101
|
Braun P, Aubourg S, Van Leene J, De Jaeger G, Lurin C. Plant protein interactomes. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:161-87. [PMID: 23330791 DOI: 10.1146/annurev-arplant-050312-120140] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-protein interactions are a critical element of biological systems, and the analysis of interaction partners can provide valuable hints about unknown functions of a protein. In recent years, several large-scale protein interaction studies have begun to unravel the complex networks through which plant proteins exert their functions. Two major classes of experimental approaches are used for protein interaction mapping: analysis of direct interactions using binary methods such as yeast two-hybrid or split ubiquitin, and analysis of protein complexes through affinity purification followed by mass spectrometry. In addition, bioinformatics predictions can suggest interactions that have evaded detection by other methods or those of proteins that have not been investigated. Here we review the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks. We present experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large-scale plant interactome network maps.
Collapse
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology, Center for Life and Food Sciences Weihenstephan, Technische Universität München (TUM), 85354 Freising-Weihenstephan, Germany.
| | | | | | | | | |
Collapse
|
102
|
Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 2012; 12:1576-90. [PMID: 22611051 DOI: 10.1002/pmic.201100523] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identifying the interactions established by a protein of interest can be a critical step in understanding its function. This is especially true when an unknown protein of interest is demonstrated to physically interact with proteins of known function. While many techniques have been developed to characterize protein-protein interactions, one strategy that has gained considerable momentum over the past decade for identification and quantification of protein-protein interactions, is affinity-purification followed by mass spectrometry (AP-MS). Here, we briefly review the basic principles used in affinity-purification coupled to mass spectrometry, with an emphasis on tools (both biochemical and computational), which enable the discovery and reporting of high quality protein-protein interactions.
Collapse
Affiliation(s)
- Wade H Dunham
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
103
|
Gicquel M, Taconnat L, Renou JP, Esnault MA, Cabello-Hurtado F. Kinetic transcriptomic approach revealed metabolic pathways and genotoxic-related changes implied in the Arabidopsis response to ionising radiations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:106-19. [PMID: 22921004 DOI: 10.1016/j.plantsci.2012.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 05/22/2023]
Abstract
Plants exposed to ionising radiation (IR) have to face direct and indirect (oxidative stress) deleterious effects whose intensity depends on the dose applied and led to differential genome regulation. Transcriptomic analyses were conducted with CATMA microarray technology on Arabidopsis thaliana plantlets, 2 and 26h after exposure to the IR doses 10Gy and 40Gy. 10Gy treatment seemed to enhance antioxidative compound biosynthetic pathways whereas the 40Gy dose up-regulated ROS-scavenging enzyme genes. Transcriptomic data also highlighted a differential regulation of chloroplast constituent genes depending on the IR dose, 10Gy stimulating and 40Gy down-regulating. This probable 40Gy decrease of photosynthesis could help for the limitation of ROS production and may be coupled with programmed cell death (PCD)/senescence phenomena. Comparisons with previous transcriptomic studies on plants exposed to a 100Gy dose revealed 60 dose-dependent up-regulated genes, including notably cell cycle checkpoints to allow DNA repairing phenomena. Furthermore, the alteration of some cellular structure related gene expression corroborated a probable mitotic arrest after 40Gy. Finally, numerous heat-shock protein and chaperonin genes, known to protect proteins against stress-dependent dysfunction, were up-regulated after IR exposure.
Collapse
Affiliation(s)
- Morgane Gicquel
- Mechanisms and Origin of Biodiversity Team, UMR 6553-Ecobio, University of Rennes1, 263 Av. du Général Leclerc, Campus de Beaulieu-Bât.14A, 35042 Rennes, France
| | | | | | | | | |
Collapse
|
104
|
Nagels Durand A, Moses T, De Clercq R, Goossens A, Pauwels L. A MultiSite Gateway™ vector set for the functional analysis of genes in the model Saccharomyces cerevisiae. BMC Mol Biol 2012; 13:30. [PMID: 22994806 PMCID: PMC3519679 DOI: 10.1186/1471-2199-13-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 09/17/2012] [Indexed: 12/02/2022] Open
Abstract
Background Recombinatorial cloning using the GatewayTM technology has been the method of choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most widely used experimental systems in molecular biology, due to the lack of appropriate destination vectors. Results Here, we present a set of three-fragment MultiSite GatewayTM destination vectors that have been developed for gene expression in S. cerevisiae and that allow the assembly of any promoter, open reading frame, epitope tag arrangement in combination with any of four auxotrophic markers and three distinct replication mechanisms. As an example of its applicability, we used yeast three-hybrid to provide evidence for the assembly of a ternary complex of plant proteins involved in jasmonate signalling and consisting of the JAZ, NINJA and TOPLESS proteins. Conclusion Our vectors make MultiSite GatewayTM cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the high-throughput functional analysis of (heterologous) proteins in one of the most widely used model organisms for molecular biology research.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
| | | | | | | | | |
Collapse
|
105
|
Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C, Horlow C, Wassmann K, Schnittger A, De Veylder L, Mercier R. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM. PLoS Genet 2012; 8:e1002865. [PMID: 22844260 PMCID: PMC3406007 DOI: 10.1371/journal.pgen.1002865] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022] Open
Abstract
Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor. In the life cycle of sexual organisms, a specialized cell division—meiosis—reduces the number of chromosomes from two sets (2n, diploid) to one set (n, haploid), while fertilization restores the original chromosome number. Meiosis reduces ploidy because it consists of two cellular divisions following a single DNA replication. In this study, we analyze the function of a group of genes that collectively controls the entry into the first meiotic division, the entry into the second meiotic division, and the exit from meiosis in the model plant Arabidopsis thaliana. We revealed a complex regulation network that controls these three key transitions.
