101
|
Ma HP, Chou CF, Wei SP, Eaton DC. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 2007; 455:169-80. [PMID: 17605040 DOI: 10.1007/s00424-007-0294-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1530 Third Avenue South, ZRB 510, Birmingham, AL, 35294, USA.
| | | | | | | |
Collapse
|
102
|
Abstract
Cystic fibrosis (CF) lung disease reflects the failure of airways defense against chronic bacterial infection. Studies of CF cultures, transgenic mice, and CF patients suggest that the initiating event in CF airways disease pathogenesis is reduced airway surface liquid (ASL) volume, i.e., dehydration. CF ASL volume regulation depends on a single extracellular signaling system, ATP, which renders CF airways more vulnerable to disease-causing insults (e.g., viruses) than are normal airways, which regulate ASL volume by dual ATP and adenosine signaling pathways. Clinical studies have explored the hypothesis that treating the dehydration of CF airways will be therapeutically beneficial. Inhaled hypertonic saline osmotically draws water onto airway surfaces, improves mucus clearance and pulmonary function, and reduces acute exacerbations in CF patients. Thus, rehydration therapies may slow the progression of CF lung disease in patients with established bacterial infection and may prevent the onset of CF lung disease if initiated early in life.
Collapse
Affiliation(s)
- Richard C Boucher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
103
|
Button B, Picher M, Boucher RC. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia. J Physiol 2007; 580:577-92. [PMID: 17317749 PMCID: PMC2075559 DOI: 10.1113/jphysiol.2006.126086] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na(+)-channel-mediated Na(+) absorption and stimulation of Cl(-) secretion through CFTR and the Ca(2+)-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence.
Collapse
Affiliation(s)
- Brian Button
- Cystic Fibrosis Research and Treatment Center, University of North Carolna, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
104
|
Pochynyuk O, Tong Q, Staruschenko A, Stockand JD. Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. J Physiol 2007; 580:365-72. [PMID: 17272344 PMCID: PMC2075560 DOI: 10.1113/jphysiol.2006.127449] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several distinct types of ion channels bind and directly respond to phosphatidylinositides, including phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) and phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)). This regulation is physiologically relevant for its dysfunction, in some instances, causes disease. Recent studies identify the epithelial Na(+) channel (ENaC) as a channel sensitive to phosphatidylinositides. ENaC appears capable of binding both PI(4,5)P(2) and PI(3,4,5)P(3) with binding stabilizing channel gating. The binding sites for these molecules within ENaC are likely to be distinct with the former phosphoinositide interacting with elements in the cytosolic NH(2)-terminus of the beta- and gamma-ENaC subunits and the latter with cytosolic regions immediately following the second transmembrane domains in these two subunits. PI(4,5)P(2) binding to ENaC appears saturated at rest and necessary for channel gating. Thus, decreases in cellular PI(4,5)P(2) levels may serve as a convergence point for inhibitory regulation of ENaC by G-protein coupled receptors and receptor tyrosine kinases. In contrast, apparent PI(3,4,5)P(3) binding to ENaC is not saturated. This enables the channel to respond with gating changes in a rapid and dynamic manner to signalling input that influences cellular PI(3,4,5)P(3) levels.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- University of Texas Health Science Center, Department of Physiology, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
105
|
Abstract
Cystic fibrosis (CF) lung disease reflects persistent bacterial infection of airway lumens. Several hypotheses have been advanced to link mutations in the CFTR gene to the failure of the CF lung to defend itself against bacterial infection. Amongst the most productive hypotheses at present is the ''low airway surface liquid (ASL) volume'' or ''dehydration'' hypothesis. This hypothesis predicts that airway surface dehydration produces the mucus adhesion, inflammation, and bacterial biofilm formation characteristic of CF. Clinical trials of inhaled hypertonic saline have demonstrated therapeutic benefit of manoeuvres designed to rehydrate CF airway surfaces.
Collapse
Affiliation(s)
- R C Boucher
- CF/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
106
|
Santarius M, Lee C, Anderson R. Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. Biochem J 2006; 398:1-13. [PMID: 16856876 PMCID: PMC1525017 DOI: 10.1042/bj20060565] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of PIPK (phosphatidylinositol phosphate kinase) and PtdIns(4,5)P2 signalling by small G-proteins and their effectors is key to many biological functions. Through selective recruitment and activation of different PIPK isoforms, small G-proteins such as Rho, Rac and Cdc42 modulate actin dynamics and cytoskeleton-dependent cellular events in response to extracellular signalling. These activities affect a number of processes, including endocytosis, bacterial penetration into host cells and cytolytic granule-mediated targeted cell killing. Small G-proteins and their modulators are also regulated by phosphoinositides through translocation and conformational changes. Arf family small G-proteins act at multiple sites as regulators of membrane trafficking and actin cytoskeletal remodelling, and regulate a feedback loop comprising phospholipase D, phosphatidic acid, PIPKs and PtdIns(4,5)P2, contributing to enhancement of PtdIns(4,5)P2-mediated cellular events and receptor signalling. Na+, Kir (inwardly rectifying K+), Ca2+ and TRP (transient receptor potential) ion channels are regulated by small G-proteins and membrane pools of PtdIns(4,5)P2. Yeast phosphatidylinositol 4-phosphate 5-kinases Mss4 and Its3 are involved in resistance against disturbance of sphingolipid biosynthesis and maintenance of cell integrity through the synthesis of PtdIns(4,5)P2 and downstream signalling through the Rom2/Rho2 and Rgf1/Rho pathways. Here, we review models for regulated intracellular targeting of PIPKs by small G-proteins and other modulators in response to extracellular signalling. We also describe the spatial and temporal cross-regulation of PIPKs and small G-proteins that is critical for a number of cellular functions.
