101
|
Narwal M, Armache JP, Edwards TJ, Murakami KS. SARS-CoV-2 polyprotein substrate regulates the stepwise M pro cleavage reaction. J Biol Chem 2023; 299:104697. [PMID: 37044215 PMCID: PMC10084705 DOI: 10.1016/j.jbc.2023.104697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate 10 recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscore the roles of the structure, conformation and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.
Collapse
Affiliation(s)
- Manju Narwal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Thomas J Edwards
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Center for Structural Biology, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
102
|
Li Y, Zhu Y, Wang Y, Feng Y, Li D, Li S, Qin P, Yang X, Chen L, Zhao J, Zhang C, Li Y. Characterization of RNA G-quadruplexes in porcine epidemic diarrhea virus genome and the antiviral activity of G-quadruplex ligands. Int J Biol Macromol 2023; 231:123282. [PMID: 36657537 DOI: 10.1016/j.ijbiomac.2023.123282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there are still no anti-PEDV drugs with accurate targets. G-quadruplexes (G4s) are non-canonical secondary structures formed within guanine-rich regions of DNA or RNA, and have attracted great attention as potential targets for antiviral strategy. In this study, we reported two putative G4-forming sequences (PQS) in S and Nsp5 genes of PEDV genome based on bioinformatic analysis, and identified that S-PQS and Nsp5-PQS were enabled to fold into G4 structure by using circular dichroism spectroscopy and fluorescence turn-on assay. Furthermore, we verified that both S-PQS and Nsp5-PQS PQS could form G4 structure in live cells by immunofluorescence microscopy. In addition, G4-specific compounds, such as TMPyP4 and PDS, could significantly inhibit transcription, translation and proliferation of PEDV in vitro. Importantly, these compounds exert antiviral activity at the post-entry step of PEDV infection cycle, by inhibiting viral genome replication and protein expression. Lastly, we demonstrated that TMPyP4 can inhibit reporter gene expression by targeting G4 structure in Nsp5. Taken together, these findings not only reinforce the presence of viral G-quadruplex sequences in PEDV genome but also provide new insights into developing novel antiviral drugs targeting PEDV RNA G-quadruplexes.
Collapse
Affiliation(s)
- Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yance Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yi Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
103
|
Ostermann PN, Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol 2023; 33:e2430. [PMID: 36790825 DOI: 10.1002/rmv.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). In less than three years, an estimated 600 million infections with SARS-CoV-2 occurred worldwide, resulting in a pandemic with tremendous impact especially on economic and health sectors. Initially considered a respiratory disease, COVID-19, along with its long-term sequelae (long-COVID) rather is a systemic disease. Neurological symptoms like dementia or encephalopathy were reported early during the pandemic as concomitants of the acute phase and as characteristics of long-COVID. An excessive inflammatory immune response is hypothesized to play a major role in this context. However, direct infection of neural cells may also contribute to the neurological aspects of (long)-COVID-19. To mainly explore such direct effects of SARS-CoV-2 on the central nervous system, human brain organoids provide a useful platform. Infecting these three-dimensional tissue cultures allows the study of viral neurotropism as well as of virus-induced effects on single cells or even the complex cellular network within the organoid. In this review, we summarize the experimental studies that used SARS-CoV-2-infected human brain organoids to unravel the complex nature of (long)-COVID-19-related neurological manifestations.
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
104
|
Miropolskaya N, Kozlov M, Petushkov I, Prostova M, Pupov D, Esyunina D, Kochetkov S, Kulbachinskiy A. Effects of natural polymorphisms in SARS-CoV-2 RNA-dependent RNA polymerase on its activity and sensitivity to inhibitors in vitro. Biochimie 2023; 206:81-88. [PMID: 36252889 PMCID: PMC9568283 DOI: 10.1016/j.biochi.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maria Prostova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
105
|
Güven YZ, Kıratlı K, Kahraman HG, Akay F, Yurdakul ES. Evaluation of acute effects of pulmonary involvement and hypoxia on retina and choroid in coronavirus disease 2019: An optic coherence tomography study. Photodiagnosis Photodyn Ther 2023; 41:103265. [PMID: 36592784 PMCID: PMC9801694 DOI: 10.1016/j.pdpdt.2022.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE We investigated the acute subclinical choroidal and retinal changes caused by Coronavirus Disease 2019 (COVID-19) in patients with and without pulmonary involvement, using spectral domain optic coherence tomography. METHODS This prospective case-control study included COVID-19 patients: 50 with pulmonary involvement and 118 with non-pulmonary involvement. All patients were examined 1 month after recovering from COVID-19. The changes were followed using optic coherence tomography parameters such as choroidal and macular thickness and retinal nerve fibre layer and ganglion cell complex measurements. RESULTS All choroidal thicknesses in the pulmonary involvement group were lower than in the non-pulmonary involvement group and the subfoveal choroidal thickness differed significantly (p=0.036). Although there were no significant differences between the central and average macular thicknesses in the two groups, they were slightly thicker in the pulmonary involvement group (p=0.152 and p=0.180, respectively). A significant decrease was detected in the pulmonary involvement group in all ganglion cell complex segments, except for the outer nasal inferior segment (p<0.05). In addition, a thinning tendency was observed in all retinal nerve fibre layer quadrants in the pulmonary involvement group compared to the non-pulmonary involvement group. CONCLUSION In COVID-19 patients with pulmonary involvement, subclinical choroidal and retinal changes may occur due to hypoxia and ischemia in the acute period. These patients may be predisposed to ischemic retinal and optic nerve diseases in the future. Therefore, COVID-19 patients with pulmonary involvement should be followed for ophthalmological diseases.
Collapse
Affiliation(s)
- Yusuf Ziya Güven
- İzmir Katip Çelebi University Atatürk Educating and Research Hospital, Department of Ophthalmology, İzmir 35200, Turkey.