Collapse
Affiliation(s)
- Laurence Cromer
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Jefri Heyman
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Sandra Touati
- UMPC University of Paris 6, UMR7622, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | - Hirofumi Harashima
- IBMP, UPR2357 du CNRS, Strasbourg, France
- Trinationales Institut fuer Pflanzenforschung, Strasbourg, France
| | - Emilie Araou
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Chloe Girard
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Christine Horlow
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Katja Wassmann
- UMPC University of Paris 6, UMR7622, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, Paris, France
| | - Arp Schnittger
- IBMP, UPR2357 du CNRS, Strasbourg, France
- Trinationales Institut fuer Pflanzenforschung, Strasbourg, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Raphael Mercier
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
- * E-mail:
| |
Collapse
|
106
|
Wang F, Vandepoele K, Van Lijsebettens M. Tetraspanin genes in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:9-15. [PMID: 22608515 DOI: 10.1016/j.plantsci.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 05/19/2023]
Abstract
Tetraspanins represent a four-transmembrane protein superfamily with a conserved structure and amino acid residues that are present in mammals, insects, fungi and plants. Tetraspanins interact with each other or with other membrane proteins to form tetraspanin-enriched microdomains that play important roles in development, pathogenesis and immune responses via facilitating cell-cell adhesion and fusion, ligand binding and intracellular trafficking. Here, we emphasize evolutionary aspects within the plant kingdom based on genomic sequence information. A phylogenetic tree based on 155 tetraspanin genes of 11 plant species revealed ancient and fast evolving clades. Tetraspanins were only present in multicellular plants, were often duplicated in the plant genomes and predicted by the electronic Fluorescent Pictograph for gene expression analysis to be either functionally redundant or divergent. Tetraspanins contain a large extracellular loop with conserved cysteines that provide the binding sites for the interactions. The Arabidopsis thaliana TETRASPANIN1/TORNADO2/EKEKO has a function in leaf and root patterning and TETRASPANIN3 was identified in the plasmodesmatal proteome, suggesting a role in cell-cell communication during plant development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
107
|
Heyndrickx KS, Vandepoele K. Systematic identification of functional plant modules through the integration of complementary data sources. PLANT PHYSIOLOGY 2012; 159:884-901. [PMID: 22589469 PMCID: PMC3387714 DOI: 10.1104/pp.112.196725] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A major challenge is to unravel how genes interact and are regulated to exert specific biological functions. The integration of genome-wide functional genomics data, followed by the construction of gene networks, provides a powerful approach to identify functional gene modules. Large-scale expression data, functional gene annotations, experimental protein-protein interactions, and transcription factor-target interactions were integrated to delineate modules in Arabidopsis (Arabidopsis thaliana). The different experimental input data sets showed little overlap, demonstrating the advantage of combining multiple data types to study gene function and regulation. In the set of 1,563 modules covering 13,142 genes, most modules displayed strong coexpression, but functional and cis-regulatory coherence was less prevalent. Highly connected hub genes showed a significant enrichment toward embryo lethality and evidence for cross talk between different biological processes. Comparative analysis revealed that 58% of the modules showed conserved coexpression across multiple plants. Using module-based functional predictions, 5,562 genes were annotated, and an evaluation experiment disclosed that, based on 197 recently experimentally characterized genes, 38.1% of these functions could be inferred through the module context. Examples of confirmed genes of unknown function related to cell wall biogenesis, xylem and phloem pattern formation, cell cycle, hormone stimulus, and circadian rhythm highlight the potential to identify new gene functions. The module-based predictions offer new biological hypotheses for functionally unknown genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes). Furthermore, the inferred modules provide new insights into the conservation of coexpression and coregulation as well as a starting point for comparative functional annotation.
Collapse
|
108
|
Claeys H, Skirycz A, Maleux K, Inzé D. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. PLANT PHYSIOLOGY 2012; 159:739-47. [PMID: 22535421 PMCID: PMC3375938 DOI: 10.1104/pp.112.195032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.
Collapse
|
109
|
Abstract
The study of protein-protein interactions (PPIs) is essential to uncover unknown functions of proteins at the molecular level and to gain insight into complex cellular networks. Affinity purification and mass spectrometry (AP-MS), yeast two-hybrid, imaging approaches and numerous diverse databases have been developed as strategies to analyze PPIs. The past decade has seen an increase in the number of identified proteins with the development of MS and large-scale proteome analyses. Consequently, the false-positive protein identification rate has also increased. Therefore, the general consensus is to confirm PPI data using one or more independent approaches for an accurate evaluation. Furthermore, identifying minor PPIs is fundamental for understanding the functions of transient interactions and low-abundance proteins. Besides establishing PPI methodologies, we are now seeing the development of new methods and/or improvements in existing methods, which involve identifying minor proteins by MS, multidimensional protein identification technology or OFFGEL electrophoresis analyses, one-shot analysis with a long column or filter-aided sample preparation methods. These advanced techniques should allow thousands of proteins to be identified, whereas in-depth proteomic methods should permit the identification of transient binding or PPIs with weak affinity. Here, the current status of PPI analysis is reviewed and some advanced techniques are discussed briefly along with future challenges for plant proteomics.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
110
|
Pusch S, Harashima H, Schnittger A. Identification of kinase substrates by bimolecular complementation assays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:348-56. [PMID: 22098373 DOI: 10.1111/j.1365-313x.2011.04862.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a consequence of the transient nature of kinase-substrate interactions, the detection of kinase targets, although central for understanding many biological processes, has remained challenging. Here we present a straightforward procedure that relies on the comparison of wild type with activation-loop mutants in the kinase of interest by bimolecular complementation assays. As a proof of functionality, we present the identification and in vivo confirmation of substrates of the major cell-cycle kinase in Arabidopsis, revealing a direct link between cell proliferation and the control of the redox state.
Collapse
Affiliation(s)
- Stefan Pusch
- Unigruppe am Max-Planck-Institut für Züchtungsforschung, Max-Delbrück-Laboratorium, Lehrstuhl für Botanik III, Universität Köln, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | |
Collapse
|
111
|
Müller S. Universal rules for division plane selection in plants. PROTOPLASMA 2012; 249:239-53. [PMID: 21611883 DOI: 10.1007/s00709-011-0289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 05/08/2023]
Abstract
Coordinated cell divisions and cell expansion are the key processes that command growth in all organisms. The orientation of cell divisions and the direction of cell expansion are critical for normal development. Symmetric divisions contribute to proliferation and growth, while asymmetric divisions initiate pattern formation and differentiation. In plants these processes are of particular importance since their cells are encased in cellulosic walls that determine their shape and lock their position within tissues and organs. Several recent studies have analyzed the relationship between cell shape and patterns of symmetric cell division in diverse organisms and employed biophysical and mathematical considerations to develop computer simulations that have allowed accurate prediction of cell division patterns. From these studies, a picture emerges that diverse biological systems follow simple universal rules of geometry to select their division planes and that the microtubule cytoskeleton takes a major part in sensing the geometric information and translates this information into a specific division outcome. In plant cells, the division plane is selected before mitosis, and spatial information of the division plane is preserved throughout division by the presence of reference molecules at a distinct region of the plasma membrane, the cortical division zone. The recruitment of these division zone markers occurs multiple times by several mechanisms, suggesting that the cortical division zone is a highly dynamic region.
