101
|
Sun Y, Liu S, Chen C, Yang S, Pei G, Lin M, Wang T, Long J, Yan Q, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. The mechanism of programmed death and endoplasmic reticulum stress in pulmonary hypertension. Cell Death Discov 2023; 9:78. [PMID: 36841823 PMCID: PMC9968278 DOI: 10.1038/s41420-023-01373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Pulmonary hypertension (PH) was a cardiovascular disease with high morbidity and mortality. PH was a chronic disease with complicated pathogenesis and uncontrollable factors. PH was divided into five groups according to its pathogenesis and clinical manifestations. Although the treatment and diagnosis of PH has made great progress in the past ten years. However, the diagnosis and prognosis of the PAH had a great contrast, which was not conducive to the diagnosis and treatment of PH. If not treated properly, it will lead to right ventricular failure or even death. Therefore, it was necessary to explore the pathogenesis of PH. The problem we urgently need to solve was to find and develop drugs for the treatment of PH. We reviewed the PH articles in the past 10 years or so as well as systematically summarized the recent advance. We summarized the latest research on the key regulatory factors (pyroptosis, apoptosis, necroptosis, ferroptosis, and endoplasmic reticulum stress) involved in PH. To provide theoretical basis and basis for finding new therapeutic targets and research directions of PH.
Collapse
Affiliation(s)
- Yang Sun
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal & Child Health Care, Changsha, P. R. China
| | - Chen Chen
- grid.412643.60000 0004 1757 2902Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Songwei Yang
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Gang Pei
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Meiyu Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Ting Wang
- grid.501248.aDepartment of Rehabilitation Medicine, Zhuzhou Central Hospital, Zhuzhou, P. R. China
| | - Junpeng Long
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Qian Yan
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Jiao Yao
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yuting Lin
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Fan Yi
- grid.411615.60000 0000 9938 1755Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Lei Meng
- grid.488482.a0000 0004 1765 5169Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yong Tan
- Department of nephrology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China. .,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| |
Collapse
|
102
|
Lozano-Casabianca GA, Arango-Varela SS, Maldonado-Celis ME. Induction of Apoptosis and Decrease of Autophagy in Colon Cancer Cells by an Extract of Lyophilized Mango Pulp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4165. [PMID: 36901174 PMCID: PMC10002435 DOI: 10.3390/ijerph20054165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have indicated that mango fruit has a chemopreventive capacity against colorectal cancer cells. The objective of this research was to evaluate the effect of an aqueous extract of lyophilized mango pulp (LMPE) on colon adenocarcinoma cells (SW480) and their metastatic derivatives (SW620) death and cellular invasion. DNA fragmentation was assessed by TUNEL assay; autophagy and expression of DR4 and Bcl-2 by flow cytometry; the expression of 35 apoptosis-related proteins and of matrix metalloproteinases 7 and 9 by immunodetection; and the invasive capacity of the cells by Boyden chamber. The results showed that LMPE at 30 mg/mL and 48 h of exposure results in DNA fragmentation and apoptosis in SW480 (p < 0.001) and SW620 (p < 0.01) cells. Additionally, LMPE decreased autophagy in the SW480 and SW620 cell lines (p < 0.001), which could sensitize them to the DNA damage generated by LMPE. The LMPE did not modulate the expression of matrix metalloproteinases 7 and 9, nor did it affect cellular invasion processes in the SW480 and SW620 cell lines. In conclusion, LMPE induces apoptosis and decreases autophagy in SW480 and SW620 cells.
Collapse
Affiliation(s)
| | - Sandra Sulay Arango-Varela
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano (ITM), Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
103
|
Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-Dependent Cellular Uptake of Graphene Oxide Quantum Dots Promotes the Odontoblastic Differentiation of Dental Pulp Cells via the AMPK/mTOR Pathway. ACS OMEGA 2023; 8:5393-5405. [PMID: 36816699 PMCID: PMC9933470 DOI: 10.1021/acsomega.2c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
As zero-dimension nanoparticles, graphene oxide quantum dots (GOQDs) have broad potential for regulating cell proliferation and differentiation. However, such regulation of dental pulp cells (DPSCs) with different concentrations of GOQDs is insufficiently investigated, especially on the molecular mechanism. The purpose of this study was to explore the effect and molecular mechanism of GOQDs on the odontoblastic differentiation of DPSCs and to provide a theoretical basis for the repair of pulp vitality by pulp capping. CCK-8, immunofluorescence staining, alkaline phosphatase activity assay and staining, alizarin red staining, qRT-PCR, and western blotting were used to detect the proliferation and odontoblastic differentiation of DPSC coculturing with different concentrations of GOQDs. The results indicate that the cellular uptake of low concentration of GOQDs (0.1, 1, and 10 μg/mL) could promote the proliferation and odontoblastic differentiation of DPCSs. Compared with other concentration groups, 1 μg/mL GOQDs show better ability in such promotion. In addition, with the activation of the AMPK signaling pathway, the mTOR signaling pathway was inhibited in DPSCs after coculturing with GOQDs, which indicates that low concentrations of GOQDs could regulate the odontoblastic differentiation of DPSCs by the AMPK/mTOR signaling pathway.
