMID: 10747055 PMCID: PMC1461009 DOI: 10.1093/genetics/154.4.1587] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RAD51, the eukaryote homolog of the Escherichia coli recA recombinase, participates in homologous recombination during mitosis, meiosis, and in the repair of double-stranded DNA breaks. The Tetrahymena thermophila RAD51 gene was recently cloned, and the in vitro activities and induction of Rad51p following DNA damage were shown to be similar to that of RAD51 from other species. This study describes the pattern of Tetrahymena RAD51 expression during both the cell cycle and conjugation. Tetrahymena RAD51 mRNA abundance is elevated during macronuclear S phase during vegetative cell growth and with both meiotic prophase and new macronuclear development during conjugation. Gene disruption of the macronuclear RAD51 locus leads to severe abnormalities during both vegetative growth and conjugation. rad51 nulls divide slowly and incur rapid deterioration of their micronuclear chromosomes. Conjugation of two rad51 nulls leads to an arrest early during prezygotic development (meiosis I). We discuss the potential usefulness of the ciliates' characteristic nuclear duality for further analyses of the potentially unique roles of Tetrahymena RAD51.
Collapse
Affiliation(s)
- T C Marsh
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
134
|
Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 2000; 28:1145-53. [PMID: 10666456 PMCID: PMC102610 DOI: 10.1093/nar/28.5.1145] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.
Collapse
Affiliation(s)
- W Li
- Department of Molecular Genetics (MC669), College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Exposure of cells to ionizing radiation results in complex cellular responses resulting in cell death and altered proliferation states. The underlying cytotoxic, cytoprotective and cellular stress responses to radiation are mediated by existing signaling pathways, activation of which may be amplified by intrinsic cellular radical production systems. These signaling responses include the activation of plasma membrane receptors, the stimulation of cytoplasmic protein kinases, transcriptional activation, and altered cell cycle regulation. From the data presented, there is increasing evidence for the functional links between cellular signal transduction responses and DNA damage recognition and repair, cell survival, or cell death through apoptosis or reproductive mechanisms.
Collapse
Affiliation(s)
- R K Schmidt-Ullrich
- Department of Radiation Oncology Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
136
|
Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 2000; 19:463-71. [PMID: 10654944 PMCID: PMC305583 DOI: 10.1093/emboj/19.3.463] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1999] [Revised: 11/23/1999] [Accepted: 11/25/1999] [Indexed: 11/15/2022] Open
Abstract
The human genetic disorder ataxia telangiectasia (A-T), caused by mutation in the ATM gene, is characterized by chromosomal instability, radiosensitivity and defective cell cycle checkpoint activation. DNA double-strand breaks (dsbs) persist in A-T cells after irradiation, but the underlying defect is unclear. To investigate ATM's interactions with dsb repair pathways, we disrupted ATM along with other genes involved in the principal, complementary dsb repair pathways of homologous recombination (HR) or non-homologous end-joining (NHEJ) in chicken DT40 cells. ATM(-/-) cells show altered kinetics of radiation-induced Rad51 and Rad54 focus formation. Ku70-deficient (NHEJ(-)) ATM(-/-) chicken DT40 cells show radiosensitivity and high radiation-induced chromosomal aberration frequencies, while Rad54-defective (HR(-)) ATM(-/-) cells show only slightly elevated aberration levels after irradiation, placing ATM and HR on the same pathway. These results reveal that ATM defects impair HR-mediated dsb repair and may link cell cycle checkpoints to HR activation.