Collapse
Affiliation(s)
- Megan Santarius
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
| | - Chang Ho Lee
- †Department of Pharmacology, College of Medicine, Hanyang University, 17 Hengdang-dong, Seongdong-ku, Seoul, 133-791, South Korea
- To whom correspondence should be addressed (email )
| | - Richard A. Anderson
- *Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, U.S.A
- ‡Department of Pharmacology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, U.S.A
| |
Collapse
|
107
|
Tarran R, Trout L, Donaldson SH, Boucher RC. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. ACTA ACUST UNITED AC 2006; 127:591-604. [PMID: 16636206 PMCID: PMC2151517 DOI: 10.1085/jgp.200509468] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-mum periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to >or=7 microm are poorly understood. Using bumetanide as an inhibitor of Cl- secretion, and nystatin as an activator of Na+ absorption, we found that a coordinated "blending" of both Cl- secretion and Na+ absorption must occur to effect ASL volume homeostasis. We then investigated how ASL volume status is regulated by the underlying epithelia. Cilia were not critical to this process as (a) ASL volume was normal in cultures from patients with primary ciliary dyskinesia with immotile cilia, and (b) in normal cultures that had not yet undergone ciliogenesis. However, we found that maneuvers that mimic deposition of excess ASL onto the proximal airways, which occurs during mucociliary clearance and after glandular secretion, acutely stimulated Na+ absorption, suggesting that volume regulation was sensitive to changes in concentrations of soluble mediators in the ASL rather than alterations in ciliary beating. To investigate this hypothesis further, we added potential "soluble mediators" to the ASL. ASL volume regulation was sensitive to a channel-activating protein (CAP; trypsin) and a CAP inhibitor (aprotinin), which regulated Na+ absorption via changes in epithelial Na+ channel (ENaC) activity in both normal and cystic fibrosis cultures. ATP was also found to acutely regulate ASL volume by inducing secretion in normal and cystic fibrosis (CF) cultures, while its metabolite adenosine (ADO) evoked secretion in normal cultures but stimulated absorption in CF cultures. Interestingly, the amount of ASL/Cl- secretion elicited by ATP/ADO was influenced by the level of CAP-induced Na+ absorption, suggesting that there are important interactions between the soluble regulators which finely tune ASL volume.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina, Chapel Hill 27599, USA.
| | | | | | | |
Collapse
|
108
|
Pochynyuk O, Tong Q, Staruschenko A, Ma HP, Stockand JD. Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. Am J Physiol Renal Physiol 2006; 290:F949-57. [PMID: 16601296 DOI: 10.1152/ajprenal.00386.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is an end-effector of diverse cellular signaling cascades, including those with phosphatidylinositide second messengers. Recent evidence also suggests that in some instances, phospatidylinositides can directly interact with ENaC to increase channel activity by increasing channel open probability and/or membrane localization. We review here findings relevant to regulation of ENaC by phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-triphosphate (PIP(3)). Similar to its actions on other ion channels, PIP(2) is permissive for ENaC openings having a direct effect on gating. The PIP(2) binding site in ENaC involved in this regulation is most likely localized to the NH(2) terminus of beta-ENaC. PIP(3) also affects ENaC gating but, rather than being permissive, augments open probability. The PIP(3) binding site in ENaC involved in this regulation is localized to the proximal region of the COOH terminus of gamma-ENaC just following the second transmembrane domain. In complementary pathways, PIP(3) also impacts ENaC membrane levels through both direct actions on the channel and via a signaling cascade involving phosphoinositide 3-OH kinase (PI3-K) and the aldosterone-induced gene product serum and glucocorticoid-inducible kinase. The putative PIP(3) binding site in ENaC involved in direct regulation of channel membrane levels has not yet been identified.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Dept. of Physiology, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
109
|
Abstract
The physiological effects of many extracellular stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid-signaling pathways. These signaling responses include the classically described conversion of PtdIns(4,5)P(2) to the Ca(2+)-mobilizing second messenger Ins(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. Here we discuss how the family of PLCs elaborates a minimal catalytic core typified by PLC-delta to confer multiple modes of regulation on their phospholipase activities. Although PLC-dependent signaling is prominently regulated by direct interactions with heterotrimeric G proteins or tyrosine kinases, the existence of at least 13 divergent PLC isozymes promises a diverse repertoire of regulatory mechanisms for this class of important signaling proteins. We focus here on the recently realized and extensive regulation of inositol lipid signaling by Ras superfamily GTPases directly acting on PLC isozymes and conclude by considering the biological and pharmacological ramifications of this regulation.
Collapse
Affiliation(s)
- T Kendall Harden
- Departments of Pharmacology, Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
110
|
Kunzelmann K, Scheidt K, Scharf B, Ousingsawat J, Schreiber R, Wainwright B, McMorran B. Flagellin of Pseudomonas aeruginosa inhibits Na+ transport in airway epithelia. FASEB J 2006; 20:545-6. [PMID: 16410345 DOI: 10.1096/fj.05-4454fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa causes severe life-threatening airway infections that are a frequent cause for hospitalization of cystic fibrosis (CF) patients. These Gram-negative pathogens possess flagella that contain the protein flagellin as a major structural component. Flagellin binds to the host cell glycolipid asialoGM1 (ASGM1), which appears enriched in luminal membranes of respiratory epithelial cells. We demonstrate that in mouse airways, luminal exposure to flagellin leads to inhibition of Na+ absorption by the epithelial Na+ channel ENaC, but does not directly induce a secretory response. Inhibition of ENaC was observed in tracheas of wild-type mice and was attenuated in mice homozygous for the frequent cystic fibrosis conductance regulator (CFTR) mutation G551D. Similar to flagellin, anti-ASGM1 antibody also inhibited ENaC. The inhibitory effects of flagellin on ENaC were attenuated by blockers of the purinergic signaling pathway, although an increase in the intracellular Ca2+ concentration by recombinant or purified flagellin or whole flagella was not observed. Because an inhibitor of the mitogen-activated protein kinase (MAPK) pathway also attenuated the effects of flagellin on Na+ absorption, we conclude that flagellin exclusively inhibits ENaC, probably due to release of ATP and activation of purinergic receptors of the P2Y subtype. Stimulation of these receptors activates the MAPK pathway, thereby leading to inhibition of ENaC. Thus, P. aeruginosa reduces Na+ absorption, which could enhance local mucociliary clearance, a mechanism that seem to be attenuated in CF.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
111
|
Tarran R, Button B, Boucher RC. REGULATION OF NORMAL AND CYSTIC FIBROSIS AIRWAY SURFACE LIQUID VOLUME BY PHASIC SHEAR STRESS. Annu Rev Physiol 2006; 68:543-61. [PMID: 16460283 DOI: 10.1146/annurev.physiol.68.072304.112754] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physical removal of viruses and bacteria on the mucociliary escalator is an important aspect of the mammalian lung's innate defense mechanism. The volume of airway surface liquid (ASL) present in the respiratory tract is a critical determinant of both mucus hydration and the rate of mucus clearance from the lung. ASL volume is maintained by the predominantly ciliated epithelium via coordinated regulation of (a) absorption, by the epithelial Na+ channel, and (b) secretion, by the Ca2+-activated Cl- channel (CaCC) and CFTR. This review provides an update on our current understanding of how shear stress regulates ASL volume height in normal and cystic fibrosis (CF) airway epithelia through extracellular ATP- and adenosine (ADO)-mediated pathways that modulate ion transport and ASL volume homeostasis. We also discuss (a) how derangement of the ADO-CFTR pathway renders CF airways vulnerable to viral infections that deplete ASL volume and produce mucus stasis, and (b) potential shear stress-dependent therapies for CF.
