101
|
Steggerda SM, Black BE, Paschal BM. Monoclonal antibodies to NTF2 inhibit nuclear protein import by preventing nuclear translocation of the GTPase Ran. Mol Biol Cell 2000; 11:703-19. [PMID: 10679025 PMCID: PMC14804 DOI: 10.1091/mbc.11.2.703] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.
Collapse
Affiliation(s)
- S M Steggerda
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, and Cell and Molecular Biology Program, University of Virginia Health Sciences Center, Charlottesville, Virginia, 22908, USA
| | | | | |
Collapse
|
102
|
Hetzer M, Mattaj IW. An ATP-dependent, Ran-independent mechanism for nuclear import of the U1A and U2B" spliceosome proteins. J Cell Biol 2000; 148:293-303. [PMID: 10648562 PMCID: PMC2174293 DOI: 10.1083/jcb.148.2.293] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear import of the two uracil-rich small nuclear ribonucleoprotein (U snRNP) components U1A and U2B" is mediated by unusually long and complex nuclear localization signals (NLSs). Here we investigate nuclear import of U1A and U2B" in vitro and demonstrate that it occurs by an active, saturable process. Several lines of evidence suggest that import of the two proteins occurs by an import mechanism different to those characterized previously. No cross competition is seen with a variety of previously studied NLSs. In contrast to import mediated by members of the importin-beta family of nucleocytoplasmic transport receptors, U1A/U2B" import is not inhibited by either nonhydrolyzable guanosine triphosphate (GTP) analogues or by a mutant of the GTPase Ran that is incapable of GTP hydrolysis. Adenosine triphosphate is capable of supporting U1A and U2B" import, whereas neither nonhydrolyzable adenosine triphosphate analogues nor GTP can do so. U1A and U2B" import in vitro does not require the addition of soluble cytosolic proteins, but a factor or factors required for U1A and U2B" import remains tightly associated with the nuclear fraction of conventionally permeabilized cells. This activity can be solubilized in the presence of elevated MgCl(2). These data suggest that U1A and U2B" import into the nucleus occurs by a hitherto uncharacterized mechanism.
Collapse
Affiliation(s)
- Martin Hetzer
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Iain W. Mattaj
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
103
|
Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 2000; 28:582-92. [PMID: 10606658 PMCID: PMC102511 DOI: 10.1093/nar/28.2.582] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Revised: 11/11/1999] [Accepted: 11/11/1999] [Indexed: 11/14/2022] Open
Abstract
Phosphorothioate oligodeoxynucleotides (P=S ODNs) are frequently used as antisense agents to specifically interfere with the expression of cellular target genes. However, the cell biological properties of P=S ODNs are poorly understood. Here we show that P=S ODNs were able to continuously shuttle between the nucleus and the cytoplasm and that shuttling P=S ODNs retained their ability to act as antisense agents. The shuttling process shares characteristics with active transport since it was inhibited by chilling and ATP depletion in vivo. Transport was carrier-mediated as it was saturable, and nuclear pore complex-mediated as it was sensitive to treatment with wheatgerm agglutinin. Oligonucleotides without a P=S backbone chemistry were only weakly restricted in their migration by chilling, ATP depletion and wheatgerm agglutinin and thus moved by diffusion. P=S ODN shuttling was only moderately affected by disruption of the Ran/RCC1 system. We propose that P=S ODNs shuttle through their binding to yet unidentified cellular molecules that undergo nucleocytoplasmic transport via a pathway that is not as strongly dependent on the Ran/RCC1 system as nuclear export signal-mediated protein export, U-snRNA, tRNA and mRNA export. The shuttling property of P=S ODNs must be taken into account when considering the mode and site of action of these antisense agents.
Collapse
Affiliation(s)
- P Lorenz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
104
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
105
|
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
106
|
Kose S, Imamoto N, Yoneda Y. Distinct energy requirement for nuclear import and export of importin beta in living cells. FEBS Lett 1999; 463:327-30. [PMID: 10606747 DOI: 10.1016/s0014-5793(99)01641-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Importin beta can shuttle between the nucleus and cytoplasm through the nuclear pore complex (NPC). This study deals with the issue of how the energy is utilized during the NPC passage of importin beta. In chilled or ATP-depleted cells, importin beta was transported into the nucleus, while the nuclear export of importin beta was inhibited. Further, it was found that the nuclear export inhibition of importin beta is not due to nuclear retention via binding to nucleoporins or nuclear importin alpha. These data show that the nuclear export of importin beta involves energy-requiring step(s) in living cells.
