101
|
Sette-de-Souza PH, de Santana CP, Amaral-Machado L, Duarte MCT, de Medeiros FD, Veras G, de Medeiros ACD. Antimicrobial Activity of Schinopsis brasiliensis Engler Extract-Loaded Chitosan Microparticles in Oral Infectious Disease. AAPS PharmSciTech 2020; 21:246. [PMID: 32856115 DOI: 10.1208/s12249-020-01786-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Enterococcus faecalis infections represent a health concern, mainly in oral diseases, in which treatments with chlorhexidine solution (0.2%) are often used; however, it presents high toxicity degree and several side effects. Based on this, the use of natural products as an alternative to treatment has been explored. Nonetheless, plant extracts have poor organoleptic characteristics that impair theirs in natura use. Therefore, this work aimed to evaluate the analytical profile, biological activity, and cytotoxicity in vitro of S. brasiliensis-loaded chitosan microparticles (CMSb) produced using different aspersion flow rates. The analytical fingerprint was obtained by FTIR and NIR spectra. Principal components analysis (PCA) was used to verify the similarity between the samples. The crystallinity degree was evaluated by X-ray diffraction (XRD). Phytochemical screening (PS) was performed to quantify phytocompounds. Antimicrobial activity was evaluated by minimum inhibitory concentration (MIC). Antibiofilm activity and bactericidal kinetics against E. faecalis (ATCC 29212 and MB 146-clinical isolated) were also assessed. The hemolytic potential was performed to evaluate the cytotoxicity. Data provided by FTIR, NIR, and PCA analyses revealed chemical similarity between all CMSb. Furthermore, the results from XRD analysis showed that the obtained CMSb present amorphous characteristic. Tannins and polyphenols were accurately quantified by the PS, but methodology limitations did not allow the flavonoid quantification. The low hemolytic potential assay indicates that all samples are safe. Antimicrobial assays revealed that CMSb were able to inhibit not only the E. faecalis ATCC growth but also the biofilm formation. Only one CMSb sample was able to inhibit the clinical strain. These results highlighted the CMSb antimicrobial potential and revealed this system as a promising product to treat infections caused by E. faecalis.
Collapse
|
102
|
Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB. Mitochondrial Dysfunction in Diabetic Cardiomyopathy: The Possible Therapeutic Roles of Phenolic Acids. Int J Mol Sci 2020; 21:ijms21176043. [PMID: 32842567 PMCID: PMC7503847 DOI: 10.3390/ijms21176043] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
As the powerhouse of the cells, mitochondria play a very important role in ensuring that cells continue to function. Mitochondrial dysfunction is one of the main factors contributing to the development of cardiomyopathy in diabetes mellitus. In early development of diabetic cardiomyopathy (DCM), patients present with myocardial fibrosis, dysfunctional remodeling and diastolic dysfunction, which later develop into systolic dysfunction and eventually heart failure. Cardiac mitochondrial dysfunction has been implicated in the development and progression of DCM. Thus, it is important to develop novel therapeutics in order to prevent the progression of DCM, especially by targeting mitochondrial dysfunction. To date, a number of studies have reported the potential of phenolic acids in exerting the cardioprotective effect by combating mitochondrial dysfunction, implicating its potential to be adopted in DCM therapies. Therefore, the aim of this review is to provide a concise overview of mitochondrial dysfunction in the development of DCM and the potential role of phenolic acids in combating cardiac mitochondrial dysfunction. Such information can be used for future development of phenolic acids as means of treating DCM by alleviating the cardiac mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (S.Z.); (V.M.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
103
|
Pharmacological activation of Nrf2 promotes wound healing. Eur J Pharmacol 2020; 886:173395. [PMID: 32710954 DOI: 10.1016/j.ejphar.2020.173395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Wound repair and regeneration is a complex orchestrated process, comprising several phases interconnecting various cellular events and triggering multiple intracellular molecular pathways in damaged cells and tissues. In several metabolic disorders including diabetes mellitus, delay in wound healing due to elevated levels of cellular stress poses a key challenge. Several therapeutic wound dressing materials and strategies including hyperbaric oxygen therapy and negative pressure wound therapy have been developed to accelerate repair and restore cellular homeostasis at the wound site. Further, tremendous progress has been made in identification of transcriptional regulators involved in the process of wound healing. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, is the key regulator of intracellular redox homeostasis which induces the expression of cytoprotective genes and increases the production of antioxidants that scavenge free radicals. Activators of Nrf2 have been reported to combat oxidative stress and enhance the process of wound healing in several pathophysiological conditions, including diabetes and its complications such as diabetic foot ulcer, and chronic kidney disease, and diabetic nephropathy. Several bioactive compounds have been reported to reduce cellular stress, and thus accelerate cell proliferation, neovascularization results in repairing damaged tissues by the activation of the transcription factor, Nrf2. This review is focused on the strategies for diabetic wound healing and the highlights the role of bioactive compounds that activate the Nrf2 signaling and revitalize the cellular and molecular mechanism in the chronic wound niche, regulate and restore redox homeostasis thereby promoting wound repair and regeneration.