| | - Kazım Kıratlı
- İzmir Katip Çelebi University Atatürk Educating and Research Hospital, Department of Infectious Diseases, İzmir, Turkey
| | - Hazan Gül Kahraman
- İzmir Katip Çelebi University Atatürk Educating and Research Hospital, Department of Ophthalmology, İzmir 35200, Turkey
| | - Fahrettin Akay
- University of Health Sciences, Gulhane School of Medicine, Department of Ophthalmology, Ankara, Turkey
| | - Eray Serdar Yurdakul
- University of Health Sciences, Gulhane School of Medicine, Department of Medical History and Bioethics, Ankara, Turkey
| |
Collapse
|
106
|
Porcine Hemagglutinating Encephalomyelitis Virus Co-Opts Multivesicular-Derived Exosomes for Transmission. mBio 2023; 14:e0305422. [PMID: 36541757 PMCID: PMC9973304 DOI: 10.1128/mbio.03054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the family Coronaviridae, genus Betacoronavirus, and subgenus Embecovirus that causes neurological disorders, vomiting and wasting disease (VWD), or influenza-like illness (ILI) in pigs. Exosomes regulate nearby or distant cells as a means of intercellular communication; however, whether they are involved in the transmission of viral reference materials during PHEV infection is unknown. Here, we collected exosomes derived from PHEV-infected neural cells (PHEV-exos) and validated their morphological, structural, and content characteristics. High-resolution mass spectrometry indicated that PHEV-exos carry a variety of cargoes, including host innate immunity sensors and viral ingredients. Furthermore, transwell analysis revealed that viral ingredients, such as proteins and RNA fragments, could be encapsulated in the exosomes of multivesicular bodies (MVBs) to nonpermissive microglia. Inhibition of exosome secretion could suppress PHEV infection. Therefore, we concluded that the mode of infectious transmission of PHEV is likely through a mixture of virus-modified exosomes and virions and that exosomal export acts as a host strategy to induce an innate response in replicating nonpermissive bystander cells free of immune system recognition. IMPORTANCE The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a large number of deaths worldwide. Clinical neurological complications have occurred in some cases; however, knowledge of the natural history of coronavirus in the central nervous system (CNS) is thus far limited. PHEV is a typical neurotropic betacoronavirus (β-CoV) that propagates via neural circuits in the host CNS after peripheral incubation rather than through the bloodstream. It is therefore a good prototype pathogen to investigate the neuropathological pathogenesis of acute human coronavirus infection. In this study, we demonstrate a new association between host vesicle-based secretion and PHEV infection, showing that multivesicular-derived exosomes are one of the modes of infectious transmission and that they mediate the transfer of immunostimulatory cargo to uninfected neuroimmune cells. These findings provide novel insights into the treatment and monitoring of neurological consequences associated with β-CoV, similar to those associated with SARS-CoV-2.
Collapse
|
107
|
All Domains of SARS-CoV-2 nsp1 Determine Translational Shutoff and Cytotoxicity of the Protein. J Virol 2023; 97:e0186522. [PMID: 36847528 PMCID: PMC10062135 DOI: 10.1128/jvi.01865-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable β5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.
Collapse
|
108
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Friesen M, Richards A, Hughes SH, Jaenisch R. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses 2023; 15:629. [PMID: 36992338 PMCID: PMC10057545 DOI: 10.3390/v15030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.
Collapse
Affiliation(s)
- Liguo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
109
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
110
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Richards A, Hughes SH, Jaenisch R. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mRNA-transfected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527906. [PMID: 37293025 PMCID: PMC10245962 DOI: 10.1101/2023.02.10.527906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.
Collapse
|
111
|
Structural insights into the activity regulation of full-length non-structural protein 1 from SARS-CoV-2. Structure 2023; 31:128-137.e5. [PMID: 36610391 PMCID: PMC9817231 DOI: 10.1016/j.str.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Collapse
|
112
|
Xu Z, Wei D, Zeng Q, Zhang H, Sun Y, Demongeot J. More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction. Comput Biol Med 2023; 153:106510. [PMID: 36630829 PMCID: PMC9816089 DOI: 10.1016/j.compbiomed.2022.106510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2. We focus on the mutational effects on viral assembly capacity. A robust coarse-grained mathematical model is constructed to simulate the virus dynamics in the host body. Both virulence and transmissibility can be quantified in this model. A delicate equilibrium point that optimizes the transmissibility can be numerically obtained. Based on this model, the virulence of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibility. However, this trend is not continuous; its virulence will not disappear but remains at a relatively stable range. A virus assembly model which simulates the virus packing process is also proposed. It can be explained why a few mutations would lead to a significant divergence in clinical performance, both in the overall particle formation quantity and virulence. This research provides a novel mathematical attempt to elucidate the evolutionary driving force in RNA virus evolution.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Yinghui Sun
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France.
| |
Collapse
|
113
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
114
|
Zhiyanov AP, Shkurnikov MY. SARS-CoV-2 Mutations Lead to a Decrease in the Number of Tissue-Specific MicroRNA-Binding Regions in the Lung. Bull Exp Biol Med 2023; 174:527-532. [PMID: 36899205 PMCID: PMC10005917 DOI: 10.1007/s10517-023-05742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 03/12/2023]
Abstract
RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.
Collapse
Affiliation(s)
- A P Zhiyanov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - M Yu Shkurnikov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology and Biotechnologies, Higher School of Economics (HSE University), Moscow, Russia.
| |
Collapse
|
115
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
116
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
117
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. eLife 2023; 12:e84477. [PMID: 36695574 PMCID: PMC9910834 DOI: 10.7554/elife.84477] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
Affiliation(s)
| | | | - Ella Matamala
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Deny Cabezas-Bratesco
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Gi Young Lee
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | | | | | | | | | - Rui Yan
- Janelia Research CampusAshburnUnited States
| | - Zhiheng Yu
- Janelia Research CampusAshburnUnited States
| | - Dejian Ren
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Sebastian E Brauchi
- Janelia Research CampusAshburnUnited States
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | | |
Collapse
|
118
|
Parchwani D, Sonagra AD, Dholariya S, Motiani A, Singh R. COVID-19-related liver injury: Focus on genetic and drug-induced perspectives. World J Virol 2023; 12:53-67. [PMID: 36743658 PMCID: PMC9896591 DOI: 10.5501/wjv.v12.i1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical use of potentially hepatotoxic drugs in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is considered as one of the major etiopathogenetic factors for liver injury. Recent evidence has shown that an underlying genetic factor may also occur. Hence, it is important to understand the host genetics and iatrogenic-based mechanisms for liver dysfunction to make timely remedial measures. AIM To investigate drug-induced and genetic perspectives for the development of coronavirus disease 2019 (COVID-19)-related liver injury. METHODS Reference Citation Analysis, PubMed, Google Scholar and China National Knowledge Infrastructure were searched by employing the relevant MeSH keywords and pertaining data of the duration, site and type of study, sample size with any subgroups and drug-induced liver injury outcome. Genetic aspects were extracted from the most current pertinent publications. RESULTS In all studies, the hepatic specific aminotransferase and other biochemical indices were more than their prescribed upper normal limit in COVID-19 patients and were found to be significantly related with the gravity of disease, hospital stay, number of COVID-19 treatment drugs and worse clinical outcomes. In addition, membrane bound O-acyltransferase domain containing 7 rs641738, rs11385942 G>GA at chromosome 3 gene cluster and rs657152 C>A at ABO blood locus was significantly associated with severity of livery injury in admitted SARS-CoV-2 patients. CONCLUSION Hepatic dysfunction in SARS-CoV-2 infection could be the result of individual drugs or due to drug-drug interactions and may be in a subset of patients with a genetic propensity. Thus, serial estimation of hepatic indices in hospitalized SARS-CoV-2 patients should be done to make timely corrective actions for iatrogenic causes to avoid clinical deterioration. Additional molecular and translational research is warranted in this regard.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Amit D Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Anita Motiani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| |