Collapse
Affiliation(s)
- Robert Tarran
- Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA.
| | | | | |
Collapse
|
112
|
Helms MN, Liu L, Liang YY, Al-Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP. Phosphatidylinositol 3,4,5-Trisphosphate Mediates Aldosterone Stimulation of Epithelial Sodium Channel (ENaC) and Interacts with γ-ENaC. J Biol Chem 2005; 280:40885-91. [PMID: 16204229 DOI: 10.1074/jbc.m509646200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whole cell voltage clamp experiments were performed in a mouse cortical collecting duct principal cell line using patch pipettes back-filled with a solution containing phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). PIP(3) significantly increased amiloridesensitive current in control cells but not in the cells prestimulated by aldosterone. Additionally, aldosterone stimulated amiloridesensitive current in control cells, but not in the cells that expressed a PIP(3)-binding protein (Grp1-PH), which sequestered intracellular PIP(3). 12 amino acids from the N-terminal tail (APGEKIKAKIKK) of gamma-epithelial sodium channel (gamma-ENaC) were truncated by PCRbased mutagenesis (gammaT-ENaC). Whole cell and confocal microscopy experiments were conducted in Madin-Darby canine kidney cells co-expressing alpha- and beta-ENaC only or with either gamma-ENaC or gamma(T)-ENaC. The data demonstrated that the N-terminal tail truncation significantly decreased amiloride-sensitive current and that both the N-terminal tail truncation and LY-294002 (a PI3K inhibitor) prevented ENaC translocation to the plasmamembrane. These data suggest that PIP(3) mediates aldosterone-induced ENaC activity and trafficking and that the N-terminal tail of gamma-ENaC is necessary for channel trafficking, probably channel gating as well. Additionally, we demonstrated a novel interaction between gamma-ENaC and PIP(3).
Collapse
Affiliation(s)
- My N Helms
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Halstead JR, Jalink K, Divecha N. An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol Sci 2005; 26:654-60. [PMID: 16253350 DOI: 10.1016/j.tips.2005.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/05/2005] [Accepted: 10/06/2005] [Indexed: 11/18/2022]
Abstract
Although an established regulator of many cellular functions, the phosphoinositide phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2) appears to have evaded the attention of drug-discovery companies. An increasing number of reports have identified potential links between PtdIns(4,5)P2-mediated signalling pathways and the aetiology of many human diseases. Here, we review current knowledge of the regulation and function of PtdIns(4,5)P2 and discuss how aberrant PtdIns(4,5)P2-mediated signalling might contribute to human pathologies such as cardiac failure, bipolar disorder, channelopathies and the genetic disorder Lowe syndrome.
Collapse
Affiliation(s)
- Jonathan R Halstead
- Department of Cellular Biochemistry, the Netherlands Cancer Institute, AvL ziekenhuis, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
114
|
Helms MN, Chen XJ, Ramosevac S, Eaton DC, Jain L. Dopamine regulation of amiloride-sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L710-L722. [PMID: 16284210 DOI: 10.1152/ajplung.00486.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cell line (L2). Dopamine increased channel open probability (P(o)) without changing the unitary current. The D(1) receptor blocker SCH-23390 blocked the dopamine effect, but the D(2) receptor blocker sulpiride did not. The dopamine-mediated increase in ENaC activity was not a secondary effect of dopamine stimulation of Na-K-ATPase, since ouabain applied to the basolateral surface to block the activity of Na-K-ATPase did not alter dopamine-mediated ENaC activity. Protein kinase A (PKA) was not responsible for dopamine's effect since a PKA inhibitor, H89, did not reduce dopamine's effect. However, cpt-2-O-Me-cAMP, which selectively binds and activates EPAC (exchange protein activated by cAMP) but not PKA, increased ENaC P(o). An Src inhibitor, PP2, and the phosphatidylinositol-3-kinase inhibitor, LY-294002, blocked dopamine's effect on ENaC. In addition, an MEK blocker, U0126, an inhibitor of phospholipase A(2), and a protein phosphatase inhibitor also blocked the effect of dopamine on ENaC P(o). Finally, since the cAMP-EPAC-Rap1 pathway also activates DARPP32 (32-kDa dopamine response protein phosphatase), we confirmed that dopamine phosphorylates DARPP32, and okadaic acid, which blocks phosphatases (DARPP32), also blocks dopamine's effect. In summary, dopamine increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC and Rap1, signaling molecules usually associated with growth-factor-activated receptors.