Collapse
Affiliation(s)
- S Kose
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, Japan
| | | | | |
Collapse
|
107
|
Yoneda Y, Hieda M, Nagoshi E, Miyamoto Y. Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct 1999; 24:425-33. [PMID: 10698256 DOI: 10.1247/csf.24.425] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
108
|
Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 1999; 293:579-93. [PMID: 10543952 DOI: 10.1006/jmbi.1999.3166] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear transport factor 2 (NTF2) is a small, homodimeric protein that binds to both RanGDP and xFxFG repeat-containing nucleoporins, such as yeast Nsp1p and vertebrate p62. NTF2 is required for efficient nuclear protein import and has been shown to mediate the nuclear import of RanGDP. We have used the crystal structures of rat NTF2 and its complex with RanGDP to design a mutant, W7A-NTF2, in which the affinity for xFxFG-repeat nucleoporins is reduced while wild-type binding to RanGDP is retained. The 2.5 A resolution crystal structure of W7A-NTF2 is virtually superimposable upon the wild-type protein structure, indicating that the mutation had not introduced a more general conformational change. Therefore, our data suggest that the exposed side-chain of residue 7 is crucial to the interaction between NTF2 and xFxFG repeat-containing nucleoporins. Consistent with its reduced affinity for xFxFG nucleoporins, fluorescently labelled W7A-NTF2 binds less strongly to the nuclear envelope of permeabilized cultured cells than wild-type NTF2 and, when microinjected into Xenopus oocytes, colloidal gold coated with W7A-NTF2 binds less strongly to the central channel of nuclear pore complexes than wild-type NTF2-coated gold. Significantly, W7A-NTF2 only weakly stimulated the nuclear import of fluorescein-labelled RanGDP, providing direct evidence that an interaction between NTF2 and xFxFG repeat-containing nucleoporins is required to mediate the nuclear import of RanGDP.
Collapse
Affiliation(s)
- R Bayliss
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge, CB2 2QH, England
| | | | | | | | | | | | | |
Collapse
|
109
|
Askjaer P, Bachi A, Wilm M, Bischoff FR, Weeks DL, Ogniewski V, Ohno M, Niehrs C, Kjems J, Mattaj IW, Fornerod M. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol Cell Biol 1999; 19:6276-85. [PMID: 10454574 PMCID: PMC84588 DOI: 10.1128/mcb.19.9.6276] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1999] [Accepted: 06/21/1999] [Indexed: 11/20/2022] Open
Abstract
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.
Collapse
Affiliation(s)
- P Askjaer
- Department of Gene Expression, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Nachury MV, Weis K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622-7. [PMID: 10449743 PMCID: PMC22259 DOI: 10.1073/pnas.96.17.9622] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1999] [Accepted: 06/25/1999] [Indexed: 11/18/2022] Open
Abstract
Transport of macromolecules across the nuclear envelope is an active process that depends on soluble factors including the GTPase Ran. Ran-GTP is predominantly located in the nucleus and has been shown to regulate cargo binding and release of import and export receptors in their respective target compartments. Recently, it was shown that transport of receptor-cargo complexes across the nuclear pore complex (NPC) does not depend on GTP-hydrolysis by Ran; however, the mechanism of translocation is still poorly understood. Here, we show that the direction of transport through the NPC can be inverted in the presence of high concentrations of cytoplasmic Ran-GTP. Under these conditions, two different classes of export cargoes are transported into the nucleus in the absence of GTP hydrolysis. The inverted transport is very rapid and can be blocked by known inhibitors of nuclear protein export. These results suggest that the NPC functions as a facilitated transport channel, allowing the selective translocation of receptor-cargo complexes. We conclude that the directionality of nucleocytoplasmic transport is determined mainly by the compartmentalized distribution of Ran-GTP.
Collapse
Affiliation(s)
- M V Nachury
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94729-3200, USA
| | | |
Collapse
|
111
|
Abstract
The nuclear pore complex (NPC) connects the cytoplasm and nucleus through the nuclear envelope and serves as the pipeline for moving material between the two compartments. Macromolecules that move through the NPC range in size from the very small (for example, ions and ATP) to the very large (for example, ribonucleoprotein particle complexes). Unlike translocation across other organelle membranes, proteins do not have to be unfolded to be transported through the NPC, and the NPC also routinely transports large, multicomponent substrates in both directions. This review focuses on current understanding of the different mechanisms by which macromolecules move across the NPC.
