101
|
Broadening CD4 + and CD8 + T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. J Virol 2017; 91:JVI.00130-17. [PMID: 28446674 DOI: 10.1128/jvi.00130-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity.IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many chronic infections, including HCV infection, have a remarkable ability to drive initially strong CD4+ and CD8+ T cell responses against dominant epitopes toward an exhausted, dysfunctional state. Thus, new and innovative vaccine approaches to control HCV should be evaluated. Here, we report on a novel peptide-based nanoparticle vaccine strategy (NS3 pepmix) aimed at generating T cell immunity against potential subdominant T cell epitopes that are not efficiently targeted by vaccination with full-length recombinant protein (rNS3) or infection with HCV. As proof of concept, we found that NS3 pepmix excels in broadening the repertoire of epitope-specific, multifunctional, and cytotoxic CD4+ and CD8+ T cells compared to vaccination with rNS3, which generated only CD4+ T cell responses.
Collapse
|
102
|
Abstract
Hepatitis C virus (HCV) infects more than 170 million people worldwide and is the main cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Although the newly developed direct-acting antivirals (DAAs) have transformed the treatment of HCV infection, controlling HCV infection on a global scale remains a challenge because of the high cost, low resistance barrier of DAAs and lack of HCV vaccine. The host immune responses associated with HCV infection, especially HCV-specific T cellular immunity, determine the outcome of HCV infection: either acute or chronic infection. It is important to fully interpret the immunopathogenesis of HCV infection and consequently to exploit effective strategies to eliminate HCV. Here, we review the current progress in HCV immunology, which will deepen our understanding of the spectrum of HCV infection and immunity in humans.
Collapse
Affiliation(s)
- Jijing Shi
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China
| | - Yuanyuan Li
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China
| | | | - Xuexiu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 460000, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Beijing 302 Hospital, Beijing, 100039, China.
| |
Collapse
|
103
|
McDonnell AM, Cook A, Robinson BWS, Lake RA, Nowak AK. Serial immunomonitoring of cancer patients receiving combined antagonistic anti-CD40 and chemotherapy reveals consistent and cyclical modulation of T cell and dendritic cell parameters. BMC Cancer 2017; 17:417. [PMID: 28619093 PMCID: PMC5472884 DOI: 10.1186/s12885-017-3403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/06/2017] [Indexed: 11/11/2022] Open
Abstract
Background CD40 signalling can synergise with chemotherapy in preclinical cancer models, and early clinical studies are promising. We set out to define the immunological changes associated with this therapeutic combination to identify biomarkers for a response to the therapy. Here, we present serial immunomonitoring examining dendritic cell and T cell subpopulations over sequential courses of chemoimmunotherapy. Methods Fifteen patients with mesothelioma received up to six 21-day cycles of pemetrexed plus cisplatin chemotherapy and anti-CD40 (CP-870,893). Peripheral blood was collected weekly, and analysed by flow cytometry. Longitudinal immunophenotyping data was analysed by linear mixed modelling, allowing for variation between patients. Exploratory analyses testing for any correlation between overall survival and immunophenotyping data were undertaken up to the third cycle of treatment. Results Large statistically significant cyclical variations in the proportions of BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells were observed, although all subsets returned to baseline levels after each cycle and no significant changes were observed between start and end of treatment. Expression levels of CD40 and HLA-DR on dendritic cells were also cyclically modulated, again without significant change between start and end of treatment. CD8 and CD4 T cell populations, along with regulatory T cells, effector T cells, and markers of proliferation and activation, showed similar patterns of statistically significant cyclical modulation in response to therapy without changes between start and end of treatment. Exploratory analysis of endpoints revealed that patients with a higher than average proportion of BDCA-2+ dendritic cells (p = 0.010) or a higher than average proportion of activated (ICOS+) CD8 T cells (0.022) in pretreatment blood samples had better overall survival. A higher than average proportion of BDCA-3+ dendritic cells was associated with poorer overall survival at both the second (p = 0.008) and third (p = 0.014) dose of anti-CD40. Conclusions Substantial cyclical variations in DC and T cell populations during sequential cycles of chemoimmunotherapy highlight the critical importance of timing of immunological biomarker assessments in interpretation of results and the value of linear mixed modelling in interpretation of longitudinal change over a full treatment course. Trial registration Australia New Zealand Clinical Trials Registry number ACTRN12609000294257 (18th May 2009).