Collapse
|
104
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
105
|
Zhu Y, Zhang Y, Fan Z, Fang Y, Zheng Y, Li Y, Yang M, Guo C, Li Y, Zhou X, Sun Z, Wang J. Silica Nanoparticles Trigger Chaperone HSPB8-Assisted Selective Autophagy via TFEB Activation in Hepatocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204310. [PMID: 36464658 DOI: 10.1002/smll.202204310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Silica nanoparticles (SiNPs) are one of the most common inorganic nanomaterials. Autophagy is the predominant biological response to nanoparticles and transcription factor EB (TFEB) is a master regulator of the autophagy-lysosome pathway. Previous studies show that SiNPs induce autophagosome accumulation, yet the precise underlying mechanisms remain uncertain. The present study investigates the role of TFEB during SiNP-induced autophagy. SiNP-induced TFEB nuclear translocation is verified using immunofluorescence and western blot assay. The regulation of TFEB is proved to be via EIF2AK3 pathway. A TFEB knockout (KO) cell line is constructed to validate the TFEB involvement in SiNP-induced autophagy. The transcriptomes of wild-type and TFEB KO cells are compared using RNA-sequencing to identify genes of the TFEB-mediated autophagy and lysosome pathways affected by SiNPs. Based on these data and the Human Autophagy Database, four candidate autophagic genes are identified, including HSPB8, ATG4D, CTSB and CTSD. Specifically, that the chaperone HSPB8 is upregulated through SiNP-mediated TFEB activation and forms a chaperone-assisted selective autophagy (CASA) complex with BAG3 and HSC70, triggering HSPB8-assisted selective autophagy, is found. Thus, this study characterizes a novel mechanism underlying SiNP-induced autophagy that helps pave the way for further research on the toxicity and risk assessment of SiNPs.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yukang Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Zhuying Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yuting Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yucao Zheng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Man Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Caixia Guo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Xianqing Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
106
|
Liu L, Wang J, Zhang J, Huang C, Yang Z, Cao Y. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy. Cell Biol Toxicol 2023; 39:259-275. [PMID: 34766255 DOI: 10.1007/s10565-021-09678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 μg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 μg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 μg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 μg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Junkang Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Zhaogang Yang
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
107
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System. Pharmaceutics 2023; 15:pharmaceutics15020432. [PMID: 36839757 PMCID: PMC9961554 DOI: 10.3390/pharmaceutics15020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Taiwo Hassan Akere
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| | - Hanene Ali-Boucetta
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| |
Collapse
|
108
|
The Combined Anti-Tumor Efficacy of Bioactive Hydroxyapatite Nanoparticles Loaded with Altretamine. Pharmaceutics 2023; 15:pharmaceutics15010302. [PMID: 36678930 PMCID: PMC9861632 DOI: 10.3390/pharmaceutics15010302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In the current study, the combined anti-tumor efficacy of bioactive hydroxyapatite nano- particles (HA-NPs) loaded with altretamine (ALT) was evaluated. The well-known fact that HA has great biological compatibility was confirmed through the findings of the hemolytic experiments and a maximum IC50 value seen in the MTT testing. The preparation of HA-NPs was performed using the chemical precipitation process. An in vitro release investigation was conducted, and the results demonstrated the sustained drug release of the altretamine-loaded hydroxyapatite nanoparticles (ALT-HA-NPs). Studies using the JURKAT E6.1 cell lines MTT assay, and cell uptake, as well as in vivo pharmacokinetic tests using Wistar rats demonstrated that the ALT-HA-NPs were easily absorbed by the cells. A putative synergism between the action of the Ca2+ ions and the anticancer drug obtained from the carrier was indicated by the fact that the ALT-HA-NPs displayed cytotoxicity comparable to the free ALT at 1/10th of the ALT concentration. It has been suggested that a rise in intracellular Ca2+ ions causes cells to undergo apoptosis. Ehrlich's ascites model in Balb/c mice showed comparable synergistic efficacy in a tumor regression trial. While the ALT-HA-NPs were able to shrink the tumor size by six times, the free ALT was only able to reduce the tumor volume by half.
Collapse
|
109
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
110
|
Gharoonpour A, Simiyari D, Yousefzadeh A, Badragheh F, Rahmati M. Autophagy modulation in breast cancer utilizing nanomaterials and nanoparticles. Front Oncol 2023; 13:1150492. [PMID: 37213283 PMCID: PMC10196239 DOI: 10.3389/fonc.2023.1150492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy regenerates cellular nutrients, recycles metabolites, and maintains hemostasis through multistep signaling pathways, in conjunction with lysosomal degradation mechanisms. In tumor cells, autophagy has been shown to play a dual role as both tumor suppressor and tumor promoter, leading to the discovery of new therapeutic strategies for cancer. Therefore, regulation of autophagy is essential during cancer progression. In this regard, the use of nanoparticles (NPs) is a promising technique in the clinic to modulate autophagy pathways. Here, we summarized the importance of breast cancer worldwide, and we discussed its classification, current treatment strategies, and the strengths and weaknesses of available treatments. We have also described the application of NPs and nanocarriers (NCs) in breast cancer treatment and their capability to modulate autophagy. Then the advantages and disadvantaged of NPs in cancer therapy along with future applications will be disscussed. The purpose of this review is to provide up-to-date information on NPs used in breast cancer treatment and their impacts on autophagy pathways for researchers.