Collapse
Affiliation(s)
- Sabine Müller
- Center for Plant Molecular Biology-Developmental Genetics, University of Tübingen, Auf der Morgenstelle 3, 72076, Tübingen, Germany.
| |
Collapse
|
112
|
Li Y, Shu Y, Peng C, Zhu L, Guo G, Li N. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism. Mol Cell Proteomics 2012; 11:272-85. [PMID: 22442259 DOI: 10.1074/mcp.m111.016568] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.
Collapse
Affiliation(s)
- Yaojun Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
113
|
Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B, Verkest A, Kamei CLA, De Jaeger G, Koncz C, De Veylder L. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. THE PLANT CELL 2011; 23:4394-410. [PMID: 22167059 PMCID: PMC3269873 DOI: 10.1105/tpc.111.091793] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Kevin De Wit
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Barbara Berckmans
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D–50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H–6723 Szeged, Hungary
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
114
|
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GTS, Houben A, Grasser KD. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. THE NEW PHYTOLOGIST 2011; 192:577-89. [PMID: 21781122 DOI: 10.1111/j.1469-8137.2011.03828.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. • DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. • The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. • In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.
Collapse
Affiliation(s)
- Dorthe S Pedersen
- Cell Biology and Plant Biochemistry, Regensburg University, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Berckmans B, Vassileva V, Schmid SP, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei CLA, Koncz C, Bögre L, Persiau G, De Jaeger G, Friml J, Simon R, Beeckman T, De Veylder L. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. THE PLANT CELL 2011; 23:3671-83. [PMID: 22003076 PMCID: PMC3229142 DOI: 10.1105/tpc.111.088377] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 05/18/2023]
Abstract
Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.
Collapse
Affiliation(s)
- Barbara Berckmans
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Valya Vassileva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Stephan P.C. Schmid
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Satoshi Naramoto
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | - Laszlo Bögre
- Royal Holloway, University of London, Centre for Systems and Synthetic Biology, TW20 0EX Egham, United Kingdom
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
116
|
Van Hove J, Fouquaert E, Smith DF, Proost P, Van Damme EJM. Lectin activity of the nucleocytoplasmic EUL protein from Arabidopsis thaliana. Biochem Biophys Res Commun 2011; 414:101-5. [PMID: 21945438 DOI: 10.1016/j.bbrc.2011.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 01/28/2023]
Abstract
The Euonymus lectin (EUL) domain was recognized as the structural motif for a novel class of putative carbohydrate binding proteins. Confocal microscopy demonstrated that the lectin from Euonymus europaeus (EEA) as well as the EUL protein from Arabidopsis thaliana (ArathEULS3) are located in the nucleocytoplasmic compartment of the plant cell. ArathEULS3 as well as its EUL domain were successfully expressed in Pichia pastoris and purified. The EUL domain from Arabidopsis interacts with glycan structures containing Lewis Y, Lewis X and lactosamine, indicating that it can be considered a true lectin domain. Despite the high sequence identity between the EUL domains in EEA and ArathEULS3, both domains recognize different carbohydrate structures.
Collapse
Affiliation(s)
- Jonas Van Hove
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
117
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Gicquel M, Esnault MA, Jorrín-Novo JV, Cabello-Hurtado F. Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana. J Proteomics 2011; 74:1364-77. [DOI: 10.1016/j.jprot.2011.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
|
119
|
Zhang Y, Gao P, Yuan JS. Plant protein-protein interaction network and interactome. Curr Genomics 2011; 11:40-6. [PMID: 20808522 PMCID: PMC2851115 DOI: 10.2174/138920210790218016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/22/2022] Open
Abstract
Protein-protein interaction network represents an important aspect of systems biology. The understanding of the plant protein-protein interaction network and interactome will provide crucial insights into the regulation of plant developmental, physiological, and pathological processes. In this review, we will first define the concept of plant interactome and the protein-protein interaction network. The significance of the plant interactome study will be discussed. We will then compare the pros and cons for different strategies for interactome mapping including yeast two-hybrid system (Y2H), affinity purification mass spectrometry (AP-MS), bimolecular fluorescence complementation (BiFC), and in silico prediction. The application of these platforms on specific plant biology questions will be further discussed. The recent advancements revealed the great potential for plant protein-protein interaction network and interactome to elucidate molecular mechanisms for signal transduction, stress responses, cell cycle control, pattern formation, and others. Mapping the plant interactome in model species will provide important guideline for the future study of plant biology.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
120
|
Malcos JL, Cyr RJ. An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle-dependent manner. Cytoskeleton (Hoboken) 2011; 68:247-58. [PMID: 21387573 DOI: 10.1002/cm.20508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Past phylogenic studies have identified a plant-specific, ungrouped family of kinesins in which the motor domain does not group to one of the fourteen recognized families. Members of this family contain an N-terminal motor domain, a C-terminal armadillo repeat domain and a conserved destruction box (D-BOX) motif. This domain architecture is unique to plants and to a subset of protists. Further characterization of one representative member from Arabidopsis, Arabidopsis thaliana KINESIN ungrouped clade, gene A (AtKINUa), was completed to ascertain its functional role in plants. Fluorescence confocal microscopy revealed an accumulation of ATKINUA:GFP at the preprophase band (PPB) in a cell cycle-dependent manner in Arabidopsis epidermal cells and tobacco BY-2 cells. Fluorescence accumulation was highest during prophase and decreased after nuclear envelope breakdown. A conserved D-BOX motif was identified through alignment of AtKINU homologous sequences. Mutagenesis work with D-BOX revealed that conserved residues were necessary for the observed degradation pattern of ATKINUA:GFP, as well as the targeted accumulation at the PPB. Overall results suggest that AtKINUa is necessary for normal plant growth and/or development and is likely involved with PPB organization through microtubule association and specific cell cycle regulation. The D-BOX motif may function to bridge microtubule organization with changes that occur during progression through mitosis and may represent a novel regulatory motif in plant microtubule motor proteins.
