101
|
Savoie A, Lavastre V, Pelletier M, Hajto T, Hostanska K, Girard D. Activation of human neutrophils by the plant lectin
Viscum album
agglutinin‐I: modulation of
de novo
protein synthesis and evidence that caspases are involved in induction of apoptosis. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anik Savoie
- INRS‐Institut Armand‐Frappier/Santé Humaine, Université du Québec, Canada; and
| | - Valérie Lavastre
- INRS‐Institut Armand‐Frappier/Santé Humaine, Université du Québec, Canada; and
| | - Martin Pelletier
- INRS‐Institut Armand‐Frappier/Santé Humaine, Université du Québec, Canada; and
| | - Tibor Hajto
- Department of Internal Medicine, University Hospital Zürich, Switzerland
| | - Katarina Hostanska
- Department of Internal Medicine, University Hospital Zürich, Switzerland
| | - Denis Girard
- INRS‐Institut Armand‐Frappier/Santé Humaine, Université du Québec, Canada; and
| |
Collapse
|
102
|
Yousefi S, Cooper PR, Mueck B, Potter SL, Jarai G. cDNA representational difference analysis of human neutrophils stimulated by GM-CSF. Biochem Biophys Res Commun 2000; 277:401-9. [PMID: 11032736 DOI: 10.1006/bbrc.2000.3678] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neutrophils are the first cell type to migrate out of the vascular space and into the inflammatory site during an acute inflammation. However, in chronic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), a lack of clearance of neutrophils, imbalance between inflammatory mediators produced by neutrophils and their natural inhibitors make these cells a potential cause of tissue destruction in lung disease. Neutrophilic inflammation is generally characterised by high levels of local expression of activating cytokines (e.g., GM-CSF). Only a few studies have been published so far that have investigated the expression of genes preferentially expressed in activated neutrophils. The isolation of such genes, however, can lead to a better understanding of inflammatory disease and the identification of potential novel therapeutic targets or markers of the disease. We performed representational difference analysis of cDNA, a sensitive PCR-based subtractive enrichment procedure, and isolated 12 genes, 1 EST clone, and 3 sequences not represented in the public databases. Differential expression for 9 of these clones was confirmed by Northern hybridisation. Of the above nine transcripts three were chosen and shown to be up-regulated in neutrophils cocultured with stimulated primary human bronchial epithelial cells using a semiquantitative RT-PCR approach. Among the known genes identified were HM-74, CIS1, Cathepsin C, alpha-enolase, CD44, and the gene Translocation Three Four (TTF), most of them previously not known to be involved in GM-CSF induced neutrophil activation. Along with its tissue and cellular distribution we also derived the complete cDNA sequence and genomic structure of CIS1 using an in silico approach. In addition, we also report the initial characterisation of a novel gene, P1-89 that is primarily expressed in granulocytes and is up-regulated in activated cells. Our results identify several important genes associated with neutrophil activation and can lead to a better understanding of the molecular mechanisms of neutrophilic inflammations.
Collapse
Affiliation(s)
- S Yousefi
- Novartis Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom
| | | | | | | | | |
Collapse
|
103
|
Zhang JP, Wong CK, Lam CW. Role of caspases in dexamethasone-induced apoptosis and activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 2000; 122:20-7. [PMID: 11012613 PMCID: PMC1905760 DOI: 10.1046/j.1365-2249.2000.01344.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eosinophils are the principal effector cells for the pathogenesis of allergic inflammation. Glucocorticoids such as dexamethasone have long been used therapeutically for eosinophilia in allergic inflammation by inducing eosinophil apoptosis, but little is known about the intracellular mechanisms mediating dexamethasone-induced apoptosis. In the present study, we investigated the effect of dexamethasone on three mitogen-activated protein kinases (MAPK) involved in the intracellular signalling pathway: c-Jun NH2-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK). We found that dexamethasone could activate JNK and p38 MAPK in a time-dependent manner but not ERK. Further, SB 203580, a specific p38 MAPK inhibitor, was additive with dexamethasone in inducing eosinophil apoptosis, while JNK1/2 antisense phosphorothioate oligodeoxynucleotides did not show any significant effect. These suggest that dexamethasone-induced JNK1/2 and p38 MAPK activation are not crucial to the induction of apoptosis. Pretreatment of eosinophils with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.FMK), a broad-spectrum caspase inhibitor, could inhibit dexamethasone-induced apoptosis in eosinophils dose-dependently. Moreover, Z-VAD.FMK partially inhibited dexamethasone-activated JNK and p38 MAPK activities. However, dexamethasone treatment did not activate specific caspase-3, -8 activity in eosinophils compared with spontaneous apoptosis. We therefore conclude that dexamethasone-induced apoptosis and activation of JNK and p38 MAPK activity in eosinophils are regulated by caspases but not through the common apoptosis-related caspase-3, -8 as in other cell types. Elucidation of the important role of caspases in eosinophil apoptosis may facilitate the development of more specific and effective treatment for allergic inflammation.
Collapse
Affiliation(s)
- J P Zhang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
104
|
Karras JG, McKay RA, Lu T, Dean NM, Monia BP. Antisense inhibition of membrane-bound human interleukin-5 receptor-alpha chain does not affect soluble receptor expression and induces apoptosis in TF-1 cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:347-57. [PMID: 11079574 DOI: 10.1089/oli.1.2000.10.347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Binding of human interleukin-5 (HuIL-5) to its membrane-anchored receptor (IL-5R) triggers multiple signaling pathways, cellular proliferation, and maturational responses, as well as protection from apoptosis. In contrast, soluble forms of the HuIL-5R have been shown to inhibit IL-5 signaling and, therefore, may represent naturally occurring negative regulators of IL-5 function. Because of the central role of IL-5 in promoting eosinophilia and airway hyperresponsiveness in animal models of asthma, antisense oligonucleotides specific either for the membrane form alone or for sequences shared between both the membrane and soluble forms of the HuIL-5Ralpha ligand binding chain were designed. The activities of these oligonucleotides were characterized in IL-5R-expressing erythroleukemic TF-1 cells. Herein we report that an antisense oligonucleotide targeted to a sequence unique to the alternatively spliced membrane-bound form of the HuIL-5Ralpha chain has been developed that selectively inhibits membrane, but not soluble, mRNA isoform expression. Both this membrane-specific oligonucleotide and an antisense oligonucleotide targeted to sequence common to both membrane and soluble isoforms were found to potently suppress cell surface IL-5Ralpha levels and IL-5-mediated cell survival by inducing apoptosis similar to IL-5 withdrawal. Thus, these oligonucleotides represent unique genetic agents with therapeutic potential for diseases with an eosinophilic component.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Apoptosis/drug effects
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Interleukin-5/pharmacology
- Kinetics
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Oligonucleotides, Antisense/genetics
- Phosphorylation
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-5
- Signal Transduction/drug effects
- Solubility
- Substrate Specificity
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J G Karras
- Department of Molecular and Cellular Pharmacology, Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | | | | | | |
Collapse
|
105
|
Syk-deficient eosinophils show normal interleukin-5–mediated differentiation, maturation, and survival but no longer respond to FcγR activation. Blood 2000. [DOI: 10.1182/blood.v96.7.2506.h8002506_2506_2510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine kinase Syk has been proposed to play a critical role in the antiapoptotic effect of interleukin (IL)-5 in human eosinophils. However, little is known about the involvement of Syk in other IL-5–mediated activation events. To further address these questions, the role of Syk in IL-5–induced eosinophil differentiation, activation, and survival was analyzed using cells obtained from Syk-deficient mice. We could demonstrate that Syk-deficient fetal liver cells differentiate into mature eosinophils in response to IL-5 at the same rate as wild-type fetal liver cells and generate the same total number of eosinophils. Moreover, no difference in IL-5–induced survival of mature eosinophils between Syk−/− and wild-type eosinophils could be demonstrated, suggesting that the antiapoptotic effect of IL-5 does not require Syk despite the activation of this tyrosine kinase upon IL-5 receptor ligation. In contrast, eosinophils derived from Syk-deficient but not wild-type mice were incapable of generating reactive oxygen intermediates in response to Fcγ receptor (FcγR) engagement. Taken together, these data clearly demonstrate no critical role for Syk in IL-5–mediated eosinophil differentiation or survival but underline the importance of this tyrosine kinase in activation events induced by FcγR stimulation.
Collapse
|
106
|
Syk-deficient eosinophils show normal interleukin-5–mediated differentiation, maturation, and survival but no longer respond to FcγR activation. Blood 2000. [DOI: 10.1182/blood.v96.7.2506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The tyrosine kinase Syk has been proposed to play a critical role in the antiapoptotic effect of interleukin (IL)-5 in human eosinophils. However, little is known about the involvement of Syk in other IL-5–mediated activation events. To further address these questions, the role of Syk in IL-5–induced eosinophil differentiation, activation, and survival was analyzed using cells obtained from Syk-deficient mice. We could demonstrate that Syk-deficient fetal liver cells differentiate into mature eosinophils in response to IL-5 at the same rate as wild-type fetal liver cells and generate the same total number of eosinophils. Moreover, no difference in IL-5–induced survival of mature eosinophils between Syk−/− and wild-type eosinophils could be demonstrated, suggesting that the antiapoptotic effect of IL-5 does not require Syk despite the activation of this tyrosine kinase upon IL-5 receptor ligation. In contrast, eosinophils derived from Syk-deficient but not wild-type mice were incapable of generating reactive oxygen intermediates in response to Fcγ receptor (FcγR) engagement. Taken together, these data clearly demonstrate no critical role for Syk in IL-5–mediated eosinophil differentiation or survival but underline the importance of this tyrosine kinase in activation events induced by FcγR stimulation.