Collapse
Affiliation(s)
- C Morrison
- Bayer Chair Department of Molecular Immunology and Allergology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
137
|
Barilá D, Mangano R, Gonfloni S, Kretzschmar J, Moro M, Bohmann D, Superti-Furga G. A nuclear tyrosine phosphorylation circuit: c-Jun as an activator and substrate of c-Abl and JNK. EMBO J 2000; 19:273-81. [PMID: 10637231 PMCID: PMC305561 DOI: 10.1093/emboj/19.2.273] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear function of the c-Abl tyrosine kinase is not well understood. In order to identify nuclear substrates of Abl, we constructed a constitutively active and nuclear form of the protein. We found that active nuclear Abl efficiently phosphorylate c-Jun, a transcription factor not previously known to be tyrosine phosphorylated. After phosphorylation of c-Jun by Abl on Tyr170, both proteins interacted via the SH2 domain of Abl. Surprisingly, elevated levels of c-Jun activated nuclear Abl, resulting in activation of the JNK serine/threonine kinase. This phosphorylation circuit generates nuclear tyrosine phosphorylation and represents a reversal of previously known signalling models.
Collapse
Affiliation(s)
- D Barilá
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
138
|
Takao N, Mori R, Kato H, Shinohara A, Yamamoto KI. c-Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in chromosomal maintenance. J Biol Chem 2000; 275:725-8. [PMID: 10625600 DOI: 10.1074/jbc.275.2.725] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
c-Abl is activated by DNA damage in an ataxia telangiectasia mutated (ATM)-dependent manner and plays important roles in growth arrest and apoptosis induced by DNA damage. c-Abl also interacts physically and functionally with Rad51, a key molecule in homologous recombinational (HR) DNA repair. To study further the roles of c-Abl in HR DNA repair, we generated c-Abl(-/-) and ATM(-/-)/c-Abl(-/-) mutant cell lines from a chicken B lymphocyte DT40 cell line, comparing the phenotypes of these mutants to those of ATM(-/-) DT40 cells that we had created previously. We found that the time course of radiation-induced Rad51 focus formation is abnormal in ATM(-/-) DT40 cells, consistent with the observation that ATM(-/-) DT40 cells display hypersensitivity to ionizing radiation and highly elevated frequencies of both spontaneous and radiation-induced chromosomal aberrations. In contrast, c-Abl(-/-) cells did not show these ATM-related defects in their cellular response to radiation, nor did the disruption of c-Abl in ATM(-/-) DT40 cells exacerbate these ATM-related defects. However, c-Abl(-/-) DT40 cells, but not ATM(-/-) DT40 cells, were resistant to radiation-induced apoptosis, indicating an important role for c-Abl in this cellular response to ionizing radiation. These results therefore indicate that, although ATM plays an important role in genome maintenance, c-Abl is not essential for this ATM function. These findings suggest that c-Abl and ATM play important roles in the maintenance of the cell homeostasis in response to DNA damage that are, at least in part, independent.
Collapse
Affiliation(s)
- N Takao
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
139
|
Abstract
The c-Abl tyrosine kinase and its transforming variants have been implicated in tumorigenesis and in many important cellular processes. c-Abl is localized in the nucleus and the cytoplasm, where it plays distinct roles. The effects of c-Abl are mediated by multiple protein-protein and protein-DNA interactions and its tyrosine kinase domain. At the biochemical level, the mechanism of c-Abl kinase activation and the identification of its target proteins and cellular machineries have in part been solved. However, the phenotypic outcomes of these molecular events remained in large elusive. c-Abl has been shown to regulate the cell cycle and to induce under certain conditions cell growth arrest and apoptosis. In this respect the interaction of c-Abl with p53 and p73 has attracted particular attention. Recent findings have implicated c-Abl in an ionizing irradiation signaling pathway that elicits apoptosis. In this pathway p73 is an important immediate downstream effector. Here I review the current knowledge about these nuclear processes in which c-Abl is engaged and discuss some of their possible implications on cell physiology. Cell Death and Differentiation (2000) 7, 10 - 16.