Collapse
|
104
|
Owumi SE, Adedara IA, Akomolafe AP, Farombi EO, Oyelere AK. Gallic acid enhances reproductive function by modulating oxido-inflammatory and apoptosis mediators in rats exposed to aflatoxin-B1. Exp Biol Med (Maywood) 2020; 245:1016-1028. [PMID: 32558593 DOI: 10.1177/1535370220936206] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Infertility resulting from reproductive deficiency can be stressful. Exposure to aflatoxin B1, a dietary mycotoxin prevalent in improperly stored grains, is reported to elicit reproductive insufficiencies and infertility. We, therefore, examined the likely beneficial effect of gallic acid (GA) a phytochemical, recognized to exhibit in vitro and in vivo pharmacological bioactivities against oxidative stress and related inflammatory damages in rats, since AFB1 toxicities are predicated on oxidative epoxide formation, in a bid to proffer new evidence to advance the field of nutriceutical application from plant-derived chemopreventive agents. Our findings will advance the field of chemoprevention by presenting data absent in the literature on GA. Our results demonstrate further evidence for GA conferred protection against AFB1-mediated histological lesions in testes, epididymis, and hypothalamus of treated rats; suppresses oxidative damages, relieved inflammatory and apoptotic responses, restored sperm functional characteristics, and hormonal levels relevant for reproductive integrity and function.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ayomide P Akomolafe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
105
|
Liu M, Xie H, Ma Y, Li H, Li C, Chen L, Jiang B, Nian B, Guo T, Zhang Z, Jiao W, Liu Q, Ling T, Zhao M. High Performance Liquid Chromatography and Metabolomics Analysis of Tannase Metabolism of Gallic Acid and Gallates in Tea Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4946-4954. [PMID: 32275834 DOI: 10.1021/acs.jafc.0c00513] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tannase (E.C. 3.1.1.20) is hypothesized to be involved in the metabolism of gallates and gallic acid (GA) in pu-erh tea fermentation. In this work, we measured tannase in Aspergillus niger fermented tea leaves and confirmed the production of fungal tannase during pu-erh tea fermentation. A decrease in catechin and theaflavin gallates and a significant increase in GA content and the relative peak areas of ethyl gallate, procyanidin A2, procyanidin B2, procyanidin B3, catechin-catechin-catechin, epiafzelechin, and epicatechin-epiafzelechin [variable importance in the projection (VIP) > 1.0, p < 0.05, and fold change (FC) > 1.5] were observed using high performance liquid chromatography (HPLC) and metabolomics analysis of tea leaves fermented or hydrolyzed by tannase. In vitro assays showed that hydrolysis by tannase or polymerization of catechins increased the antioxidant activity of tea leaves. In summary, we identified a metabolic pathway for gallates and their derivatives in tea leaves hydrolyzed by tannase as well as associated changes in gallate and GA concentrations caused by fungal tannase during pu-erh tea fermentation.