Collapse
|
107
|
Daigle I, Rückert B, Schnetzler G, Simon HU. Induction of the IL-10 gene via the fas receptor in monocytes--an anti-inflammatory mechanism in the absence of apoptosis. Eur J Immunol 2000; 30:2991-7. [PMID: 11069082 DOI: 10.1002/1521-4141(200010)30:10<2991::aid-immu2991>3.0.co;2-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death receptors play an important role in controlling cell numbers and immune responses. In contrast to TNF receptors, little is known about non-apoptosis functions of the Fas receptor (CD95, APO-1). Here we demonstrate that Fas receptor engagement results in the induction of the IL-10 gene in monocytes, but not in lymphocytes or dendritic cells. In contrast, TNF-alpha stimulated IL-10 production in dendritic cells but not monocytes. Fas receptor-mediated transcriptional activation of the IL-10 gene was followed by the release of large amounts of the cytokine in cell cultures and occurred in the absence of apoptosis induction. Since caspase activation did not occur in monocytes following Fas receptor engagement, it is unlikely that caspases are involved in IL-10 gene activation. Monocyte-derived IL-10 suppressed T cell proliferation induced by anti-CD3 monoclonal antibody without affecting CD3-mediated transmembrane signal transduction. In conclusion, we report about a novel pathway initiated via the Fas receptor leading to transcriptional activation of at least one cytokine gene. Fas ligand-induced IL-10 production in monocytes might represent an important anti-inflammatory mechanism in secondary immune responses.
Collapse
Affiliation(s)
- I Daigle
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos
| | | | | | | |
Collapse
|
108
|
Adachi T, Choudhury BK, Stafford S, Sur S, Alam R. The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2198-204. [PMID: 10925307 DOI: 10.4049/jimmunol.165.4.2198] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of eosinophils by cytokines is a major event in the pathogenesis of allergic diseases. We have investigated the activation of mitogen-activated protein (MAP) kinases and their functional relevance in eosinophil differentiation, survival, degranulation, and cytokine production. IL-5 induced phosphorylation and activation of extracellular signal-regulated kinases (ERK) and p38 MAP kinases in eosinophils. PD98059, a MAP/ERK kinase inhibitor, blocked phosphorylation of ERK1/2 in a dose-dependent manner. SB202190, a p38 inhibitor, blocked p38-dependent phosphorylation of activating transcription factor-2. To study the importance of the MAP kinases on eosinophil differentiation, we cultured mouse bone marrow cells with IL-3 and IL-5 in the presence of the inhibitors. SB202190 dramatically inhibited eosinophil differentiation by 71%. PD98059 was less potent and reduced eosinophil differentiation by 28%. Both inhibitors marginally inhibited eosinophil survival only at the highest doses. Prolonged incubation of eosinophils with IL-5 induced significant eosinophil-derived neurotoxin release. Both PD98059 and SB202190 nearly completely inhibited (87% and 100% inhibition, respectively) IL-5-stimulated eosinophil-derived neurotoxin release in a dose-dependent manner. Next, we examined the effect of the MAP kinase inhibitors on eosinophil production of the cytokine macrophage-inflammatory protein (MIP)-1alpha. PD98059 blocked C5a- but not ionomycin-induced MIP-1alpha production (59% inhibition at 50 microM concentration). In contrast, SB202190 nearly completely inhibited (99%) C5a-induced MIP-1alpha production. Further, it blocked ionomycin-stimulated production by 66%. Our results suggest that both p38 and ERK1/2 MAP kinases play an important role in eosinophil differentiation, cytokine production, and degranulation. The p38 MAP kinase plays a greater role than ERK1/2 in eosinophil differentiation and cytokine production.
Collapse
Affiliation(s)
- T Adachi
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
109
|
Chang HS, Jeon KW, Kim YH, Chung IY, Park CS. Role of cAMP-dependent pathway in eosinophil apoptosis and survival. Cell Immunol 2000; 203:29-38. [PMID: 10915559 DOI: 10.1006/cimm.2000.1668] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The survival and apoptosis of eosinophils is of pivotal importance for controlling allergic diseases such as asthma and rhinitis. In this study we have investigated the role for cAMP in regulating eosinophil survival and apoptosis in the absence of eosinophil-active cytokines. The treatment with dibutyryl cyclic AMP (dbcAMP) increased eosinophil survival with a concomitant decrease of apoptosis in a dose-dependent manner. The pretreatment with a protein kinase A (PKA) inhibitor blocked the effects of dbcAMP on survival and apoptosis of eosinophils. The catalytic subunit of PKA was translocated to nucleus in parallel with a robust increase of intracellular cAMP levels upon exposure to dbcAMP but not IL-5, suggesting the separation of PKA activation from the IL-5-induced suppression of eosinophil apoptosis. When eosinophils were treated with pharmacological inhibitors of protein kinases prior to exposure to dbcAMP or IL-5, only the mitogen-activating protein kinase (MAPK) inhibitor, PD098059, was partly able to block dbcAMP-induced augmentation of eosinophil viability, whereas both Janus kinase 2 and MAPK inhibitors effectively interrupted the IL-5-induced prolongation of eosinophil survival. The effects of dbcAMP and these protein kinase inhibitors on eosinophil apoptosis were confirmed by morphologic analysis. We propose that a cAMP-dependent pathway may constitute an important component for regulating eosinophil survival/apoptosisand that cAMP may inhibit eosinophil apoptosis through the activation of PKA and of subsequent MAPK in part.
Collapse
Affiliation(s)
- H S Chang
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | | | | | | | | |
Collapse
|
110
|
Affiliation(s)
- M W Greaves
- St John's Institute of Dermatology, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, U.K
| |
Collapse
|
111
|
Barnes PJ. New directions in allergic diseases: mechanism-based anti-inflammatory therapies. J Allergy Clin Immunol 2000; 106:5-16. [PMID: 10887299 DOI: 10.1067/mai.2000.107930] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in our understanding of allergic inflammation have led to the development of several novel anti-inflammatory drugs that target specific aspects of the inflammatory process. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, which often coincide. Specific agents that are now in development for the treatment of allergic inflammation include inhibitors of eosinophilic inflammation (eg, anti-IL-5, CCR3 antagonists, and very late antigen 4 inhibitors), drugs that may inhibit allergen presentation, and inhibitors of T(H)2 cells. More general anti-inflammatory approaches include novel cortico-steroids, phosphodiesterase inhibitors, and mitogen-activated protein kinase inhibitors. Most of the new therapies in development are aimed at inhibiting or suppressing components of the allergic inflammatory response, but in the future, there are possibilities for development of preventive and curative treatments.
Collapse
Affiliation(s)
- P J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, London
| |
Collapse
|
112
|
Bates ME, Green VL, Bertics PJ. ERK1 and ERK2 activation by chemotactic factors in human eosinophils is interleukin 5-dependent and contributes to leukotriene C(4) biosynthesis. J Biol Chem 2000; 275:10968-75. [PMID: 10753897 DOI: 10.1074/jbc.275.15.10968] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eosinophils, the major immune effector cells contributing to allergic inflammation and asthma, are profoundly affected by interleukin (IL) 5 with respect to their differentiation, viability, recruitment, and cytotoxic effector functions. IL-5 enhances eosinophil responsiveness to a variety of chemotactic factors via a process called priming, although the molecular mechanism is unknown. In this study, we report that, following IL-5 priming of eosinophils, chemotactic agents including fMet-Leu-Phe, IL-8, and RANTES, promote vigorous transient activation of ERK1 and ERK2. In contrast, these chemotactic factors stimulate weak or indiscernible ERK activation in unprimed eosinophils. Furthermore, this intracellular marker of priming is selective for IL-5-related cytokines, in that it is observed following exposure to IL-5 and granulocyte macrophage-colony stimulating factor but not to interferon-gamma, stem cell factor, tumor necrosis factor alpha, or IL-4. Interestingly, priming of chemoattractant-induced ERK activation is accompanied by an increase in association of tyrosine-phosphorylated proteins with the adapter protein Grb2. The biological relevance of ERK activation to IL-5 priming is supported by the observation that inhibition of ERK activity by treatment with the MEK inhibitors PD98059 or U0126 inhibited the release of leukotriene C(4) stimulated by fMet-Leu-Phe in IL-5-primed eosinophils. These data provide evidence for a previously undescribed fundamental mechanism by which stimulation of IL-5 family receptors induces a rapid phenotypic alteration in the signal transduction pathways of chemotactic receptors, enabling their activation of the ERK1 and ERK2 pathway and contributing to the capacity of these cells to synthesize LTC(4).