Collapse
Affiliation(s)
- My N Helms
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
115
|
Abstract
Anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) are normally located in the inner leaflet of the plasma membrane, where these anionic phospholipids can regulate transmembrane proteins, including ion channels and transporters. Recent work has demonstrated that (1) ATP inhibits the renal epithelial sodium channel (ENaC) via a phospholipase C-dependent pathway that reduces PIP(2), (2) aldosterone stimulates ENaC via phosphoinositide 3-kinase, and (3) PIP(2) and PIP(3) regulate ENaC. Several lines of evidence show that ATP stimulation of purinergic P2Y receptors hydrolyzes PIP(2) and that aldosterone stimulation of steroid receptors induces PIP(3) formation. These studies together suggest that one primary mechanism for regulating ENaC is by alteration of anionic phospholipids and that the receptor-mediated and hormonal regulation of ENaC works through a variety of signaling pathways, but many of these pathways finally alter ENaC activity by regulating the formation or degradation of anionic phospholipids. Therefore, changes in the concentration of PIP(2) and PIP(3) are hypothesized to participate in the regulation of ENaC by purinergic and corticoid receptors. The underlying mechanism may be associated with a physical interaction of the positively charged cytoplasmic domains of the beta- and gamma-ENaC with the negatively charged membrane phospholipids. The exact nature of this interaction will require further investigation.
Collapse
Affiliation(s)
- He-Ping Ma
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, 1530 Third Avenue South, Sparks Center 865, Birmingham, AL 35294, USA.
| | | |
Collapse
|
116
|
Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD. Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 2005; 280:37565-71. [PMID: 16154997 DOI: 10.1074/jbc.m509071200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.
Collapse
Affiliation(s)
- Oleh Pochynyuk
- Department of Physiology, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | | | | | | | | |
Collapse
|
117
|
Bachhuber T, König J, Voelcker T, Mürle B, Schreiber R, Kunzelmann K. Cl- interference with the epithelial Na+ channel ENaC. J Biol Chem 2005; 280:31587-94. [PMID: 16027156 DOI: 10.1074/jbc.m504347200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.
Collapse
Affiliation(s)
- Tanja Bachhuber
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005; 15:370-8. [PMID: 15922587 DOI: 10.1016/j.conb.2005.05.005] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/05/2005] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate is a signaling phospholipid of the plasma membrane that has a dynamically changing concentration. In addition to being the precursor of inositol trisphosphate and diacylglycerol, it complexes with and regulates many cytoplasmic and membrane proteins. Recent work has characterized the regulation of a wide range of ion channels by phosphatidylinositol 4,5-bisphosphate, helping to redefine the role of this lipid in cells and in neurobiology. In most cases, phosphatidylinositol 4,5-bisphosphate increases channel activity, and its hydrolysis by phospholipase C reduces channel activity.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
119
|
Kunzelmann K, Sun J, Markovich D, König J, Mürle B, Mall M, Schreiber R. Control of ion transport in mammalian airways by protease activated receptors type 2 (PAR-2). FASEB J 2005; 19:969-70. [PMID: 15809358 DOI: 10.1096/fj.04-2469fje] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G- proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
120
|
Falin R, Veizis IE, Cotton CU. A role for ERK1/2 in EGF- and ATP-dependent regulation of amiloride-sensitive sodium absorption. Am J Physiol Cell Physiol 2005; 288:C1003-11. [PMID: 15634742 DOI: 10.1152/ajpcell.00213.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor-mediated inhibition of amiloride-sensitive sodium absorption was observed in primary and immortalized murine renal collecting duct cell (mCT12) monolayers. The addition of epidermal growth factor (EGF) to the basolateral bathing solution of polarized monolayers reduced amiloride-sensitive short-circuit current (I(sc)) by 15-25%, whereas the addition of ATP to the apical bathing solution decreased I(sc) by 40-60%. Direct activation of PKC with phorbol 12-myristate 13-acetate (PMA) and mobilization of intracellular calcium with 2,5-di-tert-butyl-hydroquinone (DBHQ) reduced amiloride-sensitive I(sc) in mCT12 monolayers by 46 +/- 4% (n = 8) and 22 +/- 2% (n = 8), respectively. Exposure of mCT12 cells to EGF, ATP, PMA, and DBHQ caused an increase in phosphorylation of p42/p44 (extracellular signal-regulated kinase; ERK1/2). Pretreatment of mCT12 monolayers with an ERK kinase inhibitor (PD-98059; 30 microM) prevented phosphorylation of p42/p44 and significantly reduced EGF, ATP, and PMA-induced inhibition of amiloride-sensitive I(sc). In contrast, pretreatment of monolayers with a PKC inhibitor (bisindolylmaleimide I; GF109203x; 1 microM) almost completely blocked the PMA-induced decrease in I(sc), but did not alter the EGF- or ATP-induced inhibition of I(sc). The DBHQ-mediated decrease in I(sc) was due to inhibition of basolateral Na(+)-K(+)-ATPase, but EGF-, ATP-, and PMA-induced inhibition was most likely due to reduced apical sodium entry (epithelial Na(+) channel activity). The results of these studies demonstrate that acute inhibition of amiloride-sensitive sodium transport by extracelluar ATP and EGF involves ERK1/2 activation and suggests a role for MAP kinase signaling as a negative regulator of electrogenic sodium absorption in epithelia.