Collapse
Affiliation(s)
- Jennelle L Malcos
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania, USA
| | | |
Collapse
|
121
|
Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemière F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. PHYTOCHEMISTRY 2011; 72:1192-218. [PMID: 21345472 DOI: 10.1016/j.phytochem.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/21/2010] [Accepted: 01/03/2011] [Indexed: 05/11/2023]
Abstract
The congruent development of computational technology, bioinformatics and analytical instrumentation makes proteomics ready for the next leap. Present-day state of the art proteomics grew from a descriptive method towards a full stake holder in systems biology. High throughput and genome wide studies are now made at the functional level. These include quantitative aspects, functional aspects with respect to protein interactions as well as post translational modifications and advanced computational methods that aid in predicting protein function and mapping these functionalities across the species border. In this review an overview is given of the current status of these aspects in plant studies with special attention to non-genomic model plants.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inzé D. Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. THE PLANT CELL 2011; 23:1876-88. [PMID: 21558544 PMCID: PMC3123952 DOI: 10.1105/tpc.111.084160] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/25/2011] [Accepted: 04/13/2011] [Indexed: 05/18/2023]
Abstract
Despite its relevance for agricultural production, environmental stress-induced growth inhibition, which is responsible for significant yield reductions, is only poorly understood. Here, we investigated the molecular mechanisms underlying cell cycle inhibition in young proliferating leaves of the model plant Arabidopsis thaliana when subjected to mild osmotic stress. A detailed cellular analysis demonstrated that as soon as osmotic stress is sensed, cell cycle progression rapidly arrests, but cells are kept in a latent ambivalent state allowing a quick recovery (pause). Remarkably, cell cycle arrest coincides with an increase in 1-aminocyclopropane-1-carboxylate levels and the activation of ethylene signaling. Our work showed that ethylene acts on cell cycle progression via inhibition of cyclin-dependent kinase A activity independently of EIN3 transcriptional control. When the stress persists, cells exit the mitotic cell cycle and initiate the differentiation process (stop). This stop is reflected by early endoreduplication onset, in a process independent of ethylene. Nonetheless, the potential to partially recover the decreased cell numbers remains due to the activity of meristemoids. Together, these data present a conceptual framework to understand how environmental stress reduces plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Akira Oikawa
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shoko Shinoda
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Megan Andriankaja
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Nubia Barbosa Eloy
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Sang-Dong Yoo
- Department of Biological Science, Sungkyunkwan University, Suwon 110-645, Korea
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
123
|
Lipavská H, Masková P, Vojvodová P. Regulatory dephosphorylation of CDK at G₂/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. ANNALS OF BOTANY 2011; 107:1071-86. [PMID: 21339187 PMCID: PMC3091802 DOI: 10.1093/aob/mcr016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G₂/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G₂/M have not yet been identified. SCOPE Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G₂/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G₂ phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G₂ and early M-phase. Spcdc25-expressing tobacco ('Samsun') cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics. CONCLUSIONS The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G₂/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G₂/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.
Collapse
Affiliation(s)
- Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, Prague 2, Czech Republic.
| | | | | |
Collapse
|
124
|
Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant protein complexes by mass spectrometry. Proteomics 2011; 11:1824-33. [DOI: 10.1002/pmic.201000635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/15/2011] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
|
125
|
Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira PCG, Eloy N, Renne C, Meyer C, Faure JD, Steinbrenner J, Beynon J, Larkin JC, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inzé D, Witters E, De Jaeger G. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 2011; 6:397. [PMID: 20706207 PMCID: PMC2950081 DOI: 10.1038/msb.2010.53] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 06/12/2010] [Indexed: 12/27/2022] Open
Abstract
A protein interactome focused towards cell proliferation was mapped comprising 857 interactions among 393 proteins, leading to many new insights in plant cell cycle regulation. A comprehensive view on heterodimeric cyclin-dependent kinase (CDK)/cyclin complexes in plants is obtained, in relation with their regulators. Over 100 new candidate cell cycle proteins were predicted.
The basic underlying mechanisms that govern the cell cycle are conserved among all eukaryotes. Peculiar for plants, however, is that their genome contains a collection of cell cycle regulatory genes that is intriguingly large (Vandepoele et al, 2002; Menges et al, 2005) compared to other eukaryotes. Arabidopsis thaliana (Arabidopsis) encodes 71 genes in five regulatory classes versus only 15 in yeast and 23 in human. Despite the discovery of numerous cell cycle genes, little is known about the protein complex machinery that steers plant cell division. Therefore, we applied tandem affinity purification (TAP) approach coupled with mass spectrometry (MS) on Arabidopsis cell suspension cultures to isolate and analyze protein complexes involved in the cell cycle. This approach allowed us to successfully map a first draft of the basic cell cycle complex machinery of Arabidopsis, providing many new insights into plant cell division. To map the interactome, we relied on a streamlined platform comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, TAP adapted for plant cells, and matrix-assisted laser desorption ionization (MALDI) tandem-MS for the identification of purified proteins (Van Leene et al, 2007, 2008Van Leene et al, 2007, 2008). Complexes for 102 cell cycle proteins were analyzed using this approach, leading to a non-redundant data set of 857 interactions among 393 proteins (Figure 1A). Two subspaces were identified in this data set, domain I1, containing interactions confirmed in at least two independent experimental repeats or in the reciprocal purification experiment, and domain I2 consisting of uniquely observed interactions. Several observations underlined the quality of both domains. All tested reverse purifications found the original interaction, and 150 known or predicted interactions were confirmed, meaning that also a huge stack of new interactions was revealed. An in-depth computational analysis revealed enrichment for many cell cycle-related features among the proteins of the network (Figure 1B), and many protein pairs were coregulated at the transcriptional level (Figure 1C). Through integration of known cell cycle-related features, more than 100 new candidate cell cycle proteins were predicted (Figure 1D). Besides common qualities of both interactome domains, their real significance appeared through mutual differences exposing two subspaces in the cell cycle interactome: a central regulatory network of stable complexes that are repeatedly isolated and represent core regulatory units, and a peripheral network comprising transient interactions identified less frequently, which are involved in other aspects of the process, such as crosstalk between core complexes or connections with other pathways. To evaluate the biological relevance of the cell cycle interactome in plants, we validated interactions from both domains by a transient split-luciferase assay in Arabidopsis plants (Marion et al, 2008), further sustaining the hypothesis-generating power of the data set to understand plant growth. With respect to insights into the cell cycle physiology, the interactome was subdivided according to the functional classes of the baits and core protein complexes were extracted, covering cyclin-dependent kinase (CDK)/cyclin core complexes together with their positive and negative regulation networks, DNA replication complexes, the anaphase-promoting complex, and spindle checkpoint complexes. The data imply that mitotic A- and B-type cyclins exclusively form heterodimeric complexes with the plant-specific B-type CDKs and not with CDKA;1, whereas D-type cyclins seem to associate with CDKA;1. Besides the extraction of complexes previously shown in other organisms, our data also suggested many new functional links; for example, the link coupling cell division with the regulation of transcript splicing. The association of negative regulators of CDK/cyclin complexes with transcription factors suggests that their role in reallocation is not solely targeted to CDK/cyclin complexes. New members of the Siamese-related inhibitory proteins were identified, and for the first time potential inhibitors of plant-specific mitotic B-type CDKs have been found in plants. New evidence that the E2F–DP–RBR network is not only active at G1-to-S, but also at the G2-to-M transition is provided and many complexes involved in DNA replication or repair were isolated. For the first time, a plant APC has been isolated biochemically, identifying three potential new plant-specific APC interactors, and finally, complexes involved in the spindle checkpoint were isolated mapping many new but specific interactions. Finally, to get a general view on the complex machinery, modules of interacting cyclins and core cell cycle regulators were ranked along the cell cycle phases according to the transcript expression peak of the cyclins, showing an assorted set of CDK–cyclin complexes with high regulatory differentiation (Figure 4). Even within the same subfamily (e.g. cyclin A3, B1, B2, D3, and D4), cyclins differ not only in their functional time frame but also in the type and number of CDKs, inhibitors, and scaffolding proteins they bind, further indicating their functional diversification. According to our interaction data, at least 92 different variants of CDK–cyclin complexes are found in Arabidopsis. In conclusion, these results reflect how several rounds of gene duplication (Sterck et al, 2007) led to the evolution of a large set of cyclin paralogs and a myriad of regulators, resulting in a significant jump in the complexity of the cell cycle machinery that could accommodate unique plant-specific features such as an indeterminate mode of postembryonic development. Through their extensive regulation and connection with a myriad of up- and downstream pathways, the core cell cycle complexes might offer the plant a flexible toolkit to fine-tune cell proliferation in response to an ever-changing environment. Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.