Collapse
Affiliation(s)
- Mingli Liu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Haofen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yan Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Hongye Li
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chongping Li
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lijiao Chen
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bin Jiang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bo Nian
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Tianjie Guo
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhengyan Zhang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Wenwen Jiao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qianting Liu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Tiejun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
106
|
Alfei S, Marengo B, Domenicotti C. Development of a Fast, Low‐Cost, Conservative and Ecological Method for Quantifying Gallic Acid in Polymeric Formulations by FTIR Spectroscopy in Solution. ChemistrySelect 2020. [DOI: 10.1002/slct.202000690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4-I-Department of Pharmacy (DiFAR)University of Genoa Viale Cembrano, 4 - I 16148 Genova GE Italy
| | - Barbara Marengo
- Department of Experimental Medicine – DIMESUniversity of Genoa Via Alberti L.B. 2 I 16132 Genoa Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine – DIMESUniversity of Genoa Via Alberti L.B. 2 I 16132 Genoa Italy
| |
Collapse
|
107
|
Latos-Brozio M, Masek A. Biodegradable Polyester Materials Containing Gallates. Polymers (Basel) 2020; 12:polym12030677. [PMID: 32197535 PMCID: PMC7182846 DOI: 10.3390/polym12030677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023] Open
Abstract
Gallates are widely used as antioxidants in the food and cosmetics industries. The purpose of the study was to obtain pro-ecological materials based on biodegradable polyesters, such as polylactide (PLA) and polyhydroxyalkanoate (PHA), and gallates. Gallates (ethyl, propyl, octyl, and lauryl) have not been used so far in biodegradable polymers as stabilizers and indicators of aging. This manuscript examines the properties of gallates such as antioxidant capacity and thermal stability. This paper also presents the following analyses of polymer materials: specific migration of gallates from polymers, SEM microscopy, differential scanning calorimetry (DSC), wide-angle X-ray diffraction, mechanical properties, surface free energy, and determination of change of color after controlled UV exposure, thermooxidation, and weathering. All gallates showed strong antioxidant properties and good thermal stability. Due to these properties, in particular their high oxidation temperature, gallates can be successfully used as polyester stabilizers. Biodegradable polyesters containing gallates can be an environmentally friendly alternative to petrochemical packaging materials.
Collapse
|
108
|
Pulit-Prociak J, Kabat M, Węgrzyn E, Zielina M, Banach M. Encapsulation of antioxidant compounds in biopolymer micelles. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2019.1602526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jolanta Pulit-Prociak
- Department of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Małgorzata Kabat
- Department of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Ewelina Węgrzyn
- Department of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Michał Zielina
- Department of Environmental Engineering, Cracow University of Technology, Cracow, Poland
| | - Marcin Banach
- Department of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
109
|
Çayan F, Deveci E, Tel-Çayan G, Duru ME. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00417-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
110
|
Diaz A, Muñoz-Arenas G, Caporal-Hernandez K, Vázquez-Roque R, Lopez-Lopez G, Kozina A, Espinosa B, Flores G, Treviño S, Guevara J. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 2020; 75:e22186. [PMID: 32780904 DOI: 10.1002/syn.22186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | | | - Rubén Vázquez-Roque
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Anna Kozina
- Instituto de Química, Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
| | - Blanca Espinosa
- Departamento de Bioquimica, Instituto Nacional de Enfermedades Respiratorias, ICV, Ciudad de Mexico, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
111
|
Nie X, Gao Z, Ren X, Jiang Q, Li S, Jiang C, Liu B, Liu X, He F. Effect of Pectin Coating Infused with Gallic Acid on the Quality and Shelf Life of Japanese Sea Bass (Lateolabrax japonicas) Fillets. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02396-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
112
|
Fabrication of Recycle Screen Printed Carbon Electrode and Its Application for Voltammetric Detection of Gallic Acid. JURNAL KIMIA SAINS DAN APLIKASI 2019. [DOI: 10.14710/jksa.22.5.164-172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gallic acid is phenolic compound found in tea and act as antiradical agent. This compound is electrochemically active and could be detected using voltammetric technique. This study aims to obtain recycle screen printed carbon electrode (rSPCE) and applied it for voltammetric detection of gallic acid. rSPCE was prepared by modification of used SPCE working electrode using a mixture of graphite:polystyrene at ratio of 95:5, 90:10, and 85:15 (w/w). Graphite:polystyrene was suspended in chloroform and deposited on SPCE by drop casting method. Phosphate buffer 0.1 M at pH of 2.5, 3.5, and 7 were used as electrolyte solution in voltammetric detection of gallic acid. The optimum condition of gallic acid detection was obtained when phosphate buffer 0,1 M at pH of 2.5 and rSPCE in composition of graphite:polystyrene (95:5) used as electrolyte and working electrode, respectively. Gallic acid has 2 oxidation peaks at potential of 0.26 V and 0.63 V vs Ag/AgCl, respectively. At concentration of 1 – 5 mM, gallic acid and oxidation currents provide linear regression with the coefficient determination of 0.9947 and 0.9864, consecutively for peak number 1 and 2. Measurement of gallic acid at rSPCE 95:5 shows good precision with %RSD < 5%. rSPCE was successfully applied for voltammetric detection of gallic acid in standard solution with accuracy > 96%, however further development is needed before its application for gallic acid measurement in real sample such as tea extract.