Collapse
Affiliation(s)
- Rebecca Falin
- Case Western Reserve Univ., 2109 Adelbert Rd., Cleveland, OH 44106-4948, USA
| | | | | |
Collapse
|
121
|
Blazer-Yost BL, Nofziger C. Phosphoinositide lipid second messengers: new paradigms for transepithelial signal transduction. Pflugers Arch 2004; 450:75-82. [PMID: 15614575 DOI: 10.1007/s00424-004-1371-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Multiple forms of phosphatidylinositol are generated by differential phosphorylation of the inositol headgroup. These phosphoinositides, specifically PI(4,5)P2, have been implicated as modulators in a variety of transport processes. The data indicate that phosphoinositides can modulate transporters directly or via the activation of down-stream signaling components. The phosphoinositide pathway has been linked to changes in transporter kinetics, intracellular signaling, membrane targeting and membrane stability. Recent results obtained for several of the well-characterized transport systems suggest the need to reassess the role of PI(4,5)P2 and question whether lower abundance forms of the phosphoinositides, notably PI(3,4,5)P3 (PIP3) and PI(3,4)P2, are the pertinent transport regulators. In contrast to PI(4,5)P2, these latter forms represent a dynamic, regulated pool, the characteristics of which are more compatible with the nature of signaling intermediates. A recently described, novel transepithelial signaling pathway has been demonstrated for PIP3 in which a signal initiated on the basolateral membrane is transduced to the apical membrane entirely within the planar face of the inner leaflet of the plasma membrane. The new paradigms emerging from recent studies may be widely applicable to transporter regulation in other cell types and are particularly relevant for signaling in polarized cells.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan St., Indianapolis, IN, 46202, USA.
| | | |
Collapse
|
122
|
Himmel B, Nagel G. Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates. EMBO Rep 2004; 5:85-90. [PMID: 14710196 PMCID: PMC1298951 DOI: 10.1038/sj.embor.7400034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 11/08/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed in many epithelia and in the heart. Phosphorylation of CFTR by protein kinases is thought to be an absolute prerequisite for the opening of CFTR channels. In addition, nucleoside triphosphates were shown to regulate the opening of phosphorylated CFTR. Here, we report that phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates human CFTR, resulting in ATP responsiveness of PIP(2)-treated CFTR. PIP(2) alone is not sufficient to open CFTR, but ATP opens nonphosphorylated CFTR after application of PIP(2). The effect of PIP(2) is independent of protein kinases, as PIP(2) activates CFTR in the complete absence of Mg. Phosphatidylinositol and phosphatidylinositol monophosphate activate CFTR less efficiently than PIP(2). PIP(2) application to phosphorylated CFTR may inhibit the CFTR chloride current. We suggest that regulation of CFTR by PIP(2) is a previously unrecognized, alternative mechanism to control chloride conductance.
Collapse
Affiliation(s)
- Bettina Himmel
- Max-Planck-Institut für Biophysik, Marie-Curie-Str. 15, D-60439 Frankfurt/Main, Germany
| | - Georg Nagel
- Max-Planck-Institut für Biophysik, Marie-Curie-Str. 15, D-60439 Frankfurt/Main, Germany
- Tel: +49 69 6303 2003; Fax: +49 69 6303 2002; E-mail:
| |
Collapse
|
123
|
Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R. Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 2004; 19:142-3. [PMID: 15504951 DOI: 10.1096/fj.04-2314fje] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stimulation of purinergic receptors inhibits amiloride-sensitive Na+ transport in epithelial tissues by an unknown mechanism. Because previous studies excluded the role of intracellular Ca2+ or protein kinase C, we examined whether purinergic regulation of Na+ absorption occurs via hydrolysis of phospholipid such as phosphatidylinositol-bisphosphates (PIP2). Inhibition of amiloride-sensitive short-circuit currents (Isc-Amil) by adenine 5'-triphosphate (ATP) in native tracheal epithelia and M1 collecting duct cells was suppressed by binding neomycin to PIP2, and recovery from ATP inhibition was abolished by blocking phosphatidylinositol-4-kinase or diacylglycerol kinase. Stimulation by ATP depleted PIP2 from apical membranes, and PIP2 co-immunoprecipitated the beta subunit of ENaC. ENaC was inhibited by ATP stimulation of P2Y2 receptors in Xenopus oocytes. Mutations in the PIP2 binding domain of betaENaC but not gammaENaC reduced ENaC currents without affecting surface expression. Collectively, these data supply evidence for a novel and physiologically relevant regulation of ENaC in epithelial tissues. Although surface expression is controlled by its C terminus, N-terminal binding of betaENaC to PIP2 determines channel activity.
Collapse
Affiliation(s)
- K Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Tong Q, Stockand JD. Receptor tyrosine kinases mediate epithelial Na(+) channel inhibition by epidermal growth factor. Am J Physiol Renal Physiol 2004; 288:F150-61. [PMID: 15454394 DOI: 10.1152/ajprenal.00261.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidermal growth factor (EGF) decreases Na(+) reabsorption across distal nephron epithelia. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) transport in this portion of the nephron. Abnormal ENaC activity and EGF signaling are both associated with polycystic kidney disease localized to the distal nephron. We tested here whether EGF and other ligands for receptor tyrosine kinases (RTK) decrease ENaC activity. EGF markedly and quickly decreased ENaC activity. The RTK inhibitor erbstatin blocked EGF actions on ENaC and when added alone increased channel activity, uncovering basal suppression by endogenous RTK. The protein tyrosine phosphatase inhibitor vanadate, similar to EGF, decreased ENaC activity. Growth factors and vanadate decreased ENaC activity by decreasing open probability. ENaC was not phosphorylated in response to EGF, indicating that intermediary proteins transduce the inhibitory signal from the EGF receptor (EGFR) to ENaC. We find that neither MAPK 1/2 nor c-Src is signaling intermediaries between EGFR and ENaC. Inhibition of ENaC paralleled decreases in plasma membrane phosphatidylinositol 4,5-bisphosphate levels [PtdIns(4,5)P(2)] and was abolished by clamping PtdIns(4,5)P(2). We conclude that EGF and other ligands for RTK decrease ENaC open probability by decreasing membrane PtdIns(4,5)P(2) levels.