Collapse
|
126
|
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. THE PLANT CELL 2011; 23:701-15. [PMID: 21335373 PMCID: PMC3077776 DOI: 10.1105/tpc.110.080788] [Citation(s) in RCA: 789] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 05/17/2023]
Abstract
Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.
Collapse
Affiliation(s)
- Patricia Fernández-Calvo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José-Manuel Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Jan Geerinck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - José Manuel Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Erwin Witters
- Department of Biology, EBT-CEPROMA, University of Antwerp, B-2020 Antwerpen, Belgium
- Flemish Institute for Technological Research, VITO-MANT, B-2400 Mol, Belgium
| | - María Isabel Puga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Javier Paz-Ares
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
- Genomics Unit, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
127
|
Kaufmann K, Smaczniak C, de Vries S, Angenent GC, Karlova R. Proteomics insights into plant signaling and development. Proteomics 2011; 11:744-55. [DOI: 10.1002/pmic.201000418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
|
128
|
The Preprophase Band and Division Site Determination in Land Plants. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
129
|
Van Leene J, Eeckhout D, Persiau G, Van De Slijke E, Geerinck J, Van Isterdael G, Witters E, De Jaeger G. Isolation of transcription factor complexes from Arabidopsis cell suspension cultures by tandem affinity purification. Methods Mol Biol 2011; 754:195-218. [PMID: 21720954 DOI: 10.1007/978-1-61779-154-3_11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining protein complexes is critical to virtually all aspects of cell biology because most cellular processes are regulated by stable or more dynamic protein interactions. Elucidation of the protein-protein interaction network around transcription factors is essential to fully understand their function and regulation. In the last decade, new technologies have emerged to study protein-protein interactions under near-physiological conditions. We have developed a high-throughput tandem affinity purification (TAP)/mass spectrometry (MS) platform for cell suspension cultures to analyze protein complexes in Arabidopsis thaliana. This streamlined platform follows an integrated approach comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, TAP adapted for plant cells, and tandem matrix-assisted laser desorption ionization MS for the identification of purified proteins. Recently, we evaluated the GS tag, originally developed to study mammalian protein complexes, that combines two IgG-binding domains of protein G with a streptavidin-binding peptide, separated by two tobacco etch virus cleavage sites. We found that this GS tag outperforms the traditional TAP tag in plant cells, regarding both specificity and complex yield. Here, we provide detailed protocols of the GS-based TAP platform that allowed us to characterize transcription factor complexes involved in signaling in response to the plant phytohormone jasmonate.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Gent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Dissmeyer N, Schnittger A. Use of phospho-site substitutions to analyze the biological relevance of phosphorylation events in regulatory networks. Methods Mol Biol 2011; 779:93-138. [PMID: 21837563 DOI: 10.1007/978-1-61779-264-9_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biological information is often transmitted by phosphorylation cascades. However, the biological relevance of specific phosphorylation events is often difficult to determine. An invaluable tool to study the effect of kinases and/or phosphatases is the use of phospho- and dephospho-mimetic substitutions in the respective target proteins. Here, we present a generally applicable procedure of how to design, set-up, and carry out phosphorylation modulation experiments and subsequent monitoring of protein activities, taking -cyclin-dependent kinases (CDKs) as a case study. CDKs are key regulators of cell cycle progression in all eukaryotic cells. Consequently, CDKs are controlled at many levels and phosphorylation of CDKs -themselves is used to regulate their kinase activity. We describe in detail complementation experiments of a mutant in CDKA;1, the major cell cycle kinase in Arabidopsis, with phosphorylation-site variants of CDKA;1. CDKA;1 versions were generated either by mimicking a phosphorylated amino acid by replacing the respective residue with a negatively charged amino acid, e.g., aspartate or glutamate, or by mutating it to a non-phoshorylatable amino acid, such as alanine, valine, or phenylalanine. The genetic complementation studies were accompanied by the isolation of these kinase variants from plant extract and subsequent kinase assays to determine changes in their activity levels. This work allowed us to judge the importance of -posttranslational regulation of CDKA;1 in plants and has shown that the molecular mechanistics of CDK function are apparently conserved across the kingdoms. However, the regulatory wiring of CDKs is -strikingly different between plants, animals, and yeast.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Independent Junior Research Group on Protein Recognition and Degradation, Halle (Saale), Germany.
