101
|
Oxidative Cleavage Products of Lycopene: Production and Reactivity in a Biomimetic Experimental Model of Oxidative Stress. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1134.ch016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
102
|
|
103
|
Moran NE, Erdman JW, Clinton SK. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution. Arch Biochem Biophys 2013; 539:171-80. [PMID: 23845854 DOI: 10.1016/j.abb.2013.06.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022]
Abstract
Intake of lycopene, a red, tetraterpene carotenoid found in tomatoes is epidemiologically associated with a decreased risk of chronic disease processes, and lycopene has demonstrated bioactivity in numerous in vitro and animal models. However, our understanding of absorption, tissue distribution, and biological impact in humans remains very limited. Lycopene absorption is strongly impacted by dietary composition, especially the amount of fat. Concentrations of circulating lycopene in lipoproteins may be further influenced by a number of variations in genes related to lipid absorption and metabolism. Lycopene is not uniformly distributed among tissues, with adipose, liver, and blood being the major body pools, while the testes, adrenals, and liver have the greatest concentrations compared to other organs. Tissue concentrations of lycopene are likely dictated by expression of and genetic variation in lipoprotein receptors, cholesterol transporters, and carotenoid metabolizing enzymes, thus impacting lycopene accumulation at target sites of action. The novel application of genetic evaluation in concert with lycopene tracers will allow determination of which genes and polymorphisms define individual lycopene metabolic phenotypes, response to dietary variables, and ultimately determine biological and clinical outcomes. A better understanding of the relationship between diet, genetics, and lycopene distribution will provide necessary information to interpret epidemiological findings more accurately and to design effective, personalized clinical nutritional interventions addressing hypotheses regarding health outcomes.
Collapse
Affiliation(s)
- Nancy E Moran
- Division of Medical Oncology, Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | | | | |
Collapse
|
104
|
Eroglu A, Harrison EH. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 2013; 54:1719-30. [PMID: 23667178 PMCID: PMC3679377 DOI: 10.1194/jlr.r039537] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 12/22/2022] Open
Abstract
Vitamin A was recognized as an essential nutrient 100 years ago. In the 1930s, it became clear that dietary β-carotene was cleaved at its central double to yield vitamin A (retinal or β-apo-15'-carotenal). Thus a great deal of research has focused on the central cleavage of provitamin A carotenoids to form vitamin A (retinoids). The mechanisms of formation and the physiological role(s) of noncentral (eccentric) cleavage of both provitamin A carotenoids and nonprovitamin A carotenoids has been less clear. It is becoming apparent that the apocarotenoids exert unique biological activities themselves. These compounds are found in the diet and thus may be absorbed in the intestine, or they may form from enzymatic or nonenzymatic cleavage of the parent carotenoids. The mechanism of action of apocarotenoids in mammals is not fully worked out. However, as detailed in this review, they have profound effects on gene expression and work, at least in part, through the modulation of ligand-activated nuclear receptors. Understanding the interactions of apocarotenoids with other lipid-binding proteins, chaperones, and metabolizing enzymes will undoubtedly increase our understanding of the biological roles of these carotenoid metabolites.
Collapse
Affiliation(s)
| | - Earl H. Harrison
- Department of Human Nutrition, Ohio State University, Columbus, OH
| |
Collapse
|
105
|
Aydemir G, Kasiri Y, Birta E, Béke G, Garcia AL, Bartók EM, Rühl R. Lycopene-derived bioactive retinoic acid receptors/retinoid-X receptors-activating metabolites may be relevant for lycopene's anti-cancer potential. Mol Nutr Food Res 2013; 57:739-47. [PMID: 23378045 DOI: 10.1002/mnfr.201200548] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/11/2012] [Accepted: 12/15/2012] [Indexed: 11/09/2022]
Abstract
Dietary consumption of tomato products and especially the red tomato pigment lycopene has been associated with lower risk of cancer. New evidence is emerging toward metabolic pathways mediating the anti-cancer activities of lycopene. In this review, we explore associations between tomatoes and lycopene intake and cancer and relate this to the metabolic activation pathways of lycopene via carotene oxygenases and further carotenoid/retinoid-metabolizing enzymes to apo-lycopenoids. Several of these apo-lycopenoids have already been identified but up to date no direct connection between lycopene metabolism and apo-lycopenoids mediated receptor activation pathways has been established. Retinoic acid receptors/retinoid-X receptors activation pathways in particular, may be mediated via lycopene metabolites that are related to retinoic acids. Various studies have shown an association between lower concentration of insulin-like growth factor-1 upon lycopene treatment, cancer incidences, and retinoid-mediated signaling. In this review, we interrelate tomato/lycopene ingestion and cancer incidence, with metabolic activation of lycopene and retinoid-mediated signaling. The aim is to discuss a potential mechanism to explain lycopene related anti-cancer activities by modulation of insulin-like growth factor-1 concentrations via lycopene metabolite activation of retinoid-mediated signaling.
Collapse
Affiliation(s)
- Gamze Aydemir
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
106
|
Rühl R. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development. Int Arch Allergy Immunol 2013; 161:99-115. [PMID: 23343622 DOI: 10.1159/000345958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/19/2012] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are important derivatives of the human diet and occur in high concentrations in the human organism. Various carotenoids are also present in human breast milk and are transferred to breast-fed children. The alternative to breastfeeding is supplementation with an infant milk formula, but these formulas contain only a limited variety of carotenoids. Our question is: 'What is the function of various carotenoids in human nutrition with a special emphasis on child development and the development of atopy?' In this review, the mechanisms of action of the most important non-pro-vitamin A and pro-vitamin A carotenoids: α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene and retinoids are discussed. In summary, the combination of carotenoids, especially lycopene, seems to be of great importance, and exclusive usage of β-carotene in infant formula may yield in an increased atopy prevalence mediated in various target organs like the skin, lungs and immune competent cells. We conclude that the determination of novel bioactive metabolites of various carotenoids, at various stages in different organs during atopy development, might be the key to understanding the potential importance of carotenoids on atopy development.
Collapse
Affiliation(s)
- R Rühl
- Laboratory of Nutritional Bioactivation and Bioanalysis, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
107
|
Poliakov E, Gubin AN, Stearn O, Li Y, Campos MM, Gentleman S, Rogozin IB, Redmond TM. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates. PLoS One 2012; 7:e49975. [PMID: 23209628 PMCID: PMC3507948 DOI: 10.1371/journal.pone.0049975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65’s substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander N. Gubin
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olivia Stearn
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria Mercedes Campos
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan Gentleman
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - T. Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
108
|
Melendez-Martinez AJ, Stinco CM, Liu C, Wang XD. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem 2012; 138:1341-50. [PMID: 23411252 DOI: 10.1016/j.foodchem.2012.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/09/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Geometrical isomers of carotenoids behave differently in aspects like stability towards oxidants, bioavailability, vitamin A activity and specificity for enzymes. The availability of HPLC methods for their detailed profiling is therefore advisable to expand our knowledge on their metabolism and biological role. In this paper the development of a methodology to determine the highest number of geometrical isomers of major carotenoids in humans (phytoene, phytofluene, lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene and lycopene) is described. To assess its usefulness with biological samples both postprandial human plasma and lung samples from ferrets were analysed. Up to 48 isomers of the main human carotenoids were separated in 62 min. This is to the best of our knowledge the report of the highest number of carotenoid geometrical isomers separated with a HPLC method. Twenty-six different carotenoid isomers were readily detected in the biological samples.