Collapse
Affiliation(s)
- M E Bates
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
113
|
Kumano K, Nakao A, Nakajima H, Miike S, Kurasawa K, Saito Y, Iwamoto I. Blockade of JAK2 by tyrphostin AG-490 inhibits antigen-induced eosinophil recruitment into the mouse airways. Biochem Biophys Res Commun 2000; 270:209-14. [PMID: 10733929 DOI: 10.1006/bbrc.2000.2403] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of tyrphostin AG-490, a specific Janus kinase 2 (JAK2) inhibitor, on antigen-induced eosinophil recruitment into the airways of sensitized mice and on IL-5-induced chemokinesis and adhesiveness of eosinophils. The in vivo administration of AG-490 prevented antigen-induced eosinophil infiltration in the airways of sensitized mice in a dose-dependent manner. However, the administration of AG-490 did not affect antigen-induced IL-5 production in the airways nor in vitro antigen-induced IL-5 production and T cell proliferation of spleen cells. Furthermore, AG-490 inhibited IL-5-induced chemokinesis and beta1-integrin adhesiveness of eosinophils in vitro. Because antigen-induced eosinophil recruitment into the airways is mediated by IL-5, these results indicate that JAK2 activation is critical for antigen-induced, IL-5-dependent mobilization of eosinophils into the tissue.
Collapse
Affiliation(s)
- K Kumano
- Department of Medicine II, Chiba University School of Medicine, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
114
|
Foresi A, Teodoro C, Leone C, Pelucchi A, D'Ippolito R, Chetta A, Olivieri D. Eosinophil apoptosis in induced sputum from patients with seasonal allergic rhinitis and with asymptomatic and symptomatic asthma. Ann Allergy Asthma Immunol 2000; 84:411-6. [PMID: 10795649 DOI: 10.1016/s1081-1206(10)62274-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Eosinophilic inflammation is known to play an important role in the pathogenesis of allergic diseases. Apoptosis, a form of programmed cell death, is characterized by morphologic cell changes and leads to recognition and ingestion by macrophages. Apoptosis could be an important mechanism controlling the resolution of tissue eosinophilia. OBJECTIVE This study was designed to investigate the presence of apoptotic eosinophils in induced sputum of patients with seasonal allergic rhinitis (SAR), when examined during natural pollen exposure and of patients with perennial asthma of different degrees of severity. METHODS We recruited 11 patients with SAR to grass pollens, 26 patients with asymptomatic asthma (AA), and 18 patients with symptomatic asthma (SA). The severity of asthma was assessed by clinical scoring. Sputum was induced following a standard method and differential cell count was estimated. Eosinophils showing cell shrinkage and nuclear coalescence were classified as apoptotic. The number of apoptotic eosinophils was expressed as the percentage of total cells in sputum and as the proportion of apoptotic eosinophils relative to normal bilobed eosinophils ("apoptotic ratio"). RESULTS We found the number of eosinophils in the SA group was significantly greater than that in the SAR and the AA groups (P < .001 and P < .0001 respectively). The number of apoptotic eosinophils in the AA group was significantly lower than that in the SAR group (P < .001) and in the SA group (P < .0001). The apoptotic ratio for eosinophils in the SAR group was significantly greater than in the AA group (P < .05) and in the SA group (P < .05). There was no difference in the apoptotic ratio between the AA and SA groups. CONCLUSIONS This study confirms that apoptotic eosinophils are detectable in induced sputum of allergic patients. Further, the results of our study suggest that apoptosis could be an important mechanism in the control of acute eosinophilic inflammation in patients with SAR exposed to the sensitizing antigens. It appears that the apoptotic mechanism could be less effective in controlling tissue eosinophilia in asthmatic patients with chronic eosinophilic inflammation.
Collapse
Affiliation(s)
- A Foresi
- Servizio di Fisiopatologia Respiratoria, Modulo di Allergologia ed Immunopatologia Polmonare, Sesto San Giovanni, Italy.
| | | | | | | | | | | | | |
Collapse
|
115
|
Stenton GR, Kim MK, Nohara O, Chen CF, Hirji N, Wills FL, Gilchrist M, Hwang PH, Park JG, Finlay W, Jones RL, Befus AD, Schreiber AD. Aerosolized Syk antisense suppresses Syk expression, mediator release from macrophages, and pulmonary inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3790-7. [PMID: 10725739 DOI: 10.4049/jimmunol.164.7.3790] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Syk protein tyrosine kinase (PTK) is involved in signaling in leukocytes. In macrophages, Fcgamma-receptor cross-linking induces Syk PTK phosphorylation and activation, resulting in Syk-dependent events required for phagocytosis and mediator release. We hypothesized that Syk antisense oligodeoxynucleotides (ASO) delivered by aerosol to rat lungs in vivo would depress Syk PTK expression, mediator release from alveolar macrophages, and Syk-dependent pulmonary inflammation. RT-PCR and RT-in situ PCR demonstrated that aerosolized Syk ASO administration reduced Syk mRNA expression from alveolar macrophages compared with cells isolated from sham-treated rats. Western blot analysis confirmed that Syk PTK expression was reduced after Syk ASO treatment. Compared with sham-treated rats (scrambled oligodeoxynucleotide), Syk ASO treatment suppressed Fcgamma-receptor-mediated nitric oxide (86.0 +/- 8.3%) and TNF (73.1 +/- 3.1%) production by alveolar macrophages stimulated with IgG-anti-IgG complexes. In contrast, Fcgamma-receptor-induced IL-1beta release was unaffected by Syk ASO treatment. Additionally, Syk ASO suppressed Ag-induced pulmonary inflammation, suggesting that Syk ASO may prove useful as an anti-inflammatory therapy in disorders such as asthma.
Collapse
MESH Headings
- Aerosols
- Animals
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- Cell Count/drug effects
- Enzyme Precursors/antagonists & inhibitors
- Enzyme Precursors/biosynthesis
- Enzyme Precursors/genetics
- Immunosuppressive Agents/administration & dosage
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/metabolism
- Intracellular Signaling Peptides and Proteins
- Lung/drug effects
- Lung/enzymology
- Lung/immunology
- Lung/pathology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/genetics
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, IgG/physiology
- Syk Kinase
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- G R Stenton
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Antigen-induced eosinophil recruitment into the airways of sensitized mice is mediated by CD4+ T cells and their cytokines, especially IL-5. In this study, we found that the antigen-induced airway eosinophilia was diminished in Stat5a-deficient (Stat5a−/−) mice and Stat5b-deficient (Stat5b−/−) mice. We also found that antigen-induced CD4+ T-cell infiltration and IL-5 production in the airways were diminished in Stat5a−/− mice and Stat5b−/− mice. Moreover, antigen-induced proliferation of splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice, suggesting that the generation of antigen-primed T cells may be compromised in Stat5a−/−mice and Stat5b−/− mice and this defect may account for the diminished antigen-induced T-cell infiltration into the airways. Interestingly, IL-4 and IL-5 production from anti-CD3–stimulated splenocytes was diminished in Stat5a−/− mice and Stat5b−/− mice. However, antigen-specific IgE and IgG1 production was diminished in Stat5a−/− mice but not in Stat5b−/− mice, whereas antigen-specific IgG2a production was increased in Stat5a−/− mice, suggesting the enhanced Th1 responses in Stat5a−/− mice. Finally, we found that eosinophilopoiesis induced by the administration of recombinant IL-5 was also diminished in Stat5a−/− mice and Stat5b−/− mice. Together, these results indicate that both Stat5a and Stat5b are essential for induction of antigen-induced eosinophil recruitment into the airways and that the defects in antigen-induced eosinophil recruitment in Stat5a−/− mice and Stat5b−/− mice result from both impaired IL-5 production in the airways and diminished IL-5 responsiveness of eosinophils.
Collapse
|
117
|
Dahl ME, Arai KI, Watanabe S. Association of Lyn tyrosine kinase to the GM-CSF and IL-3 receptor common betac subunit and role of Src tyrosine kinases in DNA synthesis and anti-apoptosis. Genes Cells 2000; 5:143-53. [PMID: 10672044 DOI: 10.1046/j.1365-2443.2000.00312.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND After GM-CSF or IL-3 stimulation, the activation of JAK2 tyrosine kinase and members of the Src family of tyrosine kinases takes place, followed by phosphorylation of betac tyrosine residues and the recruitment of SH2 containing molecules to the receptor complex. The exact role of Src kinases such as Lyn in this and other downstream signal transduction events remains unclear. RESULTS We investigated the association of Lyn kinase with betac using synthetic peptides derived from the eight betac tyrosine residues and the Box 1 motif. We found that Lyn kinase GST fusion proteins bind to peptides corresponding to the membrane proximal region of betac and to peptides containing specific betac derived phosphorylated tyrosine residues. We also determined that betac tyrosine residues Y1,2 as well as Y7 and Y8 can act as substrates of Lyn. We further analysed the role of the Src kinases in DNA synthesis and anti-apoptosis downstream of GM-CSF by using the Src kinase inhibitor PP1 in murine BA/F3 cells stably expressing a series of mutant betac receptors. CONCLUSIONS Lyn binds to betac derived peptides through multiple interactions, and may play an important role in betac phosphorylation. Src family kinases also play an essential role in GM-CSF mediated DNA synthesis, as well as an important role in anti-apoptosis in response to GM-CSF.