Collapse
|
119
|
Zhou J, Liu Z, Zhang G, Xu W, Xing L, Lu L, Wang Q, Jiang S. Development of variant-proof severe acute respiratory syndrome coronavirus 2, pan-sarbecovirus, and pan-β-coronavirus vaccines. J Med Virol 2023; 95:e28172. [PMID: 36161303 PMCID: PMC9538210 DOI: 10.1002/jmv.28172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmission rates and striking immune evasion have posed a serious challenge to the application of current first-generation SARS-CoV-2 vaccines. Other sarbecoviruses, such as SARS-CoV and SARS-related coronaviruses (SARSr-CoVs), have the potential to cause outbreaks in the future. These facts call for the development of variant-proof SARS-CoV-2, pan-sarbecovirus or pan-β-CoV vaccines. Several novel vaccine platforms have been used to develop vaccines with broad-spectrum neutralizing antibody responses and protective immunity to combat the current SARS-CoV-2 and its variants, other sarbecoviruses, as well as other β-CoVs, in the future. In this review, we discussed the major target antigens and protective efficacy of current SARS-CoV-2 vaccines and summarized recent advances in broad-spectrum vaccines against sarbecoviruses and β-CoVs.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Pharmacology, School of PharmacyFudan UniversityShanghaiChina
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
120
|
Alqatari S, Alkhafaji DM, AlShammari LT, AlArgan R, Alwaheed A, Boumarah DN. COVID-19 and Malignancy: What is the Association? A Case Report and Review of the Literature. Med Arch 2023; 77:237-240. [PMID: 37700926 PMCID: PMC10495138 DOI: 10.5455/medarh.2023.77.237-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 09/14/2023] Open
Abstract
Background After more than two years since Coronavirus disease 2019 (COVID-19) was first identified as a global pandemic, we still observe a variety of clinical presentations. From asymptomatic carriers to severely ill patients. Most patients infected with COVID-19 present with respiratory symptoms. Objective However, case reports of different presentations were published, none of them highlighted the potential of COVID-19 to facilitate the manifestation of hidden malignancy, particularly, gallbladder carcinoma. Case presentation In this report, we present a case of a 77-year-old Saudi lady with multiple comorbidities, presented with an acute confusional state after one month of having asymptomatic COVID-19 infection. Significantly, she was completely functional prior to her presentation and did not manifest any symptoms such as weight loss or fever. Her clinical assessment demonstrated severe abdominal tenderness and guarding on palpation. Computed tomography scans of the abdomen showed perforated gallbladder cancer. Conclusion Among multiple clinical presentations related to COVID-19 infection, gastrointestinal manifestations are the most common extrapulmonary symptoms, ranging from mild to more severe symptoms. Acute abdomen with perforated viscus should be kept in mind as a differential diagnosis when dealing with COVID-19 infected patients who present with severe abdominal pain. The current case report highlights one of unusual presentations of COVID-19 infection.
Collapse
Affiliation(s)
- Safi Alqatari
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Dania M. Alkhafaji
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Lateefah T. AlShammari
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Reem AlArgan
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Abrar Alwaheed
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Dhuha N. Boumarah
- Department of Surgery, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| |
Collapse
|
121
|
Jeong K, Chang J, Park SM, Kim J, Jeon S, Kim DH, Kim YE, Lee JC, Im S, Jo Y, Min JY, Lee H, Yeom M, Seok SH, On DI, Noh H, Yun JW, Park JW, Song D, Seong JK, Kim KC, Lee JY, Park HJ, Kim S, Nam TG, Lee W. Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay. Antiviral Res 2023; 209:105473. [PMID: 36435212 PMCID: PMC9682871 DOI: 10.1016/j.antiviral.2022.105473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
To identify potent antiviral compounds, we introduced a high-throughput screen platform that can rapidly classify hit compounds according to their target. In our platform, we performed a compound screen using a lentivirus-based pseudovirus presenting a spike protein of coronavirus, and we evaluated the hit compounds using an amplified luminescence proximity homogeneous assay (alpha) test with purified host receptor protein and the receptor binding domain of the viral spike. With our screen platform, we were able to identify both spike-specific compounds (class I) and broad-spectrum antiviral compounds (class II). Among the hit compounds, thiosemicarbazide was identified to be selective to the interaction between the viral spike and its host cell receptor, and we further optimized the binding potency of thiosemicarbazide through modification of the pyridine group. Among the class II compounds, we found raloxifene and amiodarone to be highly potent against human coronaviruses including Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. In particular, using analogs of the benzothiophene moiety, which is also present in raloxifene, we have identified benzothiophene as a novel structural scaffold for broad-spectrum antivirals. This work highlights the strong utility of our screen platform using a pseudovirus assay and an alpha test for rapid identification of potential antiviral compounds and their mechanism of action, which can lead to the accelerated development of therapeutics against newly emerging viral infections.
Collapse
Affiliation(s)
- Kwiwan Jeong
- Bio-center, Gyeonggido Business and Science Accelerator, Suwon, South Korea,Corresponding author
| | - JuOae Chang
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sun-mi Park
- Bio-center, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Jinhee Kim
- Institut Pasteur Korea, Seongnam, South Korea
| | | | - Dong Hwan Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Young-Eui Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Joo Chan Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Somyoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yejin Jo
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | | | - Hanbyeul Lee
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, South Korea
| | - Da In On
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, South Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Kyung-Chang Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Hyun-Ju Park
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea,Corresponding author
| | - Seungtaek Kim
- Institut Pasteur Korea, Seongnam, South Korea,Corresponding author
| | - Tae-gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea,Corresponding author
| | - Wonsik Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea,Corresponding author
| |
Collapse
|
122
|
Meseguer S, Rubio MP, Lainez B, Pérez-Benavente B, Pérez-Moraga R, Romera-Giner S, García-García F, Martinez-Macias O, Cremades A, Iborra FJ, Candelas-Rivera O, Almazan F, Esplugues E. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023; 14:1066493. [PMID: 36876111 PMCID: PMC9978209 DOI: 10.3389/fmicb.2023.1066493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Begoña Lainez
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Beatriz Pérez-Benavente
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Sergio Romera-Giner
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | - Francisco J Iborra
- Biological Noise and Cell Plasticity Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Associated Unit to Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain
| | - Oscar Candelas-Rivera
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Fernando Almazan
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Enric Esplugues
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
123
|
Petushkov I, Esyunina D, Kulbachinskiy A. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. FEBS J 2023; 290:80-92. [PMID: 35916766 PMCID: PMC9538676 DOI: 10.1111/febs.16587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| |
Collapse
|
124
|
Chan K, Farias AG, Lee H, Guvenc F, Mero P, Brown KR, Ward H, Billmann M, Aulakh K, Astori A, Haider S, Marcon E, Braunschweig U, Pu S, Habsid A, Yan Tong AH, Christie-Holmes N, Budylowski P, Ghalami A, Mubareka S, Maguire F, Banerjee A, Mossman KL, Greenblatt J, Gray-Owen SD, Raught B, Blencowe BJ, Taipale M, Myers C, Moffat J. Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common and cell-specific SARS-CoV-2 host factors. Heliyon 2023; 9:e12744. [PMID: 36597481 PMCID: PMC9800021 DOI: 10.1016/j.heliyon.2022.e12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.