Collapse
Affiliation(s)
- B Talcott
- Baylor College of Medicine, Dept of Cell Biology, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
112
|
Takizawa CG, Weis K, Morgan DO. Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc Natl Acad Sci U S A 1999; 96:7938-43. [PMID: 10393926 PMCID: PMC22166 DOI: 10.1073/pnas.96.14.7938] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1999] [Accepted: 05/14/1999] [Indexed: 11/18/2022] Open
Abstract
Mitosis is triggered in vertebrate cells by the cyclin B1-Cdc2 complex. The activation of this complex at the end of G2 phase is accompanied by its translocation from the cytoplasm to the nucleus. We used digitonin-permeabilized human cells to analyze the mechanism by which cyclin B1-Cdc2 is imported into the nucleus. Cyclin B1-Cdc2 import was not blocked by inhibitors of the importin alpha-dependent import pathway or by dominant negative versions of the GTPase Ran or importin beta. However, the rate of cyclin B1 import was decreased by immunodepletion of importin beta from cytosol. Purified importin beta promoted cyclin B1 import in the absence of cytosol or Ran and in the presence of the dominant negative Ran mutant. We conclude that cyclin B1 import is mediated by an unusual importin beta-dependent mechanism that does not require Ran.
Collapse
Affiliation(s)
- C G Takizawa
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
113
|
|
114
|
Nagoshi E, Imamoto N, Sato R, Yoneda Y. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10:2221-33. [PMID: 10397761 PMCID: PMC25438 DOI: 10.1091/mbc.10.7.2221] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sterol regulatory element-binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix-leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin beta. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin beta in the absence of importin alpha. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2-importin beta complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin beta in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix-leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin beta.
Collapse
Affiliation(s)
- E Nagoshi
- Department of Anatomy and Cell Biology, Osaka University Medical School, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
115
|
Ludtke JJ, Zhang G, Sebestyén MG, Wolff JA. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci 1999; 112 ( Pt 12):2033-41. [PMID: 10341220 DOI: 10.1242/jcs.112.12.2033] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the entry of DNA into the nucleus is a crucial step of non-viral gene delivery, fundamental features of this transport process have remained unexplored. This study analyzed the effect of linear double stranded DNA size on its passive diffusion, its active transport and its NLS-assisted transport. The size limit for passive diffusion was found to be between 200 and 310 bp. DNA of 310–1500 bp entered the nuclei of digitonin treated cells in the absence of cytosolic extract by an active transport process. Both the size limit and the intensity of DNA nuclear transport could be increased by the attachment of strong nuclear localization signals. Conjugation of a 900 bp expression cassette to nuclear localization signals increased both its nuclear entry and expression in microinjected, living cells.
Collapse
Affiliation(s)
- J J Ludtke
- Departments of Pediatrics and Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
116
|
Liu Y, Guo W, Tartakoff PY, Tartakoff AM. A Crm1p-independent nuclear export path for the mRNA-associated protein, Npl3p/Mtr13p. Proc Natl Acad Sci U S A 1999; 96:6739-44. [PMID: 10359782 PMCID: PMC21985 DOI: 10.1073/pnas.96.12.6739] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1998] [Indexed: 11/18/2022] Open
Abstract
mRNA export involves association of mRNAs with nucleoplasmic proteins, delivery to the nuclear pore complex, translocation to the cytoplasm, and reimport of recycling components. Many yeast mutants inhibit mRNA export, but there is little information concerning the RNA carriers and steps of transport that they affect. The hnRNP/serine-arginine-rich-like protein, Npl3p/Mtr13p, binds poly(A)+ RNA and shuttles between the nucleus and cytoplasm. Its export accelerates on inhibition of RNA synthesis. In vivo tests show that its export requires two proteins with putative leucine-rich nuclear export signals: Gle1p, Mex67p, and several additional nuclear and nuclear pore complex-associated proteins. Surprisingly, a nonnuclear pool of an import factor (the importin alpha homologue, Srp1p) is also required. Changes in the methylation status of Npl3p do not correlate with its nucleocytoplasmic distribution. A crm1 mutant that inhibits export of proteins with leucine-rich nuclear export signals and mRNAs does not inhibit Npl3p export. Moreover, several proteins needed for Npl3p export are not needed for export of a typical Crm1p cargo. Thus, Npl3p export requires only a subset of proteins implicated in mRNA export, suggesting that more than one mRNA export path exists. A distinct group of mutants, including a mutation of a member of the importin beta superfamily, inhibits Npl3p reimport from the cytoplasm.