Collapse
Affiliation(s)
- Antonio J Melendez-Martinez
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | | | | | | |
Collapse
|
109
|
Abstract
Vitamin A deficiency is a major public health problem in developing countries. Some studies also implicate a suboptimal vitamin A intake in certain parts of the population of the industrialized world. Provitamin A carotenoids such as β-carotene are the major source for retinoids (vitamin A and its derivatives) in the human diet. However, it is still controversial how much β-carotene intake is required and safe. An important contributor to this uncertainty is the lack of knowledge about the biochemical and molecular basis of β-carotene metabolism. Recently, key players of provitamin A metabolism have been molecularly identified and biochemically characterized. Studies in knockout mouse models showed that intestinal β-carotene absorption and conversion to retinoids is under negative feedback regulation that adapts this process to the actual requirement of vitamin A of the body. These studies also showed that in peripheral tissues a conversion of β-carotene occurs and affects retinoid-dependent physiologic processes. Moreover, these analyses provided a possible explanation for the adverse health effects of carotenoids by showing that a pathologic accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Genetic polymorphisms in identified genes exist in humans and also alter carotenoid homeostasis. Here, the advanced knowledge of β-carotene metabolism is reviewed, which provides a molecular framework for understanding the role of this important micronutrient in health and disease.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
110
|
Abstract
The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects of lycopene derivatives. In particular, the characterization and study of β-carotene 9',10'-oxygenase has shown that this enzyme can catalyze the excentric cleavage of both provitamin and non-provitamin A carotenoids to form apo-10'-carotenoids, including apo-10'-lycopenoids from lycopene. This raised an important question of whether the effect of lycopene on various cellular functions and signaling pathways is a result of the direct actions of intact lycopene or its derivatives. Several reports, including our own, support the notion that the biological activities of lycopene can be mediated by apo-10'-lycopenoids. More research is clearly needed to identify and characterize additional lycopene metabolites and their biological activities, which will potentially provide invaluable insights into the mechanisms underlying the effects of lycopene in humans.
Collapse
Affiliation(s)
- Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
111
|
Harrison EH, dela Sena C, Eroglu A, Fleshman MK. The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling. Am J Clin Nutr 2012; 96:1189S-92S. [PMID: 23053561 PMCID: PMC3471202 DOI: 10.3945/ajcn.112.034843] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene yields 2 molecules of retinal followed by further oxidation to retinoic acid. Eccentric cleavage of β-carotene occurs at double bonds other than the central double bond, and the products of these reactions are β-apocarotenals and β-apocarotenones. We reviewed recent developments in 3 areas: 1): the enzymatic production of β-apocarotenoids in higher animals; 2) the occurrence of β-apocarotenoids in foods and animal tissues; and 3) the biological activity of β-apocarotenoids, particularly on retinoid receptors. HPLC-mass spectrometry techniques were developed to quantify these compounds in mouse serum and tissues and in foods. β-Apo-10'- and -12'-carotenals were detected in mouse serum and liver. β-Apo-8'-, β-apo-10'-, β-apo-12'-, and β-apo-14'-carotenals and β-apo-13-carotenone were detected in orange-fleshed melons. Transactivation assays were performed to see whether apocarotenoids activate or antagonize retinoid X receptor (RXR) α. Reporter gene constructs and retinoid receptor (RXRα) were transfected into cells, which were used to perform quantitative assays for the activation of this ligand-dependent transcription factor. None of the β-apocarotenoids significantly activated RXRα. However, β-apo-13-carotenone antagonized the 9-cis-retinoic acid activation of RXRα. Competitive radioligand binding assays showed that this antagonist competes directly with the agonist for binding to purified receptor, a finding confirmed by molecular modeling studies. These findings suggest that a possible biological function of β-apocarotenoids is their ability to interfere with nuclear receptor signaling. Recent work showed that β-apo-13-carotenone is also a high-affinity antagonist of all 3 retinoic acid receptors (RARα, RARβ, and RARγ).
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Nutrition and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA.
| | | | | | | |
Collapse
|
112
|
|
113
|
Catalano A, Simone RE, Cittadini A, Reynaud E, Caris-Veyrat C, Palozza P. Comparative antioxidant effects of lycopene, apo-10'-lycopenoic acid and apo-14'-lycopenoic acid in human macrophages exposed to H2O2 and cigarette smoke extract. Food Chem Toxicol 2012; 51:71-9. [PMID: 22989703 DOI: 10.1016/j.fct.2012.08.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 02/03/2023]
Abstract
Much of the beneficial effects of tomato lycopene in the prevention of chronic diseases has been attributed to its antioxidant properties, which could be mediated by its metabolites and/or oxidation products. However, the biological functions of these lycopene derivatives remain still unknown. In the present study, we evaluated and compared the antioxidant efficacy of the lycopene eccentric cleavage products apo-10'-lycopenoic acid and apo-14'-lycopenoic acid in counteracting the oxidative effects of H(2)O(2) and cigarette smoke extract (CSE) in THP-1 macrophages. Both apo-10'-lycopenoic acid and apo-14'-lycopenoic acid were able to inhibit spontaneous and H(2)O(2)-induced ROS production in a dose-dependent manner. Such an effect was accompanied by an inhibition of MAPK phosphorylation, by NF-κB inactivation, and by inhibition of hsp-70 and hsp-90 expressions. Both apo-lycopenoic acids also decreased CSE-induced ROS production, 8-OHdG formation and reduced the increase in NOX-4 and COX-2 expressions caused by CSE. However, in both the models of oxidative stress, apo-14'-lycopenoic acid was much more potent as an antioxidant than apo-10'-lycopenoic acid, showing antioxidant properties similar to lycopene. These data strongly suggest that apo-lycopenoic acids, and particularly apo-14'-lycopenoic acid, may mediate some of the antioxidant functions of lycopene in cells.