Collapse
Affiliation(s)
- Qiusheng Tong
- Department of Physiology 7756, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
125
|
Staruschenko A, Nichols A, Medina JL, Camacho P, Zheleznova NN, Stockand JD. Rho small GTPases activate the epithelial Na(+) channel. J Biol Chem 2004; 279:49989-94. [PMID: 15448132 DOI: 10.1074/jbc.m409812200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
126
|
Markadieu N, Blero D, Boom A, Erneux C, Beauwens R. Phosphatidylinositol 3,4,5-trisphosphate: an early mediator of insulin-stimulated sodium transport in A6 cells. Am J Physiol Renal Physiol 2004; 287:F319-28. [PMID: 15100098 DOI: 10.1152/ajprenal.00314.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin stimulates sodium transport across A6 epithelial cell monolayers. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was suggested as an early step in the insulin-stimulated sodium reabsorption (Ref. 35). To establish that the stimulation of the PI 3-kinase signaling cascade is causing stimulation of apical epithelial Na channel, we added permeant forms of phosphatidylinositol (PI) phosphate (P) derivatives complexed with a histone carrier to A6 epithelium. Only PIP3and PI( 3 , 4 )P2but not PI( 4 , 5 )P2stimulated sodium transport, although each of them penetrated into A6 cell monolayers as assessed using fluorescent permeant phosphoinositides derivatives. By Western blot analysis of A6 cell extracts, the inositol 3-phosphatase PTEN and the protein kinase B PKB were both detected. To further establish that the stimulation of sodium transport induced by insulin is related to PIP3levels, we transfected A6 cells with human PTEN cDNA and observed a 30% decrease in the natriferic effect of insulin. Similarly, the increase in sodium transport observed by addition of permeant PIP3was also reduced by 30% in PTEN-overexpressing cells. PKB, a main downstream effector of PI 3-kinase, was phosphorylated at both Thr 308 and Ser 473 residues upon insulin stimulation of the A6 cell monolayer. PKB phosphorylation in response to insulin stimulation was reduced in PTEN-overexpressing cells. Permeant PIP3also increased PKB phosphorylation. Taken together, the present results establish that the d-3-phosphorylated phosphoinositides PIP3and PI( 3 , 4 )P2mediate the effect of insulin on sodium transport across A6 cell monolayers.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Deptartment of Cell Physiology, Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
127
|
Kunzelmann K, Sun J, Schreiber R, König J. Effects of dietary lectins on ion transport in epithelia. Br J Pharmacol 2004; 142:1219-26. [PMID: 15237102 PMCID: PMC1575184 DOI: 10.1038/sj.bjp.0705857] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phytohemagglutinins are widely distributed in common food items. They constitute a heterogeneous group of proteins, which are often resistant to proteolysis in the gastrointestinal tract. Upon binding to the luminal membrane of intestinal cells, they can interfere with digestive, protective or secretory functions of the intestine. Phytohemagglutinins present in red kidney beans and jackbeans have been shown to induce diarrhea and hypersecretion in human airways, but the underlying mechanisms remain obscure. We examined how agglutinins from wheat germ (WGA), soy bean (SBA), red kidney beans (Pha-E, Pha-L), and jackbeans (Con-A) affect ion transport in mouse airways and large intestine using Ussing chamber techniques. We found that Pha-E, Pha-L, and Con-A but not WGA and SBA inhibit electrogenic Na(+) absorption dose dependently in both colon and trachea. The inhibitory effects of Con-A on Na(+) absorption were suppressed by the sugar mannose, by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Thus, nutritional phytohemagglutinins block salt absorption in a PLC- and PKC-dependent manner, probably by inhibition of the epithelial Na(+) channel (ENaC). This effect may be therapeutically useful in patients suffering from cystic fibrosis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
128
|
Mies F, Shlyonsky V, Goolaerts A, Sariban-Sohraby S. Modulation of epithelial Na+ channel activity by long-chain n-3 fatty acids. Am J Physiol Renal Physiol 2004; 287:F850-5. [PMID: 15198929 DOI: 10.1152/ajprenal.00078.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial sodium channel is found in apical membranes of a variety of native epithelial tissues, where it regulates sodium and fluid balance. In vivo, a number of hormones and other endogenous factors, including polyunsaturated fatty acids (PUFAs), regulate these channels. We tested the effects of essential n-3 and n-6 PUFAs on amiloride-sensitive sodium transport in A6 epithelial cells. Eicosapentaenoic acid [EPA; C20:5(n-3)] transiently stimulated amiloride-sensitive open-circuit current (I(Na)) from 4.0 +/- 0.3 to 7.7 +/- 0.3 microA/cm2 within 30 min (P < 0.001). No activation was seen in the presence of 10 microM amiloride. In cell-attached but not in cell-excised patches, EPA acutely increased the open probability of sodium channels from 0.45 +/- 0.08 to 0.63 +/- 0.10 (P = 0.02, paired t-test). n-6 PUFAs, including linoleic acid (C18:2), eicosatetraynoic acid (C20:4), and docosapentanoic acid (C22:5) had no effect, whereas n-3 docosahexanoic acid (C22:6) activated amiloride-sensitive I(Na) in a manner similar to EPA. Activation of I(Na) by EPA was prevented by H-89, a PKA inhibitor. Similarly, PKA activity was stimulated by EPA. Nonspecific stimulation of phosphodiesterase activity by CoCl2 completely prevented the effect of EPA on sodium transport. We conclude that n-3 PUFAs activate epithelial sodium channels downstream of cAMP in a cAMP-dependent pathway also involving PKA.