Collapse
Affiliation(s)
- Y Liu
- Pathology Department and Cell Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
117
|
Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A. Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 1999; 97:635-46. [PMID: 10367892 DOI: 10.1016/s0092-8674(00)80774-6] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transport receptors of the Importin beta family shuttle between the nucleus and cytoplasm and mediate transport of macromolecules through nuclear pore complexes. They interact specifically with the GTP-binding protein Ran, which in turn regulates their interaction with cargo. Here, we report the three-dimensional structure of a complex between Ran bound to the nonhydrolyzable GTP analog GppNHp and a 462-residue fragment from Importin beta. The structure of Importin beta shows 10 tandem repeats resembling HEAT and Armadillo motifs. They form an irregular crescent, the concave site of which forms the interface with Ran-triphosphate. The importin-binding site of Ran does not overlap with that of the Ran-binding domain of RanBP2.
Collapse
Affiliation(s)
- I R Vetter
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
118
|
Chook YM, Blobel G. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 1999; 399:230-7. [PMID: 10353245 DOI: 10.1038/20375] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transport factors in the karyopherin-beta (also called importin-beta) family mediate the movement of macromolecules in nuclear-cytoplasmic transport pathways. Karyopherin-beta2 (transportin) binds a cognate import substrate and targets it to the nuclear pore complex. In the nucleus, Ran x GTP binds karyopherin-beta2 and dissociates the substrate. Here we present the 3.0 A structure of the karyopherin-beta2-Ran x GppNHp complex where GppNHp is a non-hydrolysable GTP analogue. Karyopherin-beta2 contains eighteen HEAT repeats arranged into two continuous orthogonal arches. Ran is clamped in the amino-terminal arch and substrate-binding activity is mapped to the carboxy-terminal arch. A large loop in HEAT repeat 7 spans both arches. Interactions of the loop with Ran and the C-terminal arch implicate it in GTPase-mediated dissociation of the import-substrate. Ran x GppNHp in the complex shows extensive structural rearrangement, compared to Ran GDP, in regions contacting karyopherin-beta2. This provides a structural basis for the specificity of the karyopherin-beta family for the GTP-bound state of Ran, as well as a rationale for interactions of the karyopherin-Ran complex with the regulatory proteins ranGAP, ranGEF and ranBP1.
Collapse
Affiliation(s)
- Y M Chook
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
119
|
Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 1999; 145:645-57. [PMID: 10330396 PMCID: PMC2133185 DOI: 10.1083/jcb.145.4.645] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1998] [Revised: 03/11/1999] [Indexed: 11/22/2022] Open
Abstract
We recently developed an assay in which nuclear export of the shuttling transcription factor NFAT (nuclear factor of activated T cells) can be reconstituted in permeabilized cells with the GTPase Ran and the nuclear export receptor CRM1. We have now used this assay to identify another export factor. After preincubation of permeabilized cells with a Ran mutant that cannot hydrolyze GTP (RanQ69L), cytosol supports NFAT export, but CRM1 and Ran alone do not. The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214. RanGTP-dependent association of CRM1 with these nucleoporins was reconstituted in vitro. By biochemical fractionation and reconstitution, we showed that RanBP1 restores nuclear export after the RanQ69L preincubation. It also stimulates nuclear export in cells that have not been preincubated with RanQ69L. RanBP1 as well as Ran-binding domains of the cytoplasmic nucleoporin RanBP2 promote the release of CRM1 from the NPC. Taken together, our results indicate that RanGTP is important for the targeting of export complexes to the cytoplasmic side of the NPC and that RanBP1 and probably RanBP2 are involved in the dissociation of nuclear export complexes from the NPC in a terminal step of transport.