Collapse
|
113
|
Gao J, Hu J, Hu D, Yang X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19874174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gallic acid is a trihydroxybenzoic acid of plant metabolites widely spread throughout the plant kingdom. It has characteristics of the strong antioxidant and free radical scavenging activities, and can protect biological cells, tissues, and organs from damages caused by oxidative stress. This review aims to summarize the protective roles of gallic acid and the underlying pharmacological mechanisms in the pathophysiological process of the oxidative damage diseases, such as cancer, cardiovascular, degenerative, and metabolic diseases. The studies reviewed herein showed that the main therapeutic effects of gallic acid were attributed to its antioxidant properties. It modulated various signaling pathways through a wide range of inflammatory cytokines, and enzymic and nonenzymic antioxidants. However, the available data were limited to few studies assessing the treatment effects of gallic acid in human subjects to confirm its therapeutic outcomes. Therefore, the clinical trials were urgently needed to investigate the safety and efficacy of gallic acid treatment on human beings. The scientific data summarized in this review highlighted the therapeutic potentials of gallic acid for oxidative damage diseases. It could be developed as versatile adjuvant or therapeutically lead compound in future.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Jiangxia Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
114
|
Badea M, di Modugno F, Floroian L, Tit DM, Restani P, Bungau S, Iovan C, Badea GE, Aleya L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:129-140. [PMID: 30954811 DOI: 10.1016/j.scitotenv.2019.03.404] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 04/15/2023]
Abstract
Polyphenols are important to human health thus making it interesting and necessary to identify and assess methods for their detection. Gallic acid (GA) is a well-known antioxidant compound, found in tea leaves, various fruits, fruit seeds and in fruit-derived foods and beverages. In this study, to electrochemically detect this compound and assess the potential for GA detection, different analytical conditions at pH values of 5.8, 7 and 8 were tried. Two types of device were used for GA detection: (1) Lazar ORP-146C reduction-oxidation microsensors, coupled with a Jenco device, for estimation of antioxidant capacities of different electroactive media, and (2) screen-printed carbon sensors coupled with a mobile PalmSens device using differential pulse voltammetry (qualitative and quantitative GA determination). These proposed methods were validated by analysing some real samples: wine, green tea, apple juice and serum fortified with GA. Detection was evaluated in terms of specific calibration curves, with low limit of detection (LOD) and limit of quantification (LOQ), low response time, and high sensitivities. The analytical characteristics obtained recommend these methods to be tested on more other types of real samples. Our proposed methods, used in the established conditions of pH, may have further application in other clinical, food or environmental samples analyses in which the results of total antioxidants contents are usually expressed in GA equivalents.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov 500039, Romania.
| | - Federico di Modugno
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Laura Floroian
- Department of Automation and Information Technology, Faculty of Electrical Engineering and Computer Sciences, Transylvania University of Brasov, Brasov 500039, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Gabriela Elena Badea
- Department of Chemistry, Faculty of Sciences, University of Oradea, Oradea 410087, Romania.