Collapse
Affiliation(s)
- Frédérique Mies
- Physiology Department, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
129
|
Tong Q, Booth RE, Worrell RT, Stockand JD. Regulation of Na+ transport by aldosterone: signaling convergence and cross talk between the PI3-K and MAPK1/2 cascades. Am J Physiol Renal Physiol 2004; 286:F1232-8. [PMID: 15039143 DOI: 10.1152/ajprenal.00345.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross talk between the phosphatidylinositol 3-kinase (PI3-K) and mitogen-activating protein kinase (MAPK)1/2 signaling cascades in response to aldosterone-induced K-RasA was investigated in renal A6 epithelial cells. In addition, the contribution of these signaling pathways to aldosterone-stimulated Na+ transport was investigated. Aldosterone increased active K-RasA levels in A6 cells resulting in activation of downstream effectors in both the MAPK1/2 and PI3-K cascades with K-RasA directly interacting with the catalytic p110 subunit of PI3-K in a steroid-dependent manner. Aldosterone-stimulated PI3-K signaling impinged on the MAPK1/2 cascade at the level of Akt-mediated phosphorylation of c-Raf at an established negative regulatory site. Aldosterone also increased Sgk levels as well as stimulated phosphorylation of this kinase in a PI3-K- and K-RasA-dependent manner. Blockade of MAPK1/2 signaling had little effect on Na+ transport. Conversely, inhibition of PI3-K markedly suppressed transport. Likewise, suppression of K-RasA induction decreased transport. However, Na+ transport was subsequently stimulated under these conditions with the PLA2 inhibitor aristolochic acid, an established positive modulator of Na+ transport, suggesting that K-RasA signaling through PI3-K does not directly affect epithelial sodium channel (ENaC) levels but the activity of this channel. Consistent with this possibility, activity of ENaC reconstituted in Chinese hamster ovary cells was increased by coexpression of constitutively active PI3-K. The current study demonstrates that aldosterone increases Na+ transport, in part, by stimulating PI3-K signaling and that during aldosterone actions, there is both signaling convergence between the two aldosterone-induced proteins, K-RasA and Sgk, as well as cross talk between the PI3-K and MAPK1/2 cascades with the prior but not latter cascade enhancing ENaC activity.
Collapse
Affiliation(s)
- Qiusheng Tong
- Dept. of Chemistry and Biochemistry, Texas State Univ., 601 University Dr., CHEM 216, San Marcos, TX, USA
| | | | | | | |
Collapse
|
130
|
Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD. Direct Activation of the Epithelial Na+ Channel by Phosphatidylinositol 3,4,5-Trisphosphate and Phosphatidylinositol 3,4-Bisphosphate Produced by Phosphoinositide 3-OH Kinase. J Biol Chem 2004; 279:22654-63. [PMID: 15028718 DOI: 10.1074/jbc.m401004200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.
Collapse
Affiliation(s)
- Qiusheng Tong
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
131
|
Kunzelmann K, Mall M. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. ACTA ACUST UNITED AC 2004; 2:299-309. [PMID: 14719996 DOI: 10.1007/bf03256658] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease frequently seen in the Caucasian population. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is characterized by enhanced airway Na(+) absorption, mediated by epithelial Na(+) channels (ENaC), and deficient Cl(-) transport. In addition, other mechanisms may contribute to the pathophysiological changes in the CF lung, such as defective regulation of HCO(3)(-) secretion. In other epithelial tissues, epithelial Na(+) conductance is either increased (intestine) or decreased (sweat duct) in CF. CFTR is a cyclic AMP-regulated epithelial Cl(-) channel, and appears to control the activity of several other transport proteins. Accordingly, defective epithelial ion transport in CF is likely to be a combination of defective Cl(-) channel function and impaired regulator function of CFTR, which in turn is linked to impaired mucociliary clearance and development of chronic lung disease. As the clinical course of CF is determined primarily by progressive lung disease, novel pharmacological strategies for the treatment of CF focus on correction of the ion transport defect in the airways. In recent years, it has been demonstrated that activation of purinergic receptors in airway epithelia by extracellular nucleotides (adenosine triphosphate/uridine triphosphate) has beneficial effects on mucus clearance in CF. Activation of the dominant class of metabotropic purinergic receptors, P2Y(2) receptors, appears to have a 2-fold benefit on ion transport in CF airways; excessive Na(+) absorption is attenuated, most likely by inhibition of the ENaC and, simultaneously, an alternative Ca(2+)-dependent Cl(-) channel is activated that may compensate for the CFTR Cl(-) channel defect. Thus activation of P2Y(2) receptors is expected to lead to improved hydration of the airway surface liquid in CF. Furthermore, purinergic activation has been shown to promote other components of mucociliary clearance such as ciliary beat frequency and mucus secretion. Clinical trials are under way to test the effect of synthetic purinergic compounds, such as the P2Y(2) receptor agonist INS37217, on the progression of lung disease in patients with CF. Administration of these compounds alone, or in combination with other drugs that inhibit accelerated Na(+) transport and help recover or increase residual activity of mutant CFTR, is most promising as successful therapy to counteract the ion transport defect in the airways of CF patients.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Physiologisches Institut, Universitäts Regensburg, Regensburg, Germany.
| | | |
Collapse
|
132
|
Baryshnikov SG, Rogachevskaja OA, Kolesnikov SS. Calcium signaling mediated by P2Y receptors in mouse taste cells. J Neurophysiol 2003; 90:3283-94. [PMID: 12878712 DOI: 10.1152/jn.00312.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the taste bud. Recently, we found that ATP, a ubiquitous neurotransmitter/neuromodulator, mobilizes intracellular Ca2+ in taste cells by activating P2Y receptors. Here, P2Y receptor-cellular response coupling was characterized in detail using single cell ratio photometry and the inhibitory analysis. The sequence of underlying events was shown to include ATP-dependent activation of PLC, IP3 production, and IP3 receptor-mediated Ca2+ release followed by Ca2+ influx. Data obtained favor SOC channels rather than receptor-operated channels as a pathway for Ca2+ influx that accompanies Ca2+ release. Intracellular Ca2+ mobilized by ATP is apparently extruded by the plasma membrane Ca2+-ATPase, while a contribution of the Na+/Ca2+ exchange and other mechanisms of Ca2+ clearance is negligible. Cyclic AMP-dependent phosphorylation is likely to control a gain of the phosphoinositide cascade involved in ATP transduction. ATP-responsive taste cells are abundant in circumvallate, foliate, and fungiform papillae. Taken together, our observations point to a putative role for ATP as a neurotransmitter operative in the taste bud.