Collapse
Affiliation(s)
- M E Dahl
- Department of Molecular and Developmental Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
118
|
Davidsson A, Anderson T, Hellquist HB. Apoptosis and phagocytosis of tissue-dwelling eosinophils in sinonasal polyps. Laryngoscope 2000; 110:111-6. [PMID: 10646725 DOI: 10.1097/00005537-200001000-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sinonasal polyps contain numerous tissue-dwelling eosinophils, but the mechanisms causing their accumulation, functional activities, and resolution are largely unknown. STUDY DESIGN Nasal polyp tissue from 14 patients was evaluated for cellular expression of CD95, CD68, and annexin-V, for the degree of apoptosis, and for phagocytosis of eosinophils. MATERIAL AND METHODS Histological sections were immunostained as single stains for CD95, CD68, and annexin-V, and as an immunostaining for CD68 combined with a modified Vital New Red staining. The latter staining is specific for eosinophils. Other sections were stained by terminal d-UTP nick end labeling (TUNEL) assay and routinely stained for H&E. Evaluation of the amount of stained cells was performed by counting the average number in 10 randomly chosen high-power fields. The TUNEL positivity was in all cases confirmed with apoptotic morphology. RESULTS The inflammatory infiltrate consisted of numerous eosinophils but also a considerable amount of lymphocytes, mast cells, and macrophage-like CD68+ cells. CD95 was frequently expressed on eosinophils, on numerous other inflammatory cells, and also on morphologically apoptotic cells. annexin-V-positive eosinophils were not as frequent as CD95+ cells, but numerous annexin-V-positive eosinophils were found. CD68+ cells approximately equalled the number of eosinophils. The number of cells phagocytosing eosinophils varied between polyps. Apoptosis of eosinophils (as evaluated by TUNEL combined with apoptotic morphology) was a common finding in six of the polyps. CONCLUSIONS Previous in vitro and ex vivo findings of CD95 on eosinophils are now supported by demonstration of CD95 on eosinophils in this in vivo study. This investigation revealed a switch of the membrane-bound phosphatidylserine of apoptotic cells, which is a novel observation. The study has demonstrated apoptosis of tissue-dwelling eosinophils, and that CD68+ macrophage-like cells phagocytose eosinophils within the sinonasal polyps.
Collapse
Affiliation(s)
- A Davidsson
- Department of Otorhinolaryngology, Orebro Medical Center Hospital, Sweden
| | | | | |
Collapse
|
119
|
Abstract
The health burden of asthma is increasing globally at an alarming rate, providing a strong impetus for the development of new therapeutics. Currently available inhaled bronchodilators and anti-inflammatory drugs are effective in most asthmatics, but this palliative therapy requires long-term daily administration. Despite considerable efforts by the pharmaceutical industry, it has been difficult to develop novel therapeutic agents; the leukotriene antagonists and synthesis inhibitors being the only new class of asthma treatments to have been licensed in the last 30 years. It is clearly important to understand more about the underlying mechanisms of asthma and about how current drugs work before rational improvements in therapy can be expected. There are numerous therapies in clinical development that combat the inflammation found in asthma, specifically targeting eosinophils, IgE, adhesion molecules, cytokines and chemokines, inflammatory mediators and cell signalling. In particular, there is the obvious need for new therapy for severe asthma that is poorly controlled by high doses of corticosteroids, as well as agents to counter acute emergency asthma. A long-term goal is to develop disease-modifying immunotherapy, that could be introduced in childhood to alter the natural history of asthma. Thanks to the extensive efforts of the pharmaceutical industry, in the near future we can expect the introduction of a range of novel therapies for asthma.
Collapse
Affiliation(s)
- S A Bryan
- National Heart and Lung Institute, Royal Brompton Clinical Studies Unit, Imperial College, London, UK
| | | | | | | |
Collapse
|
120
|
Abstract
Many drugs are now in development for the treatment of atopic diseases, including asthma, allergic rhinitis and atopic dermatitis. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, as they often coincide. Most of the many new therapies in development are aimed at inhibiting components of the allergic inflammatory response, but in the future there are real possibilities for the development of preventative and even curative treatments.
Collapse
Affiliation(s)
- P J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
121
|
Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schöni MH, Blaser K, Simon HU. Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci U S A 1999; 96:13330-5. [PMID: 10557320 PMCID: PMC23947 DOI: 10.1073/pnas.96.23.13330] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neutrophils are important effector cells in immunity to microorganisms, particularly bacteria. Here, we show that the process of neutrophil apoptosis is delayed in several inflammatory diseases, suggesting that this phenomenon may represent a general feature contributing to the development of neutrophilia, and, therefore, in many cases to host defense against infection. The delay of neutrophil apoptosis was associated with markedly reduced levels of Bax, a pro-apoptotic member of the Bcl-2 family. Such Bax-deficient cells were also observed upon stimulation of normal neutrophils with cytokines present at sites of neutrophilic inflammation, such as granulocyte and granulocyte-macrophage colony-stimulating factors, in vitro. Moreover, Bax-deficient neutrophils generated by using Bax antisense oligodeoxynucleotides demonstrated delayed apoptosis, providing direct evidence for a role of Bax as a pro-apoptotic molecule in these cells. Interestingly, the Bax gene was reexpressed in Bax-deficient neutrophils under conditions of cytokine withdrawal. Thus, both granulocyte expansion and the resolution of inflammation appear to be regulated by the expression of the Bax gene in neutrophils.
Collapse
Affiliation(s)
- B Dibbert
- Swiss Institute of Allergy and Asthma Research, University of Zurich, CH-7270 Davos, Switzerland
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Eosinophils play a protective role in host immunity to infections by parasitic worms and, detrimentally, are involved in the pathophysiology of asthma and other allergic diseases. Airway inflammation is central to the pathology of asthma and is characterized by infiltration of the bronchial mucosa by large numbers of proinflammatory cells, amongst which the eosinophil is prominent despite being a minority constituent of circulating leukocytes. Crucial steps in eosinophilic inflammation include augmented production of eosinophils in the bone marrow, their increased release into the circulation, and their selective accumulation in the conducting airways. The eosinophil has a potent armory of proinflammatory mediators, including cytotoxic granule proteins, cytokines and lipid mediators with considerable potential to initiate and sustain an inflammatory response. Thus there is much interest in the elucidation of the mechanisms responsible for eosinophil accumulation, persistence, activation and ultimate fate. This article reviews our current understanding of the role of the eosinophil in human disease and the immunobiology of this important proinflammatory cell.
Collapse
Affiliation(s)
- G M Walsh
- Department of Medicine and Therapeutics, University of Aberdeen Medical School, Foresterhill, United Kingdom
| |
Collapse
|
123
|
Wong CK, Zhang JP, Lam CW, Ho CY, Hjelm NM. Opposing effects of sodium salicylate and haematopoietic cytokines IL-3, IL-5 and GM-CSF on mitogen-activated protein kinases and apoptosis of EoL-1 cells. Immunol Invest 1999; 28:365-79. [PMID: 10574634 DOI: 10.3109/08820139909062270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Haematopoietic cytokines such as IL-3, IL-5 and GM-CSF not only activate eosinophils but also prolong their life span by inhibiting their apoptotic cell death. We have studied the effects of IL-3, IL-5 and GM-CSF on apoptosis and mitogen-activated protein kinases (MAPKs) in a human eosinophilic leukaemic cell line (EoL-1). Results demonstrated that all three cytokines could trigger the receptor-mediated activation of extracellular signal-regulated kinase (ERK) within one hour but not p38 MAPK activity in EoL-1 cells. In contrast, sodium salicylate (NaSal), a nonsteroidal anti-inflammatory drug (NSAID), could activate p38 MAPK but not ERK within one hour. Both cytokines and specific p38 MAPK inhibitor SB 203580 could partly block the NaSal-induced apoptosis in EoL-1 cells. A specific MAPK/ERK kinase (MEK) inhibitor, PD 098059, could induce apoptosis and eliminate the protective effect of IL-3, IL-5 and GM-CSF against NaSal-induced apoptosis in EoL-1 cells. Taken together, cytokines IL-3, IL-5 and GM-CSF could prolong EoL-1 cells survival through the transient activation of ERK. On the other hand, activation of p38 MAPK in EoL-1 cells by NaSal could lead to apoptosis. Activation of p38 MAPK and the resulting induction of apoptosis in EoL-1 cells may be important to explain the anti-inflammatory action of NSAID in allergic inflammation.