| | | |
Collapse
|
131
|
Walls D, Loughran ST. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 2011; 681:151-175. [PMID: 20978965 DOI: 10.1007/978-1-60761-913-0_9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| | | |
Collapse
|
132
|
Interaction proteomics: characterization of protein complexes using tandem affinity purification-mass spectrometry. Biochem Soc Trans 2010; 38:883-7. [PMID: 20658971 DOI: 10.1042/bst0380883] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most cellular processes are carried out by a multitude of proteins that assemble into multimeric complexes. Thus a precise understanding of the biological pathways that control cellular events relies on the identification and on the biochemical characterization of the proteins involved in such multimeric assemblies. Advances in MS have made possible the identification of multisubunit protein complexes isolated from cell lysates with high sensitivity and accuracy, whereas the TAP (tandem affinity purification) methodology efficiently isolates native protein complexes from cells for proteomics analysis. TAP is a generic method based on the sequential utilization of two affinity tags to purify protein assemblies. During the first purification step, the Protein A moiety of the TAP tag is bound to IgG beads, and protein components associated with the TAP-tagged protein are retrieved by TEV (tobacco etch virus) protease cleavage. This enzyme is a sequence-specific protease cleaving a seven-amino-acid recognition site located between the first and second tags. In the second affinity step, the protein complex is immobilized to calmodulin-coated beads via the CBP (calmodulin-binding peptide) of the TAP tag. The CBP-calmodulin interaction is calcium-dependent and calcium-chelating agents are used in the second elution step to release the final protein complex preparation used for protein identification by MS. The TAP-MS approach has proven to efficiently permit the characterization of protein complexes from bacteria, yeast and mammalian cells, as well as from multicellular organisms such as Caenorhabditis elegans, Drosophila and mice.
Collapse
|
133
|
Spinner L, Pastuglia M, Belcram K, Pegoraro M, Goussot M, Bouchez D, Schaefer DG. The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants. Development 2010; 137:2733-42. [PMID: 20663817 DOI: 10.1242/dev.043810] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preprophase band (PPB) is a transient ring of microtubules that forms before mitosis in land plants, and delineates the cytokinetic division plane established at telophase. It is one of the few derived traits specific to embryophytes, in which it is involved in the spatial control of cell division. Here we show that loss of function of Physcomitrella patens PpTON1 strongly affects development of the moss gametophore, phenocopying the developmental syndrome observed in Arabidopsis ton1 mutants: mutant leafy shoots display random orientation of cell division and severe defects in cell elongation, which are correlated with absence of PPB formation and disorganization of the cortical microtubule array in interphase cells. In hypomorphic Ppton1 alleles, PPB are still formed, whereas elongation defects are observed, showing the dual function of TON1 in organizing cortical arrays of microtubules during both interphase and premitosis. Ppton1 mutation has no impact on development of the protonema, which is consistent with the documented absence of PPB formation at this stage, apart from alteration of the gravitropic response, uncovering a new function of TON1 proteins in plants. Successful reciprocal cross-complementation between Physcomitrella and Arabidopsis shows conservation of TON1 function during land plant evolution. These results establish the essential role of the PPB in division plane specification in a basal land plant lineage, and provide new information on the function of TON1. They point to an ancient mechanism of cytoskeletal control of division plane positioning and cell elongation in land plants.
Collapse
Affiliation(s)
- Lara Spinner
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | | | | | | | | | | | | |
Collapse
|
134
|
Xu X, Song Y, Li Y, Chang J, zhang H, An L. The tandem affinity purification method: An efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 2010; 72:149-56. [DOI: 10.1016/j.pep.2010.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
135
|
Geerinck J, Pauwels L, De Jaeger G, Goossens A. Dissection of the one-MegaDalton JAZ1 protein complex. PLANT SIGNALING & BEHAVIOR 2010; 5:1039-41. [PMID: 20671423 PMCID: PMC3115192 DOI: 10.4161/psb.5.8.12338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 05/25/2023]
Abstract
Jasmonates (JAs) comprise a class of plant-specific hormones that mediate a large variety of processes involved in plant growth, development and defense. Perception of jasmonoyl-isoleucine (JA-Ile), the bioactive amino acid conjugate of JA, initiates the expression of JA-responsive genes through the degradation of the jasmonate ZIM domain (JAZ) repressor proteins and the subsequent release of the transcriptional activator MYC2. By using a tandem affinity purification based approach, we demonstrated that the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins are connected to the JAZ proteins via an adaptor protein, designated Novel Interactor of JAZ (NINJA). Both NINJA and TPL were shown to function as negative regulators of JA signaling. Here, we provide additional data, demonstrating that JAZ1 incorporates into high-molecular weight (HMW) protein complexes of > 1 MDa and speculate about their composition.
Collapse
Affiliation(s)
- Jan Geerinck
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | | | | | | |
Collapse
|
136
|
NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 2010; 464:788-91. [PMID: 20360743 PMCID: PMC2849182 DOI: 10.1038/nature08854] [Citation(s) in RCA: 717] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/13/2010] [Indexed: 01/08/2023]
Abstract
Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes1–5. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. Upon JA-Ile perception, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated6,7. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL)8 and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel INteractor of JAZ (NINJA). NINJA acts as a transcriptional repressor of which the activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress- and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.
Collapse
|
137
|
Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci U S A 2010; 107:1678-83. [PMID: 20080602 DOI: 10.1073/pnas.0913559107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, transcription of protein-encoding genes is strongly regulated by posttranslational modifications of histones that affect the accessibility of the DNA by RNA polymerase II (RNAPII). The Elongator complex was originally identified in yeast as a histone acetyltransferase (HAT) complex that activates RNAPII-mediated transcription. In Arabidopsis thaliana, the Elongator mutants elo1, elo2, and elo3 with decreased leaf and primary root growth due to reduced cell proliferation identified homologs of components of the yeast Elongator complex, Elp4, Elp1, and Elp3, respectively. Here we show that the Elongator complex was purified from plant cell cultures as a six-component complex. The role of plant Elongator in transcription elongation was supported by colocalization of the HAT enzyme, ELO3, with euchromatin and the phosphorylated form of RNAPII, and reduced histone H3 lysine 14 acetylation at the coding region of the SHORT HYPOCOTYL 2 auxin repressor and the LAX2 auxin influx carrier gene with reduced expression levels in the elo3 mutant. Additional auxin-related genes were down-regulated in the transcriptome of elo mutants but not targeted by the Elongator HAT activity showing specificity in target gene selection. Biological relevance was apparent by auxin-related phenotypes and marker gene analysis. Ethylene and jasmonic acid signaling and abiotic stress responses were up-regulated in the elo transcriptome and might contribute to the pleiotropic elo phenotype. Thus, although the structure of Elongator and its substrate are conserved, target gene selection has diverged, showing that auxin signaling and influx are under chromatin control.