Collapse
Affiliation(s)
- Sergey G Baryshnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
133
|
Booth RE, Tong Q, Medina J, Snyder PM, Patel P, Stockand JD. A region directly following the second transmembrane domain in gamma ENaC is required for normal channel gating. J Biol Chem 2003; 278:41367-79. [PMID: 12897071 DOI: 10.1074/jbc.m305400200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a yeast one-hybrid complementation screen to identify regions within the cytosolic tails of the mouse alpha, beta, and gamma epithelial Na+ channel (ENaC) important to protein-protein and/or protein-lipid interactions at the plasma membrane. The cytosolic COOH terminus of alphaENaC contained a strongly interactive domain just distal to the second transmembrane region (TM2) between Met610 and Val632. Likewise, gammaENaC contained such a domain just distal to TM2 spanning Gln573-Pro600. Interactive domains were also localized within Met1-Gln54 and the last 17 residues of alpha- and betaENaC, respectively. Confocal images of Chinese hamster ovary cells transfected with enhanced green fluorescent fusion proteins of the cytosolic tails of mENaC subunits were consistent with results in yeast. Fusion proteins of the NH2 terminus of alphaENaC and the COOH termini of all three subunits co-localized with a plasma membrane marker. The functional importance of the membrane interactive domain in the COOH terminus of gammaENaC was established with whole-cell patch clamp experiments of wild type (alpha, beta, and gamma) and mutant (alpha, beta, and gammadeltaQ573-P600) mENaC reconstituted in Chinese hamster ovary cells. Mutant channels had about 13% of the activity of wild type channels with 0.33 +/- 0.14 versus 2.5 +/- 0.80 nA of amiloridesensitive inward current at -80 mV. Single channel analysis of recombinant channels demonstrated that mutant channels had a decrease in Po with 0.16 +/- 0.03 versus 0.67 +/- 0.07 for wild type. Mutant gammaENaC associated normally with the other two subunits in co-immunoprecipitation studies and localized to the plasma membrane in membrane labeling experiments and when visualized with evanescent-field fluorescence microscopy. Similar to deletion of Gln573-Pro600, deletion of Gln573-Arg583 but not Thr584-Pro600 decreased ENaC activity. The current results demonstrate that residues within Gln573-Arg583 of gammaENaC are necessary for normal channel gating.
Collapse
Affiliation(s)
- Rachell E Booth
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
134
|
Blazer-Yost BL, Esterman MA, Vlahos CJ. Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity. Am J Physiol Cell Physiol 2003; 284:C1645-53. [PMID: 12606308 DOI: 10.1152/ajpcell.00372.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AlphaENaC-EGFP (enhanced green fluorescent protein-tagged alpha-subunit of the epithelial Na(+) channel) stably transfected clonal lines derived from the A6 parental cell line were used to study the physical mechanisms of insulin-stimulated Na(+) transport. Within 1 min of insulin stimulation, ENaC migrates from a diffuse cytoplasmic localization to the apical and lateral membranes. Concurrently, after insulin stimulation, phosphatidylinositol 3-kinase (PI 3-kinase) is colocalized with ENaC on the lateral but not apical membrane. An inhibitor of PI 3-kinase, LY-294002, does not inhibit ENaC/PI 3-kinase colocalization but does alter the intracellular site of the colocalization, preventing the translocation of ENaC to the lateral and apical membranes. These data show that insulin stimulation causes the migration of ENaC to the lateral and apical cell membranes and that this trafficking is dependent on PI 3-kinase activity.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, USA.
| | | | | |
Collapse
|
135
|
Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T, Logothetis DE. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 2003; 37:963-75. [PMID: 12670425 DOI: 10.1016/s0896-6273(03)00125-9] [Citation(s) in RCA: 441] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling membrane phospholipid phosphatidylinositol-bis-phosphate (PIP(2)). We show that wortmannin, at concentrations that prevent recovery from receptor-mediated inhibition of M currents, blocks PIP(2) replenishment to the cell surface. Moreover, we identify a C-terminal histidine residue, immediately proximal to the plasma membrane, mutation of which renders M channels less sensitive to PIP(2) and more sensitive to receptor-mediated inhibition. Finally, native or recombinant channels inhibited by muscarinic agonists can be activated by PIP(2). Our data strongly suggest that PIP(2) acts as a membrane-diffusible second messenger to regulate directly the activity of KCNQ currents.
Collapse
Affiliation(s)
- Hailin Zhang
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Shlyonsky VG, Mies F, Sariban-Sohraby S. Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am J Physiol Renal Physiol 2003; 284:F182-8. [PMID: 12388391 DOI: 10.1152/ajprenal.00216.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of epithelial Na(+) selective channels is modulated by various factors, with growing evidence that membrane lipids also participate in the regulation. In the present study, Triton X-100 extracts of whole cells and of apical membrane-enriched preparations from cultured A6 renal epithelial cells were floated on continuous-sucrose-density gradients. Na(+) channel protein, probed by immunostaining of Western blots, was detected in the high-density fractions of the gradients (between 18 and 30% sucrose), which contain the detergent-soluble material but also in the lighter, detergent-resistant 16% sucrose fraction. Single amiloride-sensitive Na(+) channel activity, recorded after incorporation of reconstituted proteoliposomes into lipid bilayers, was exclusively localized in the 16% sucrose fraction. In accordance with other studies, high- and low-density fractions of sucrose gradients likely represent membrane domains with different lipid contents. However, exposure of the cells to cholesterol-depleting or sphingomyelin-depleting agents did not affect transepithelial Na(+) current, single-Na(+) channel activity, or the expression of Na(+) channel protein. This is the first reconstitution study of native epithelial Na(+) channels, which suggests that functional channels are compartmentalized in discrete domains within the plane of the apical cell membrane.
Collapse
Affiliation(s)
- Vadim G Shlyonsky
- Laboratory of Physiology and Physiopathology, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|