Collapse
Affiliation(s)
- Y Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
140
|
Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 1999; 18:7883-99. [PMID: 10630641 DOI: 10.1038/sj.onc.1203283] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several newly identified tumor suppressor genes including ATM, NBS1, BRCA1 and BRCA2 are involved in DNA double-strand break repair (DSBR) and DNA damage-induced checkpoint activation. Many of the gene products involved in checkpoint control and DSBR have been studied in great detail in yeast. In addition to evolutionarily conserved proteins such as Chk1 and Chk2, studies in mammalian cells have identified novel proteins such as p53 in executing checkpoint control. DSBR proteins including Mre11, Rad50, Rad51, Rad54, and Ku are present in yeast and in mammals. Many of the tumor suppressor gene products interact with these repair proteins as well as checkpoint regulators, thus providing a biochemical explanation for the pleiotropic phenotypes of mutant cells. This review focuses on the proteins mediating G1/S, S, and G2/M checkpoint control in mammalian cells. In addition, mammalian DSBR proteins and their activities are discussed. An intricate network among DNA damage signal transducers, cell cycle regulators and the DSBR pathways is illustrated. Mouse knockout models for genes involved in these processes have provided valuable insights into their function, establishing genomic instability as a major contributing factor in tumorigenesis.
Collapse
Affiliation(s)
- G K Dasika
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | | | | | |
Collapse
|
141
|
Yoshida K, Kharbanda S, Kufe D. Functional interaction between SHPTP1 and the Lyn tyrosine kinase in the apoptotic response to DNA damage. J Biol Chem 1999; 274:34663-8. [PMID: 10574931 DOI: 10.1074/jbc.274.49.34663] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lyn protein-tyrosine kinase is activated in the cellular response to DNA-damaging agents. Here we demonstrate that Lyn associates constitutively with the SHPTP1 protein-tyrosine phosphatase. The SH3 domain of Lyn interacts directly with SHPTP1. The results show that Lyn phosphorylates SHPTP1 at the C-terminal Tyr-564 site. Lyn-mediated phosphorylation of SHPTP1 stimulates SHPTP1 tyrosine phosphatase activity. We also demonstrate that treatment of cells with 1-beta-D-arabinofuranosylcytosine and other genotoxic agents induces Lyn-dependent phosphorylation and activation of SHPTP1. The significance of the Lyn-SHPTP1 interaction is supported by the demonstration that activation of Lyn contributes in part to the apoptotic response to ara-C treatment and that SHPTP1 attenuates this response. These findings support a functional interaction between Lyn and SHPTP1 in the response to DNA damage.
Collapse
Affiliation(s)
- K Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
142
|
Baechtold H, Kuroda M, Sok J, Ron D, Lopez BS, Akhmedov AT. Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation. J Biol Chem 1999; 274:34337-42. [PMID: 10567410 DOI: 10.1074/jbc.274.48.34337] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination plays a fundamental role in DNA double-strand break repair. Previously, we detected two mammalian nuclear proteins of 100 and 75 kDa (POMp100 and POMp75, respectively) that are able to promote homologous DNA pairing, a key step in homologous recombination. Here we describe the identification of human (h) POMp75 as the pro-oncoprotein TLS/FUS. hPOMp75/TLS binds both single- and double-stranded DNAs and mediates annealing of complementary DNA strands. More important, it promotes the uptake of a single-stranded oligonucleotide into a homologous superhelical DNA to form a D-loop. The formation of a D-loop is an essential step in DNA double-strand break repair through recombination. DNA annealing and D-loop formation catalyzed by hPOMp75/TLS require Mg(2+) and are ATP-independent. Interestingly, the oncogenic fusion form TLS-CHOP is not able to promote DNA pairing. These data suggest a possible role for hPOMp75/TLS in maintenance of genomic integrity.