Collapse
Affiliation(s)
- Assunta Catalano
- Institute of General Pathology, Catholic University, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
114
|
Lobo GP, Isken A, Hoff S, Babino D, von Lintig J. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 2012; 139:2966-77. [PMID: 22764054 DOI: 10.1242/dev.079632] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carotenoids and their metabolites are widespread and exert key biological functions in living organisms. In vertebrates, the carotenoid oxygenase BCMO1 converts carotenoids such as β,β-carotene to retinoids, which are required for embryonic pattern formation and cell differentiation. Vertebrate genomes encode a structurally related protein named BCDO2 but its physiological function remains undefined. Here, we show that BCDO2 is expressed as an oxidative stress-regulated protein during zebrafish development. Targeted knockdown of this mitochondrial enzyme resulted in anemia at larval stages. Marker gene analysis and staining for hemoglobin revealed that erythropoiesis was not impaired but that erythrocytes underwent apoptosis in BCDO2-deficient larvae. To define the mechanism of this defect, we have analyzed the role of BCDO2 in human cell lines. We found that carotenoids caused oxidative stress in mitochondria that eventually led to cytochrome c release, proteolytic activation of caspase 3 and PARP1, and execution of the apoptotic pathway. Moreover, BCDO2 prevented this induction of the apoptotic pathway by carotenoids. Thus, our study identifying BCDO2 as a crucial protective component against oxidative stress establishes this enzyme as mitochondrial carotenoid scavenger and a gatekeeper of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Glenn P Lobo
- Case Western Reserve University, School of Medicine, Department of Pharmacology, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
115
|
Eroglu A, Hruszkewycz DP, dela Sena C, Narayanasamy S, Riedl KM, Kopec RE, Schwartz SJ, Curley RW, Harrison EH. Naturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. J Biol Chem 2012; 287:15886-95. [PMID: 22418437 DOI: 10.1074/jbc.m111.325142] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene catalyzed by β-carotene oxygenase 1 yields two molecules of retinaldehyde. Subsequent oxidation produces all-trans-retinoic acid (ATRA), which functions as a ligand for a family of nuclear transcription factors, the retinoic acid receptors (RARs). Eccentric cleavage of β-carotene at non-central double bonds is catalyzed by other enzymes and can also occur non-enzymatically. The products of these reactions are β-apocarotenals and β-apocarotenones, whose biological functions in mammals are unknown. We used reporter gene assays to show that none of the β-apocarotenoids significantly activated RARs. Importantly, however, β-apo-14'-carotenal, β-apo-14'-carotenoic acid, and β-apo-13-carotenone antagonized ATRA-induced transactivation of RARs. Competitive radioligand binding assays demonstrated that these putative RAR antagonists compete directly with retinoic acid for high affinity binding to purified receptors. Molecular modeling studies confirmed that β-apo-13-carotenone can interact directly with the ligand binding site of the retinoid receptors. β-Apo-13-carotenone and the β-apo-14'-carotenoids inhibited ATRA-induced expression of retinoid responsive genes in Hep G2 cells. Finally, we developed an LC/MS method and found 3-5 nm β-apo-13-carotenone was present in human plasma. These findings suggest that β-apocarotenoids function as naturally occurring retinoid antagonists. The antagonism of retinoid signaling by these metabolites may have implications for the activities of dietary β-carotene as a provitamin A and as a modulator of risk for cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17:3202-42. [PMID: 22418926 PMCID: PMC6268471 DOI: 10.3390/molecules17033202] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023] Open
Abstract
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.
Collapse
Affiliation(s)
- Takuji Tanaka
- Tohkai Cytopathology Institute, Cancer Research and Prevention-TCI-CaRP, 5-1-2 Minami-Uzura, Gifu 500-8285, Japan.
| | | | | |
Collapse
|
117
|
Chung J, Koo K, Lian F, Hu KQ, Ernst H, Wang XD. Apo-10'-lycopenoic acid, a lycopene metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice. J Nutr 2012; 142:405-10. [PMID: 22259190 PMCID: PMC3278264 DOI: 10.3945/jn.111.150052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/12/2011] [Accepted: 11/30/2011] [Indexed: 01/22/2023] Open
Abstract
Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 9',10'-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. In the present study, male ob/ob mice were fed a liquid high-fat diet (60% energy from fat) with ALA supplementation (ALA group, 240 μg · kg body weight(-1) · d(-1)) or without ALA supplementation as the control (C group) for 16 wk. Steatosis, SIRT1 expression and activity, genes involved in lipid metabolism, and ALA concentrations in the livers of mice were examined. The results showed that ALA supplementation resulted in a significant accumulation of ALA in the liver and markedly decreased the steatosis in the ALA group without altering body and liver weights compared to the C group. The mRNA and protein levels of hepatic SIRT1 were higher in the ALA group compared to the C group. SIRT1 activity also was higher in the ALA group, as indicated by the lower levels of acetylated forkhead box class O1 protein levels. In addition, the mRNA level of acetyl CoA carboxylase 1 was significantly lower in the ALA group than in the C group. Because SIRT1 plays a key role in lipid homeostasis, the present study suggests that the lycopene metabolite, ALA, protects against the development of steatosis in ob/ob mice by upregulating SIRT1 gene expression and activity.
Collapse
Affiliation(s)
- Jayong Chung
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Kyeongok Koo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Fuzhi Lian
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Kang Quan Hu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | | | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
118
|
Goupy P, Reynaud E, Dangles O, Caris-Veyrat C. Antioxidant activity of (all-E)-lycopene and synthetic apo-lycopenoids in a chemical model of oxidative stress in the gastro-intestinal tract. NEW J CHEM 2012. [DOI: 10.1039/c1nj20437h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
119
|
Konwarh R, Pramanik S, Devi KSP, Saikia N, Boruah R, Maiti TK, Chandra Deka R, Karak N. Lycopene coupled ‘trifoliate’ polyaniline nanofibers as multi-functional biomaterial. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32530f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
120
|
Lobo GP, Amengual J, Palczewski G, Babino D, von Lintig J. Mammalian carotenoid-oxygenases: key players for carotenoid function and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:78-87. [PMID: 21569862 PMCID: PMC3162997 DOI: 10.1016/j.bbalip.2011.04.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Humans depend on a dietary intake of lipids to maintain optimal health. Among various classes of dietary lipids, the physiological importance of carotenoids is still controversially discussed. On one hand, it is well established that carotenoids, such as β,β-carotene, are a major source for vitamin A that plays critical roles for vision and many aspects of cell physiology. On the other hand, large clinical trials have failed to show clear health benefits of carotenoids supplementation and even suggest adverse health effects in individuals at risk of disease. In recent years, key molecular players for carotenoid metabolism have been identified, including an evolutionarily well conserved family of carotenoid-oxygenases. Studies in knockout mouse models for these enzymes revealed that carotenoid metabolism is a highly regulated process and that this regulation already takes place at the level of intestinal absorption. These studies also provided evidence that β,β-carotene conversion can influence retinoid-dependent processes in the mouse embryo and in adult tissues. Moreover, these analyses provide an explanation for adverse health effects of carotenoids by showing that a pathological accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Advancing knowledge about carotenoid metabolism will contribute to a better understanding of the biochemical and physiological roles of these important micronutrients in health and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Glenn P. Lobo
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Jaume Amengual
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Grzegorz Palczewski
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Darwin Babino
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Case Western Reserve University, School of Medicine, Department of Pharmacology, Cleveland, OH 44106, USA
| |
Collapse
|
121
|
Lietz G, Oxley A, Boesch-Saadatmandi C, Kobayashi D. Importance of β,β-carotene 15,15'-monooxygenase 1 (BCMO1) and β,β-carotene 9',10'-dioxygenase 2 (BCDO2) in nutrition and health. Mol Nutr Food Res 2011; 56:241-50. [PMID: 22147584 DOI: 10.1002/mnfr.201100387] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 09/27/2011] [Indexed: 11/12/2022]
Abstract
In humans, varying amounts of absorbed β-carotene are oxidatively cleaved by the enzyme β,β-carotene 15,15'-monooxygenase 1 (BCMO1) into two molecules of all-trans-retinal. The other carotenoid cleavage enzyme β,β-carotene 9',10'-dioxygenase (BCDO2) cleaves β-carotene at the 9',10' double bond forming β-apo-10'-carotenal and β-ionone. Although the contribution of BCDO2 to vitamin A formation has long been debated, BCMO1 is currently considered the key enzyme for retinoid metabolism. Furthermore, BCMO1 has limited enzyme activity towards carotenoids other than provitamin A carotenoids, whereas BCDO2 exhibits a broader specificity. Both enzymes are located at different sites within the cell, with BCMO1 being a cytosolic protein and BCDO2 being located in the mitochondria. Expression of BCMO1 in tissues other than the intestine has recently revealed its function for tissue-specific retinoid metabolism with importance in embryogenesis and lipid metabolism. On the other hand, biological activity of BCDO2 metabolites has been shown to be important in protecting against carotenoid-induced mitochondrial dysfunction. Single-nucleotide polymorphisms (SNPs) such as R267S and A379V in BCMO1 can partly explain inter-individual variations observed in carotenoid metabolism. Advancing knowledge about the physiological role of these two enzymes will contribute to understanding the importance of carotenoids in health and disease.