Collapse
|
111
|
Huang J, Zou L, Bao M, Feng Q, Xia W, Zhu C. Toxicity of polystyrene nanoparticles for mouse ovary and cultured human granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114371. [PMID: 36508839 DOI: 10.1016/j.ecoenv.2022.114371] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The issue of global environmental contamination of microplastics has recently been receiving widespread attention. However, the effects of polystyrene nanoparticles (Nano-PS) on the female reproductive system remain unclear. We investigated the toxicity and explored the potential underlying mechanisms of Nano-PS in both mouse ovarian tissue in vivo and human ovarian granulosa cell lines in vitro. In vivo experiments: Mice were fed different concentrations of Nano-PS for 8 weeks. In vitro experiments: COV434 cells were treated with increasing concentrations of Nano-PS. In the present study, ovarian reserve was found to decrease significantly, while oxidative stress and apoptosis levels increased. Nano-PS increased the proportion of metestrum and diestrus periods, and decreased the proportion of estrous period. The implantation rates and the number of pups per litter decreased. In COV434 cells, Nano-PS reduced cell viability and mitochondrial membrane potential, increased the expression of apoptotic and oxidative stress markers and led to subsequent cell cycle arrest. Specifically, Nano-PS exert their toxic effects on mouse ovarian tissue and COV434 cells by inducing oxidative stress. A potential strategy to overcome this could be to activate the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to mitigate Nano-PS-induced oxidative stress.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
112
|
Anupong W, On-Uma R, Jutamas K, Salmen SH, Alharbi SA, Joshi D, Jhanani GK. Antibacterial, antifungal, antidiabetic, and antioxidant activities potential of Coleus aromaticus synthesized titanium dioxide nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114714. [PMID: 36334834 DOI: 10.1016/j.envres.2022.114714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The nanoparticles based drug delivery and treatment related research has been increased significantly in the recent years. Hence, the antibacterial, antifungal, and antioxidant activity potential of pre synthesized and characterized Titanium dioxide nanoparticles (TiO2 NPs) were investigated in this study through respective standard protocols. Interestingly, the obtained results revealed that TiO2 NPs have concentration dependent antibacterial activity against bacterial pathogens such as E. coli, P.mirabilis, V. cholerae, P. aeruginosa, S. typhimurium, and S. aureus at 100 μg mL-1 concentration. Furthermore, these TiO2 NPs showed remarkable antifungal activity against aspergillosis causing fungal pathogens such as A. niger, A. fumigatus, A. nidulans, and A. flavus at 100 μg mL-1 concentration. α-glucosidase. This TiO2 NPs also effectively inhibit the α-amylase (17%) and α-Glucosidase (37%) enzyme activity at 100 μg mL-1 dosage. The DPPH assay revealed that TiO2 NPs effectively scavenge DPPH free radicals by up to 89% at 100 μg mL-1 concentration, which was comparable to butylated hydroxytoluene (96%). These results suggest that the plant-based TiO2 NPs have remarkable in-vitro antibacterial, antifungal, and antioxidant activity. These may be considered for additional in-vitro and in-vivo experiments to assess their potential biomedical applications.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Deepika Joshi
- Department of Oral Biology, University of Louisville, Kentucky, USA
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
113
|
Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi IJ. Treatments of Mycobacterium tuberculosis and Toxoplasma gondii with Selenium Nanoparticles. BIONANOSCIENCE 2023; 13:249-277. [PMID: 36687337 PMCID: PMC9838309 DOI: 10.1007/s12668-023-01059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Toxoplasma gondii and Mycobacterium tuberculosis are pathogens that are harmful to humans. When these diseases interact in humans, the result is typically fatal to the public health. Several investigations on the relationship between M. tuberculosis and T. gondii infections have found that there is a strong correlation between them with each infection having a reciprocal effect on the other. TB may contribute to the reactivation of innate toxoplasmosis or enhance susceptibility to a new infection, and toxoplasma co-infection may worsen the severity of pulmonary tuberculosis. As a consequence, there is an earnest and urgent necessity to generate novel therapeutics that can subdue these challenges. Selenium nanostructures' compelling properties have been shown to be a successful treatment for Mycobacterium TB and Toxoplasma gondii. Despite the fact that selenium (Se) offers many health advantages for people, it also has a narrow therapeutic window; therefore, consuming too much of either inorganic or organic compounds based on selenium can be hazardous. Compared to both inorganic and organic Se, Se nanoparticles (SeNPs) are less hazardous. They are biocompatible and excellent in selectively targeting specific cells. As a consequence, this review conducted a summary of the efficacy of biogenic Se NPs in the treatment of tuberculosis (TB) and toxoplasmosis. Mycobacterium tuberculosis, Toxoplasma gondii, and their co-infection were all briefly described.