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| |
Collapse
|
115
|
Sharma S, Mittal D, Verma AK, Roy I. Copper-Gallic Acid Nanoscale Metal–Organic Framework for Combined Drug Delivery and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2019; 2:2092-2101. [DOI: 10.1021/acsabm.9b00116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
116
|
Wang S, Ye K, Shu T, Tang X, Wang XJ, Liu S. Enhancement of Galloylation Efficacy of Stigmasterol and β-Sitosterol Followed by Evaluation of Cholesterol-Reducing Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3179-3187. [PMID: 30827096 DOI: 10.1021/acs.jafc.8b06983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, incorporation of gallic acid into typical phytosterols (β-sitosterol and stigmasterol) through Steglich esterification was optimized employing the protection and deprotection strategy. A novel mechanism leading to side esterification was discovered. Complication of the phenolic hydroxyl groups and side reactions were successfully reduced under the optimized conditions. The structural identity and purity of galloyl stigmasterol and galloyl β-sitosterol were confirmed by NMR, FT-IR, and HPLC-MS. Evaluation of galloyl β-sitosterol and galloyl stigmasterol revealed their excellent antioxidant and cholesterol-reducing activities. Significant enhancement of cholesterol-reducing activity by galloylation was unveiled especially for β-sitosterol. Galloyl β-sitosterol had slightly better antioxidant activity at ambient temperature and better cholesterol-reducing activity. Molecular modeling suggested that a subtle difference of galloyl β-sitosterol and galloyl stigmasterol in activities could be attributed to variation of molecular rigidity and conformation. The excellent properties of galloyl β-sitosterol and galloyl stigmasterol suggested their great potential application in the food industry.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Kai Ye
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Tong Shu
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| | - Xiuwen Tang
- Department of Biochemistry & Pharmacology, School of Medicine , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Xiu Jun Wang
- Department of Biochemistry & Pharmacology, School of Medicine , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
- Qinghai Food Inspection and Testing Institute , 12 Beidajie , Xining 810000 , China
| |
Collapse
|
117
|
Duru ME, Tel-Çayan G, Deveci E. Evaluation of phenolic profile, antioxidant and anticholinesterase effects of Fuscoporia torulosa. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.496327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
118
|
Minh TN, Xuan TD, Tran HD, Van TM, Andriana Y, Khanh TD, Quan NV, Ahmad A. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules 2019; 24:molecules24050889. [PMID: 30832436 PMCID: PMC6429288 DOI: 10.3390/molecules24050889] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 02/04/2023] Open
Abstract
This paper reports the successive isolation and purification of bioactive compounds from the stem bark of Jatropha podagrica, a widely known medicinal plant. The ethyl acetate extract of the stem bark exhibited the strongest antioxidant activity assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays (IC50 = 46.7, 66.0, and 492.6, respectively). By column chromatography (CC) with elution of hexane and ethyl acetate at 8:2, 7:3, and 6:4 ratios, the isolation of this active extract yielded five fractions (C1–C5). Chemical structures of the constituents included in C1–C5 were elucidated by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) and resolved as methyl gallate (C1, C2, C3, C4), gallic acid (C1, C2), fraxetin (C2, C3, C4, C5), and tomentin (C3). Mixture C2 (IC50 DPPH and ABTS = 2.5 µg/mL) and C3 (IC50 FRAP = 381 µg/mL) showed the highest antioxidant properties. Among the isolated fractions, C4 was the most potential agent in growth inhibition of six bacterial strains including Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes,Bacillus subtilis, and Proteus mirabilis (MIC = 5, 20, 30, 20, 25, and 20 mg/mL, respectively). All identified constituents exerted an inhibitory activity on the growth of Lactuca sativa, of which the mixture C3 performed the maximal inhibition on shoot (IC50 = 49.4 µg/mL) and root (IC50 = 47.1 µg/mL) growth. Findings of this study suggest that gallic acid, methyl gallate, fraxetin, and tomentin isolated from J. podagrica possessed antioxidant, antibacterial, and growth inhibitory potentials.
Collapse
Affiliation(s)
- Truong Ngoc Minh
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Ho chi Minh City 72820, Vietnam.
| | - Truong Mai Van
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - Yusuf Andriana
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Hanoi City 123000, Vietnam.
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam.
| | - Nguyen Van Quan
- Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan.
| | - Ateeque Ahmad
- Chemical Engineering, CSIR, CIMAP, Kukrail Picnic Spot Road, Lucknow 226016, India.
| |
Collapse
|
119
|
Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:225-237. [PMID: 31156781 PMCID: PMC6528712 DOI: 10.22038/ijbms.2019.32806.7897] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/01/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Gallic acid is a natural phenolic compound found in several fruits and medicinal plants. It is reported to have several health-promoting effects. This review aims to summarize the pharmacological and biological activities of gallic acid in vitro and animal models to depict the pharmacological status of this compound for future studies. MATERIALS AND METHODS All relevant papers in the English language were collected up to June 2018. The keywords of gallic acid, antioxidant, anticancer, antimicrobial, gastrointestinal-, cardiovascular-, metabolic-, neuropsychological-, and miscellaneous- diseases were searched in Google Scholar, PubMed, and Scopus. RESULTS Several beneficial effects are reported for gallic acid, including antioxidant, anti-inflammatory, and antineoplastic properties. This compound has been reported to have therapeutic activities in gastrointestinal, neuropsychological, metabolic, and cardiovascular disorders. CONCLUSION Current evidence confirms the pharmacological and therapeutic interventions of gallic acid in multiple health complications; however, available data are limited to just cellular and animal studies. Future investigations are essential to further define the safety and therapeutic efficacy of gallic acid in humans.