Collapse
Affiliation(s)
- Katherine Chan
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Corresponding author
| | - Adrian Granda Farias
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Hunsang Lee
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Furkan Guvenc
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Patricia Mero
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Kevin R. Brown
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Henry Ward
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kamaldeep Aulakh
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Audrey Astori
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Shahan Haider
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Edyta Marcon
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Ulrich Braunschweig
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Shuye Pu
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Andrea Habsid
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Amy Hin Yan Tong
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Temerty Faculty of Medicine, University of Toronto Toronto, Ontario, Canada, M5S3E1
| | - Patrick Budylowski
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Ayoob Ghalami
- Office of Environmental Health & Safety, University of Toronto, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada, M5S3E1,Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Finlay Maguire
- Department of Community Health and Epidemiology, Faculty of Medicine Dalhousie University, Halifax, Nova Scotia, Canada,Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jack Greenblatt
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Brian Raught
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Benjamin J. Blencowe
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Mikko Taipale
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Jason Moffat
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8,Institute for Biomedical Engineering, Rosebrugh Building, 164 College Street, Room 407, University of Toronto, Toronto, Ontario, Canada, M5S3G9,Corresponding author. Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| |
Collapse
|
125
|
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023; 157:113977. [PMID: 36370519 PMCID: PMC9637516 DOI: 10.1016/j.biopha.2022.113977] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences, Lublin 50A Doświadczalna Street, 20-280, Lublin, Poland.
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory sciences, College of Applied medical sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roula Bayram
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
126
|
Nitin S, Srinivasa R. B, Monica MS, Thyago H. C. Incursions by severe acute respiratory syndrome coronavirus-2 on the host anti-viral immunity during mild, moderate, and severe coronavirus disease 2019 disease. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/ei.2022.00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the human host can lead to various clinical manifestations, from symptomless carriers to mild to moderate to severe/critical illness. Therefore, the clinical classification of SARS-CoV-2 disease, based on severity, is a reliable way to predict disease states in SARS-CoV-2 infection. Recent studies on genomics, transcriptomics, epigenomics, and immunogenomics, along with spatial analysis of immune cells have delineated and defined the categorization of these disease groups using these high throughout technologies. These technologies hold the promise of providing not only a detailed but a holistic view of SARS-CoV-2-led pathogenesis. The main genomic, cellular, and immunologic features of each disease category, and what separates them spatially and molecularly are discussed in this brief review to provide a foundational spatial understanding of SARS-CoV-2 immunopathogenesis.
Collapse
Affiliation(s)
- Saksena Nitin
- Institute for Health and Sport, Victoria University, Footscray Campus, Melbourne VIC. 3011, Australia; Aegros Therapeutics Pty Ltd, Macquarie Park, Sydney 2019, Australia
| | - Bonam Srinivasa R.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Miranda-Saksena Monica
- Westmead Institute of Medical Research (WIMR), Herpes Virus Laboratory, Sydney 2145, Australia
| | - Cardoso Thyago H.
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi 3079, United Arab Emirates
| |
Collapse
|
127
|
Domovitz T, Ayoub S, Werbner M, Alter J, Izhaki Tavor L, Yahalom-Ronen Y, Tikhonov E, Meirson T, Maman Y, Paran N, Israely T, Dessau M, Gal-Tanamy M. HCV Infection Increases the Expression of ACE2 Receptor, Leading to Enhanced Entry of Both HCV and SARS-CoV-2 into Hepatocytes and a Coinfection State. Microbiol Spectr 2022; 10:e0115022. [PMID: 36314945 PMCID: PMC9769977 DOI: 10.1128/spectrum.01150-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest the enhancement of liver injury in COVID-19 patients infected with Hepatitis C virus (HCV). Hepatocytes express low levels of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor, raising the possibility of HCV-SARS-CoV-2 coinfection in the liver. This work aimed to explore whether HCV and SARS-CoV-2 coinfect hepatocytes and the interplay between these viruses. We demonstrate that SARS-CoV-2 coinfects HCV-infected Huh7.5 (Huh7.5HCV) cells. Both viruses replicated efficiently in the coinfected cells, with HCV replication enhanced in coinfected compared to HCV-mono-infected cells. Strikingly, Huh7.5HCV cells were eight fold more susceptible to SARS-CoV-2 pseudoviruses than naive Huh7.5 cells, suggesting enhanced SARS-CoV-2 entry into HCV-preinfected hepatocytes. In addition, we observed increased binding of spike receptor-binding domain (RBD) protein to Huh7.5HCV cells, as well as enhanced cell-to-cell fusion of Huh7.5HCV cells with spike-expressing Huh7.5 cells. We explored the mechanism of enhanced SARS-CoV-2 entry and identified an increased ACE2 mRNA and protein levels in Huh7.5HCV cells, primary hepatocytes, and in data from infected liver biopsies obtained from database. Importantly, higher expression of ACE2 increased HCV infection by enhancing its binding to the host cell, underscoring its role in the HCV life cycle as well. Transcriptome analysis revealed that shared host signaling pathways were induced in HCV-SARS-CoV-2 coinfection. This study revealed complex interactions between HCV and SARS-CoV-2 infections in hepatocytes, which may lead to the increased liver damage recently reported in HCV-positive COVID-19 patients. IMPORTANCE Here, we provide the first experimental evidence for the coexistence of SARS-CoV-2 infection with HCV, and the interplay between them. The study revealed a complex relationship of enhancement between the two viruses, where HCV infection increased the expression of the SARS-CoV-2 entry receptor ACE2, thus facilitating SARS-CoV-2 entry, and potentially, also HCV entry. Thereafter, SARS-CoV-2 infection enhanced HCV replication in hepatocytes. This study may explain the aggravation of liver damage that was recently reported in COVID-19 patients with HCV coinfection and suggests preinfection with HCV as a risk factor for severe COVID-19. Moreover, it highlights the possible importance of HCV treatment for coinfected patients. In a broader view, these findings emphasize the importance of identifying coinfecting pathogens that increase the risk of SARS-CoV-2 infection and that may accelerate COVID-19-related co-morbidities.
Collapse
Affiliation(s)
- Tom Domovitz
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samer Ayoub
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joel Alter
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lee Izhaki Tavor
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Evgeny Tikhonov
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Yaakov Maman
- The Lab of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Dessau
- The Laboratory of Structural Biology of Infectious Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
128
|
Dolliver SM, Kleer M, Bui-Marinos MP, Ying S, Corcoran JA, Khaperskyy DA. Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathog 2022; 18:e1011041. [PMID: 36534661 PMCID: PMC9810206 DOI: 10.1371/journal.ppat.1011041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.