Collapse
Affiliation(s)
- R H Kehlenbach
- Departments of Cell Biology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
120
|
Jäkel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, Görlich D. The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J 1999; 18:2411-23. [PMID: 10228156 PMCID: PMC1171324 DOI: 10.1093/emboj/18.9.2411] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Import of proteins into the nucleus proceeds through nuclear pore complexes and is largely mediated by nuclear transport receptors of the importin beta family that use direct RanGTP-binding to regulate the interaction with their cargoes. We investigated nuclear import of the linker histone H1 and found that two receptors, importin beta (Impbeta) and importin 7 (Imp7, RanBP7), play a critical role in this process. Individually, the two import receptors bind H1 weakly, but binding is strong for the Impbeta/Imp7 heterodimer. Consistent with this, import of H1 into nuclei of permeabilized mammalian cells requires exogenous Impbeta together with Imp7. Import by the Imp7/Impbeta heterodimer is strictly Ran dependent, the Ran-requiring step most likely being the disassembly of the cargo-receptor complex following translocation into the nucleus. Disassembly is brought about by direct binding of RanGTP to Impbeta and Imp7, whereby the two Ran-binding sites act synergistically. However, whereas an Impbeta/RanGTP interaction appears essential for H1 import, Ran-binding to Imp7 is dispensable. Thus, Imp7 can function in two modes. Its Ran-binding site is essential when operating as an autonomous import receptor, i.e. independently of Impbeta. Within the Impbeta/Imp7 heterodimer, however, Imp7 plays a more passive role than Impbeta and resembles an import adapter.
Collapse
Affiliation(s)
- S Jäkel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
121
|
Nakielny S, Shaikh S, Burke B, Dreyfuss G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J 1999; 18:1982-95. [PMID: 10202161 PMCID: PMC1171283 DOI: 10.1093/emboj/18.7.1982] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We employed a phage display system to search for proteins that interact with transportin 1 (TRN1), the import receptor for shuttling hnRNP proteins with an M9 nuclear localization sequence (NLS), and identified a short region within the N-terminus of the nucleoporin Nup153 which binds TRN1. Nup153 is located at the nucleoplasmic face of the nuclear pore complex (NPC), in the distal basket structure, and functions in mRNA export. We show that this Nup153 TRN1-interacting region is an M9 NLS. We found that both import and export receptors interact with several regions of Nup153, in a RanGTP-regulated fashion. RanGTP dissociates Nup153-import receptor complexes, but is required for Nup153-export receptor interactions. We also show that Nup153 is a RanGDP-binding protein, and that the interaction is mediated by the zinc finger region of Nup153. This represents a novel Ran-binding domain, which we term the zinc finger Ran-binding motif. We provide evidence that Nup153 shuttles between the nuclear and cytoplasmic faces of the NPC. The presence of an M9 shuttling domain in Nup153, together with its ability to move within the NPC and to interact with export receptors, suggests that this nucleoporin is a mobile component of the pore which carries export cargos towards the cytoplasm.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | |
Collapse
|
122
|
Yokoya F, Imamoto N, Tachibana T, Yoneda Y. beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 1999; 10:1119-31. [PMID: 10198061 PMCID: PMC25239 DOI: 10.1091/mbc.10.4.1119] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.
Collapse
Affiliation(s)
- F Yokoya
- Department of Anatomy and Cell Biology, Osaka University Medical School, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
123
|
Kamei Y, Yuba S, Nakayama T, Yoneda Y. Three distinct classes of the alpha-subunit of the nuclear pore-targeting complex (importin-alpha) are differentially expressed in adult mouse tissues. J Histochem Cytochem 1999; 47:363-72. [PMID: 10026238 DOI: 10.1177/002215549904700310] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The process of active nuclear protein transport is mediated by the nuclear localization signal (NLS). An NLS-containing karyophile forms a stable complex, termed the nuclear pore-targeting complex, to target nuclear pores. The alpha-subunit of the complex (importin-alpha) binds to the NLS and the beta-subunit (importin-beta) carries the alpha-subunit, bound to the NLS substrate, into the nucleus. To date, five mouse alpha-subunits have been identified and classified into three subfamilies (alpha-P, alpha-Q, and alpha-S). The expression of these alpha-subunits and the beta-subunit in various adult mouse tissues was examined by immunoblotting and immunohistochemistry using antibodies specific for each subfamily of the alpha-subunit or the beta-subunit. The beta-subunit was found to be ubiquitously expressed, whereas each subfamily of the alpha-subunit showed a unique expression pattern in various tissues, especially in brain and testis. In brain, the expression of alpha-P was not observed, whereas alpha-S was significantly expressed in Purkinje cells, and pyramidal cells of the hippocampus and cerebral cortex. In testis, alpha-P was expressed predominantly in primary spermatocytes, whereas alpha-Q was found mainly in Leydig cells. Expression of alpha-S was detected in almost all cells in convoluted seminiferous tubules and Leydig cells to a similar extent. These results suggest that nuclear protein import may be controlled in a tissue-specific manner by alpha-subunit family proteins.