Collapse
Affiliation(s)
- Alison M McDonnell
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.,National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alistair Cook
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.,National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Bruce W S Robinson
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.,National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Richard A Lake
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.,National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Anna K Nowak
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia. .,National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley, WA, 6009, Australia. .,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
| |
Collapse
|
104
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
105
|
Modulation of Hepatitis C Virus-Specific CD8 Effector T-Cell Function with Antiviral Effect in Infectious Hepatitis C Virus Coculture Model. J Virol 2017; 91:JVI.02129-16. [PMID: 28275182 DOI: 10.1128/jvi.02129-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
The antiviral effects of hepatitis C virus (HCV)-specific CD8 T cells have been shown in an HCV replicon system but not in an authentic infectious HCV cell culture (HCVcc) system. Here, we developed tools to examine the antigenicity of HCV-infected HLA-A2-positive Huh7.5 hepatoma cells (Huh7.5A2 cells) in activating HCV-specific CD8 T cells and the downstream antiviral effects. Infectious HCV epitope mutants encoding the well-defined genotype 1a-derived HLA-A2-restricted HCV NS3-1073 or NS5-2594 epitope were generated from a genotype 2a-derived HCV clone (Jc1Gluc2A) by site-directed mutagenesis. CD8 T-cell lines specific for NS3-1073 and NS5-2594 were expanded from HCV-seropositive persons by peptide stimulation in vitro or engineered from HCV-seronegative donor T cells by transduction of a lentiviral vector expressing HCV-specific T-cell receptors. HCV-specific CD8 T cells were cocultured with Huh7.5 cells that were pulsed with titrating doses of HCV epitope peptides or infected with HCV epitope mutants. HCV-specific CD8 T-cell activation (CD107a, gamma interferon, macrophage inflammatory protein 1β, tumor necrosis factor alpha) was dependent on the peptide concentrations and the relative percentages of HCV-infected Huh7.5A2 cells. HCV-infected Huh7.5A2 cells activated HCV-specific CD8 T cells at levels comparable to those achieved with 0.1 to 2 μM pulsed peptides, providing a novel estimate of the level at which endogenously processed HCV epitopes are presented on HCV-infected cells. While HCV-specific CD8 T-cell activation with cytolytic and antiviral effects was blunted by PD-L1 expression on HCV-infected Huh7.5A2 cells, resulting in the improved viability of Huh7.5A2 cells, PD-1 blockade reversed this effect, producing enhanced cytolytic elimination of HCV-infected Huh7.5A2 cells. Our findings, obtained using an infectious HCVcc system, show that the HCV-specific CD8 T-cell function is modulated by antigen expression levels, the percentage of HCV-infected cells, and the PD-1/PD-L1 pathways and has antiviral and cytotoxic effects.IMPORTANCE We developed several novel molecular and immunological tools to study the interactions among HCV, HCV-infected hepatocytes, and HCV-specific CD8 T cells. Using these tools, we show the level at which HCV-infected hepatoma cells present endogenously processed HCV epitopes to HCV-specific CD8 T cells with antiviral and cytotoxic effects. We also show the marked protective effect of PD-L1 expression on HCV-infected hepatoma cells against HCV-specific CD8 T cells.
Collapse
|
106
|
Hepatitis C Virus-Specific T Cell Receptor mRNA-Engineered Human T Cells: Impact of Antigen Specificity on Functional Properties. J Virol 2017; 91:JVI.00010-17. [PMID: 28228595 DOI: 10.1128/jvi.00010-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/07/2017] [Indexed: 01/07/2023] Open
Abstract
Therapy with genetically modified autologous T cells has shown great promise in cancer therapy. For an efficient control of hepatitis C virus (HCV) infection, cytotoxic T cells (CTL) are pivotal, but persistence of activated T cells may lead to liver toxicity. Here, anti-HCV T cell receptors (TCRs) recognizing the HCV nonstructural (NS) NS3 or NS5 viral peptide target were examined by mRNA transfection of human peripheral blood lymphocytes (PBLs) derived from healthy donors as well as chronically infected HCV patients. Immunological analysis shows that while the CTLs expressing the NS5-specific TCR reduced HCV RNA replication by a noncytotoxic mechanism, the NS3-specific TCR-redirected CTLs were polyfunctional and inhibited HCV RNA replication through antigen-specific cytotoxicity. Transcriptome signatures from these two types of CTL responses revealed uniquely expressed gene clusters upon encountering hepatoma target cells presenting endogenously expressed HCV proteins. The NS3 TCR induced a rapid expression of apoptotic signaling pathways and formation of embryonic gene clusters, whereas the NS5A TCR activation induced extended proliferative and metabolic pathways as the HCV target cells survived. Our results provide detailed insights into basic HCV T cell immunology and have clinical relevance for redirecting T cells to target virally infected hepatoma cells.IMPORTANCE Due to the protective ability of HCV-specific T cells and the hepatotoxic potential that they possess, there is a great need for the understanding of the functional aspects of HCV-specific T cells. To circumvent the low level of precursor frequency in patients, we engineered primary CD8+ T cells by mRNA TCR vectors to confer HCV specificity to new T cells. HCV TCRs that differ in antigen specificity and polyfunctionality were examined. mRNA TCR engineering of peripheral blood lymphocytes from healthy donors or chronically infected HCV patients resulted in strikingly high levels of HCV TCR expression and HCV-specific responses. While a cytotoxicity response from a polyfunctional T cell activation caused hepatotoxicity and the rapid induction of apoptotic signaling pathways, the noncytotoxic T cell activation showed extended proliferative, metabolic pathways and persistence of HCV target cells. Our results provide detailed insights into basic HCV T cell immunology and have clinical relevance for immune protection of HCV-associated diseases.