Collapse
|
138
|
Zhao H, Xing D, Li QQ. Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. PLANT PHYSIOLOGY 2009; 151:1546-56. [PMID: 19748916 PMCID: PMC2773083 DOI: 10.1104/pp.109.142729] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/08/2009] [Indexed: 05/23/2023]
Abstract
Cleavage and polyadenylation of precursor mRNA is an essential process for mRNA maturation. Among the 15 to 20 protein factors required for this process, a subgroup of proteins is needed for both cleavage and polyadenylation in plants and animals. This subgroup of proteins is known as the cleavage and polyadenylation specificity factor (CPSF). To explore the in vivo structural features of plant CPSF, we used tandem affinity purification methods to isolate the interacting protein complexes for each component of the CPSF subunits using Arabidopsis (Arabidopsis thaliana ecotype Landsberg erecta) suspension culture cells. The proteins in these complexes were identified by mass spectrometry and western immunoblots. By compiling the in vivo interaction data from tandem affinity purification tagging as well as other available yeast two-hybrid data, we propose an in vivo plant CPSF model in which the Arabidopsis CPSF possesses AtCPSF30, AtCPSF73-I, AtCPSF73-II, AtCPSF100, AtCPSF160, AtFY, and AtFIPS5. Among them, AtCPSF100 serves as a core with which all other factors, except AtFIPS5, are associated. These results show that plant CPSF possesses distinct features, such as AtCPSF73-II and AtFY, while sharing other ortholog components with its yeast and mammalian counterparts. Interestingly, these two unique plant CPSF components have been associated with embryo development and flowering time controls, both of which involve plant-specific biological processes.
Collapse
|
139
|
Rohila JS, Chen M, Chen S, Chen J, Cerny RL, Dardick C, Canlas P, Fujii H, Gribskov M, Kanrar S, Knoflicek L, Stevenson B, Xie M, Xu X, Zheng X, Zhu JK, Ronald P, Fromm ME. Protein-protein interactions of tandem affinity purified protein kinases from rice. PLoS One 2009; 4:e6685. [PMID: 19690613 PMCID: PMC2723914 DOI: 10.1371/journal.pone.0006685] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 07/21/2009] [Indexed: 12/15/2022] Open
Abstract
Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.
Collapse
Affiliation(s)
- Jai S. Rohila
- Plant Science Initiative, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail: (JR); (MF)
| | - Mei Chen
- Plant Science Initiative, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Shuo Chen
- Plant Science Initiative, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Johann Chen
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Ronald L. Cerny
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Christopher Dardick
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Hiroaki Fujii
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Siddhartha Kanrar
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Lucas Knoflicek
- Plant Science Initiative, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Becky Stevenson
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Mingtang Xie
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Xia Xu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xianwu Zheng
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Jian-Kang Zhu
- Botany & Plant Sciences, University of California Riverside, Riverside, California, United States of America
| | - Pamela Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Michael E. Fromm
- Plant Science Initiative, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail: (JR); (MF)
| |
Collapse
|
140
|
Bush MS, Hutchins AP, Jones AME, Naldrett MJ, Jarmolowski A, Lloyd CW, Doonan JH. Selective recruitment of proteins to 5' cap complexes during the growth cycle in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:400-12. [PMID: 19453450 DOI: 10.1111/j.1365-313x.2009.03882.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Translation of most mRNAs is performed in a cap-dependent manner, requiring a protein complex, the cap complex, to regulate the accessibility of the message to the 40S ribosome. The cap complex initiates protein translation by binding to the 5' cap of an mRNA and recruiting ribosomes to begin translation. Compared to animals and yeast, there are significant plant-specific differences in the regulation of cap-dependent mRNA translation, but these are poorly understood. Here, we purified proteins that bind to the 5' cap during the Arabidopsis growth cycle. The protein profile of the cap-binding complexes varies during the various stages of the growth cycle in suspension culture cells. Using Western blotting, the cap complexes of quiescent cells were found to be composed of only three major proteins: eIF4isoE, which is primarily a cytoplasmic protein, and eIF4E and CBP80, which accumulate in the nucleus. However, when cells proliferate, at least 10 major proteins bind directly or indirectly to the 5' cap. Proteomic, Western blotting and immunoprecipitation data establish that the spectrum of RNA helicases in the cap complexes also changes during the growth cycle. Cap complexes from proliferating cultures mainly contain eIF4A, which associates with at least four cap complexes, but eIF4A is replaced by additional helicases in quiescent cells. These findings suggest that the dynamic and selective recruitment of various proteins to mRNA 5' cap complexes could play an important role in the regulation of gene expression.
Collapse
Affiliation(s)
- Maxwell S Bush
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
141
|
Bleys A, Karimi M, Hilson P. Clone-based functional genomics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 553:141-77. [PMID: 19588105 DOI: 10.1007/978-1-60327-563-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Gent, Belgium
| | | | | |
Collapse
|
142
|
Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H, Maes S, Van Isterdael G, Russinova E, Kondorosi E, Witters E, De Jaeger G, Inzé D, De Veylder L. CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. PLANT PHYSIOLOGY 2009; 150:1482-93. [PMID: 19458112 PMCID: PMC2705057 DOI: 10.1104/pp.109.140269] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/15/2009] [Indexed: 05/19/2023]
Abstract
The mitosis-to-endocycle transition requires the controlled inactivation of M phase-associated cyclin-dependent kinase (CDK) activity. Previously, the B-type CDKB1;1 was identified as an important negative regulator of endocycle onset. Here, we demonstrate that CDKB1;1 copurifies and associates with the A2-type cyclin CYCA2;3. Coexpression of CYCA2;3 with CDKB1;1 triggered ectopic cell divisions and inhibited endoreduplication. Moreover, the enhanced endoreduplication phenotype observed after overexpression of a dominant-negative allele of CDKB1;1 could be partially complemented by CYCA2;3 co-overexpression, illustrating that both subunits unite in vivo to form a functional complex. CYCA2;3 protein stability was found to be controlled by CCS52A1, an activator of the anaphase-promoting complex. We conclude that CCS52A1 participates in endocycle onset by down-regulating CDKB1;1 activity through the destruction of CYCA2;3.