Collapse
Affiliation(s)
- Georg Lietz
- Newcastle University, Human Nutrition Research Centre, Institute for Ageing and Health, School of Agriculture, Food and Rural Development, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
122
|
Müller L, Reynaud E, Goupy P, Caris-Veyrat C, Böhm V. Do Apo-Lycopenoids Have Antioxidant Activities In Vitro? J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1972-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Sharoni Y, Linnewiel-Hermoni K, Khanin M, Salman H, Veprik A, Danilenko M, Levy J. Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res 2011; 56:259-69. [PMID: 22102431 DOI: 10.1002/mnfr.201100311] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/22/2011] [Accepted: 09/15/2011] [Indexed: 01/01/2023]
Abstract
The basis for the vivid color of carotenoids and their antioxidant activity is the multiple conjugated double bonds, which are characteristic for these phytonutrients. Moreover, the cleavage of these oxidation-prone double bonds leads to the formation of apocarotenoids. A large number of carbonyl-containing oxidation products are expected to be produced as a result of carotenoid oxidation and these can be further metabolized into the corresponding acids and alcohols. As discussed in this review, many, but not all, of these potential products have been detected and identified in plants as well as in human and animal plasma and tissues. Some of these compounds were found to be biologically active as anticancer agents. In addition to the inhibition of cancer cell proliferation, several carotenoid metabolites were shown to modulate the activity of various transcription systems. These include ligand-activated nuclear receptors, such as the retinoic acid receptor, retinoid X receptor, peroxisome proliferator-activated receptor and estrogen receptor, as well as other transcription systems that have an important role in cancer, such as the electrophile/antioxidant response element pathway and nuclear factor-κB. Therefore, apocarotenoids can be considered as natural compounds with multifunctional, rather than monofunctional, activity and, thus, can be useful in the prevention of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Yoav Sharoni
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
All animals endowed with the ability to detect light through visual pigments must have evolved pathways in which dietary precursors for the involved chromophore are absorbed, transported, and metabolized. Knowledge about this metabolism has exponentially increased over the past decade. Genetic manipulation of animal models provided insights into the metabolic flow of these compounds through the body and in the eyes, unraveling their regulatory aspects and aberrant side reactions. The scheme that emerges reveals a common origin of key components for chromophore metabolism that have been adapted to the specific requirements of retinoid biology in different animal classes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
125
|
Ford NA, Moran NE, Smith JW, Clinton SK, Erdman JW. An interaction between carotene-15,15'-monooxygenase expression and consumption of a tomato or lycopene-containing diet impacts serum and testicular testosterone. Int J Cancer 2011; 131:E143-8. [PMID: 21935922 DOI: 10.1002/ijc.26446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/31/2011] [Indexed: 01/18/2023]
Abstract
Lycopene, the red pigment of tomatoes, is hypothesized to reduce prostate cancer risk, a disease strongly dependent upon testosterone. In this study, mice lacking the expression of carotene-15,15'-monooxygenase (CMO-I(-/-) ) or wild-type mice were fed either a 10% tomato powder (TP), lycopene-containing (248 nmol/g diet) or their respective control diets for 4 days, after which serum testosterone was measured. A significant diet × genotype interaction (p = 0.02) suggests that the TP reduces serum testosterone concentrations in CMO-I(-/-) mice but not in wild-type mice. Similarly, testicular testosterone was lowered in TP-fed CMO-I(-/-) mice (p = 0.01), suggesting that testosterone synthesis may be inhibited in this group. A similar pattern was also observed for lycopene fed mice. Interestingly, the CMO-I(-/-) mice showed a greater expression of the gene encoding the CMO-II enzyme responsible for eccentric oxidative carotenoid cleavage in the testes. Therefore, we hypothesize that serum testosterone is reduced by lycopene metabolic products of oxidative cleavage by CMO-II in the testes. Overall, these findings suggest that genetic polymorphisms impacting CMO-I expression and its interaction with CMO-II, coupled with variations in dietary lycopene, may modulate testosterone synthesis and serum concentrations. Furthermore, carefully controlled studies with tomato products and lycopene in genetically defined murine models may elucidate important diet × genetic interactions that may impact prostate cancer risk.
Collapse
Affiliation(s)
- Nikki A Ford
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
126
|
Gouranton E, Aydemir G, Reynaud E, Marcotorchino J, Malezet C, Caris-Veyrat C, Blomhoff R, Landrier JF, Rühl R. Apo-10'-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1105-14. [PMID: 21963687 DOI: 10.1016/j.bbalip.2011.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Apo-10'-lycopenoic acid (apo-10-lycac), a metabolite of lycopene, has been shown to possess potent biological activities, notably via the retinoic acid receptors (RAR). In the current study, its impact on adipose tissue and adipocytes was studied. In microarray experiments, the set of genes regulated by apo-10-lycac treatments was compared to the set of genes regulated by all-trans retinoic acid (ATRA), the natural ligand of RAR, in adipocytes. Approximately 27.5% of the genes regulated by apo-10-lycac treatments were also regulated by ATRA, suggesting a common ability in terms of gene expression modulation, possibly via RAR transactivation. The physiological impact of apo-10-lycac on adipose tissue biology was evaluated. If it had no effect on adipogenesis in the 3T3-L1 cell model, this metabolite may have a preventative effect against inflammation, by preventing the increase in the inflammatory markers, interleukin 6 and interleukin 1β in various dedicated models. The ability of apo-10-lycac to transactivate the RAR and to modulate the transcription of RAR target gene was brought in vivo in adipose tissue. While apo-10-lycac was not detected in adipose tissue, a metabolite with a molecular weight with 2Da larger mass was detected, suggesting that a dihydro-apo-10'-lycopenoic acid, may be present in adipose tissue and that this compound could active or may lead to further active RAR-activating apo-10-lycac metabolites. Since apo-10-lycac treatments induce anti-inflammatory effects in adipose tissue but do not inhibit adipogenesis, we propose that apo-10-lycac treatments and its potential active metabolites in WAT may be considered for prevention strategies relevant for obesity-associated pathologies.
Collapse
Affiliation(s)
- E Gouranton
- Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Green AS, Tang G, Lango J, Klasing KC, Fascetti AJ. Domestic cats convert [2H8]-β-carotene to [2H4]-retinol following a single oral dose. J Anim Physiol Anim Nutr (Berl) 2011; 96:681-92. [PMID: 21797934 DOI: 10.1111/j.1439-0396.2011.01196.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many animals convert β-carotene to retinol to meet their vitamin A (VA) requirement. However, this pathway is inefficient in many carnivores. This study quantified the plasma response to a single oral dose of [(2) H(8)]-β-carotene in adult domestic cats, including measurement of [(2) H(4)]-retinol derived from the dose. Cats were fed with either a control diet containing adequate VA (n = 5) or a VA-devoid diet (n = 5) for 28 days. An oral dose of either 5 mg/kg body weight (BW) (n = 4) or 10 mg/kg BW (n = 6) of [(2) H(8) ]-β-carotene was administered on day 28. Plasma samples were collected prior to dosing and at 6, 12, 24, 32, 48, 72, 120, 168 and 216 h post-dose. Plasma retinoids and β-carotene were measured using HPLC and [(2) H(4)]-retinol by GC-ECNCI-MS (gas chromatography/electron capture negative chemical ionization/mass spectrometry). β-carotene was undetectable in plasma prior to dosing. Post-dose, mean peak plasma β-carotene was 0.37 ± 0.06 nmol/ml at 9.0 ± 1.8 h following the dose, while [(2) H(4) ]-retinol peaked at 3.71 ± 0.69 pmol/ml at 55.2 ± 16.3 h. The ratio per cent of total area under the curve for [(2) H(4)]-retinol compared with the β-carotene response was 4.6 ± 2.6%. There was little effect of diet or dose on the β-carotene or [(2) H(4)]-retinol responses. The appearance of [(2) H(4)]-retinol in plasma indicates that cats are capable of converting β-carotene to active VA. Conversion efficiency was not calculated in this study, but it is likely inadequate to meet cats' VA requirement without the inclusion of preformed VA in the diet.