Collapse
Affiliation(s)
- Ikhazuagbe H. Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, Iyanomo, P.M.B, 1049, Benin City, Nigeria
| | - Best Atoe
- Department of Daily Need, Worldwide Healthcare, 100, Textile Mill Road, Benin City, Edo State Nigeria
| | - Raphael O. Ekun
- grid.440833.80000 0004 0642 9705Department of Electrical Electronics, Cyprus International University, Haspolat, Lefkosa, North Cyprus Mersin 10 Turkey
| | - Augustine Ighodaro
- Depatment of Aseptic Quality, Quantum Pharmaceuticals, Quantum House, Durham, UK
| | - Ifeanyi J. Odiachi
- grid.461933.a0000 0004 0446 5040Department of Science Laboratory Technology, Delta State Polytechnic Ogwashi-Uku, Ogwashi-Uku, Nigeria
| |
Collapse
|
114
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
115
|
Peng S, Wang L, Liu L, Song L, Shi J, Zheng H, Xu J, Rong R, Zhang Y. Inhibition of Pro-Survival Autophagy Induced by Rare-Earth Nanocomposites for Promoting Photothermal Therapy of Visualized Tumors. Adv Healthc Mater 2023; 12:e2202117. [PMID: 36222264 DOI: 10.1002/adhm.202202117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Indexed: 01/18/2023]
Abstract
Manipulation of autophagic processes has emerged as a promising strategy for synergizing nanoagent-mediated photothermal therapy (PTT). Most of the current studies focus on improving PTT efficacy by inhibiting pro-survival autophagy induced by the heat generated from the photothermal process. However, autophagy induced by the nanoagents is usually ignored, which may weaken the effect of autophagy-mediated efficacy improvement in PTT if induced autophagy is pro-death. Therefore, this work aims at developing a nanoagent that is able to induce heat-synergetic pro-survival autophagy to optimize the efficacy of PTT. An approach is developed to coat carbon layer, polyethylenimine (PEI), and folic acid (FA) on NaYF4 :Er,Yb,Nd@NaNdF4 (DCNPs@C@PEI@FA, DCPF) nanoparticles successively, giving access to the nanoagent to induce pro-survival autophagy. The synthetic imaging-guided photothermal nanoagent displays outstanding targeting ability and biocompatibility based on the surface modification of PEI and FA. By using an autophagy inhibitor chloroquine, a conspicuously synergistic effect on DCPF-mediated PTT in vitro and in vivo tumor models (HeLa) is achieved. A promising strategy is presented here to enhance the efficacy of imaging-guided PTT by modulating the autophagy induced by the nanoagent.
Collapse
Affiliation(s)
- Shanshan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lizhen Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Hanrun Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jixuan Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Rui Rong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
116
|
Song F, Tang X, Zhao W, Huang C, Dai X, Cao Y. Activation of Kruppel-like factor 6 by multi-walled carbon nanotubes in a diameter-dependent manner in THP-1 macrophages in vitro and bronchoalveolar lavage cells in vivo. ENVIRONMENTAL SCIENCE: NANO 2023; 10:855-865. [DOI: 10.1039/d2en00926a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
MWCNTs activated KLF6-signaling pathways in THP-1 macrophages and bronchoalveolar lavage cells.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
117
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15:174. [PMID: 36482419 PMCID: PMC9733270 DOI: 10.1186/s13045-022-01392-3] [Citation(s) in RCA: 409] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Many types of human cells self-destruct to maintain biological homeostasis and defend the body against pathogenic substances. This process, called regulated cell death (RCD), is important for various biological activities, including the clearance of aberrant cells. Thus, RCD pathways represented by apoptosis have increased in importance as a target for the development of cancer medications in recent years. However, because tumor cells show avoidance to apoptosis, which causes treatment resistance and recurrence, numerous studies have been devoted to alternative cancer cell mortality processes, namely necroptosis, pyroptosis, ferroptosis, and cuproptosis; these RCD modalities have been extensively studied and shown to be crucial to cancer therapy effectiveness. Furthermore, evidence suggests that tumor cells undergoing regulated death may alter the immunogenicity of the tumor microenvironment (TME) to some extent, rendering it more suitable for inhibiting cancer progression and metastasis. In addition, other types of cells and components in the TME undergo the abovementioned forms of death and induce immune attacks on tumor cells, resulting in enhanced antitumor responses. Hence, this review discusses the molecular processes and features of necroptosis, pyroptosis, ferroptosis, and cuproptosis and the effects of these novel RCD modalities on tumor cell proliferation and cancer metastasis. Importantly, it introduces the complex effects of novel forms of tumor cell death on the TME and the regulated death of other cells in the TME that affect tumor biology. It also summarizes the potential agents and nanoparticles that induce or inhibit novel RCD pathways and their therapeutic effects on cancer based on evidence from in vivo and in vitro studies and reports clinical trials in which RCD inducers have been evaluated as treatments for cancer patients. Lastly, we also summarized the impact of modulating the RCD processes on cancer drug resistance and the advantages of adding RCD modulators to cancer treatment over conventional treatments.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang Liu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
118
|
Huber EA, Cerreta JM. Mechanisms of cell injury induced by inhaled molybdenum trioxide nanoparticles in Golden Syrian Hamsters. Exp Biol Med (Maywood) 2022; 247:2067-2080. [PMID: 35757989 PMCID: PMC9837300 DOI: 10.1177/15353702221104033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molybdenum trioxide nanoparticles (MoO3 NPs) are extensively used in the biomedical, agricultural, and engineering fields that may increase exposure and adverse health effects to the human population. The purpose of this study is to evaluate a possible molecular mechanism leading to cell damage and death following pulmonary exposure to inhaled MoO3 NPs. Animals were separated into four groups: two control groups exposed to room air or aerosolized water and two treated groups exposed to aerosolized MoO3 NPs with a concentration of 5 mg/m3 NPs (4 h/day for eight days) and given a one-day (T-1) or seven-day (T-7) recovery period post exposure. Pulmonary toxicity was evaluated with total and differential cell counts. Increases were seen in total cell numbers, neutrophils, and multinucleated macrophages in the T-1 group, with increases in lymphocytes in the T-7 group (*P < 0.05). To evaluate the mechanism of toxicity, protein levels of Beclin-1, light chain 3 (LC3)-I/II, P-62, cathepsin B, NLRP3, ASC, caspase-1, interleukin (IL)-1β, and tumor necrosis factor-α (TNF-α) were assessed in lung tissue. Immunoblot analyses indicated 1.4- and 1.8-fold increases in Beclin-1 in treated groups (T-1 and T-7, respectively, *P < 0.05), but no change in protein levels of LC3-I/II in either treated group. The levels of cathepsin B were 2.8- and 2.3-fold higher in treated lungs (T-1 and T-7, respectively, *P < 0.05), the levels of NLRP3 had a fold increase of 2.5 and 3.6 (T-1 *P < 0.05, T-7 **P < 0.01, respectively), and the levels of caspase-1 indicated a 3.8- and 3.0-fold increase in treated lungs (T-1 and T-7, respectively, *P < 0.05). Morphological changes were studied using light and electron microscopy showing alterations to airway epithelium and the alveoli, along with particle internalization in macrophages. The results from this study may indicate that inhalation exposure to MoO3 NPs may interrupt the autophagic flux and induce cytotoxicity and lung injury through pyroptosis cell death and activation of caspase-1.
Collapse
|
119
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
120
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
121
|
Chang CY, You R, Armstrong D, Bandi A, Cheng YT, Burkhardt PM, Becerra-Dominguez L, Madison MC, Tung HY, Zeng Z, Wu Y, Song L, Phillips PE, Porter P, Knight JM, Putluri N, Yuan X, Marcano DC, McHugh EA, Tour JM, Catic A, Maneix L, Burt BM, Lee HS, Corry DB, Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. SCIENCE ADVANCES 2022; 8:eabq0615. [PMID: 36383649 PMCID: PMC9668323 DOI: 10.1126/sciadv.abq0615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran You
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique Armstrong
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashwini Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M. Burkhardt
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luis Becerra-Dominguez
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C. Madison
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhimin Zeng
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia E. Phillips
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - Paul Porter
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - John M. Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Daniela C. Marcano
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Emily A. McHugh
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - James M. Tour
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Andre Catic
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Sung Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Corry
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
122
|
Morón Á, Martín-González A, Díaz S, Gutiérrez JC, Amaro F. Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157580. [PMID: 35882336 DOI: 10.1016/j.scitotenv.2022.157580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONT-induced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
123
|
Li T, Zhou T, Liu Y, Wang J, Yu Z. Efficacy analysis of targeted nanodrug for non-small cell lung cancer therapy. Front Bioeng Biotechnol 2022; 10:1068699. [DOI: 10.3389/fbioe.2022.1068699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Biological macromolecules have been widely used as biomedical carriers in treating non-small cell lung cancer (NSCLC) due to their biocompatibility, targeting, biodegradability, and antitumor efficacy. Nanotechnology has been used in clinics to treat many diseases, including cancer. Nanoparticles (NPs) can accumulate drugs into tumors because of their enhanced permeability and retention (EPR) effects. However, the lack of active targeting ligands affects NPs drug delivery. Arginine-glycine-aspartic (RGD), as a targeting ligand, has distinct advantages in targeting and safety. In the present study, an RGD peptide-modified nanogel called RGD−polyethylene glycol−poly (L-phenylalanine-co-L-cystine) (RGD−PEG−P (LP-co-LC−P (LP-co-LC) was investigated to deliver vincristine (VCR) as NSCLC therapy. The VCR-loaded targeted nanoparticle (RGD-NP/VCR) demonstrated excellent antitumor efficacy compared to the free drug (VCR) and untargeted nanoparticle (NP/VCR) without any significant side effects. RGD-NP/VCR has better tumor inhibition and fewer side effects, indicating its potential benefit in NSCLC treatment.