Collapse
Affiliation(s)
- C K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT
| | | | | | | | | |
Collapse
|
124
|
Adachi T, Stafford S, Sur S, Alam R. A Novel Lyn-Binding Peptide Inhibitor Blocks Eosinophil Differentiation, Survival, and Airway Eosinophilic Inflammation1, 2. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Receptor antagonists block all receptor-coupled signaling pathways indiscriminately. We introduce a novel class of peptide inhibitors that is designed to block a specific signal from a receptor while keeping other signals intact. This concept was tested in the model of IL-5 signaling via Lyn kinase. We have previously mapped the Lyn-binding site of the IL-5/GM-CSF receptor common β (βc) subunit. In the present study, we designed a peptide inhibitor using the Lyn-binding sequence. The peptide was N-stearated to enable cellular internalization. The stearated peptide blocked the binding of Lyn to the βc receptor and the activation of Lyn. The lipopeptide did not affect the activation of Janus kinase 2 or its association with βc. The inhibitor blocked the Lyn-dependent functions of IL-5 in vitro (e.g., eosinophil differentiation from stem cells and eosinophil survival). It did not affect eosinophil degranulation. When applied in vivo, the Lyn-binding peptide significantly inhibited airway eosinophil influx in a mouse model of asthma. The lipopeptide had no effect on basophil histamine release or on the proliferation of B cells and T cells. To our knowledge, this is the first report on an inhibitor of IL-5 that blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. This novel strategy to develop peptide inhibitors can be applied to other receptors.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sanjiv Sur
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rafeul Alam
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
125
|
Dijkers PF, van Dijk TB, de Groot RP, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ. Regulation and function of protein kinase B and MAP kinase activation by the IL-5/GM-CSF/IL-3 receptor. Oncogene 1999; 18:3334-42. [PMID: 10362354 DOI: 10.1038/sj.onc.1202678] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-3, IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) regulate proliferation, differentiation and apoptosis of target cells. Receptors for these cytokines consist of a cytokine-specific alpha subunit and a common shared beta c subunit. Tyrosine phosphorylation of the beta c is thought to play a critical role in mediating signal transduction events. We have examined the effect of mutation of beta c tyrosines on the activation of multiple signal transduction pathways. Activation of protein kinase B (PKB) required JAK2 and was inhibited by dominant-negative phosphatidylinositol 3-kinase (P13K). Overexpression of JAK2 was sufficient to activate both protein kinase B (PKB) and extracellular regulated kinase-1 (ERK1). Tyrosine 577 and 612 were found to be critical for the activation of PKB and ERK1, but not activation of STAT transcription factors. Activation of both PKB and ERK have been implicated in the regulation of proliferation and apoptosis. We generated GM-CSFR stable cell lines expressing receptor mutants to evaluate their effect on these processes. Activation of both PKB and ERK was perturbed, while STAT activation remained unaffected. Tyrosines 577 and 612 were necessary for optimal proliferation, however, mutation of these tyrosine residues did not affect GM-CSF mediated rescue from apoptosis. These data demonstrate that while phosphorylation of beta c tyrosine residues 577 and 612 are important for optimal cell proliferation, rescue from apoptosis can be mediated by alternative signalling routes apparently independent of PKB or ERK activation.
Collapse
Affiliation(s)
- P F Dijkers
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
126
|
Vignola AM, Chanez P, Chiappara G, Siena L, Merendino A, Reina C, Gagliardo R, Profita M, Bousquet J, Bonsignore G. Evaluation of apoptosis of eosinophils, macrophages, and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J Allergy Clin Immunol 1999; 103:563-73. [PMID: 10200002 DOI: 10.1016/s0091-6749(99)70225-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Apoptosis regulates inflammatory cell survival, and its reduction contributes to the chronicity of an inflammatory process. Apoptosis is controlled by suppressing or inducing genes, such as bcl-2 and p53, respectively. OBJECTIVE We sought to assess apoptosis of eosinophils, macrophages, and T lymphocytes in bronchial biopsy specimens from asthmatic subjects and to examine its regulation by evaluating the expression of B-cell lymphoma leukemia-2 (Bcl-2) and P53 proteins. We also sought to explore the relationships between cell apoptosis and GM-CSF, a cytokine able to increase eosinophil and macrophage survival. METHODS Apoptosis in eosinophils, macrophages, and T lymphocytes was evaluated in bronchial biopsy specimens obtained from 30 asthmatic subjects, 26 subjects with chronic bronchitis, and 15 control subjects by combining the terminal deoxynucleotidyl transferase-mediated dNTP nick end-labeling technique and immunohistochemistry. The expression of P53, Bcl-2, and GM-CSF was studied through immunohistochemistry by using specific mAbs. RESULTS The number of apoptotic eosinophils and macrophages was lower in subjects with asthma than in those with chronic bronchitis (P <.007 and P <.001, respectively) and inversely correlated with the clinical severity of asthma (P <.001 and P <.002, respectively). Few T lymphocytes were apoptotic in all groups studied. In asthma GM-CSF+ cells correlated with the number of nonapoptotic eosinophils and macrophages (P =.0001) and with the severity of the disease (P <.003). In asthma Bcl-2+ cells were higher than in control subjects and subjects with chronic bronchitis (P <.002 and P <.015, respectively), they outnumbered P53+ cells, and they correlated with the number of T lymphocytes (P <.001) and with the severity of the disease (P <.003). CONCLUSION Airway inflammation in asthma is associated with an enhanced survival of different cell types caused by reduced apoptosis.
Collapse
Affiliation(s)
- A M Vignola
- Istituto di Fisiopatologia Respiratoria, C.N.R., Via Trabucco, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
LEARNING OBJECTIVES Reading this article will increase the readers' knowledge of the biology of interleukin-5 (IL-5), an important cytokine. The immune and inflammatory responses of any organism are the basis of the defense mechanism ensuring its survival. The role of IL-5 in these processes, as well as in the pathogenesis of various diseases has been discussed along with the effects of various pharmacologic agents on the production and function of IL-5. DATA SOURCES A detailed literature search was performed. Studies considered relevant and important, in all languages, which involved humans and animals were used. STUDY SELECTION Information was obtained only from peer reviewed journals. RESULTS Interleukin-5 is normally produced by T-cells, mast cells, and eosinophils while Reed Sternberg and Epstein Barr virus (EBV) transformed cells also produce IL-5. Monoclonal antibodies (mAb) to IL-5 are potent inhibitors of IL-5 mediated tissue damage, secondary to eosinophil infiltration. The majority of the studies on IL-5 are preliminary, often the information is obtained from animal studies or in vitro systems and occasionally from pathologic tissue analysis. This along with the absence of confirmatory studies is a limiting factor. Nonetheless, the role of IL-5 in allergic and immunologic disease and asthma may be central to their pathogenesis. CONCLUSIONS Interleukin-5 is an important molecule that is participant to many processes that maintain health and are involved directly or indirectly in the pathogenesis of disease. Some pharmacologic agents can modify IL-5 production in vivo. Development of selective inhibitors of IL-5 may have a potential use for specific therapy of certain autoimmune, inflammatory, and neoplastic diseases.
Collapse
Affiliation(s)
- T Lalani
- Department of Oral Medicine and Diagnostic Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02112, USA
| | | | | |
Collapse
|
128
|
Blackburn RV, Spitz DR, Liu X, Galoforo SS, Sim JE, Ridnour LA, Chen JC, Davis BH, Corry PM, Lee YJ. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med 1999; 26:419-30. [PMID: 9895234 DOI: 10.1016/s0891-5849(98)00217-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of glucose deprivation-induced activation of Lyn kinase (Lyn), c-Jun N-terminal kinase 1 (JNK1) and increased expression of basic fibroblast growth factor (bFGF) and c-Myc was investigated in MCF-7/ADR adriamycin-resistant human breast carcinoma cells. Glucose deprivation significantly increased steady state levels of oxidized glutathione content (GSSG) and intracellular prooxidants (presumably hydroperoxides) as well as caused the activation of Lyn, JNK1, and the accumulation of bFGF and c-Myc mRNA. The suppression of GSSG accumulation and prooxidant production by treatment with the thiol antioxidant, N-acetylcysteine, also suppressed all the increases in kinase activation and gene expression observed during glucose deprivation. In addition, glucose deprivation was shown to induce oxidative stress in IMR90 SV40 transformed human fibroblasts, indicating that this phenomena is not limited to the MCF-7/ADR cell line. These and previous observations from our laboratory show that glucose deprivation-induced oxidative stress in MCF-7/ADR cells activates signal transduction involving Lyn, JNK1, and mitogen activated protein kinases (ERK1/ERK2) which results in increased bFGF and c-Myc mRNA accumulation. These results provide support for the hypothesis that alterations in intracellular oxidation/reduction reactions link changes in glycolytic metabolism to signal transduction and gene expression in these human tumor cells.