Collapse
Affiliation(s)
- A S Green
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|
128
|
Absorption and metabolism of xanthophylls. Mar Drugs 2011; 9:1024-1037. [PMID: 21747746 PMCID: PMC3131559 DOI: 10.3390/md9061024] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022] Open
Abstract
Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.
Collapse
|
129
|
Kelkel M, Schumacher M, Dicato M, Diederich M. Antioxidant and anti-proliferative properties of lycopene. Free Radic Res 2011; 45:925-40. [DOI: 10.3109/10715762.2011.564168] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
130
|
Zuniga KE, Erdman JW. Combined consumption of soy germ and tomato powders results in altered isoflavone and carotenoid bioavailability in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5335-41. [PMID: 21449543 DOI: 10.1021/jf2004157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The efficacy of combinations of food for enhanced anticancer activity is of clinical interest, but there is limited information on the effect of combined consumption on bioactive bioavailability. Male Copenhagen rats consumed diets containing 10% tomato powder (TP), 2% soy germ (SG), neither, or a combination (TP+SG) for 25 weeks (n = 63) or 7 days (n = 24). After 7 days, serum carotenoids were significantly lower after TP+SG feeding compared to TP alone. After 25 weeks, the TP+SG group had significantly lower lycopene and β-carotene concentration in the testes, seminal vesicles, and ventral prostate compared to the TP group and significantly higher urinary isoflavone excretion compared to the SG group. These differences were not explained by mRNA expression of scavenger receptor class B type I, carotene 15,15'-monooxygenase I, carotene 9',10'-monooxygenase II, or activity of hepatic detoxification enzymes. The results suggest interactions between soy germ and tomato powder that enhance isoflavone absorption but reduce carotenoid bioavailability.
Collapse
Affiliation(s)
- Krystle E Zuniga
- Division of Nutritional Sciences, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | | |
Collapse
|
131
|
Palozza P, Simone RE, Catalano A, Mele MC. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers (Basel) 2011; 3:2333-57. [PMID: 24212813 PMCID: PMC3757421 DOI: 10.3390/cancers3022333] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that tomato lycopene may be preventive against the formation and the development of lung cancer. Experimental studies demonstrated that lycopene may inhibit the growth of several cultured lung cancer cells and prevent lung tumorigenesis in animal models through various mechanisms, including a modulation of redox status, cell cycle arrest and/or apoptosis induction, a regulation of growth factor signaling, changes in cell growth-related enzymes, an enhancement of gap junction communication and a prevention of smoke-induced inflammation. In addition, lycopene also inhibited cell invasion, angiogenesis, and metastasis. Several lycopene metabolites have been identified, raising the question as to whether the preventive effects of lycopene on cancer risk is, at least in part, due to its metabolites. Despite these promising reports, it is difficult at the moment to directly relate available experimental data to human pathophysiology. More well controlled clinical intervention trials are needed to further clarify the exact role of lycopene in the prevention of lung cancer cell growth. Such studies should take into consideration subject selection, specific markers of analysis, the levels of carotenoids being tested, metabolism and isomerization of lycopene, interaction with other bioactive food components. This article reviews data on the cancer preventive activities of lycopene, possible mechanisms involved, and the relationship between lycopene consumption and human cancer risk.
Collapse
Affiliation(s)
- Paola Palozza
- Institute of General Pathology, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168, Italy; E-Mails: (R.E.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-301-6619; Fax: +39-06-338-6446
| | - Rossella E. Simone
- Institute of General Pathology, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168, Italy; E-Mails: (R.E.S.); (A.C.)
| | - Assunta Catalano
- Institute of General Pathology, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168, Italy; E-Mails: (R.E.S.); (A.C.)
| | - Maria Cristina Mele
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168, Italy; E-Mail: (M.C.M.)
| |
Collapse
|
132
|
Reynaud E, Aydemir G, Rühl R, Dangles O, Caris-Veyrat C. Organic synthesis of new putative lycopene metabolites and preliminary investigation of their cell-signaling effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1457-1463. [PMID: 21247174 DOI: 10.1021/jf104092e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tomato is the main dietary source of lycopene, a carotenoid that is known to have protective effects on health and whose metabolites could also be involved in bioactivity. Herein we present the first organic synthesis of two potentially bioactive lycopene metabolites, namely, 10'-apolycopen-10'-oic acid (6) and 14'-apolycopen-14'-oic acid (13), which were obtained in their (all-E) stereoisomeric forms using Wittig and Horner-Wadsworth-Emmons type coupling reactions. Both molecules are shown to up-regulate the carotenoid asymmetric cleavage enzyme BCO2 while having no effect on BCO1 expression.
Collapse
Affiliation(s)
- Eric Reynaud
- Safety and Quality of Plant Products, INRA , UMR 408, F-84000 Avignon, France
| | | | | | | | | |
Collapse
|
133
|
Walter MH, Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 2011; 28:663-92. [PMID: 21321752 DOI: 10.1039/c0np00036a] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review focuses on plant carotenoids, but it also includes progress made on microbial and animal carotenoid metabolism to better understand the functions and the evolution of these structurally diverse compounds with a common backbone. Plants have evolved isogenes for specific key steps of carotenoid biosynthesis with differential expression profiles, whose characteristic features will be compared. Perhaps the most exciting progress has been made in studies of carotenoid cleavage products (apocarotenoids) with an ever-expanding variety of novel functions being discovered. This review therefore covers structural, molecular genetic and functional aspects of carotenoids and apocarotenoids alike. Apocarotenoids are specifically tailored from carotenoids by a family of oxidative cleavage enzymes, but whether there are contributions to their generation from chemical oxidation, photooxidation or other mechanisms is largely unknown. Control of carotenoid homeostasis is discussed in the context of biosynthetic and degradative reactions but also in the context of subcellular environments for deposition and sequestration within and outside of plastids. Other aspects of carotenoid research, including metabolic engineering and synthetic biology approaches, will only be covered briefly.