Collapse
Affiliation(s)
- Stacia M. Dolliver
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Mariel Kleer
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Maxwell P. Bui-Marinos
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Shan Ying
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases and Charbonneau Institute for Cancer Research, University of Calgary, Calgary, Canada
| | - Denys A. Khaperskyy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Canada
- * E-mail:
| |
Collapse
|
129
|
Indole-3-carbinol in vitro antiviral activity against SARS-Cov-2 virus and in vivo toxicity. Cell Death Dis 2022; 8:491. [PMID: 36522315 PMCID: PMC9751508 DOI: 10.1038/s41420-022-01280-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The effects of indole-3-carbinol (I3C) compound have been described deeply as antitumor drug in multiple cancers. Herein, I3C compound was tested for toxicity and antiviral activity against SARS-CoV-2 infection. Antiviral activity was assessed in vitro in both in VeroE6 cell line and human Lung Organoids (hLORGs) where I3C exhibited a direct anti-SARS-CoV-2 replication activity with an antiviral effect and a modulation of the expression of genes implicated in innate immunity and inflammatory response was observed at 16.67 μM. Importantly, we further show the I3C is also effective against the SARS-CoV-2 Omicron variant. In mouse model, instead, we assessed possible toxicity effects of I3C through two different routes of administration: intragastrically (i.g.) and intraperitoneally (i.p.). The LD50 (lethal dose 50%) values in mice were estimated to be: 1410 and 1759 mg/kg i.g.; while estimated values for i.p. administration were: 444.5 mg/kg and 375 mg/kg in male and female mice, respectively. Below these values, I3C (in particular at 550 mg/kg for i.g. and 250 mg/kg for i.p.) induces neither death, nor abnormal toxic symptoms as well as no histopathological lesions of the tissues analysed. These tolerated doses are much higher than those already proven effective in pre-clinical cancer models and in vitro experiments. In conclusion, I3C exhibits a significant antiviral activity, and no toxicity effects were recorded for this compound at the indicated doses, characterizing it as a safe and potential antiviral compound. The results presented in this study could provide experimental pre-clinical data necessary for the start of human clinical trials with I3C for the treatment of SARS-CoV-2 and beyond.
Collapse
|
130
|
Bergner T, Zech F, Hirschenberger M, Stenger S, Sparrer KMJ, Kirchhoff F, Read C. Near-Native Visualization of SARS-CoV-2 Induced Membrane Remodeling and Virion Morphogenesis. Viruses 2022; 14:v14122786. [PMID: 36560790 PMCID: PMC9784144 DOI: 10.3390/v14122786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, leads to profound remodeling of cellular membranes, promoting viral replication and virion assembly. A full understanding of this drastic remodeling and the process of virion morphogenesis remains lacking. In this study, we applied room temperature transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography to visualize the SARS-CoV-2 replication factory in Vero cells, and present our results in comparison with published cryo-EM studies. We obtained cryo-EM-like clarity of the ultrastructure by employing high-pressure freezing, freeze substitution (HPF-FS) and embedding, allowing room temperature visualization of double-membrane vesicles (DMVs) in a near-native state. In addition, our data illustrate the consecutive stages of virion morphogenesis and reveal that SARS-CoV-2 ribonucleoprotein assembly and membrane curvature occur simultaneously. Finally, we show the tethering of virions to the plasma membrane in 3D, and that accumulations of virus particles lacking spike protein in large vesicles are most likely not a result of defective virion assembly at their membrane. In conclusion, this study puts forward a room-temperature EM technique providing near-native ultrastructural information about SARS-CoV-2 replication, adding to our understanding of the interaction of this pandemic virus with its host cell.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Steffen Stenger
- Institute for Microbiology and Hygiene, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
131
|
Biering SB, Gomes de Sousa FT, Tjang LV, Pahmeier F, Zhu C, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NTN, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Fox DM, Ortega V, Näär AM, Baric RS, Stanley SA, Aguilar HC, Esko JD, Chiu CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun 2022; 13:7630. [PMID: 36494335 PMCID: PMC9734751 DOI: 10.1038/s41467-022-34910-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Laurentia V Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R Glasner
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A Santos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Douglas M Fox
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Anders M Näär
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y Chiu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
132
|
Ivanova YO, Voronina AI, Skvortsov VS. [The prediction of SARS-CoV-2 main protease inhibition with filtering by position of ligand]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:444-458. [PMID: 36573412 DOI: 10.18097/pbmc20226806444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The paper analyzes a set of equations that adequately predict the IC50 value for SARS-CoV-2 main protease inhibitors. The training set was obtained using filtering by criteria independent of prediction of target value. It included 76 compounds, and the test set included nine compounds. We used the values of energy contributions obtained in the calculation of the change of the free energy of complex by MMGBSA method and a number of characteristics of the physical and chemical properties of the inhibitors as independent variables. It is sufficient to use only seven independent variables without loss of prediction quality (Q² = 0.79; R²prediction = 0.89). The maximum error in this case does not exceed 0.92 lg(IC50) units with a full range of observed values from 1.26 to 4.95.
Collapse
Affiliation(s)
- Ya O Ivanova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Voronina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
133
|
van Vliet VJE, Huynh N, Palà J, Patel A, Singer A, Slater C, Chung J, van Huizen M, Teyra J, Miersch S, Luu GK, Ye W, Sharma N, Ganaie SS, Russell R, Chen C, Maynard M, Amarasinghe GK, Mark BL, Kikkert M, Sidhu SS. Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathog 2022; 18:e1011065. [PMID: 36548304 PMCID: PMC9822107 DOI: 10.1371/journal.ppat.1011065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.