Collapse
|
124
|
Tavakol S, Hoveizi E, Tavakol H, Almasi A, Soleimani M, Rabiee Motmaen S, Azedi F, Joghataei MT. Strong Binding of Phytochemicals to the Catalytic Domain of Tyrosine Hydroxylase as a Trojan Horse Decreases Dopamine in Dopaminergic Cells: Pharmaceutical Considerations in Schizophrenia and Parkinson's Disease. Curr Pharm Des 2022; 28:3428-3445. [PMID: 36330626 DOI: 10.2174/1381612829666221102151926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Imbalances in dopamine levels result in neurological and psychological disorders such as elevated dopamine in Parkinson's disease. OBJECTIVE Despite a considerable number of advertisements claiming Aloe-vera's effectiveness in PD treatment, it has hidden long-term disadvantages for healthy people and PD patients. METHODS In the present investigation, the impacts of Aloe-vera on dopaminergic cells were evaluated. RESULTS The results indicated that the focal adhesion kinase (FAK) enhancement was in line with the Bax/Bcl2 ratio decrement, reactive oxygen specious (ROS) production, and nonsignificant alteration in the sub-G1phase of the cell cycle. It led to glial cell-derived neurotrophic factor (GDNF) upregulation but did not significantly change the BDNF level involved in depression and motor impairment recovery. These events apparently resulted in the enhancement in dopaminergic cell viability and neurite length and attenuated PI+ cells. However, it also induced neuronal nitric oxide synthase (nNOS) overexpression and nitric oxide (NO) and lactate dehydrogenase (LDH) production. Notably, docking results of the catalytic domain in tyrosine hydroxylase (TH) with the Aloe-vera constituents showed strong binding of most Aloe-vera constituents with the catalytic domain of TH, even stronger than L-tyrosine as an original substrate. Following the docking results, Aloe-vera downregulated TH protein and attenuated dopamine. CONCLUSION It can be hypothesized that Aloe-vera improves PD symptoms through enhancement in antiapoptotic markers and neurotrophic factors, while it suppresses TH and dopamine in the form of a Trojan horse, later resulting in the future deterioration of the disease symptoms. The results provide cues to pharmaceutical companies to use the active components of Aloe-vera as putative agents in neurological and psychiatric disorders and diseases to decrease dopamine in patients with enhanced dopamine levels.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hani Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Almasi
- Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
125
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
126
|
Wei T, Zhang T, Tang M. An overview of quantum dots-induced immunotoxicity and the underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119865. [PMID: 35944776 DOI: 10.1016/j.envpol.2022.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) have bright luminescence and excellent photostability. New synthesis techniques and strategies also enhance QDs properties for specific applications. With the continuous expansion of the applications, QDs-mediated immunotoxicity has become a major concern. The immune system has been confirmed to be an important target organ of QDs and is sensitive to QDs. Herein, review immunotoxic effects caused by QDs and the underlying mechanisms. Firstly, QDs exposure-induced modulation in immune cell maturation and differentiation is summarized, especially pre-exposed dendritic cells (DCs) and their regulatory roles in adaptive immunity. Cytokines are usually recognized as biomarkers of immunotoxicity, therefore, variation of cytokines mediated by QDs is also highlighted. Moreover, the activation of the complement system induced by QDs is discussed. Accumulated results have suggested that QDs disrupt the immune response by regulating intracellular oxidative stress (reactive oxygen species) levels, autophagy formation, and expressions of pro-inflammatory mediators. Furthermore, several signalling pathways play a key role in the disruption. Finally, some difficulties worthy of further consideration are proposed. Because there are still challenges in biomedical and clinical applications, this review hopes to provide information that could be useful in exploring the mechanisms associated with QD-induced immunotoxicity.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
127
|
TiO 2 Nanoparticles and Their Effects on Eukaryotic Cells: A Double-Edged Sword. Int J Mol Sci 2022; 23:ijms232012353. [PMID: 36293217 PMCID: PMC9604286 DOI: 10.3390/ijms232012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Nanoparticulate TiO2 (TiO2 NPs) is a widely used material, whose potential toxicity towards eukaryotic cells has been addressed by multiple studies. TiO2 NPs are considered toxic due to their production of reactive oxygen species (ROS), which can, among others, lead to cellular damage, inflammatory responses, and differences in gene expression. TiO2 NPs exhibited toxicity in multiple organs in animals, generating potential health risks also in humans, such as developing tumors or progress of preexisting cancer processes. On the other hand, the capability of TiO2 NPs to induce cell death has found application in photodynamic therapy of cancers. In aquatic environments, much has been done in understanding the impact of TiO2 on bivalves, in which an effect on hemocytes, among others, is reported. Adversities are also reported from other aquatic organisms, including primary producers. These are affected also on land and though some potential benefit might exist when it comes to agricultural plants, TiO2 can also lead to cellular damage and should be considered when it comes to transfer along the food chain towards human consumers. In general, much work still needs to be done to unravel the delicate balance between beneficial and detrimental effects of TiO2 NPs on eukaryotic cells.
Collapse
|
128
|
George BP, Rajendran NK, Houreld NN, Abrahamse H. Rubus Capped Zinc Oxide Nanoparticles Induce Apoptosis in MCF-7 Breast Cancer Cells. Molecules 2022; 27:molecules27206862. [PMID: 36296460 PMCID: PMC9611499 DOI: 10.3390/molecules27206862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.
Collapse
|
129
|
Effect of Coated Silver Nanoparticles on Cancerous vs. Healthy Cells. J Toxicol 2022; 2022:1519104. [PMID: 36254120 PMCID: PMC9569232 DOI: 10.1155/2022/1519104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Unique properties of silver nanoparticles (NPs) ensure their wide applications, in biomedicine; for this reason, it is very important carefully to study the toxicity of such NPs. The influence of silver nanoparticles coated with natural resin (Ag NPs) on the morphological and functional features of healthy BHK-21 and cancerous Hep-2 cells were studied using fluorescence microscopy, MTT, and neutral red assays. Ag NPs induced morphological changes in both cell cultures. The modifications were dose-dependent and more pronounced with an increase in NPs concentration. The IC50 value of Ag NPs for Hep-2 cells was found to be 2.19 ± 0.22 µg/mL, whereas for BHK-21 cells it was significantly (5x) higher at 10.92 ± 2.48 µg/mL. The use of NPs at a concentration close to IC50 leads to significant increase (up to 40%) in the number of necrotic cells in cancerous cell population and a decrease in the number of mitotic cells (up to 1.3%). In noncancerous cells the cellular parameters were similar to the control cells. These data suggest that the silver nanoparticles coated with natural resin can be potentially used in cancer therapy.