Collapse
Affiliation(s)
- Michael H Walter
- Leibniz-Institut für Pflanzenbiochemie, Abteilung Sekundärstoffwechsel, Weinberg 3, 06120, Halle, Saale, Germany.
| | | |
Collapse
|
134
|
Production of β-apo-10′-carotenal from β-carotene by human β-carotene-9′,10′-oxygenase expressed in E. coli. Biotechnol Lett 2011; 33:1195-200. [DOI: 10.1007/s10529-011-0556-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/28/2011] [Indexed: 11/26/2022]
|
135
|
Mein JR, Dolnikowski GG, Ernst H, Russell RM, Wang XD. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase. Arch Biochem Biophys 2011; 506:109-21. [PMID: 21081106 PMCID: PMC3026080 DOI: 10.1016/j.abb.2010.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/24/2010] [Accepted: 11/05/2010] [Indexed: 01/10/2023]
Abstract
Xanthophyll carotenoids, such as lutein, zeaxanthin and β-cryptoxanthin, may provide potential health benefits against chronic and degenerative diseases. Investigating pathways of xanthophyll metabolism are important to understanding their biological functions. Carotene-15,15'-monooxygenase (CMO1) has been shown to be involved in vitamin A formation, while recent studies suggest that carotene-9',10'-monooxygenase (CMO2) may have a broader substrate specificity than previously recognized. In this in vitro study, we investigated baculovirus-generated recombinant ferret CMO2 cleavage activity towards the carotenoid substrates zeaxanthin, lutein and β-cryptoxanthin. Utilizing HPLC, LC-MS and GC-MS, we identified both volatile and non-volatile apo-carotenoid products including 3-OH-β-ionone, 3-OH-α-ionone, β-ionone, 3-OH-α-apo-10'-carotenal, 3-OH-β-apo-10'-carotenal, and β-apo-10'-carotenal, indicating cleavage at both the 9,10 and 9',10' carbon-carbon double bond. Enzyme kinetic analysis indicated the xanthophylls zeaxanthin and lutein are preferentially cleaved over β-cryptoxanthin, indicating a key role of CMO2 in non-provitamin A carotenoid metabolism. Furthermore, incubation of 3-OH-β-apo-10'-carotenal with CMO2 lysate resulted in the formation of 3-OH-β-ionone. In the presence of NAD(+), in vitro incubation of 3-OH-β-apo-10'-carotenal with ferret hepatic homogenates formed 3-OH-β-apo-10'-carotenoic acid. Since apo-carotenoids serve as important signaling molecules in a variety of biological processes, enzymatic cleavage of xanthophylls by mammalian CMO2 represents a new avenue of research regarding vertebrate carotenoid metabolism and biological function.
Collapse
Affiliation(s)
- Jonathan R. Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Gregory G. Dolnikowski
- Mass Spectrometry Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Hansgeorg Ernst
- Fine Chemicals and Biocatalysis Research, GVF/A-B009, BASF AG D-67056, Ludwigshafen, Germany
| | - Robert M. Russell
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| |
Collapse
|
136
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
137
|
Shmarakov I, Fleshman MK, D’Ambrosio DN, Piantedosi R, Riedl KM, Schwartz SJ, Curley RW, von Lintig J, Rubin LP, Harrison EH, Blaner WS. Hepatic stellate cells are an important cellular site for β-carotene conversion to retinoid. Arch Biochem Biophys 2010; 504:3-10. [PMID: 20470748 PMCID: PMC3692274 DOI: 10.1016/j.abb.2010.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 11/19/2022]
Abstract
Hepatic stellate cells (HSCs) are responsible for storing 90-95% of the retinoid present in the liver. These cells have been reported in the literature also to accumulate dietary β-carotene, but the ability of HSCs to metabolize β-carotene in situ has not been explored. To gain understanding of this, we investigated whether β-carotene-15,15'-monooxygenase (Bcmo1) and β-carotene-9',10'-monooxygenase (Bcmo2) are expressed in HSCs. Using primary HSCs and hepatocytes purified from wild type and Bcmo1-deficient mice, we establish that Bcmo1 is highly expressed in HSCs; whereas Bcmo2 is expressed primarily in hepatocytes. We also confirmed that HSCs are an important cellular site within the liver for accumulation of dietary β-carotene. Bcmo2 expression was found to be significantly elevated for livers and hepatocytes isolated from Bcmo1-deficient compared to wild type mice. This elevation in Bcmo2 expression was accompanied by a statistically significant increase in hepatic apo-12'-carotenal levels of Bcmo1-deficient mice. Although apo-10'-carotenal, like apo-12'-carotenal, was readily detectable in livers and serum from both wild type and Bcmo1-deficient mice, we were unable to detect either apo-8'- or apo-14'-carotenals in livers or serum from the two strains. We further observed that hepatic triglyceride levels were significantly elevated in livers of Bcmo1-deficient mice fed a β-carotene-containing diet compared to mice receiving no β-carotene. Collectively, our data establish that HSCs are an important cellular site for β-carotene accumulation and metabolism within the liver.
Collapse
Affiliation(s)
- Igor Shmarakov
- Department of Medicine, Columbia University, New York, NY 10032, United States
- Department of Biochemistry, Chernivtsy National University, Chernivtsy, Ukraine
| | - Matthew K. Fleshman
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, United States
| | - Diana N. D’Ambrosio
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Roseann Piantedosi
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Ken M. Riedl
- Department Food Science and Technology, Ohio State University, Columbus, OH 43210, United States
| | - Steven J. Schwartz
- Department Food Science and Technology, Ohio State University, Columbus, OH 43210, United States
| | - Robert W. Curley
- College of Pharmacy, Ohio State University, Columbus, OH 43210, United States
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Lewis P. Rubin
- Department of Pediatrics, University of South Florida, St. Petersburg, FL 33701, United States
| | - Earl H. Harrison
- Department of Human Nutrition, Ohio State University, Columbus, OH 43210, United States
| | - William S. Blaner
- Department of Medicine, Columbia University, New York, NY 10032, United States
| |
Collapse
|
138
|
Ford NA, Clinton SK, von Lintig J, Wyss A, Erdman JW. Loss of carotene-9',10'-monooxygenase expression increases serum and tissue lycopene concentrations in lycopene-fed mice. J Nutr 2010; 140:2134-8. [PMID: 20962153 PMCID: PMC2981000 DOI: 10.3945/jn.110.128033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two enzymes have been identified for the oxidative metabolism of carotenoids in mammals. Carotene-15,15'-monooxygenase (CMO-I) primarily centrally cleaves β,β-carotene to form vitamin A. We hypothesize that carotene-9',10'-monooxygenase (CMO-II) plays a key role in metabolism of acyclic nonprovitamin A carotenoids such as lycopene. We investigated carotenoid bioaccumulation in young adult, male, wild-type (WT) mice or mice lacking CMO-II (CMO-II KO). Mice were fed an AIN-93G diet or identical diets supplemented with 10% tomato powder, 130 mg lycopene/kg diet (10% lycopene beadlets), or placebo beadlets for 4 or 30 d. Lycopene preferentially accumulated in CMO-II KO mouse tissues and serum compared with WT mouse tissues. β-Carotene preferentially accumulated in some CMO-II KO mouse tissues compared with WT mouse tissues. Relative tissue mRNA expression of CMO-I and CMO-II was differentially expressed in mouse tissues, and CMO-II, but not CMO-I, was expressed in mouse prostate. In conclusion, the loss of CMO-II expression leads to increased serum and tissue concentrations of lycopene in tomato-fed mice.