Collapse
Affiliation(s)
- Y Kamei
- Department of Biochemistry, Miyazaki Medical College, Miyazaki, Japan
| | | | | | | |
Collapse
|
124
|
Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N, Yoneda Y. A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. J Cell Biol 1999; 144:645-55. [PMID: 10037787 PMCID: PMC2132938 DOI: 10.1083/jcb.144.4.645] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.
Collapse
Affiliation(s)
- M Hieda
- Department of Anatomy and Cell Biology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Kose S, Imamoto N, Tachibana T, Yoshida M, Yoneda Y. beta-subunit of nuclear pore-targeting complex (importin-beta) can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:3946-52. [PMID: 9933584 DOI: 10.1074/jbc.274.7.3946] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear export of importin-alpha is mediated by CAS, which is related to importin-beta, whereas the mechanism for the export of importin-beta remains unclear. In this study, we demonstrate that the nuclear export of importin-beta is mediated by the nuclear pore complex-binding domain of this molecule. Insensitivity to leptomycin B indicates that its export is not mediated by a leucine-rich nuclear export signal-specific receptor, CRM1. Furthermore, the nuclear export of importin-beta was not inhibited by co-injection with a GTPase-deficient Ran mutant (G19V). The cell line tsBN2 contains a temperature-sensitive point mutation in the RCC1 gene, which encodes a guanine nucleotide exchange factor of Ran. At the nonpermissive temperature, importin-beta was exported from the nucleus of these cells, even when RanGAP1, a GTPase-activating protein for Ran, was co-injected. These results not only provide support for the view that Ran-dependent GTP hydrolysis is not required for the nuclear export of importin-beta but also indicate that nuclear RanGTP is not essential for its export. As a result, we propose that importin-beta can be recycled from the nucleus alone in a Ran-independent manner.
Collapse
Affiliation(s)
- S Kose
- Department of Anatomy and Cell Biology, Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
126
|
Seedorf M, Damelin M, Kahana J, Taura T, Silver PA. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol Cell Biol 1999; 19:1547-57. [PMID: 9891088 PMCID: PMC116083 DOI: 10.1128/mcb.19.2.1547] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-alpha and -beta (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.
Collapse
Affiliation(s)
- M Seedorf
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
127
|
Englmeier L, Olivo JC, Mattaj IW. Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 1999; 9:30-41. [PMID: 9889120 DOI: 10.1016/s0960-9822(99)80044-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin beta family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate-receptor complexes through the NPC has generally been regarded as an energy-requiring step. RESULTS We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 - a nuclear export receptor - the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase. CONCLUSIONS Our data show that, contrary to expectation and prior conclusions, the translocation of substrate-receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.
Collapse
Affiliation(s)
- L Englmeier
- European Molecular Biology Laboratory, Meyerhofstrasse, 1 D-69117, Heidelberg, Germany
| | | | | |
Collapse
|
128
|
Ribbeck K, Kutay U, Paraskeva E, Görlich D. The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 1999; 9:47-50. [PMID: 9889126 DOI: 10.1016/s0960-9822(99)80046-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1] [2] [3] [4]. Import receptors such as importin beta or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin alpha/beta heterodimer, coupled directly to importin beta release from the NPCs. If the importin beta -RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5] [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin-substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin-substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin-substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin beta independently of Ran and energy.
Collapse
Affiliation(s)
- K Ribbeck
- Zentrum für Molekulare Biologie, der Universität Heidelberg, Im Neuenheimer, Feld 282 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
129
|
Truant R, Fridell RA, Benson ER, Herold A, Cullen BR. Nucleocytoplasmic shuttling by protein nuclear import factors. Eur J Cell Biol 1998; 77:269-75. [PMID: 9930651 DOI: 10.1016/s0171-9335(98)80085-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein nuclear import factors are not, in general, believed to function in the nuclear export of macromolecules and their reutilization therefore requires their recycling from the nucleus to the cytoplasm. Two possible mechanisms for recycling have been proposed. On the one hand, protein import factors such as importin beta and transportin (Trn) could continuously shuttle between cytoplasm and nucleoplasm. On the other hand, these proteins could penetrate into the nucleus only as far as the inner surface of the nuclear pore complex and then directly return to the cytoplasm. In this manuscript, we have used microinjection analysis in human cells, and in vitro nuclear assays, to demonstrate that importin beta, transportin and importin alpha are all nucleocytoplasmic shuttle proteins that efficiently enter and exit the cell nucleoplasm. In the case of transportin, we have mapped sequences required for nucleocytoplasmic shuttling to the carboxy-terminal 270 amino acids of this 890 amino acid import factor, thus demonstrating that nuclear export is independent of the amino-terminal Ran-binding domain of Trn. We further show that Trn shuttling is independent of nuclear RNA transcription. Overall, these data suggest that nucleocytoplasmic shuttling is likely to be a general attribute of protein nuclear import factors.