Collapse
Affiliation(s)
- R V Blackburn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Adachi T, Pazdrak K, Stafford S, Alam R. The Mapping of the Lyn Kinase Binding Site of the Common β Subunit of IL-3/Granulocyte-Macrophage Colony- Stimulating Factor/IL-5 Receptor. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
It has been shown that a membrane-proximal region within common β (βc) receptor of IL-3/granulocyte-macrophage CSF/IL-5 (amino acids 450–517) is important for Lyn binding. We have shown previously that Lyn kinase is physically associated with the IL-5R βc subunit in unstimulated cells. The result suggests that this association involves binding modules that are not activation or phosphorylation dependent. The objective of this study was to map the exact Lyn binding site on βc. Using overlapping and/or sequential peptides derived from βc 450–517, we narrowed down the Lyn binding site to nine amino acid residues, βc 457–465. The P→A mutation in this region abrogated the binding to Lyn, indicating a critical role of proline residues. We created a cell-permeable Lyn-binding peptide by N-stearation. This cell-permeable peptide blocked the association of Lyn, but not Jak2 with βc in situ. We also investigated the βc binding site of Lyn kinase. Our results suggest that the N-terminal unique domain of Lyn kinase is important for binding to βc receptor. To our knowledge, this is the first molecular identification of the Lyn binding site of βc receptor. This finding may help develop specific inhibitors of Lyn-coupled signaling pathways.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Konrad Pazdrak
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rafeul Alam
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
130
|
Yamashita N, Akimoto Y, Minoguchi K, Sekine K, Nakajima M, Okano Y, Ohta K, Sakane T. Inhibitory effects of pemirolast potassium and FK506 on degranulation and IL-8 production of eosinophils. Allergol Int 1999. [DOI: 10.1046/j.1440-1592.1999.00115.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
131
|
Affiliation(s)
- J Elsner
- Hannover Medical University, Department of Dermatology and Allergology, Germany
| | | |
Collapse
|
132
|
Duprez V, Blank U, Chrétien S, Gisselbrecht S, Mayeux P. Physical and functional interaction between p72(syk) and erythropoietin receptor. J Biol Chem 1998; 273:33985-90. [PMID: 9852052 DOI: 10.1074/jbc.273.51.33985] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) regulates the proliferation and differentiation of erythroid cells through interaction with a cell surface receptor (EpoR) that belongs to the cytokine receptor family. The Jak2 tyrosine kinase was previously shown to bind to the EpoR, to be activated upon Epo stimulation, and to play a critical role in Epo-induced proliferation. However, little is known about the role of other tyrosine kinases in Epo signaling. In this paper, we examined whether Syk was involved in EpoR activation. Coimmunoprecipitation experiments showed that the phosphorylated EpoR was associated with the Syk kinase in activated UT7 cells. The interaction of Epo with its receptor led to an increased kinase activity. The use of recombinant Syk Src homology 2 (SH2) domains expressed in tandem or individually revealed that both N- and C-SH2 domains of Syk participated in EpoR binding with a major contribution of the C-terminal SH2 domain. Far Western blotting further indicated that Syk directly binds to the EpoR and that the interaction of Syk with EpoR only occurred after Epo activation. These data suggest that phosphorylation of EpoR on tyrosine residues may mediate Syk binding to the receptor through interaction between the two SH2 domains of Syk and tyrosines of the receptor. We propose that in addition to Jak2, Syk protein kinase may be a component of EpoR signaling.
Collapse
Affiliation(s)
- V Duprez
- Institut National de la Santé et de la Recherche Médicale, Unité 363, ICGM, Hopital Cochin, 27 rue du Faubourg Saint Jacques, Paris, France.
| | | | | | | | | |
Collapse
|
133
|
Cassatella MA. The neutrophil: one of the cellular targets of interleukin-10. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1998; 28:148-61. [PMID: 9801925 DOI: 10.1007/s005990050036] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Interleukin-10 exerts a wide spectrum of in vitro and in vivo biological activities implicated in the regulation of the inflammatory and immune responses. Among the different cell types affected by interleukin-10, monocyte/macrophages and lymphocytes appear to be particularly modified with regard to their function, morphology, and phenotype. However, recent studies performed in our laboratory, as well as by other groups, suggest that a number of functional activities of polymorphonuclear neutrophils are also subject to regulation by interleukin-10. In view of the central role of polymorphonuclear neutrophils in host defense processes and in amplifying inflammatory and immune reactions, the ability of interleukin-10 to act as a potent modulator of this cell type opens new perspectives as to the potential therapeutic utility of interleukin-10. This article reviews what is currently known about the effects of interleukin-10 on neutrophils.
Collapse
|
134
|
|
135
|
de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 1998; 10:619-28. [PMID: 9794243 DOI: 10.1016/s0898-6568(98)00023-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptors for the I1-3/IL-5/GM-CSF cytokine family are composed of a heterodimeric complex of a cytokine-specific alpha chain and a common beta chain (betac). Binding of IL-3/IL-5/GM-CSF to their respective receptors rapidly induces activation of multiple intracellular signalling pathways, including the Ras-Raf-ERK, the JAK/STAT, the phosphatidylinositol 3-kinase PKB, and the JNK/SAPK and p38 signalling pathways. This review focuses on recent advancements in understanding how these different signalling pathways are activated by IL-3/IL-5/GM-CSF receptors, and how the individual pathways contribute to the pleiotropic effects of IL-3/IL-5/GM-CSF on their target cells, including proliferation, differentiation, survival, and effector functions.
Collapse
Affiliation(s)
- R P de Groot
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands.
| | | | | |
Collapse
|
136
|
Abstract
Cytokines are important regulators of hematopoiesis. They exert their actions by binding to specific receptors on the cell surface. Interleukin-5 (IL-5) is a critical cytokine that regulates the growth, activation, and survival of eosinophils. Because eosinophils play a seminal role in the pathogenesis of asthma and allergic diseases, an understanding of the signal transduction mechanism of IL-5 is of paramount importance. The IL-5 receptor is a heterodimer of alpha- and beta-subunits. The alpha-subunit is specific, whereas the beta-subunit is common to IL-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) receptors and is crucial for signal transduction. It has been shown that there are two major signaling pathways of IL-5 in eosinophils. IL-5 activates Lyn, Syk, and JAK2 and propagates signals through the Ras-MAPK and JAK-STAT pathways. Studies suggest that Lyn, Syk, and JAK2 tyrosine kinases and SHP-2 tyrosine phosphatase are important for eosinophil survival. In contrast to their survival-promoting activity, Lyn and JAK2 appear to have no role in eosinophil degranulation or expression of surface adhesion molecules. Raf-1 kinase, on the other hand, is critical for eosinophil degranulation and adhesion molecule expression. Btk is involved in IL-5 stimulation of B cell function. However, it does not appear to be important for eosinophil function. Thus a clear segregation of signaling molecules based on their functional importance is emerging. This review describes the signal transduction mechanism of the IL-3/GM-CSF/IL-5 receptor system and compares and contrasts IL-5 signaling between eosinophils and B cells.
Collapse
Affiliation(s)
- T Adachi
- The University of Texas Medical Branch, Division of Allergy and Immunology, Department of Internal Medicine, Galveston, Texas 77555-0762, USA
| | | |
Collapse
|
137
|
Pazdrak K, Olszewska-Pazdrak B, Stafford S, Garofalo RP, Alam R. Lyn, Jak2, and Raf-1 kinases are critical for the antiapoptotic effect of interleukin 5, whereas only Raf-1 kinase is essential for eosinophil activation and degranulation. J Exp Med 1998; 188:421-9. [PMID: 9687520 PMCID: PMC2212466 DOI: 10.1084/jem.188.3.421] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Interleukin (IL)-5 has been shown to activate many signaling molecules in eosinophils, but their functional relevance remains unknown. We have examined the functional relevance of Lyn, Jak2, and Raf-1 kinases in eosinophil survival, upregulation of adhesion molecules and degranulation. To this goal we used Lyn and Raf-1 antisense (AS) oligodeoxynucleotides (ODN) to inhibit the expression of these proteins and tyrphostin AG490 to specifically block the activation of Jak2. We have demonstrated that all three kinases are important for IL-5- induced suppression of eosinophil apoptosis. However, Lyn and Jak2 tyrosine kinases are not important for the upregulation of CD11b and the secretion of eosinophil cationic protein. In contrast, Raf-1 kinase is critical for both these functions. This is the first identification of specific signaling molecules responsible for three important functions of eosinophils. We have established a central role for Raf-1 kinase in regulating eosinophil survival, expression of beta2 integrins and degranulation. Further, there appears to be a dissociation between two receptor-associated tyrosine kinases, i.e., Lyn and Jak2, and the activation of Raf-1 kinase. The delineation of the functional relevance of signaling molecules will help design therapeutic approaches targeting specific eosinophil function.
Collapse
Affiliation(s)
- K Pazdrak
- Department of Internal Medicine, Allergy and Immunology Division, The University of Texas Medical Branch, Galveston, Texas 77555-0762, USA
| | | | | | | | | |
Collapse
|
138
|
Role for Bcl-xL in Delayed Eosinophil Apoptosis Mediated by Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-5. Blood 1998. [DOI: 10.1182/blood.v92.3.778] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils.
© 1998 by The American Society of Hematology.
Collapse
|
139
|
Role for Bcl-xL in Delayed Eosinophil Apoptosis Mediated by Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin-5. Blood 1998. [DOI: 10.1182/blood.v92.3.778.415k38_778_783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils.
© 1998 by The American Society of Hematology.