Collapse
Affiliation(s)
- H Baechtold
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
143
|
Affiliation(s)
- A Shinohara
- Department of Radiation and Cellular Oncology, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
144
|
Bertrand P, Akhmedov AT, Delacote F, Durrbach A, Lopez BS. Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Oncogene 1999; 18:4515-21. [PMID: 10442642 DOI: 10.1038/sj.onc.1203048] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously developed an assay to measure DNA homologous pairing activities in crude extracts: The POM blot. In mammalian nuclear extracts, we detected two major DNA homologous pairing activities: POMp100 and POMp75. Here, we present the purification and identification of POMp75 as the pro-oncoprotein TLS/FUS. Because of the pro-oncogene status of TLS/FUS, we studied in addition, the relationships between cell proliferation and POM activities. We show that transformation of human fibroblasts by SV40 large T antigen results in a strong increase of both POMpl00 and TLS/POMp75 activities. Although detectable levels of both POMp100 and TLS/POMp75 are observed in non-immortalized fibroblasts or lymphocytes, fibroblasts at mid confluence or lymphocytes stimulated by phytohaemaglutinin, show higher levels of POM activities. Moreover, induction of differentiation of mouse F9 line by retinoic acid leads to the inhibition of both POMp100 and TLS/POMp75 activities. Comparison of POM activity of TLS/FUS with the amount of TLS protein detected by Western blot, suggests that the POM activity could be regulated by post-translation modification. Taken together, these results indicate that POMp100 and TLS/POMp75 activities are present in normal cells but are connected to cell proliferation. Possible relationship between cell proliferation, response to DNA damage and DNA homologous pairing activity of the pro-oncoprotein TLS/FUS are discussed.
Collapse
Affiliation(s)
- P Bertrand
- CEA, DSV, DRR, CNRS UMR 217, Fontenay aux Roses, France
| | | | | | | | | |
Collapse
|
145
|
Kohn KW. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 1999; 10:2703-34. [PMID: 10436023 PMCID: PMC25504 DOI: 10.1091/mbc.10.8.2703] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network.
Collapse
Affiliation(s)
- K W Kohn
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
146
|
Aihara H, Ito Y, Kurumizaka H, Yokoyama S, Shibata T. The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J Mol Biol 1999; 290:495-504. [PMID: 10390347 DOI: 10.1006/jmbi.1999.2904] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human Rad51 protein (HsRad51) is a homolog of Escherichia coli RecA protein, and functions in DNA repair and recombination. In higher eukaryotes, Rad51 protein is essential for cell viability. The N-terminal region of HsRad51 is highly conserved among eukaryotic Rad51 proteins but is absent from RecA, suggesting a Rad51-specific function for this region. Here, we have determined the structure of the N-terminal part of HsRad51 by NMR spectroscopy. The N-terminal region forms a compact domain consisting of five short helices, which shares structural similarity with a domain of endonuclease III, a DNA repair enzyme of E. coli. NMR experiments did not support the involvement of the N-terminal domain in HsRad51-HsBrca2 interaction or the self-association of HsRad51 as proposed by previous studies. However, NMR tiration experiments demonstrated a physical interaction of the domain with DNA, and allowed mapping of the DNA binding surface. Mutation analysis showed that the DNA binding surface is essential for double-stranded and single-stranded DNA binding of HsRad51. Our results suggest the presence of a DNA binding site on the outside surface of the HsRad51 filament and provide a possible explanation for the regulation of DNA binding by phosphorylation within the N-terminal domain.