Collapse
Affiliation(s)
- R Truant
- Howard Hughes Medical Institute, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
130
|
Abstract
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.
Collapse
Affiliation(s)
- K Ribbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
131
|
Jenkins Y, McEntee M, Weis K, Greene WC. Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J Cell Biol 1998; 143:875-85. [PMID: 9817747 PMCID: PMC2132945 DOI: 10.1083/jcb.143.4.875] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Revised: 09/16/1998] [Indexed: 11/22/2022] Open
Abstract
While the Vpr protein of HIV-1 has been implicated in import of the viral preintegration complex across the nuclear pore complex (NPC) of nondividing cellular hosts, the mechanism by which Vpr enters the nucleus remains unknown. We now demonstrate that Vpr contains two discrete nuclear targeting signals that use two different import pathways, both of which are distinct from the classical nuclear localization signal (NLS)- and the M9-dependent pathways. Vpr import does not appear to require Ran-mediated GTP hydrolysis and persists under conditions of low energy. Competition experiments further suggest that Vpr directly engages the NPC at two discrete sites. These sites appear to form distal components of a common import pathway used by NLS- and M9-containing proteins. Together, our data suggest that Vpr bypasses many of the soluble receptors involved in import of cellular cargoes. Rather, this viral protein appears to directly access the NPC, a property that may help to ensure the capacity of HIV to replicate in nondividing cellular hosts.
Collapse
Affiliation(s)
- Y Jenkins
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141-9100, USA
| | | | | | | |
Collapse
|
132
|
Affiliation(s)
- M Dasso
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA.
| | | |
Collapse
|
133
|
Abstract
Significant and exciting advances in the field of RNA and protein export have been made recently, due in large part to discovery of the roles played by Ran, a small, soluble GTPase present in both the nucleus and cytoplasm of all eukaryotic cells. Ran is thought to be primarily bound to GTP in the nucleus and to GDP in the cytoplasm, as a result of the assymetric distribution of factors that interact with Ran to promote guanine nucleotide exchange (in the nucleus) and GTP hydrolysis (in the cytoplasm). A key function of the nuclear Ran.GTP is to support formation of complexes containing an export receptor (an exportin) and cargos such as RNAs, RNPs or proteins that are destined for export. In the cytoplasm, removal of the Ran.GTP from the complex results in its destabilization and release of the export cargo. Although Ran.GTP is required for formation of the export complex, GTP hydrolysis does not appear to be necessary for translocation through the nuclear pore complex or cytoplasmic release. Nevertheless, the GTPase of Ran does appear to be required in as yet unidentified intranuclear steps prior to export of some, but not all, RNAs.
Collapse
Affiliation(s)
- J E Dahlberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
134
|
Abstract
Nucleocytoplasmic transport involves assembly and movement across the nuclear envelope of cargo-receptor complexes that interact with the small GTPase Ran. The asymmetric distribution of Ran regulator proteins, RanGAP1 and RCC1, provides the driving force and directionality for nuclear transport.