Collapse
|
140
|
Dorahy DJ, Burns GF. Active Lyn protein tyrosine kinase is selectively enriched within membrane microdomains of resting platelets. Biochem J 1998; 333 ( Pt 2):373-9. [PMID: 9657978 PMCID: PMC1219595 DOI: 10.1042/bj3330373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circulating platelets are primed to respond very rapidly to thrombogenic stimuli, but most platelets complete their lifespan without ever becoming activated. Platelet activation is accompanied by waves of sequential tyrosine phosphorylation thought to involve members of the Src family of protein tyrosine kinases (PTKs). We show here that resting platelets contain highly active pp53/56(Lyn) PTK within membrane microdomains (rafts) isolated biochemically with or without the use of detergent. This fraction is also greatly enriched in the transmembrane glycoprotein CD36, known to associate with Lyn PTK, but in transfection studies we could find no evidence to suggest that CD36 affects the distribution or function of Lyn. Upon platelet activation Lyn activity remains constant or diminishes and pp60(c-src) PTK within this fraction becomes highly activated, indicating the dynamic nature of the membrane microdomains. It is suggested that the function of active Lyn PTK in the resting platelet is to allow prolonged survival of this anucleate cell.
Collapse
Affiliation(s)
- D J Dorahy
- Cancer Research Unit, Faculty of Medicine and Health Sciences, University of Newcastle, Callaghan, 2308 NSW, Australia
| | | |
Collapse
|
141
|
Role for Tyrosine Phosphorylation and Lyn Tyrosine Kinase in Fas Receptor-Mediated Apoptosis in Eosinophils. Blood 1998. [DOI: 10.1182/blood.v92.2.547] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Fas ligand/Fas receptor molecular interactions have been implicated as having an important function for the regulation of eosinophil apoptosis. The purpose of the present study was to investigate biochemical events triggered by the engagement of the Fas receptor in freshly isolated human and mouse eosinophils. Activation of the Fas receptor on eosinophils with the agonistic anti-Fas monoclonal antibody (MoAb) resulted in increased tyrosine phosphorylation of several intracellular proteins. The tyrosine kinase inhibitors lavendustin A and genistein inhibited Fas receptor-induced cell death in both human and mouse eosinophils in vitro and prevented, at least partially, Fas receptor-mediated resolution of eosinophilic inflammation in a mouse in vivo model of lung eosinophilia. In addition, in freshly purified human eosinophils, lavendustin A prevented anti-Fas MoAb-induced proteolytic cleavage of lamin B, suggesting that tyrosine kinases may amplify the proteolytic signaling cascade within interleukin-1β converting enzyme (ICE) family proteases. Moreover, the tyrosine kinase Lyn was identified as being involved in Fas receptor-mediated cell death. Collectively, these results demonstrate that tyrosine phosphorylation is an important step in the generation of the Fas receptor-linked transmembrane death signal in eosinophils and that Lyn participates in this pathway.
Collapse
|
142
|
Abstract
Fas ligand/Fas receptor molecular interactions have been implicated as having an important function for the regulation of eosinophil apoptosis. The purpose of the present study was to investigate biochemical events triggered by the engagement of the Fas receptor in freshly isolated human and mouse eosinophils. Activation of the Fas receptor on eosinophils with the agonistic anti-Fas monoclonal antibody (MoAb) resulted in increased tyrosine phosphorylation of several intracellular proteins. The tyrosine kinase inhibitors lavendustin A and genistein inhibited Fas receptor-induced cell death in both human and mouse eosinophils in vitro and prevented, at least partially, Fas receptor-mediated resolution of eosinophilic inflammation in a mouse in vivo model of lung eosinophilia. In addition, in freshly purified human eosinophils, lavendustin A prevented anti-Fas MoAb-induced proteolytic cleavage of lamin B, suggesting that tyrosine kinases may amplify the proteolytic signaling cascade within interleukin-1β converting enzyme (ICE) family proteases. Moreover, the tyrosine kinase Lyn was identified as being involved in Fas receptor-mediated cell death. Collectively, these results demonstrate that tyrosine phosphorylation is an important step in the generation of the Fas receptor-linked transmembrane death signal in eosinophils and that Lyn participates in this pathway.
Collapse
|
143
|
Gauvreau GM, O'Byrne PM, Moqbel R, Velazquez J, Watson RM, Howie KJ, Denburg JA. Enhanced expression of GM-CSF in differentiating eosinophils of atopic and atopic asthmatic subjects. Am J Respir Cell Mol Biol 1998; 19:55-62. [PMID: 9651180 DOI: 10.1165/ajrcmb.19.1.2871] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Higher numbers of eosinophil/basophil colony-forming units (Eo/B CFU) are observed in blood of atopic individuals, and can be enhanced in atopic asthmatics by allergen-inhalation challenge. It is known that mature basophils and eosinophils synthesize cytokines relevant to allergic inflammation. To investigate the potential role of growth factors in allergic disease we examined the expression of the hemopoietic cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-5, in differentiating Eo/B colony cells from normal and atopic individuals, and from atopic asthmatics before and after allergen-inhalation challenge. Peripheral blood was collected from two normal and 12 atopic individuals, and also from 25 atopic asthmatics before and 24 h after allergen challenge. Nonadherent mononuclear cells were isolated and grown in semisolid growth medium. Eo/B colonies were selected and cytospins were prepared for immunocytochemical analysis of colony cells. Eo/B colonies, especially carbol chromotrope 2R+ cells, selected at Days 10, 14, and 18 from atopic donors contained messenger RNA for GM-CSF by combined in situ reverse transcription-polymerase chain reaction and cytochemistry, and demonstrated time-dependent expression of GM-CSF by immunocytochemistry (P = 0.007). Atopic individuals demonstrated a higher percentage of cells expressing GM-CSF than did normal subjects under all growth conditions when examined at Day 14 (P = 0. 04). Atopic asthmatics challenged with inhaled allergen who demonstrated a dual airway response, an increase in the number of blood eosinophils (P = 0.0001), and an increase in the number of Eo/B CFU (P = 0.02) also demonstrated a significant increase in the percentage of colony cells expressing immunostainable GM-CSF (P = 0. 0009), but only a variable effect on those expressing IL-5, 24 h after allergen. These results suggest that GM-CSF expression by differentiating Eo/Bs may provide an additional stimulus in vivo to enhance Eo/B progenitor differentiation in atopic and asthmatic individuals, especially after allergen challenge. The concept of microenvironmental differentiation, where blood progenitor cells may aid in their own differentiation, is supported by these ex vivo findings.
Collapse
Affiliation(s)
- G M Gauvreau
- Asthma Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
144
|
Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S, Pawson T. The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol Cell Biol 1998; 18:4209-20. [PMID: 9632805 PMCID: PMC109005 DOI: 10.1128/mcb.18.7.4209] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic protein tyrosine kinase Syk has two amino-terminal SH2 domains that engage phosphorylated immunoreceptor tyrosine-based activation motifs in the signaling subunits of immunoreceptors. Syk, in conjunction with Src family kinases, has been implicated in immunoreceptor signaling in both lymphoid and myeloid cells. We have investigated the role of Syk in Fcgamma receptor (FcgammaR)-dependent and -independent responses in bone marrow-derived macrophages and neutrophils by using mouse radiation chimeras reconstituted with fetal liver cells from Syk-/- embryos. Chimeric mice developed an abdominal hemorrhage starting 2 to 3 months after transplantation that was ultimately lethal. Syk-deficient neutrophils derived from the bone marrow were incapable of generating reactive oxygen intermediates in response to FcgammaR engagement but responded normally to tetradecanoyl phorbol acetate stimulation. Syk-deficient macrophages were defective in phagocytosis induced by FcgammaR but showed normal phagocytosis in response to complement. The tyrosine phosphorylation of multiple cellular polypeptides, including the FcgammaR gamma chain, as well as Erk2 activation, was compromised in Syk-/- macrophages after FcgammaR stimulation. In contrast, the induction of nitric oxide synthase in macrophages stimulated with lipopolysaccharide and gamma interferon was not dependent on Syk. Surprisingly, Syk-deficient macrophages were impaired in the ability to survive or proliferate on plastic petri dishes. Taken together, these results suggest that Syk has specific physiological roles in signaling from FcgammaRs in neutrophils and macrophages and raise the possibility that in vivo, Syk is involved in signaling events other than those mediated by immunoreceptors.
Collapse
Affiliation(s)
- F Kiefer
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Lyn Physically Associates With the Erythropoietin Receptor and May Play a Role in Activation of the Stat5 Pathway. Blood 1998. [DOI: 10.1182/blood.v91.10.3734] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein tyrosine phosphorylation plays a crucial role in signaling from the receptor for erythropoietin (Epo), although the Epo receptor (EpoR) lacks the tyrosine kinase domain. We have previously shown that the Jak2 tyrosine kinase couples with the EpoR to transduce a growth signal. In the present study, we demonstrate that Lyn, a Src family tyrosine kinase, physically associates with the EpoR in Epo-dependent hematopoietic cell lines, 32D/EpoR-Wt and F36E. Coexpression experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of the EpoR and that both LynA and LynB, alternatively spliced forms of Lyn, bind with the membrane-proximal 91-amino acid region of the EpoR cytoplasmic domain. In vitro binding studies using GST-Lyn fusion proteins further showed that the Src homology (SH)-2 domain of Lyn specifically binds with the tyrosine-phosphorylated EpoR in lysate from Epo-stimulated cells, whereas the tyrosine kinase domain of Lyn binds with the unphosphorylated EpoR. Far-Western blotting and synthetic phosphopeptide competition assays further indicated that the Lyn SH2 domain directly binds to the tyrosine-phosphorylated EpoR, most likely through its interaction with phosphorylated Y-464 or Y-479 in the carboxy-terminal region of the EpoR. In vitro binding studies also demonstrated that the Lyn SH2 domain directly binds to tyrosine-phosphorylated Jak2. In vitro reconstitution experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of Stat5, mainly on Y-694, and activates the DNA-binding and transcription-activating abilities of Stat5. In agreement with this, Lyn enhanced the Stat5-dependent transcriptional activation when overexpressed in 32D/EpoR-Wt cells. In addition, Lyn was demonstrated to phosphorylate the EpoR and Stat5 on tyrosines in vitro. These results suggest that Lyn may play a role in activation of the Jak2/Stat5 and other signaling pathways by the EpoR.