Collapse
Affiliation(s)
- Nikki A. Ford
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Steven K. Clinton
- Division of Medical Oncology, Department of Medicine, and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Adrian Wyss
- Department of Human Nutrition and Health, DSM Nutritional Products, Kaiseraugst 4303, Switzerland
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
139
|
Amengual J, Lobo GP, Golczak M, Li HNM, Klimova T, Hoppel CL, Wyss A, Palczewski K, von Lintig J. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 2010; 25:948-59. [PMID: 21106934 DOI: 10.1096/fj.10-173906] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Carotenoids are the precursors for vitamin A and are proposed to prevent oxidative damage to cells. Mammalian genomes encode a family of structurally related nonheme iron oxygenases that modify double bonds of these compounds by oxidative cleavage and cis-to-trans isomerization. The roles of the family members BCMO1 and RPE65 for vitamin A production and vision have been well established. Surprisingly, we found that the third family member, β,β-carotene-9',10'-oxygenase (BCDO2), is a mitochondrial carotenoid-oxygenase with broad substrate specificity. In BCDO2-deficient mice, carotenoid homeostasis was abrogated, and carotenoids accumulated in several tissues. In hepatic mitochondria, accumulated carotenoids induced key markers of mitochondrial dysfunction, such as manganese superoxide dismutase (9-fold), and reduced rates of ADP-dependent respiration by 30%. This impairment was associated with an 8- to 9-fold induction of phosphor-MAP kinase and phosphor-AKT, markers of cell signaling pathways related to oxidative stress and disease. Administration of carotenoids to human HepG2 cells depolarized mitochondrial membranes and resulted in the production of reactive oxygen species. Thus, our studies in BCDO2-deficient mice and human cell cultures indicate that carotenoids can impair respiration and induce oxidative stress. Mammalian cells thus express a mitochondrial carotenoid-oxygenase that degrades carotenoids to protect these vital organelles.
Collapse
Affiliation(s)
- Jaume Amengual
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Scherzinger D, Scheffer E, Bär C, Ernst H, Al-Babili S. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 2010; 277:4662-73. [PMID: 20929460 DOI: 10.1111/j.1742-4658.2010.07873.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.
Collapse
Affiliation(s)
- Daniel Scherzinger
- Institute of Biology II, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
141
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
142
|
Luvizotto RAM, Nascimento AF, Veeramachaneni S, Liu C, Wang X. Chronic alcohol intake upregulates hepatic expression of carotenoid cleavage enzymes and PPAR in rats. J Nutr 2010; 140:1808-14. [PMID: 20702748 PMCID: PMC2937575 DOI: 10.3945/jn.110.123398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15'-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9'10'-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1 (r = 0.89; P < 0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P < 0.001 and r = 0.62, P < 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver.
Collapse
Affiliation(s)
- Renata A. M. Luvizotto
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,Department of Clinical Medicine, Botucatu School of Medicine, University of Sao Paulo State, Botucatu 18618-000, SP, Brazil
| | - André F. Nascimento
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,Department of Clinical Medicine, Botucatu School of Medicine, University of Sao Paulo State, Botucatu 18618-000, SP, Brazil
| | - Sudipta Veeramachaneni
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Xiang‐Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
143
|
Kopec RE, Riedl KM, Harrison EH, Curley RW, Hruszkewycz DP, Clinton SK, Schwartz SJ. Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3290-6. [PMID: 20178389 PMCID: PMC2851402 DOI: 10.1021/jf100415z] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Research has suggested that lycopene may be metabolized by eccentric cleavage, catalyzed by beta-carotene oxygenase 2, resulting in the generation of apo-lycopenals. Apo-6'-lycopenal and apo-8'-lycopenal have been reported previously in raw tomato. We now show that several other apo-lycopenals are also present in raw and processed foods, as well as in human plasma. Apo-lycopenal standards were prepared by in vitro oxidation of lycopene, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method using atmospheric pressure chemical ionization in negative mode was developed to separate and detect the apo-6'-, apo-8'-, apo-10'-, apo-12'-, apo-14'-, and apo-15'-lycopenal products formed in the reaction. Hexane/acetone extracts of raw tomato, red grapefruit, watermelon, and processed tomato products were analyzed, as well as plasma of individuals who had consumed tomato juice for 8 weeks. Apo-6'-, apo-8'-, apo-10'-, apo-12'-, and apo-14'-lycopenals were detected and quantified in all food products tested, as well as plasma. The sum of apo-lycopenals was 6.5 microg/100 g Roma tomato, 73.4 microg/100 g tomato paste, and 1.9 nmol/L plasma. We conclude that several apo-lycopenals, in addition to apo-6'- and -8'-lycopenal, are present in lycopene-containing foods. In addition, the presence of apo-lycopenals in plasma may derive from the absorption of apo-lycopenals directly from food and/or human metabolism.
Collapse
Affiliation(s)
- Rachel E. Kopec
- Department of Food Science & Technology, 110 Parker Building, 2015 Fyffe Ct. The Ohio State University, Columbus, Ohio 43210
- Department of Human Nutrition, 350 Campbell Hall, 1787 Neil Ave. The Ohio State University, Columbus, Ohio 43210
| | - Ken M. Riedl
- Department of Food Science & Technology, 110 Parker Building, 2015 Fyffe Ct. The Ohio State University, Columbus, Ohio 43210
| | - Earl H. Harrison
- Department of Human Nutrition, 350 Campbell Hall, 1787 Neil Ave. The Ohio State University, Columbus, Ohio 43210
| | - Robert W. Curley
- College of Pharmacy, 217 Parks Hall, 500 West 12th Ave. The Ohio State University, Columbus, Ohio 43210
| | - Damian P. Hruszkewycz
- College of Pharmacy, 217 Parks Hall, 500 West 12th Ave. The Ohio State University, Columbus, Ohio 43210
| | - Steven K. Clinton
- Division of Medical Oncology, Department of Internal Medicine, The James Cancer Hospital and Solove Research Institute, A456 Starling Loving Hall, 320 West 10th Ave. The Ohio State University, Columbus, Ohio 43210
| | - Steven J. Schwartz
- Department of Food Science & Technology, 110 Parker Building, 2015 Fyffe Ct. The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
144
|
Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF. Revealing the power of the natural red pigment lycopene. Molecules 2010; 15:959-987. [PMID: 20335956 PMCID: PMC6263198 DOI: 10.3390/molecules15020959] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022] Open
Abstract
By-products derived from food processing are attractive source for their valuable bioactive components and color pigments. These by-products are useful for development as functional foods, nutraceuticals, food ingredients, additives, and also as cosmetic products. Lycopene is a bioactive red colored pigment naturally occurring in plants. Industrial by-products obtained from the plants are the good sources of lycopene. Interest in lycopene is increasing due to increasing evidence proving its preventive properties toward numerous diseases. In vitro, in vivo and ex vivo studies have demonstrated that lycopene-rich foods are inversely associated to diseases such as cancers, cardiovascular diseases, diabetes, and others. This paper also reviews the properties, absorption, transportation, and distribution of lycopene and its by-products in human body. The mechanism of action and interaction of lycopene with other bioactive compounds are also discussed, because these are the crucial features for beneficial role of lycopene. However, information on the effect of food processing on lycopene stability and availability was discussed for better understanding of its characteristics.
Collapse
Affiliation(s)
- Kin-Weng Kong
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (K.-W.K.); (H.-E.K.); (K.N.P.)
| | - Hock-Eng Khoo
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (K.-W.K.); (H.-E.K.); (K.N.P.)
| | - K. Nagendra Prasad
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (K.-W.K.); (H.-E.K.); (K.N.P.)
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (K.-W.K.); (H.-E.K.); (K.N.P.)