Collapse
Affiliation(s)
- Niloofar Kahkeshani
- Department of Pharmacognosy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Fotouhi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Shaghayegh Alavi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Roodabeh Bahramsoltani
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Department of Pharmacy in Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
120
|
Santos PH, Baggio Ribeiro DH, Micke GA, Vitali L, Hense H. Extraction of bioactive compounds from feijoa (Acca sellowiana (O. Berg) Burret) peel by low and high-pressure techniques. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
121
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
122
|
Rugani KDS, Kogawa AC, Salgado HRN. Review for Analytical Methods for the Determination of Sodium Cephalothin. Crit Rev Anal Chem 2018; 49:187-194. [PMID: 30518240 DOI: 10.1080/10408347.2018.1506697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Infections are the second leading cause of global morbidity and mortality, therefore it is highly important to study the antimicrobial agents such as cephalosporins. Cephalothin, an antimicrobial agent that belongs to the class of cephalosporins, has bactericidal activity and it is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this drug, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. The aim of this article is to review the available information on analytical methods for cephalothin. Thus, this study presents a literature review on cephalothin and the analytical methods developed for the analysis of this drug in official and scientific papers. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques, which will contribute to the harmonization of science, human, and environmental health.
Collapse
Affiliation(s)
- Karen de Souza Rugani
- a School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , São Paulo , Brazil
| | - Ana Carolina Kogawa
- a School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , São Paulo , Brazil
| | | |
Collapse
|
123
|
Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway. Oncotarget 2018; 8:47665-47674. [PMID: 28512264 PMCID: PMC5564596 DOI: 10.18632/oncotarget.17509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.
Collapse
|
124
|
Nunes R, Pasko P, Tyszka-Czochara M, Szewczyk A, Szlosarczyk M, Carvalho IS. Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs. PHARMACEUTICAL BIOLOGY 2017; 55:114-123. [PMID: 27925492 PMCID: PMC7011791 DOI: 10.1080/13880209.2016.1230636] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Crataegus monogyna L. (Rosaceae) (CM), Equisetum telmateia L. (Equisataceae) (ET), Geranium purpureum Vil. (Geraniaceae) (GP), Mentha suaveolens Ehrh. (Lamiaceae) (MS), and Lavandula stoechas L. spp. luisieri (Lamiaceae) (LS) are all medicinal. OBJECTIVE To evaluate the antioxidant, antiproliferative and antimicrobial activities of plant extracts and quantify individual phenolics and zinc. MATERIAL AND METHODS Aerial part extracts were prepared with water (W), ethanol (E) and an 80% mixture (80EW). Antioxidant activity was measured with TAA, FRAP and RP methods. Phenolics were quantified with a HPLC. Zinc was quantified using voltammetry. Antibacterial activity (after 48 h) was tested using Enterococcus faecalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Listeria monocytogenes. Antiproliferative activity (after 24 h) was tested using HEP G2 cells and fibroblasts. RESULTS Solvents influenced results; the best were E and 80EW. GP had the highest antioxidant activity (TAA and FRAP of 536.90 mg AAE/g dw and 783.48 mg TE/g dw, respectively). CM had the highest zinc concentration (37.21 mg/kg) and phenolic variety, with neochlorogenic acid as the most abundant (92.91 mg/100 g dw). LS was rich in rosmarinic acid (301.71 mg/100 g dw). GP and LS inhibited the most microorganisms: B. cereus, E. coli and S. aureus. GP also inhibited E. faecalis. CM had the lowest MIC: 5830 μg/mL. The antibacterial activity is explained by the phenolics present. LS and CM showed the most significant anti-proliferative activity, which is explained by their zinc content. CONCLUSION The most promising plants for further studies are CM, LS and GP.