Collapse
Affiliation(s)
- Véronique Boudolf
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
144
|
Remmerie N, Roef L, Van De Slijke E, Van Leene J, Persiau G, Eeckhout D, Stals H, Laukens K, Lemière F, Esmans E, Van Onckelen H, Inzé D, De Jaeger G, Witters E. A bioanalytical method for the proteome wide display and analysis of protein complexes from whole plant cell lysates. Proteomics 2009; 9:598-609. [DOI: 10.1002/pmic.200800100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
145
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
146
|
Wabnik K, Hvidsten TR, Kedzierska A, Van Leene J, De Jaeger G, Beemster GTS, Komorowski J, Kuiper MTR. Gene expression trends and protein features effectively complement each other in gene function prediction. ACTA ACUST UNITED AC 2008; 25:322-30. [PMID: 19050035 DOI: 10.1093/bioinformatics/btn625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Genome-scale 'omics' data constitute a potentially rich source of information about biological systems and their function. There is a plethora of tools and methods available to mine omics data. However, the diversity and complexity of different omics data types is a stumbling block for multi-data integration, hence there is a dire need for additional methods to exploit potential synergy from integrated orthogonal data. Rough Sets provide an efficient means to use complex information in classification approaches. Here, we set out to explore the possibilities of Rough Sets to incorporate diverse information sources in a functional classification of unknown genes. RESULTS We explored the use of Rough Sets for a novel data integration strategy where gene expression data, protein features and Gene Ontology (GO) annotations were combined to describe general and biologically relevant patterns represented by If-Then rules. The descriptive rules were used to predict the function of unknown genes in Arabidopsis thaliana and Schizosaccharomyces pombe. The If-Then rule models showed success rates of up to 0.89 (discriminative and predictive power for both modeled organisms); whereas, models built solely of one data type (protein features or gene expression data) yielded success rates varying from 0.68 to 0.78. Our models were applied to generate classifications for many unknown genes, of which a sizeable number were confirmed either by PubMed literature reports or electronically interfered annotations. Finally, we studied cell cycle protein-protein interactions derived from both tandem affinity purification experiments and in silico experiments in the BioGRID interactome database and found strong experimental evidence for the predictions generated by our models. The results show that our approach can be used to build very robust models that create synergy from integrating gene expression data and protein features. AVAILABILITY The Rough Set-based method is implemented in the Rosetta toolkit kernel version 1.0.1 available at: http://rosetta.lcb.uu.se/
Collapse
Affiliation(s)
- Krzysztof Wabnik
- Department of Plant Systems Biology, VIB Technologiepark 927, 9052 Gent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Stingl K, Schauer K, Ecobichon C, Labigne A, Lenormand P, Rousselle JC, Namane A, de Reuse H. In Vivo Interactome of Helicobacter pylori Urease Revealed by Tandem Affinity Purification. Mol Cell Proteomics 2008; 7:2429-41. [DOI: 10.1074/mcp.m800160-mcp200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
148
|
Van Leene J, Witters E, Inzé D, De Jaeger G. Boosting tandem affinity purification of plant protein complexes. TRENDS IN PLANT SCIENCE 2008; 13:517-20. [PMID: 18771946 DOI: 10.1016/j.tplants.2008.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 05/05/2023]
Abstract
Protein-interaction mapping based on the tandem affinity purification (TAP) approach has been successfully established for several systems, such as yeast and mammalian cells. However, relatively few protein complex purifications have been reported for plants. Here, we highlight solutions for the pitfalls and propose a major breakthrough in the quest for a better TAP tag in plants.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
149
|
Zou X, Neuman D, Shen QJ. Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. PLANT PHYSIOLOGY 2008; 148:176-86. [PMID: 18621977 PMCID: PMC2528090 DOI: 10.1104/pp.108.123653] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/18/2008] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) regulate many aspects of plant development, such as germination, growth, and flowering. The barley (Hordeum vulgare) Amy32b alpha-amylase promoter contains at least five cis-acting elements that govern its GA-induced expression. Our previous studies indicate that a barley WRKY gene, HvWRKY38, and its rice (Oryza sativa) ortholog, OsWRKY71, block GA-induced expression of Amy32b-GUS. In this work, we investigated the functional and physical interactions of HvWRKY38 with another repressor and two activators in barley. HvWRKY38 blocks the inductive activities of SAD (a DOF protein) and HvGAMYB (a R2R3 MYB protein) when either of these proteins is present individually. However, SAD and HvGAMYB together overcome the inhibitory effect of HvWRKY38. Yet, the combination of HvWRKY38 and BPBF (another DOF protein) almost diminishes the synergistic effect of SAD and HvGAMYB transcriptional activators. Electrophoretic mobility shift assays indicate that HvWRKY38 blocks the GA-induced expression of Amy32b by interfering with the binding of HvGAMYB to the cis-acting elements in the alpha-amylase promoter. The physical interaction of HvWRKY38 and BPBF repressors is demonstrated via bimolecular fluorescence complementation assays. These data suggest that the expression of Amy32b is modulated by protein complexes that contain either activators (e.g. HvGAMYB and SAD) or repressors (e.g. HvWRKY38 and BPBF). The relative amounts of the repressor or activator complexes binding to the Amy32b promoter regulate its expression level in barley aleurone cells.
Collapse
Affiliation(s)
- Xiaolu Zou
- School of Life Sciences, University of Nevada, Las Vegas, Nevada 89154, USA
| | | | | |
Collapse
|
150
|
Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. THE PLANT CELL 2008; 20:2146-59. [PMID: 18757558 PMCID: PMC2553619 DOI: 10.1105/tpc.107.056812] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cells have specific microtubule structures involved in cell division and elongation. The tonneau1 (ton1) mutant of Arabidopsis thaliana displays drastic defects in morphogenesis, positioning of division planes, and cellular organization. These are primarily caused by dysfunction of the cortical cytoskeleton and absence of the preprophase band of microtubules. Characterization of the ton1 insertional mutant reveals complex chromosomal rearrangements leading to simultaneous disruption of two highly similar genes in tandem, TON1a and TON1b. TON1 proteins are conserved in land plants and share sequence motifs with human centrosomal proteins. The TON1 protein associates with soluble and microsomal fractions of Arabidopsis cells, and a green fluorescent protein-TON1 fusion labels cortical cytoskeletal structures, including the preprophase band and the interphase cortical array. A yeast two-hybrid screen identified Arabidopsis centrin as a potential TON1 partner. This interaction was confirmed both in vitro and in plant cells. The similarity of TON1 with centrosomal proteins and its interaction with centrin, another key component of microtubule organizing centers, suggests that functions involved in the organization of microtubule arrays by the centrosome were conserved across the evolutionary divergence between plants and animals.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR254, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|