Collapse
|
107
|
Torres-Cornejo A, Lauer GM. Hurdles to the Development of Effective HBV Immunotherapies and HCV Vaccines. Pathog Immun 2017; 2:102-125. [PMID: 28664194 PMCID: PMC5486412 DOI: 10.20411/pai.v2i1.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infections with HBV and HCV continue to be major public health problems, with hundreds of millions of people infected worldwide; this is despite the availability of both an effective prophylactic HBV vaccine for more than 3 decades and potent direct antivirals for HBV and, more recently, HCV infection. Consequently, development of HBV immunotherapies and prophylactic HCV vaccines remains extremely urgent, but limited funding and significant gaps in our understanding of the correlates of immune protection pose serious hurdles for the development of novel immune-based interventions. Here we discuss immunological questions related to HBV and HCV, some shared and some pertinent to only 1 of the viruses, that should be addressed for the rational design of HBV immunotherapies and HCV vaccines.
Collapse
Affiliation(s)
- Almudena Torres-Cornejo
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Georg M. Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
108
|
Gernoux G, Wilson JM, Mueller C. Regulatory and Exhausted T Cell Responses to AAV Capsid. Hum Gene Ther 2017; 28:338-349. [PMID: 28323492 PMCID: PMC5399736 DOI: 10.1089/hum.2017.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
Recombinant adeno-associated viruses (AAVs) are quickly becoming the preferred viral vector for viral gene delivery for the treatment of a wide variety of genetic disorders. However, since their use in a clinical trial targeting hemophilia B patients 10 years ago, immune responses to the AAV capsid appear to have hampered some of the early clinical gene transfer efficacy. Indeed, AAV-based gene transfer has been shown to reactivate capsid-specific memory T cells, which have correlated with a decline in AAV-transduced tissue in some patients. Importantly, clinical trials have also shown that this reactivation can be quelled by administering time-course taper of glucocorticoid steroids before or after dosing. More recently, two clinical studies have shown that AAV gene transfer is not only able to induce a deleterious immune response, but also can result in the initiation of a tolerance to the AAV capsid mediated by regulatory T cells and exhausted T cells. This article reviews clinical trials describing immune responses to AAV, as well as the mechanisms responsible for immune tolerance in chronic infections and how it could apply to AAV-based gene transfer. A better understanding of both cytotoxic and tolerogenic immune responses to recombinant AAV will lead to safer gene transfer protocols in patients.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christian Mueller
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
109
|
Cachem FCOF, Dias AS, Monteiro C, Castro JR, Fernandes G, Delphim L, Almeida AJ, Tavares F, Maciel AMA, Amendola-Pires MM, Brandão-Mello CE, Bento CAM. The proportion of different interleukin-17-producing T-cell subsets is associated with liver fibrosis in chronic hepatitis C. Immunology 2017; 151:167-176. [PMID: 28140446 DOI: 10.1111/imm.12720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Studies have suggested the pivotal role of T helper type 1 (Th1) -related cytokines on the outcome of hepatitis C virus (HCV) infection. Nevertheless, the role of different interleukin-17 (IL-17) -secreting T cells on chronic hepatitis C (CHC) is less clear. Here, the in vivo IL-1β, IL-6, and IL-17 levels were positively correlated with both alanine transaminase (ALT) levels and hepatic lesions. When compared with the control group, CHC patients showed a lower proportion of IL-17-secreting (CD4+ and CD8+ ) T cells capable of simultaneously producing IL-21. Moreover, the percentage of IL-10-secreting Th17 cells was also lower in CHC patients. Notably, advanced liver lesions were observed among those patients with lower percentage levels of IL-17-producing T cells positive for IL-21, interferon-γ (IFN-γ) and IL-10. In contrast, the severity of hepatic damage was associated with peripheral single IL-17+ T cells. The percentage of IL-17+ IL-21- IFN-γ+ (CD4+ and CD8+ ) T-cell phenotypes was positively associated with plasma CD14 levels. Finally, elevated levels of circulating CD14 were detected among CHC patients with extensive liver damage. In summary, although preliminary, our results suggest that a balance between different IL-17-producing T cells, associated with peripheral levels of CD14, may be a progress marker for liver disease in chronically HCV-infected patients.