Collapse
Affiliation(s)
- Ricardo Nunes
- MeditBio, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Pawel Pasko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Krakow, Poland
- Department of Clinical Science, Faculty of Health and Medical Science, Andrzej Frycz-Modrzewski Krakow University, Poland
| | - Malgorzata Tyszka-Czochara
- Radioligand Laboratory, Department of Pharmacobiology, Medical College, Jagiellonian University, Krakow, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Krakow, Poland
| | - Marek Szlosarczyk
- Department of Inorganic and Analytical Chemistry, Medical College, Jagiellonian University, Krakow, Poland
| | - Isabel S. Carvalho
- MeditBio, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
- CONTACT Isabel S. CarvalhoFood Science Laboratory, Faculty of Sciences and Technology, University of Algarve, Campus Gambelas, Building 8 8005-139 Faro, Portugal
| |
Collapse
|
125
|
Ahmad M, Butt MA, Zhang G, Sultana S, Tariq A, Zafar M. Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomed Pharmacother 2017; 97:708-721. [PMID: 29102914 DOI: 10.1016/j.biopha.2017.10.141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Bergenia ciliata is a medicinal plant used for the treatment of kidney stones. The presented review is the first attempt to gather utmost information about the distribution, ethno-medicines, phytochemical analysis, pharmacology and toxicology of B. ciliata. This review was designed with the aim to compile fragmented information about B. ciliata in addition to explore its therapeutic potential and future research opportunities. A total of 185 research papers were reviewed using several data sources such as; Web of Science, Scopus, Google scholar, Science direct and PubMed. Results of this review revealed that B. ciliata is being used to cure 104 different types of ailments. Although among reported disorders B. ciliata showed high potential in the treatment of gastrointestinal disorders but it is well known for the treatment of kidney disorders particularly kidney stones. Literature review showed that traditional healers mostly utilize it in powder form. Moreover, B. ciliata was reported to possess high antifungal, antiviral, anti plasmodial and antibacterial activities. Pharmacological studies reported that it has good antioxidant, anti-inflammatory, anti-tussive, anti-ulcer and anti-neoplastic activities. Variety of secondary metabolites belonging to different classes of compounds such as phenols, alcohols, terpenoids and fatty acid were reportedly isolated from B. ciliata. In spite of having better efficiency of ethno medicines and good pharmacological potential, B. ciliata has also shown toxic effects on living system in several studies. We invite the attention of researchers to carry out detailed ethno-pharmacological and toxicological studies on this valuable plant species in order to provide reliable knowledge to the patients and discover more novel compounds for the development of new drugs with fewer side effects on the living system as compare to modern medicines.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan; Center of Natural Products Research, Chengdu Institute of Biology, Chengdu 610041 China.
| | - Maryam Akram Butt
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| | - Guolin Zhang
- Center of Natural Products Research, Chengdu Institute of Biology, Chengdu 610041 China
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, China
| | - Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bio Resource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
126
|
Interactions between the major bioactive polyphenols of berries: effects on antioxidant properties. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2948-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
127
|
Aglan HA, Ahmed HH, El-Toumy SA, Mahmoud NS. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol 2017; 39:1010428317699127. [PMID: 28618930 DOI: 10.1177/1010428317699127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.
Collapse
Affiliation(s)
- Hadeer A Aglan
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Hanaa H Ahmed
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Sayed A El-Toumy
- 2 Chemistry of Tannins Department, National Research Centre, Giza, Egypt
| | - Nadia S Mahmoud
- 1 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
128
|
Fernandes GFDS, Salgado HRN, Santos JLD. Isoniazid: A Review of Characteristics, Properties and Analytical Methods. Crit Rev Anal Chem 2017; 47:298-308. [PMID: 28080136 DOI: 10.1080/10408347.2017.1281098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Isoniazid is a synthetic antimicrobial and one of the most important first-line drugs used in the treatment of tuberculosis. Since it was introduced in the therapy in 1952, the drug remains at the front line of the antituberculosis treatment mainly due to its potency and high selectivity against Mycobacterium tuberculosis. Pharmaceutical analysis and therapeutic drug monitoring of isoniazid in both, pharmaceuticals and biological samples, plays an important role to comprehend aspects regarding to bioavailability, bioequivalence and therapeutic monitoring during patients following-up. In the last case, validated and simple methods are extremely useful for Public Healthy in order to guarantee the drug efficacy, safety and reduce the tuberculosis resistance. Among the available analytical tools, HPLC-based methods coupled to ultraviolet or mass spectroscopy are the most widely used techniques to quantify isoniazid. Therefore, this review highlights the main analytical methods reported in the literature for determination of isoniazid focusing in HPLC-based methods.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- a Institute of Chemistry, São Paulo State University (UNESP) , Araraquara , Brazil.,b School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , Brazil
| | | | - Jean Leandro Dos Santos
- a Institute of Chemistry, São Paulo State University (UNESP) , Araraquara , Brazil.,b School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara , Brazil
| |
Collapse
|