Collapse
Affiliation(s)
- H Aihara
- Cellular & Molecular Biology Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
147
|
Mallya SM, Sikpi MO. Requirement for p53 in ionizing-radiation-inhibition of double-strand-break rejoining by human lymphoblasts. Mutat Res 1999; 434:119-32. [PMID: 10422540 DOI: 10.1016/s0921-8777(99)00020-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ionizing radiation (IR) triggers apoptosis, cell-cycle arrest, and DNA-repair induction in mammalian cells. These responses are mediated by proteins, including p53, which are activated or induced by IR. To determine the role of p53 in double-strand break (DSB) repair following irradiation of mammalian cells, we compared the abilities of unirradiated and irradiated TK6 human lymphoblast line and its derivatives TK6-E6-20C and TK6-E6-5E to repair restriction-enzyme-linearized shuttle pZ189 and the luciferase-reporter plasmid pGL3-control. TK6-E6-20C expresses wild-type p53 like the parental TK6 line, while TK6-E6-5E is p53 null. DSB-rejoining capacity was determined from the ratio of viable progenies arising from DSB-containing plasmids (linDNA) to the number of viable progenies from undamaged, supercoiled plasmids (scDNA). The ratio from the p53wt hosts was two- to three-fold higher than that from the p53null host, using either pZ189 or pGL3-control plasmid. After exposure of both hosts to 0.5 Gy gamma-radiation, DSB-rejoining capacity of p53null increased two-fold compared to unirradiated null controls, if transfection occurred immediately after irradiation. In contrast, the DSB-rejoining capacity of p53wt was unaffected by irradiation. If transfection was delayed for 2 h following irradiation, however, DSB-rejoining declined in both p53wt and p53null hosts. Irradiation also altered DSB-rejoining fidelity, measured from the mutation frequencies, among progenies of pZ189 linDNA. But, unlike rejoining capacity, changes in DSB-rejoining fidelity were similar in p53wt and p53null hosts. Changes in cell-cycle distribution in p53wt and p53null hosts were also similar following irradiation. These findings show that IR increases DSB-rejoining capacity in mammalian cells without functional p53, suggesting that p53 participates in suppressing DSB-rejoining following exposure of mammalian cells to IR.
Collapse
Affiliation(s)
- S M Mallya
- Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030-1605, USA
| | | |
Collapse
|
148
|
Abstract
c-Abl, the product of the cellular homologue of the transforming gene of Abelson murine leukaemia virus, has been a protein in search of a purpose for over two decades. Because c-Abl is implicated in the pathogenesis of several human leukaemias, understanding the functions of Abl is an important goal. Recently, biochemical and genetic approaches have converged to shed new light on the mechanism of regulation of c-Abl kinase activity and the multiple roles of c-Abl in cellular physiology. This review summarizes our current understanding of the many facets of c-Abl biology, emphasizing recent studies on Drosophila and mammalian Abl.
Collapse
Affiliation(s)
- R A Van Etten
- Center for Blood Research, Dept of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
149
|
Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gasser PJ, Park MS, Sung P, Lee EY. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 1999; 274:12748-52. [PMID: 10212258 DOI: 10.1074/jbc.274.18.12748] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells from individuals with the recessive cancer-prone disorder ataxia telangiectasia (A-T) are hypersensitive to ionizing radiation (I-R). ATM (mutated in A-T) is a protein kinase whose activity is stimulated by I-R. c-Abl, a nonreceptor tyrosine kinase, interacts with ATM and is activated by ATM following I-R. Rad51 is a homologue of bacterial RecA protein required for DNA recombination and repair. Here we demonstrate that there is an I-R-induced Rad51 tyrosine phosphorylation, and this induction is dependent on both ATM and c-Abl. ATM, c-Abl, and Rad51 can be co-immunoprecipitated from cell extracts. Consistent with the physical interaction, c-Abl phosphorylates Rad51 in vitro and in vivo. In assays using purified components, phosphorylation of Rad51 by c-Abl enhances complex formation between Rad51 and Rad52, which cooperates with Rad51 in recombination and repair. After I-R, an increase in association between Rad51 and Rad52 occurs in wild-type cells but not in cells with mutations that compromise ATM or c-Abl. Our data suggest signaling mediated through ATM, and c-Abl is required for the correct post-translational modification of Rad51, which is critical for the assembly of Rad51 repair protein complex following I-R.
Collapse
Affiliation(s)
- G Chen
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Huang Y, Nakada S, Ishiko T, Utsugisawa T, Datta R, Kharbanda S, Yoshida K, Talanian RV, Weichselbaum R, Kufe D, Yuan ZM. Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage. Mol Cell Biol 1999; 19:2986-97. [PMID: 10082566 PMCID: PMC84093 DOI: 10.1128/mcb.19.4.2986] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 12/15/1998] [Indexed: 11/20/2022] Open
Abstract
We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage.
Collapse
Affiliation(s)
- Y Huang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|