Collapse
|
146
|
Lyn Physically Associates With the Erythropoietin Receptor and May Play a Role in Activation of the Stat5 Pathway. Blood 1998. [DOI: 10.1182/blood.v91.10.3734.3734_3734_3745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphorylation plays a crucial role in signaling from the receptor for erythropoietin (Epo), although the Epo receptor (EpoR) lacks the tyrosine kinase domain. We have previously shown that the Jak2 tyrosine kinase couples with the EpoR to transduce a growth signal. In the present study, we demonstrate that Lyn, a Src family tyrosine kinase, physically associates with the EpoR in Epo-dependent hematopoietic cell lines, 32D/EpoR-Wt and F36E. Coexpression experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of the EpoR and that both LynA and LynB, alternatively spliced forms of Lyn, bind with the membrane-proximal 91-amino acid region of the EpoR cytoplasmic domain. In vitro binding studies using GST-Lyn fusion proteins further showed that the Src homology (SH)-2 domain of Lyn specifically binds with the tyrosine-phosphorylated EpoR in lysate from Epo-stimulated cells, whereas the tyrosine kinase domain of Lyn binds with the unphosphorylated EpoR. Far-Western blotting and synthetic phosphopeptide competition assays further indicated that the Lyn SH2 domain directly binds to the tyrosine-phosphorylated EpoR, most likely through its interaction with phosphorylated Y-464 or Y-479 in the carboxy-terminal region of the EpoR. In vitro binding studies also demonstrated that the Lyn SH2 domain directly binds to tyrosine-phosphorylated Jak2. In vitro reconstitution experiments in COS7 cells further showed that Lyn induces tyrosine phosphorylation of Stat5, mainly on Y-694, and activates the DNA-binding and transcription-activating abilities of Stat5. In agreement with this, Lyn enhanced the Stat5-dependent transcriptional activation when overexpressed in 32D/EpoR-Wt cells. In addition, Lyn was demonstrated to phosphorylate the EpoR and Stat5 on tyrosines in vitro. These results suggest that Lyn may play a role in activation of the Jak2/Stat5 and other signaling pathways by the EpoR.
Collapse
|
147
|
Qin S, Ding J, Kurosaki T, Yamamura H. A deficiency in Syk enhances ceramide-induced apoptosis in DT40 lymphoma B cells. FEBS Lett 1998; 427:139-43. [PMID: 9613615 DOI: 10.1016/s0014-5793(98)00383-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Syk deficiency significantly enhanced ceramide-induced apoptosis. Ectopic expression of wild-type or kinase-inactive Syk rendered Syk-negative cells resistant to ceramide-induced apoptosis. Furthermore, ceramide could not activate Syk, indicating that Syk protected DT40 cells from ceramide-induced apoptosis, via a mechanism independent of its activity. In addition, a deficiency in Lyn also resulted in the cells becoming susceptible to ceramide-induced apoptosis. However, no difference of Ara-C-induced apoptosis between wild-type and mutant cells was observed. c-Jun N-terminal kinases appeared not to be important in mediating the enhanced apoptosis, as they were still activated in mutant cells following ceramide treatment.
Collapse
Affiliation(s)
- S Qin
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
148
|
Ertel W, Keel M, Infanger M, Ungethüm U, Steckholzer U, Trentz O. Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. THE JOURNAL OF TRAUMA 1998; 44:767-75; discussion 775-6. [PMID: 9603076 DOI: 10.1097/00005373-199805000-00005] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The accumulation of neutrophils at inflammatory sites results in excessive release of toxic metabolites causing tissue injury. Proinflammatory cytokines may cause the breakdown of homeostasis of neutrophil numbers through inhibition of apoptosis. METHODS Neutrophils were isolated from healthy humans and from patients with multiple injuries on day of admission and during septic complications. Apoptosis was quantitated using propidium iodide fluorescence and the TUNEL method. Tyrosine phosphorylation was measured by flow cytometry. RESULTS Neutrophil apoptosis was decreased (33.3 +/- 5.5%; p < 0.05) in injured patients with sepsis compared with healthy humans (87.2 +/- 3.0%) and injured patients without sepsis (76.0 +/- 2.0%). Serum from injured patients with sepsis inhibited (p < 0.05) apoptosis of neutrophils from healthy humans in a dose-dependent manner. Serum from healthy humans and from injured patients at admission was ineffective. Neutralization of granulocyte-colony stimulating factor, but not of granulocyte-macrophage-colony stimulating factor, in serum of injured patients with sepsis partially abrogated (+51.2%) serum induced prolongation of neutrophil life span. Reduction of neutrophil apoptosis was concomitant with increased tyrosine phosphorylation. CONCLUSIONS Septic complications, but not the injury itself, result in inhibition of spontaneous neutrophil apoptosis. Circulating mediators seem to reduce neutrophil apoptosis through up-regulation of tyrosine phosphorylation.
Collapse
Affiliation(s)
- W Ertel
- Division of Trauma Surgery, University Hospital of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
149
|
JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor α and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 1998. [DOI: 10.1182/blood.v91.7.2264.2264_2264_2271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human interleukin-5 receptor (hIL-5R) consists of a unique α subunit (hIL-5Rα) and a common β subunit (βc) that activate two Janus kinases (JAK1 and JAK2) and a signal transducer and activator of transcription (STAT5). The precise stoichiometry of the hIL-5R subunits and the role of JAK kinases used in IL-5 signaling were investigated. We analyzed the interaction between hIL-5Rα and βc by immunoprecipitation using anti–hIL-5Rα and anti-βc monoclonal antibodies. The binding of JAK1 and JAK2 to each hIL-5R subunit was also evaluated in the hIL-5–responsive cell line, TF-h5Rα. It was observed that IL-5 stimulation induced the recruitment of βc to hIL-5Rα, although in the absence of IL-5 the subunits remain independent. In the absence of IL-5, JAK2 and JAK1 were associated with hIL-5Rα and βc, respectively. IL-5 stimulation resulted in tyrosine phosphorylation of JAK2, JAK1, βc, and STAT5. Moreover, IL-5–induced dimerization of IL-5R subunits caused JAK2 activation and βc phosphorylation even in the absence of JAK1 activation. Furthermore, tyrosine phosphorylation of JAK1 was dependent on the activation of JAK2. Detailed study of the C-terminal truncated cytoplasmic domain of hIL-5Rα revealed that the cytoplasmic stretch at position 346-387, containing the proline-rich region, is necessary for JAK2 binding. These observations suggest that activation of hIL-5Rα–associated JAK2 is indispensable for the IL-5 signaling event.
Collapse
|
150
|
JAK2 and JAK1 Constitutively Associate With an Interleukin-5 (IL-5) Receptor α and βc Subunit, Respectively, and Are Activated Upon IL-5 Stimulation. Blood 1998. [DOI: 10.1182/blood.v91.7.2264] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe human interleukin-5 receptor (hIL-5R) consists of a unique α subunit (hIL-5Rα) and a common β subunit (βc) that activate two Janus kinases (JAK1 and JAK2) and a signal transducer and activator of transcription (STAT5). The precise stoichiometry of the hIL-5R subunits and the role of JAK kinases used in IL-5 signaling were investigated. We analyzed the interaction between hIL-5Rα and βc by immunoprecipitation using anti–hIL-5Rα and anti-βc monoclonal antibodies. The binding of JAK1 and JAK2 to each hIL-5R subunit was also evaluated in the hIL-5–responsive cell line, TF-h5Rα. It was observed that IL-5 stimulation induced the recruitment of βc to hIL-5Rα, although in the absence of IL-5 the subunits remain independent. In the absence of IL-5, JAK2 and JAK1 were associated with hIL-5Rα and βc, respectively. IL-5 stimulation resulted in tyrosine phosphorylation of JAK2, JAK1, βc, and STAT5. Moreover, IL-5–induced dimerization of IL-5R subunits caused JAK2 activation and βc phosphorylation even in the absence of JAK1 activation. Furthermore, tyrosine phosphorylation of JAK1 was dependent on the activation of JAK2. Detailed study of the C-terminal truncated cytoplasmic domain of hIL-5Rα revealed that the cytoplasmic stretch at position 346-387, containing the proline-rich region, is necessary for JAK2 binding. These observations suggest that activation of hIL-5Rα–associated JAK2 is indispensable for the IL-5 signaling event.
Collapse
|