Collapse
Affiliation(s)
- Vera J. E. van Vliet
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Nhan Huynh
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Judith Palà
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alex Singer
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Cole Slater
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacky Chung
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mariska van Huizen
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Joan Teyra
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Shane Miersch
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gia-Khanh Luu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Wei Ye
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Safder S. Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Raquel Russell
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chao Chen
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mindy Maynard
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, South Holland, The Netherlands
| | - Sachdev S. Sidhu
- The Anvil Institute, Kitchener, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
134
|
Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100079. [PMID: 36060987 PMCID: PMC9420082 DOI: 10.1016/j.ejmcr.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
135
|
Tiwari A, Phan N, Tandukar S, Ashoori R, Thakali O, Mousazadesh M, Dehghani MH, Sherchan SP. Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85658-85668. [PMID: 34652622 PMCID: PMC8518268 DOI: 10.1007/s11356-021-16919-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 04/15/2023]
Abstract
As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions. Research indicates that SARS-CoV-2 can actively replicate in the human gastrointestinal system and can subsequently be shed via feces. Several countries have reported SARS-CoV-2 RNA fractions in wastewater systems, and various factors such as temperature and presence of solids have been shown to affect the survival of the virus in water. The detection of RNA does not guarantee infectivity, as current methods such as RT-qPCR are not yet able to distinguish between infectious and non-infectious particles. More research is needed to determine survival time and potential infectivity, as well as to develop more accurate methods for detection and surveillance.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701, Kuopio, Finland
| | - Nati Phan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ocean Thakali
- University of Yamanashi, Takeda, Kofu, Yamanashi, 4-3-11 400-8511, Japan
| | - Milad Mousazadesh
- Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
136
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
137
|
Tarragó‐Gil R, Gil‐Mosteo MJ, Aza‐Pascual‐Salcedo M, Alvarez MJL, Ainaga RR, Gimeno NL, Viñuales RF, Fernández YM, Marco JM, Bolsa EA, Sancho JB, Cajo SA, Perez‐Zsolt D, Raïch‐Regué D, Muñoz‐Basagoiti J, Izquierdo‐Useros N, Pociello VB, León R, Peris DS. Randomized clinical trial to assess the impact of oral intervention with cetylpyridinium chloride to reduce salivary SARS-CoV-2 viral load. J Clin Periodontol 2022; 50:288-294. [PMID: 36345827 PMCID: PMC9877833 DOI: 10.1111/jcpe.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
AIM Aerosols released from the oral cavity help spread the SARS-CoV-2 virus. The use of a mouthwash formulated with an antiviral agent could reduce the viral load in saliva, helping to lower the spread of the virus. The aim of this study was to assess the efficacy of a mouthwash with 0.07% cetylpyridinium chloride (CPC) to reduce the viral load in the saliva of Coronavirus disease 2019 (COVID-19) patients. MATERIALS AND METHODS In this multi-centre, single-blind, randomized, parallel group clinical trial, 80 COVID-19 patients were enrolled and randomized to two groups, namely test (n = 40) and placebo (n = 40). Saliva samples were collected at baseline and 2 h after rinsing. The samples were analysed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an enzyme-linked immunosorbent assay test specific for the nucleocapsid (N) protein of SARS-CoV-2. RESULTS With RT-qPCR, no significant differences were observed between the placebo group and the test group. However, 2 h after a single rinse, N protein concentration in saliva was significantly higher in the test group, indicating an increase in lysed virus. CONCLUSIONS The use of 0.07% CPC mouthwash induced a significant increase in N protein detection in the saliva of COVID-19 patients. Lysis of the virus in the mouth could help reduce the transmission of SARS-CoV-2. However, more studies are required to prove this.
Collapse
Affiliation(s)
- Rosa Tarragó‐Gil
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - María José Gil‐Mosteo
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Mercedes Aza‐Pascual‐Salcedo
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| | - María Jesús Lallana Alvarez
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| | - Raquel Refusta Ainaga
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,San José Primary Care Health CentreAragon Health ServiceZaragozaSpain
| | - Natalia Lázaro Gimeno
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Roberto Fuentes Viñuales
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Sagasta Primary Care Health CentreAragon Health ServiceZaragozaSpain
| | - Yolanda Millán Fernández
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Jesica Montero Marco
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Elena Altarribas Bolsa
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Jessica Bueno Sancho
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Sonia Algarate Cajo
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | | | | | | | - Nuria Izquierdo‐Useros
- IrsiCaixa AIDS Research InstituteBadalonaSpain,Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
| | | | - Rubén León
- Dentaid Research CenterCerdanyola del VallèsSpain
| | - Diana Serrano Peris
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| |
Collapse
|
138
|
Di Matteo F, Frumenzio G, Chandramouli B, Grottesi A, Emerson A, Musiani F. Computational Study of Helicase from SARS-CoV-2 in RNA-Free and Engaged Form. Int J Mol Sci 2022; 23:ijms232314721. [PMID: 36499049 PMCID: PMC9738952 DOI: 10.3390/ijms232314721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic that broke out in 2020 and continues to be the cause of massive global upheaval. Coronaviruses are positive-strand RNA viruses with a genome of ~30 kb. The genome is replicated and transcribed by RNA-dependent RNA polymerase together with accessory factors. One of the latter is the protein helicase (NSP13), which is essential for viral replication. The recently solved helicase structure revealed a tertiary structure composed of five domains. Here, we investigated NSP13 from a structural point of view, comparing its RNA-free form with the RNA-engaged form by using atomistic molecular dynamics (MD) simulations at the microsecond timescale. Structural analyses revealed conformational changes that provide insights into the contribution of the different domains, identifying the residues responsible for domain-domain interactions in both observed forms. The RNA-free system appears to be more flexible than the RNA-engaged form. This result underlies the stabilizing role of the nucleic acid and the functional core role of these domains.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Giorgia Frumenzio
- Super Computing Applications and Innovation, Department HPC, CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Italy
| | - Balasubramanian Chandramouli
- Super Computing Applications and Innovation, Department HPC, CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Italy
| | | | - Andrew Emerson
- Super Computing Applications and Innovation, Department HPC, CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
- Correspondence:
| |
Collapse
|
139
|
Resch MD, Wen K, Mazboudi R, Mulhall Maasz H, Persaud M, Garvey K, Gallardo L, Gottlieb P, Alimova A, Khayat R, Morales J, Bielefeldt-Ohmann H, Bowen RA, Galarza JM. Immunogenicity and Efficacy of Monovalent and Bivalent Formulations of a Virus-Like Particle Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:1997. [PMID: 36560407 PMCID: PMC9782034 DOI: 10.3390/vaccines10121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Virus-like particles (VLPs) offer great potential as a safe and effective vaccine platform against SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 VLPs can be generated by expression of the four viral structural proteins in a mammalian expression system. Immunization of mice with a monovalent VLP vaccine elicited a potent humoral response, showing neutralizing activity against multiple variants of SARS-CoV-2. Subsequent immunogenicity and efficacy studies were performed in the Golden Syrian hamster model, which closely resembles the pathology and progression of COVID-19 in humans. Hamsters immunized with a bivalent VLP vaccine were significantly protected from infection with the Beta or Delta variant of SARS-CoV-2. Vaccinated hamsters showed reduced viral load, shedding, replication, and pathology in the respiratory tract. Immunized hamsters also showed variable levels of cross-neutralizing activity against the Omicron variant. Overall, the VLP vaccine elicited robust protective efficacy against SARS-CoV-2. These promising results warrant further study of multivalent VLP vaccines in Phase I clinical trials in humans.