Collapse
|
130
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
131
|
Liu Y, Guo K, Ding M, Zhang B, Xiao N, Tang Z, Wang Z, Zhang C, Shubhra QTH. Engineered Magnetic Polymer Nanoparticles Can Ameliorate Breast Cancer Treatment Inducing Pyroptosis-Starvation along with Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42541-42557. [PMID: 36094305 DOI: 10.1021/acsami.2c13011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotechnology has shown a revolution in cancer treatments, including breast cancers. However, there remain some challenges and translational hurdles. Surgery, radiotherapy, and chemotherapy are the primary treatment methods for breast cancer, although drug combinations showed promising results in preclinical studies. Herein we report the development of a smart drug delivery system (DDS) to efficiently treat breast cancer by pyroptosis-starvation-chemotherapeutic combination. Cancer-starvation agent glucose oxidase was chemically attached to synthesized iron oxide nanoparticles which were entrapped inside poly(lactic-co-glycolic acid) along with apoptosis-associated speck-like protein containing a caspase recruitment domain plasmid and paclitaxel (PTX). An emulsion solvent evaporation method was used to prepare the DDS. The surface of the DDS was modified with chitosan to which aptamer was attached to achieve site-specific targeting. Hence, the prepared DDS could be targeted to a tumor site by both external magnet and aptamer to obtain an enhanced accumulation of drugs at the tumor site. The final size of the aptamer-decorated DDS was less than 200 nm, and the encapsulation efficiency of PTX was 76.5 ± 2.5%. Drug release from the developed DDS was much higher at pH 5.5 than at pH 7.4, ensuring the pH sensitivity of the DDS. Due to efficient dual targeting of the DDS, in vitro viability of 4T1 cells was reduced to 12.1 ± 1.6%, whereas the nontargeted group and free PTX group could reduce the viability of cells to 29.2 ± 2.4 and 46.2 ± 1.6%, respectively. Our DDS showed a synergistic effect in vitro and no severe side effects in vivo. This DDS has strong potential to treat various cancers.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 21116, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Kai Guo
- Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Min Ding
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 21116, China
| | - Bingchen Zhang
- Dongguan Hospital, Southern Medical University, Dongguan 523795, China
| | - Nanyang Xiao
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zonghao Tang
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Cedars-Sinai Medical Center, Los Angeles 90048, United States
| | - Zhengming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 21116, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Quazi T H Shubhra
- Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
- Translational Medicine Engineering Research Center of Guangdong Province, Foshan First People's Hospital, Foshan 528000, China
| |
Collapse
|
132
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
133
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
134
|
Saafane A, Durocher I, Vanharen M, Girard D. Impact of ultra-small silver nanoparticles of 2 nm (AgNP 2) on neutrophil biology: AgNP 2 alter the actin cytoskeleton and induce karyorrhexis by a mitogen-activated protein kinase-dependent mechanism in vitro and transitorily attract neutrophils in vivo. Chem Biol Interact 2022; 365:110096. [PMID: 35963315 DOI: 10.1016/j.cbi.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Silver (Ag) is known as an antibacterial agent and there is a growing interest to use silver nanoparticles (AgNPs) in a variety of medical applications and other sectors. Some studies reported that one of the undesired effects of AgNPs is inflammation and that these NPs can alter the biology of neutrophils. Since it is commonly accepted that the more NPs are small, the more toxic they are the aim of this study was to determine the impact of ultra-small silver nanoparticles of 2 nm (AgNP2) on the biology of neutrophils, key player cells in inflammation. We report that AgNP2 are potent neutrophil activators as they rapidly induce actin polymerization and dismantling the actin network. Although AgNP2 are not necrotic for neutrophils and do not induce ROS production, kinetic studies reveal that AgNP2 are rapid inducer of apoptosis. Pyknosis (mainly 1-2 large nuclear dots) was observed after only 1h of treatment followed by karyorrhexis (several small dots) and by a complete nuclear dissolution leading to anuclear neutrophils after 6h. These observations are not associated with the release of silver ions since treatment of neutrophils with 1-50 μg/ml AgNO3 (as a source of Ag+) did not induce any apparent changes. AgNP2 induce p38 and Erk-1/2 mitogen-activated protein kinase (MAPK) and although karyorrhexis was markedly reversed by MAPK inhibitors, the cell nuclei remain with a pyknotic-like phenotype but do not return to the characteristic polylobed nucleus. Using the murine air pouch model of inflammation AgNP2 were found to induce a neutrophil influx. Our data indicate that AgNP2 are potent neutrophil activators targeting the actin cytoskeleton and the mechanism involved for inducing apoptosis is rapid, complex, and partially includes MAPK pathways. Therefore, the ultra-small AgNP2 are more potent than larger ones for inducing apoptosis and they can transitorily attract neutrophils in vivo.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
135
|
Gene Expression Changes Induced by Exposure of RAW 264.7 Macrophages to Particulate Matter of Air Pollution: The Role of Endotoxins. Biomolecules 2022; 12:biom12081100. [PMID: 36008994 PMCID: PMC9405577 DOI: 10.3390/biom12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the variable chemical and physical characteristics of particulate air pollutants, inflammation and oxidative stress have been identified as common mechanisms for cell damage and negative health influences. These effects are produced by organic components, especially by endotoxins. This study analyzed the gene expression profile after exposure of RAW 264.7 cells to the standard particulate matter (PM) material, NIST1648a, and PM with a reduced organic matter content, LAp120, in comparison to the effects of lipopolysaccharide (LPS). The selected parameters of cell viability, cell cycle progression, and metabolic and inflammatory activity were also investigated. Both forms of PM negatively influenced the parameters of cell activity. These results were generally reflected in the gene expression profile. Only NIST1648a, excluding LAp120, contained endotoxins and showed small but statistically significant pro-inflammatory activity. However, the gene expression profiling revealed strong pro-inflammatory cell activation induced by NIST1648a that was close to the effects of LPS. Changes in gene expression triggered by LAp120 were relatively small. The observed differences in the effects of NIST1648a and LAp120 were related to the content of organic matter in which bacterial endotoxins play an important role. However, other organic compounds and their interactions with other PM components also appear to be of significant importance.
Collapse
|
136
|
Al-Mutairi AA, Alkhatib MH. Antitumor Effects of a Solid Lipid Nanoparticle Loaded with Gemcitabine and Oxaliplatin on the Viability, Apoptosis, Autophagy and Hsp90 of Ovarian Cancer Cells. J Microencapsul 2022; 39:467-480. [PMID: 35916335 DOI: 10.1080/02652048.2022.2109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Aim: The present study aimed to explore the sensitizing capability of the anticancer agents, gemcitabine (GEM) and oxaliplatin (OXA), encapsulated in a novel SLN (GEM:OXA-SLN) against the ovarian cancer cell lines. METHODS A novel SLN, prepared using hot homogenization by mixing phosphatidylcholine, cholesterol, tween 80 and oleic acid, was characterized using Transmission Electron Microscope and zetasizer. The anticancer activities and the underlying molecular mechanisms of GEM:OXA-SLN were investigated. RESULTS The average z-diameter of the homogeneous spherical GEM:OXA-SLN was (70.33 ± 0.70) nm with zeta potential (-7.69 ± 0.61) mV. GEM:OXA-SLN significantly inhibited the viability of ovarian cancer cells in a dose-dependent manner within 24 h. It also triggered the induction of autophagy cellular death, suppression of multidrug resistance efflux pump and inhibition of heat shock protein (Hsp90). CONCLUSION The encapsulation of GEM and OXA in SLN improved the efficacy of the drugs and diminished the ovarian cancer cell's resistance.
Collapse
Affiliation(s)
- Ashwaq A Al-Mutairi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mayson H Alkhatib
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
137
|
Arezki Y, Rapp M, Lebeau L, Ronzani C, Pons F. Cationic Carbon Nanoparticles Induce Inflammasome-Dependent Pyroptosis in Macrophages via Lysosomal Dysfunction. FRONTIERS IN TOXICOLOGY 2022; 4:925399. [PMID: 35928766 PMCID: PMC9345407 DOI: 10.3389/ftox.2022.925399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Carbon nanomaterials, including carbon dots (CDs), form a growing family of engineered nanoparticles (NPs) with widespread applications. As the rapid expansion of nanotechnologies raises safety concerns, interaction of NPs with the immune system is receiving a lot of attention. Recent studies have reported that engineered NPs may induce macrophage death by pyroptosis. Therefore, this study investigated whether cationic CDs induce pyroptosis in human macrophages and assessed the role of inflammasome and lysosome in this process. Cationic CDs were synthetized by microwave-assisted pyrolysis of citric acid and high molecular weight branched polyethyleneimine. The NPs evoked a dose-dependent viability loss in THP-1-derived macrophages. A cell leakage, an increase in IL-1β secretion and an activation of caspase-1 were also observed in response to the NPs. Inhibition of caspase-1 decreased CD-induced cell leakage and IL-1β secretion, while restoring cell viability. Besides, CDs triggered swelling and loss of integrity of lysosome, and inhibition of the lysosomal enzyme cathepsin B decreased CD-induced IL-1β secretion. Thus, our data provide evidence that cationic CDs induce inflammasome-dependent pyroptosis in macrophages via lysosomal dysfunction.