- Laboratory of Analysis and Authentication, Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; E-Mail: (C.-P.T.)
| | - Nor Fadilah Rajab
- Department of Biomedical Science, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; E-Mail: (N.F.R.)
| |
Collapse
|
145
|
Abstract
Lycopene is a non-provitamin A carotenoid that is responsible for the red to pink colors seen in tomatoes, pink grapefruit, and other foods. Processed tomato products are the primary dietary lycopene source in the United States. Unlike many other natural compounds, lycopene is generally stable to processing when present in the plant tissue matrix. Recently, lycopene has also been studied in relation to its potential health effects. Although promising data from epidemiological, as well as cell culture and animal, studies suggest that lycopene and the consumption of lycopene containing foods may affect cancer or cardiovascular disease risk, more clinical trial data is needed to support this hypothesis. In addition, future studies are required to understand the mechanism(s) whereby lycopene or its metabolites are proven to possess biological activity in humans.
Collapse
Affiliation(s)
- Erica N. Story
- Department of Food, Bioprocessing, and Nutrition Sciences at North Carolina State University, Raleigh, North Carolina 27695
| | - Rachel E. Kopec
- Department of Food Science and Technology, Interdisciplinary PhD program in Human Nutrition, The Ohio State University, Columbus, Ohio 43210
| | - Steven J. Schwartz
- Department of Food Science and Technology, Interdisciplinary PhD program in Human Nutrition, The Ohio State University, Columbus, Ohio 43210
| | - G. Keith Harris
- Department of Food, Bioprocessing, and Nutrition Sciences at North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
146
|
Tian R, Pitchford WS, Morris CA, Cullen NG, Bottema CDK. Genetic variation in the beta, beta-carotene-9', 10'-dioxygenase gene and association with fat colour in bovine adipose tissue and milk. Anim Genet 2009; 41:253-9. [PMID: 19968649 DOI: 10.1111/j.1365-2052.2009.01990.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta, beta-carotene-9', 10'-dioxygenase (BCO2) plays a role in cleaving beta-carotene eccentrically, and may be involved in the control of adipose and milk colour in cattle. The bovine BCO2 gene was sequenced as a potential candidate gene for a beef fat colour QTL on chromosome (BTA) 15. A single nucleotide base change located in exon 3 causes the substitution of a stop codon (encoded by the A allele) for tryptophan(80) (encoded by the G allele) (c. 240G>A, p.Trp80stop, referred to herein as SNP W80X). Association analysis showed significant differences in subcutaneous fat colour and beta-carotene concentration amongst cattle with different BCO2 genotypes. Animals with the BCO2 AA genotype had more yellow beef fat and a higher beta-carotene concentration in adipose tissues than those with the GA or GG genotype. QTL mapping analysis with the BCO2 SNP W80X fitted as a fixed effect confirmed that this SNP is likely to represent the quantitative trait nucleotide (QTN) for the fat colour-related traits on BTA 15. Moreover, animals with the AA genotype had yellower milk colour and a higher concentration of beta-carotene in the milk.
Collapse
Affiliation(s)
- R Tian
- School of Agriculture, Food and Wine, University of Adelaide, Roseworthy SA 5371 Australia
| | | | | | | | | |
Collapse
|
147
|
Abstract
beta-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk beta-carotene and subsequently identified a premature stop codon in bovine beta-carotene oxygenase 2 (BCO2), which also affects serum beta-carotene content. The BCO2 enzyme is thereby identified as a key regulator of beta-carotene metabolism.
Collapse
|
148
|
Sergeant MJ, Li JJ, Fox C, Brookbank N, Rea D, Bugg TDH, Thompson AJ. Selective inhibition of carotenoid cleavage dioxygenases: phenotypic effects on shoot branching. J Biol Chem 2009; 284:5257-64. [PMID: 19098002 PMCID: PMC2643498 DOI: 10.1074/jbc.m805453200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/24/2008] [Indexed: 11/24/2022] Open
Abstract
Members of the carotenoid cleavage dioxygenase family catalyze the oxidative cleavage of carotenoids at various chain positions, leading to the formation of a wide range of apocarotenoid signaling molecules. To explore the functions of this diverse enzyme family, we have used a chemical genetic approach to design selective inhibitors for different classes of carotenoid cleavage dioxygenase. A set of 18 arylalkyl-hydroxamic acids was synthesized in which the distance between an iron-chelating hydroxamic acid and an aromatic ring was varied; these compounds were screened as inhibitors of four different enzyme classes, either in vitro or in vivo. Potent inhibitors were found that selectively inhibited enzymes that cleave carotenoids at the 9,10 position; 50% inhibition was achieved at submicromolar concentrations. Application of certain inhibitors at 100 microm to Arabidopsis node explants or whole plants led to increased shoot branching, consistent with inhibition of 9,10-cleavage.
Collapse
Affiliation(s)
- Martin J Sergeant
- Warwick HRI, University of Warwick, Wellesbourne CV35, 9EF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
149
|
Mein JR, Lian F, Wang XD. Biological activity of lycopene metabolites: implications for cancer prevention. Nutr Rev 2009; 66:667-83. [PMID: 19019036 DOI: 10.1111/j.1753-4887.2008.00120.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While early studies focused on the potential roles in health and disease of provitamin A carotenoids, such as beta-carotene, research over the past decade has provided a framework for our understanding of the functions of non-provitamin A carotenoids such as lycopene, especially in regards to its association with a reduced risk of a number of chronic diseases, including cancer. Recent data suggests that lycopene metabolites may possess specific biological activities on several important cellular signaling pathways and molecular targets. Carotenoid metabolites may have more important biological roles than their parent compounds in human health and disease. This notion has been reinforced by the observation of both beneficial and detrimental effects of carotenoid metabolites in cancer prevention.
Collapse
Affiliation(s)
- Jonathan R Mein
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
150
|
Aung HH, Vasu VT, Valacchi G, Corbacho AM, Kota RS, Lim Y, Obermueller-Jevic UC, Packer L, Cross CE, Gohil K. Effects of dietary carotenoids on mouse lung genomic profiles and their modulatory effects on short-term cigarette smoke exposures. GENES AND NUTRITION 2008; 4:23-39. [PMID: 19104882 PMCID: PMC2654053 DOI: 10.1007/s12263-008-0108-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/01/2008] [Indexed: 02/08/2023]
Abstract
Male C57BL/6 mice were fed diets supplemented with either beta-carotene (BC) or lycopene (LY) that were formulated for human consumption. Four weeks of dietary supplementations results in plasma and lung carotenoid (CAR) concentrations that approximated the levels detected in humans. Bioactivity of the CARs was determined by assaying their effects on the activity of the lung transcriptome (~8,500 mRNAs). Both CARs activated the cytochrome P450 1A1 gene but only BC induced the retinol dehydrogenase gene. The contrasting effects of the two CARs on the lung transcriptome were further uncovered in mice exposed to cigarette smoke (CS) for 3 days; only LY activated ~50 genes detected in the lungs of CS-exposed mice. These genes encoded inflammatory-immune proteins. Our data suggest that mice offer a viable in vivo model for studying bioactivities of dietary CARs and their modulatory effects on lung genomic expression in both health and after exposure to CS toxicants.
Collapse
Affiliation(s)
- Hnin H Aung
- Center for Comparative Respiratory Biology and Medicine, Clinical Nutrition and Vascular Medicine, Genome and Biomedical Sciences Facility, University of California, 6404A, 451 East Health Sciences Drive, Davis, CA, 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|