Collapse
Affiliation(s)
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Ryan Mazboudi
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | | | - Mirjana Persaud
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Kaitlyn Garvey
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Leslie Gallardo
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Jorge Morales
- Microscopy Facility, Division of Science, The City College of New York, New York, NY 10031, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Jose M. Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| |
Collapse
|
140
|
Xu T, Li LX, Jia Y, Wu Q, Zhu W, Xu Z, Zheng B, Lu X. One microRNA has the potential to target whole viral mRNAs in a given human coronavirus. Front Microbiol 2022; 13:1035044. [PMID: 36439806 PMCID: PMC9686371 DOI: 10.3389/fmicb.2022.1035044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
MicroRNAs (miRNAs) can repress viral replication by targeting viral messenger RNA (mRNA), which makes them potential antiviral agents. The antiviral effects of miRNAs on infectious viruses have been explored extensively; however, recent studies mainly considered the action modes of miRNAs, neglecting another key factor, the molecular biology of viruses, which may be particularly important in the study of miRNA actions against a given virus. In this paper, the action modes of miRNAs and the molecular biology of viruses are jointly considered for the first time and based on the reported roles of miRNAs on viruses and human coronaviruses (HCoVs) molecular biology, the general and specific interaction modes of miRNAs-HCoVs are systematically reviewed. It was found that HCoVs transcriptome is a nested set of subgenomic mRNAs, sharing the same 5' leader, 3' untranslated region (UTR) and open reading frame (ORF). For a given HCoV, one certain miRNA with a target site in the 5' leader or 3' UTR has the potential to target all viral mRNAs, indicating tremendous antiviral effects against HCoVs. However, for the shared ORFs, some parts are untranslatable attributed to the translation pattern of HCoVs mRNA, and it is unknown whether the base pairing between the untranslated ORFs and miRNAs plays a regulatory effect on the local mRNAs where the untranslated ORFs are located; therefore, the regulatory effects of miRNAs with targets within the shared ORFs are complicated and need to be confirmed. Collectively, miRNAs may bepromising antiviral agents against HCoVs due to their intrinsically nested set of mRNAs, and some gaps are waiting to be filled. In this review, insight is provided into the exploration of miRNAs that can interrupt HCoVs infection.
Collapse
Affiliation(s)
- Tielong Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Long-xue Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yao Jia
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingni Wu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Weifeng Zhu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhou Xu
- Evidence-Based Medicine Research Center Department, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bin Zheng
- National Institute of Parasitic Diseases Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xuexin Lu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
141
|
Sasi VM, Ullrich S, Ton J, Fry SE, Johansen-Leete J, Payne RJ, Nitsche C, Jackson CJ. Predicting Antiviral Resistance Mutations in SARS-CoV-2 Main Protease with Computational and Experimental Screening. Biochemistry 2022; 61:2495-2505. [DOI: 10.1021/acs.biochem.2c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vishnu M. Sasi
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Jennifer Ton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Sarah E. Fry
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Jason Johansen-Leete
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney NSW 2006, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra ACT 2601, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
142
|
Mahroum N, Seida I, Esirgün SN, Bragazzi NL. The COVID-19 pandemic - How many times were we warned before? Eur J Intern Med 2022; 105:8-14. [PMID: 35864073 PMCID: PMC9289047 DOI: 10.1016/j.ejim.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Infectious diseases are known to act in both predictable and unpredictable ways, which leads to the notions of emerging and reemerging infectious diseases. Emerging diseases with their disastrous consequences might be surprising and unpredictable, but they could be foreseen. For instance, some emerging diseases and recently the coronavirus disease 2019 (COVID-19) were the reason for papers published by the World Health Organization (WHO) and other researchers addressing the likely pathogens causing future outbreaks, according to the reports of the WHO in 2016 and 2018. Although it might seem like a wisdom in retrospect, several studies had already indicated possible future outbreaks caused by coronaviruses. Announcements, which may be viewed as "warnings," appeared since the emergence of the first coronavirus-related outbreak caused by severe acute respiratory syndrome coronavirus (SARS-CoV) in the winter of 2002-2003 and a later outbreak caused by the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012-2013. Therefore, we were curious to review the medical literature prior to the COVID-19 pandemic with an aim to enumerate and evaluate studies addressing and warning against future outbreaks, and surprisingly pandemics, of members of coronaviruses. Interestingly, we found numerous studies that correctly predicted the current pandemic of COVID-19. While this part is highly interesting, how authorities reacted and prepared for warnings, if any, and how will they get prepared for the next warnings are our main messages. Taking these points into serious consideration will certainly aid in analyzing reports regarding possible future outbreaks as well as in developing various strategies for prevention and coping with such epidemics.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey.
| | - Isa Seida
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey
| | - Sevval Nil Esirgün
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Canada
| |
Collapse
|
143
|
Yong CY, Liew WPP, Ong HK, Poh CL. Development of virus-like particles-based vaccines against coronaviruses. Biotechnol Prog 2022; 38:e3292. [PMID: 35932092 PMCID: PMC9537895 DOI: 10.1002/btpr.3292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the most impactful coronaviruses in human history, especially the latter, which brings revolutionary changes to human vaccinology. Due to its high infectivity, the virus spreads rapidly throughout the world and was declared a pandemic in March 2020. A vaccine would normally take more than 10 years to be developed. As such, there is no vaccine available for SARS-CoV and MERS-CoV. Currently, 10 vaccines have been approved for emergency use by World Health Organization (WHO) against SARS-CoV-2. Virus-like particle (VLP)s are nanoparticles resembling the native virus but devoid of the viral genome. Due to their self-adjuvanting properties, VLPs have been explored extensively for vaccine development. However, none of the approved vaccines against SARS-CoV-2 was based on VLP and only 4% of the vaccine candidates in clinical trials were based on VLPs. In the current review, we focused on discussing the major advances in the development of VLP-based vaccine candidates against the SARS-CoV, MERS-CoV, and SARS-CoV-2, including those in clinical and pre-clinical studies, to give a comprehensive overview of the VLP-based vaccines against the coronaviruses.