Collapse
Affiliation(s)
- C N Cole
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
135
|
Kehlenbach RH, Dickmanns A, Gerace L. Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J Cell Biol 1998; 141:863-74. [PMID: 9585406 PMCID: PMC2132762 DOI: 10.1083/jcb.141.4.863] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1998] [Revised: 04/03/1998] [Indexed: 02/07/2023] Open
Abstract
We have developed a permeabilized cell assay to study the nuclear export of the shuttling transcription factor NFAT, which contains a leucine-rich export signal. The assay uses HeLa cells that are stably transfected with NFAT fused to the green fluorescent protein (GFP). Nuclear export of GFP-NFAT in digitonin-permeabilized cells occurs in a temperature- and ATP-dependent manner and can be quantified by flow cytometry. In vitro NFAT export requires the GTPase Ran, which is released from cells during the digitonin permeabilization. At least one additional rate-limiting export factor is depleted from permeabilized cells by a preincubation at 30 degrees C in the absence of cytosol. This activity can be provided by cytosolic or nucleoplasmic extracts in a subsequent export step. Using this assay, we have purified a second major export activity from cytosol. We found that it corresponds to CRM1, a protein recently reported to be a receptor for certain leucine-rich export sequences. CRM1 appears to be imported into the nucleus by a Ran-dependent mechanism that is distinct from conventional signaling pathways. Considered together, our studies directly demonstrate by fractionation and reconstitution that nuclear export of NFAT is mediated by multiple nucleocytoplasmic shuttling factors, including Ran and CRM1.
Collapse
Affiliation(s)
- R H Kehlenbach
- Department of Cell Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
136
|
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
137
|
Senger B, Simos G, Bischoff FR, Podtelejnikov A, Mann M, Hurt E. Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J 1998; 17:2196-207. [PMID: 9545233 PMCID: PMC1170564 DOI: 10.1093/emboj/17.8.2196] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MTR10, previously shown to be involved in mRNA export, was found in a synthetic lethal relationship with nucleoporin NUP85. Green fluorescent protein (GFP)-tagged Mtr10p localizes preferentially inside the nucleus, but a nuclear pore and cytoplasmic distribution is also evident. Purified Mtr10p forms a complex with Npl3p, an RNA-binding protein that shuttles in and out of the nucleus. In mtr10 mutants, nuclear uptake of Npl3p is strongly impaired at the restrictive temperature, while import of a classic nuclear localization signal (NLS)-containing protein is not. Accordingly, the NLS within Npl3p is extended and consists of the RGG box plus a short and non-repetitive C-terminal tail. Mtr10p interacts in vitro with Gsp1p-GTP, but with low affinity. Interestingly, Npl3p dissociates from Mtr10p only by incubation with Ran-GTP plus RNA. This suggests that Npl3p follows a distinct nuclear import pathway and that intranuclear release from its specific import receptor Mtr10p requires the cooperative action of both Ran-GTP and newly synthesized mRNA.
Collapse
Affiliation(s)
- B Senger
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Germany
| | | | | | | | | | | |
Collapse
|
138
|
Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D. Identification of a tRNA-specific nuclear export receptor. Mol Cell 1998; 1:359-69. [PMID: 9660920 DOI: 10.1016/s1097-2765(00)80036-2] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In eukaryotes, tRNAs are synthesized in the nucleus and after several maturation steps exported to the cytoplasm. Here, we identify exportin-t as a specific mediator of tRNA export. It is a RanGTP-binding, importin beta-related factor with predominantly nuclear localization. It shuttles rapidly between nucleus and cytoplasm and interacts with nuclear pore complexes. Exportin-t binds tRNA directly and with high affinity. Its cellular concentration in Xenopus oocytes was found to be rate-limiting for export of all tRNAs tested, as judged by microinjection experiments. RanGTP regulates the substrate-exportin-t interaction such that tRNA can be preferentially bound in the nucleus and released in the cytoplasm.
Collapse
Affiliation(s)
- U Kutay
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
139
|
Nakielny S, Dreyfuss G. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis. Curr Biol 1998; 8:89-95. [PMID: 9427645 DOI: 10.1016/s0960-9822(98)70039-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nuclear protein import and export are mediated by receptor proteins that recognize nuclear localization sequences (NLSs) or nuclear export sequences (NESs) and target the NLS-bearing or NES-bearing protein to the nuclear pore complex (NPC). Temperature-dependent translocation of the receptor-cargo complex in both directions through the NPC requires the GTPase Ran, and it has been proposed that the Ran GTPase cycle mediates translocation. We have addressed the role of GTP hydrolysis in these processes by studying the import receptor transportin, which mediates the import of a group of abundant heterogeneous nuclear RNA-binding proteins bearing the M9 NLS. RESULTS We investigated the transport properties of transportin and found that the carboxy-terminal region of transportin could, by itself, be imported into the nucleus. Transportin import and export were inhibited by low temperature in vitro, but were unaffected by the non-hydrolyzable GTP analogue GMP-PNP. CONCLUSIONS Temperature-dependent import and export through the NPC can be uncoupled from the Ran GTPase cycle and can occur without GTP hydrolysis.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | |
Collapse
|