Collapse
|
138
|
Mono and Multiple Tumor-Targeting Ligand-Coated Ultrasmall Gadolinium Oxide Nanoparticles: Enhanced Tumor Imaging and Blood Circulation. Pharmaceutics 2022; 14:pharmaceutics14071458. [PMID: 35890353 PMCID: PMC9321250 DOI: 10.3390/pharmaceutics14071458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrophilic and biocompatible PAA-coated ultrasmall Gd2O3 nanoparticles (davg = 1.7 nm) were synthesized and conjugated with tumor-targeting ligands, i.e., cyclic arginylglycylaspartic acid (cRGD) and/or folic acid (FA). FA-PAA-Gd2O3 and cRGD/FA-PAA-Gd2O3 nanoparticles were successfully applied in U87MG tumor-bearing mice for tumor imaging using T1 magnetic resonance imaging (MRI). cRGD/FA-PAA-Gd2O3 nanoparticles with multiple tumor-targeting ligands exhibited higher contrasts at the tumor site than FA-PAA-Gd2O3 nanoparticles with mono tumor-targeting ligands. In addition, the cRGD/FA-PAA-Gd2O3 nanoparticles exhibited higher contrasts in all organs, especially the aorta, compared with those of the FA-PAA-Gd2O3 nanoparticles, because of the blood cell hitchhiking effect of cRGD in the cRGD/FA-PAA-Gd2O3 nanoparticles, which prolonged their circulation in the blood.
Collapse
|
139
|
New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. WATER 2022. [DOI: 10.3390/w14142192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in numerous consumer products, including textiles, cosmetics, and health care items. The widespread usage of AgNPs results in their unavoidable discharge into the ecosystem, which pollutes the aquatic, groundwater, sediments, and marine environments. These nanoparticles (NPs) activate the production of free radicals reactive species in aquatic organisms that interrupt the functions of DNA, cause mitochondrial dysfunction, and increase lipid peroxidation, which terminates the development and reproduction both in vivo and in vitro. The life present in the aquatic ecosystem is becoming threatened due to the release and exploitation of AgNPs. Managing the aquatic ecosystem from the AgNP effects in the near future is highly recommended. In this review, we discussed the background of AgNPs, their discharge, and uptake by aquatic organisms, the mechanism of toxicity, different pathways of cytotoxicity, and bioaccumulation, particularly in aquatic organisms. We have also discussed the antimicrobial activities of AgNPs along with acute and chronic toxicity in aquatic groups of organisms.
Collapse
|
140
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
141
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
142
|
Design and Evaluation of Autophagy-Inducing Particles for the Treatment of Abnormal Lipid Accumulation. Pharmaceutics 2022; 14:pharmaceutics14071379. [PMID: 35890275 PMCID: PMC9318411 DOI: 10.3390/pharmaceutics14071379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is a fundamental housekeeping process by which cells degrade their components to maintain homeostasis. Defects in autophagy have been associated with aging, neurodegeneration and metabolic diseases. Non-alcoholic fatty liver diseases (NAFLDs) are characterized by hepatic fat accumulation with or without inflammation. No treatment for NAFLDs is currently available, but autophagy induction has been proposed as a promising therapeutic strategy. Here, we aimed to design autophagy-inducing particles, using the autophagy-inducing peptide (Tat-Beclin), and achieve liver targeting in vivo, taking NAFLD as a model disease. Polylactic acid (PLA) particles were prepared by nanoprecipitation without any surfactant, followed by surface peptide adsorption. The ability of Tat-Beclin nanoparticles (NP T-B) to modulate autophagy and to decrease intracellular lipid was evaluated in vitro by LC3 immunoblot and using a cellular model of steatosis, respectively. The intracellular localization of particles was evaluated by transmission electron microscopy (TEM). Finally, biodistribution of fluorescent NP T-B was evaluated in vivo using tomography in normal and obese mice. The results showed that NP T-B induce autophagy with a long-lasting and enhanced effect compared to the soluble peptide, and at a ten times lower dose. Intracellular lipid also decreased in a cellular model of NAFLD after treatment with T-B and NP T-B under the same dose conditions. Ultrastructural studies revealed that NP T-B are internalized and located in endosomal, endolysosomal and autolysosomal compartments, while in healthy and obese mice, NP T-B could accumulate for several days in the liver. Given the beneficial effects of autophagy-inducing particles in vitro, and their capacity to target the liver of normal and obese mice, NP T-B could be a promising therapeutic tool for NAFLDs, warranting further in vivo investigation.
Collapse
|
143
|
Šestáková B, Schröterová L, Bezrouk A, Čížková D, Elkalaf M, Havelek R, Rudolf E, Králová V. The Effect of Chronic Exposure of Graphene Nanoplates on the Viability and Motility of A549 Cells. NANOMATERIALS 2022; 12:nano12122074. [PMID: 35745421 PMCID: PMC9227066 DOI: 10.3390/nano12122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/07/2022]
Abstract
Graphene and its derivatives are popular nanomaterials used worldwide in many technical fields and biomedical applications. Due to such massive use, their anticipated accumulation in the environment is inevitable, with a largely unknown chronic influence on living organisms. Although repeatedly tested in chronic in vivo studies, long-term cell culture experiments that explain the biological response to these nanomaterials are still scarce. In this study, we sought to evaluate the biological responses of established model A549 tumor cells exposed to a non-toxic dose of pristine graphene for eight weeks. Our results demonstrate that the viability of the A549 cells exposed to the tested graphene did not change as well as the rate of their growth and proliferation despite nanoplatelet accumulation inside the cells. In addition, while the enzymatic activity of mitochondrial dehydrogenases moderately increased in exposed cells, their overall mitochondrial damage along with energy production changes was also not detected. Conversely, chronic accumulation of graphene nanoplates in exposed cells was detected, as evidenced by electron microscopy associated with impaired cellular motility.