Collapse
Affiliation(s)
- Chean Yeah Yong
- China‐ASEAN College of Marine SciencesXiamen University MalaysiaSepangSelangorMalaysia
| | - Winnie Pui Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health ScienceUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health ScienceUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life SciencesSunway UniversityBandar SunwaySelangorMalaysia
| |
Collapse
|
144
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. J Mol Biol 2022; 434:167796. [PMID: 35995266 PMCID: PMC9389836 DOI: 10.1016/j.jmb.2022.167796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA. https://twitter.com/@ishamyana
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA; Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA(†). https://twitter.com/@MNFrazier5
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
145
|
Naik NG, Lee SC, Veronese BHS, Ma Z, Toth Z. Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 Is Not Required for NSP5-Mediated Inhibition of Type I Interferon Signaling Pathway. Microbiol Spectr 2022; 10:e0232222. [PMID: 36173315 PMCID: PMC9603796 DOI: 10.1128/spectrum.02322-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Over the last 2 years, several global virus-host interactome studies have been published with SARS-CoV-2 proteins with the purpose of better understanding how specific viral proteins can subvert or utilize different cellular processes to promote viral infection and pathogenesis. However, most of the virus-host protein interactions have not yet been confirmed experimentally, and their biological significance is largely unknown. The goal of this study was to verify the interaction of NSP5, the main protease of SARS-CoV-2, with the host epigenetic factor histone deacetylase 2 (HDAC2) and test if HDAC2 is required for NSP5-mediated inhibition of the type I interferon signaling pathway. Our results show that NSP5 can significantly reduce the expression of a subset of immune response genes such as IL-6, IL-1β, and IFNβ, which requires NSP5's protease activity. We also found that NSP5 can inhibit Sendai virus-, RNA sensor-, and DNA sensor-mediated induction of IFNβ promoter, block the IFN response pathway, and reduce the expression of IFN-stimulated genes. We also provide evidence for HDAC2 interacting with IRF3, and NSP5 can abrogate their interaction by binding to both IRF3 and HDAC2. In addition, we found that HDAC2 plays an inhibitory role in the regulation of IFNβ and IFN-induced promoters, but our results indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNβ gene expression. Taken together, our data show that NSP5 interacts with HDAC2 but NSP5 inhibits the IFNβ gene expression and interferon-signaling pathway in an HDAC2-independent manner. IMPORTANCE SARS-CoV-2 has developed multiple strategies to antagonize the host antiviral response, such as blocking the IFN signaling pathway, which favors the replication and spreading of the virus. A recent SARS-CoV-2 protein interaction mapping revealed that the main viral protease NSP5 interacts with the host epigenetic factor HDAC2, but the interaction was not confirmed experimentally and its biological importance remains unclear. Here, we not only verified the interaction of HDAC2 with NSP5, but we also found that HDAC2 also binds to IRF3, and NSP5 can disrupt the IRF3-HDAC2 complex. Furthermore, our results show that NSP5 can efficiently repress the IFN signaling pathway regardless of whether viral infections, RNA, or DNA sensors activated it. However, our data indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNβ promoter induction and IFNβ gene expression.
Collapse
Affiliation(s)
- Nenavath Gopal Naik
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - See-Chi Lee
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Beatriz H. S. Veronese
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zhe Ma
- UF Health Cancer Center, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
146
|
Upadhyay M, Gupta S. Endoplasmic reticulum secretory pathway: Potential target against SARS-CoV-2. Virus Res 2022; 320:198897. [PMID: 35988898 PMCID: PMC9387115 DOI: 10.1016/j.virusres.2022.198897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently emerged throughout the world, resulting in more than 400 million cases and over 6 million deaths worldwide as of January 2022. Coronaviruses subvert or use certain aspects of the unfolded protein response in the endoplasmic reticulum to overcome protein translation shutdown to benefit their replication. New virions use the ER-Golgi intermediate compartment to assemble and gain transportation to the cell membrane. Extensive remodeling of the ER has been demonstrated during SARS-CoV-2 infection. In this review article, we discuss the role of the endoplasmic reticulum secretory pathway in the replication cycle of SARS-CoV-2. Currently, there is a dearth of therapeutic options for intervening with SARS-CoV-2 infection. To accelerate drug development, efforts around the globe have been focusing on repurposing drugs that have already been approved for clinical use by regulatory agencies. Targeting the ERS pathway is reasonable, as prior work has shown that SARS-CoV-2 egress is dependent on this pathway. Here we discuss the feasibility of off-patent, FDA-approved, pharmacological inhibitors of the ERS pathway to suppress the SARS-CoV-2 replication cycle, a promising approach that warrants investigation.
Collapse
Affiliation(s)
- Maarisha Upadhyay
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland.
| |
Collapse
|
147
|
Ullrich S, Nitsche C. SARS-CoV-2 Papain-Like Protease: Structure, Function and Inhibition. Chembiochem 2022; 23:e202200327. [PMID: 35993805 PMCID: PMC9538446 DOI: 10.1002/cbic.202200327] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Emerging variants of SARS-CoV-2 and potential novel epidemic coronaviruses underline the importance of investigating various viral proteins as potential drug targets. The papain-like protease of coronaviruses has been less explored than other viral proteins; however, its substantive role in viral replication and impact on the host immune response make it a suitable target to study. This review article focuses on the structure and function of the papain-like protease (PLpro ) of SARS-CoV-2, including variants of concern, and compares it to those of other coronaviruses, such as SARS-CoV-1 and MERS-CoV. The protease's recognition motif is mirrored in ubiquitin and ISG15, which are involved in the antiviral immune response. Inhibitors, including GRL0617 derivatives, and their prospects as potential future antiviral agents are also discussed.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Christoph Nitsche
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| |
Collapse
|
148
|
Solomon M, Liang C. Human coronaviruses: The emergence of SARS-CoV-2 and management of COVID-19. Virus Res 2022; 319:198882. [PMID: 35934258 PMCID: PMC9351210 DOI: 10.1016/j.virusres.2022.198882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
To date, a total of seven human coronaviruses (HCoVs) have been identified, all of which are important respiratory pathogens. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has led to a global pandemic causing millions of infections and deaths. Here, we summarize the discovery and fundamental virology of HCoVs, discuss their zoonotic transmission and highlight the weak species barrier of SARS-CoV-2. We also discuss the possible origins of SARS-CoV-2 variants of concern identified to date and discuss the experimental challenges in characterizing mutations of interest and propose methods to circumvent them. As the COVID-19 treatment and prevention landscape rapidly evolves, we summarize current therapeutics and vaccines, and their implications on SARS-CoV-2 variants. Finally, we explore how interspecies transmission of SARS-CoV-2 may drive the emergence of novel strains, how disease severity may evolve and how COVID-19 will likely continue to burden healthcare systems globally.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
149
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
150
|
Zeng HL, Liu Y, Dichio V, Aurell E. Temporal epistasis inference from more than 3 500 000 SARS-CoV-2 genomic sequences. Phys Rev E 2022; 106:044409. [PMID: 36397507 DOI: 10.1103/physreve.106.044409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We use direct coupling analysis (DCA) to determine epistatic interactions between loci of variability of the SARS-CoV-2 virus, segmenting genomes by month of sampling. We use full-length, high-quality genomes from the GISAID repository up to October 2021 for a total of over 3 500 000 genomes. We find that DCA terms are more stable over time than correlations but nevertheless change over time as mutations disappear from the global population or reach fixation. Correlations are enriched for phylogenetic effects, and in particularly statistical dependencies at short genomic distances, while DCA brings out links at longer genomic distance. We discuss the validity of a DCA analysis under these conditions in terms of a transient auasilinkage equilibrium state. We identify putative epistatic interaction mutations involving loci in spike.
Collapse
Affiliation(s)
- Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing 210023, China
| | - Yue Liu
- School of Science, Nanjing University of Posts and Telecommunications, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing 210023, China
| | - Vito Dichio
- Inria Paris, Aramis Project Team, Paris 75013, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Erik Aurell
- Department of Computational Science and Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|