Collapse
Affiliation(s)
- Blanka Šestáková
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Ladislava Schröterová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
- Correspondence: ; Tel.: +420-495-816-284
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Dana Čížková
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Moustafa Elkalaf
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic;
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| | - Věra Králová
- Department of Medical Biology and Genetics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Králové, Czech Republic; (B.Š.); (E.R.); (V.K.)
| |
Collapse
|
144
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
145
|
Li N, Du H, Mao L, Xu G, Zhang M, Fan Y, Dong X, Zheng L, Wang B, Qin X, Jiang X, Chen C, Zou Z, Zhang J. Reciprocal regulation of NRF2 by autophagy and ubiquitin-proteasome modulates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology 2022; 20:270. [PMID: 35690781 PMCID: PMC9188091 DOI: 10.1186/s12951-022-01486-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
NRF2 is the key antioxidant molecule to maintain redox homeostasis, however the intrinsic mechanisms of NRF2 activation in the context of nanoparticles (NPs) exposure remain unclear. In this study, we revealed that copper oxide NPs (CuONPs) exposure activated NRF2 pathway in vascular endothelial cells. NRF2 knockout remarkably aggravated oxidative stress, which were remarkably mitigated by ROS scavenger. We also demonstrated that KEAP1 (the negative regulator of NRF2) was not primarily involved in NRF2 activation in that KEAP1 knockdown did not significantly affect CuONPs-induced NRF2 activation. Notably, we demonstrated that autophagy promoted NRF2 activation as evidenced by that ATG5 knockout or autophagy inhibitors significantly blocked NRF2 pathway. Mechanically, CuONPs disturbed ubiquitin–proteasome pathway and consequently inhibited the proteasome-dependent degradation of NRF2. However, autophagy deficiency reciprocally promoted proteasome activity, leading to the acceleration of degradation of NRF2 via ubiquitin–proteasome pathway. In addition, the notion that the reciprocal regulation of NRF2 by autophagy and ubiquitin–proteasome was further proven in a CuONPs pulmonary exposure mice model. Together, this study uncovers a novel regulatory mechanism of NRF2 activation by protein degradation machineries in response to CuONPs exposure, which opens a novel intriguing scenario to uncover therapeutic strategies against NPs-induced vascular injury and disease. CuONPs exposure activates NRF2 signaling in vascular endothelial cells and mouse thoracic aorta. KEAP1 is dispensable for NRF2 activation in CuONPs-treated vascular endothelial cells. CuONPs-induced autophagy facilitates NRF2 activation in vascular endothelial cells and mouse thoracic aorta. Autophagy and ubiquitin–proteasome reciprocally regulate NRF2 activation in CuONPs-treated vascular endothelial cells and mouse thoracic aorta.
Collapse
Affiliation(s)
- Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Du
- Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengling Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lijun Zheng
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
146
|
Li K, Xu D, Liao H, Xue Y, Sun M, Su H, Xiu X, Zhao T. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO 2 in sewage and surface-water and related research prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153866. [PMID: 35181357 DOI: 10.1016/j.scitotenv.2022.153866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/28/2023]
Abstract
This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO2), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO2 have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO2 in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO2 are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO2 are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO2, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO2 in water environments. Additionally, the aging of nano-TiO2 in a water environment should be heeded to because the continuously changing surface structure is bound to have a significant impact on its behavior and toxicity. Moreover, for microbial aggregates, comprehensive response analysis should be conducted in terms of the functional activity, surface features, composition structure, internal microenvironment, cellular and molecular level changes, etc., to find the key point of the interaction between nano-TiO2 and microbial aggregates, and to take mitigation or beneficial measures to deal with the aquatic-toxicity of nano-TiO2. In short, this article contributes by 1) reviewing the research status of nano-TiO2 in all aspects: application and discharge, distribution and behavior, and its aquatic toxicity; 2) suggesting the response mechanism of microbial aggregates and putting forward the toxigenic mechanism of nanomaterial structure; 3) pointing out the future research direction of nano-TiO2 in water environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Defu Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianyi Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
147
|
Li L, Dong R, Liu T, Yang Y, Chang H, Meng X, Deng Y, Wang Q, Zhao Y, Song G, Hu Y. Nano-titanium dioxide exposure and autophagy: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Tao Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, PR China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| |
Collapse
|
148
|
BECLIN-1-Mediated Autophagy Suppresses Silica Nanoparticle-Induced Testicular Toxicity via the Inhibition of Caspase 8-Mediated Cell Apoptosis in Leydig Cells. Cells 2022; 11:cells11121863. [PMID: 35740992 PMCID: PMC9221084 DOI: 10.3390/cells11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulation of silica nanoparticles (SNPs) in the testes leads to male reproductive toxicity. However, little is known about the effect and mechanistic insights of SNP-induced autophagy on apoptosis in Leydig cells. In this study, we aimed to verify the role of SNP-induced autophagy in apoptosis and explore the possible underlying mechanism in mouse primary Leydig cells (PLCs). H&E staining showed that SNPs changed the histological structures of the testes, including a reduction in the Leydig cell populations in vivo. CCK-8 assay showed that SNPs decreased cell viability, and flow cytometry showed that SNPs increased cell apoptosis, both in a dose-dependent manner in vitro. Additionally, Western blotting further found that SNPs activated autophagy by an increase in BECLIN-1, ATG16L, and LC3-II levels and promoted the intrinsic pathway of apoptosis by an increase in the BAX/BCL-2 ratio, cleaved the caspase 8 and caspase 3 levels. Furthermore, autophagy decreased SNP-induced apoptosis via regulation of the caspase 8 level combined with rapamycin, 3-methyladenine, and chloroquine. BECLIN-1 depletion increased the caspase 8 level, leading to an increase in SNP-induced cell apoptosis. Collectively, this evidence demonstrates that SNPs activated BECLIN-1-mediated autophagy, which prevented SNP-induced testicular toxicity via the inhibition of caspase 8-mediated cell apoptosis in Leydig cells.
Collapse
|
149
|
Cadmium-induced splenic lymphocytes anoikis is not mitigated by activating Nrf2-mediated antioxidative defense response. J Inorg Biochem 2022; 234:111882. [DOI: 10.1016/j.jinorgbio.2022.111882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
|
150
|
Jalili P, Krause BC, Lanceleur R, Burel A, Jungnickel H, Lampen A, Laux P, Luch A, Fessard V, Hogeveen K. Chronic effects of two rutile TiO 2 nanomaterials in human intestinal and hepatic cell lines. Part Fibre Toxicol 2022; 19:37. [PMID: 35578293 PMCID: PMC9112549 DOI: 10.1186/s12989-022-00470-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF–SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied.
Results Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. Conclusion These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00470-1.
Collapse
Affiliation(s)
- Pégah Jalili
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | | | - Rachelle Lanceleur
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, 2 avenue du Pr Léon Bernard - CS 34317, 35043, Rennes, France
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Kevin Hogeveen
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France.
| |
Collapse
|