Collapse
Affiliation(s)
- Fabio C O F Cachem
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - Aleida S Dias
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - José Roberto Castro
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Fernandes
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Delphim
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adilson J Almeida
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Felipe Tavares
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M A Maciel
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Marcia M Amendola-Pires
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Carlos E Brandão-Mello
- Division of Gastroenterology & Hepatology, Internal Medicine Department, HUGG, UNIRIO, Rio de Janeiro, Brazil
| | - Cleonice A M Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
110
|
Volckmar J, Gereke M, Ebensen T, Riese P, Philipsen L, Lienenklaus S, Wohlleber D, Klopfleisch R, Stegemann-Koniszewski S, Müller AJ, Gruber AD, Knolle P, Guzman CA, Bruder D. Targeted antigen delivery to dendritic cells elicits robust antiviral T cell-mediated immunity in the liver. Sci Rep 2017; 7:43985. [PMID: 28266658 PMCID: PMC5339819 DOI: 10.1038/srep43985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Hepatotropic viruses such as hepatitis C virus cause life-threatening chronic liver infections in millions of people worldwide. Targeted in vivo antigen-delivery to cross-presenting dendritic cells (DCs) has proven to be extraordinarily efficient in stimulating antigen-specific T cell responses. To determine whether this approach would as well be suitable to induce local antiviral effector T cells in the liver we compared different vaccine formulations based on either the targeting of DEC-205 or TLR2/6 on cross-presenting DCs or formulations not involving in vivo DC targeting. As read-outs we used in vivo hepatotropic adenovirus challenge, histology and automated multidimensional fluorescence microscopy (MELC). We show that targeted in vivo antigen delivery to cross-presenting DCs is highly effective in inducing antiviral CTLs capable of eliminating virus-infected hepatocytes, while control vaccine formulation not involving DC targeting failed to induce immunity against hepatotropic virus. Moreover, we observed distinct patterns of CD8+ T cell interaction with virus-infected and apoptotic hepatocytes in the two DC-targeting groups suggesting that the different vaccine formulations may stimulate distinct types of effector functions. Our findings represent an important step toward the future development of vaccines against hepatotropic viruses and the treatment of patients with hepatic virus infection after liver transplantation to avoid reinfection.
Collapse
Affiliation(s)
- Julia Volckmar
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Philipsen
- Intravital Microscopy in Infection and Immunity, Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Lienenklaus
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Technische Universität München, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Sabine Stegemann-Koniszewski
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas J Müller
- Intravital Microscopy in Infection and Immunity, Institute for Molecular and Clinical Immunology, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, Technische Universität München, Germany.,Institute of Molecular Medicine and Experimental Immunology, Universität Bonn, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany &Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Medical Faculty of the Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
111
|
Spencer AJ, Longley RJ, Gola A, Ulaszewska M, Lambe T, Hill AVS. The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8 + T Cells Present in the Liver. THE JOURNAL OF IMMUNOLOGY 2017; 198:2006-2016. [PMID: 28087668 PMCID: PMC5318841 DOI: 10.4049/jimmunol.1601209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Since the demonstration of sterile protection afforded by injection of irradiated sporozoites, CD8+ T cells have been shown to play a significant role in protection from liver-stage malaria. This is, however, dependent on the presence of an extremely high number of circulating effector cells, thought to be necessary to scan, locate, and kill infected hepatocytes in the short time that parasites are present in the liver. We used an adoptive transfer model to elucidate the kinetics of the effector CD8+ T cell response in the liver following Plasmodium berghei sporozoite challenge. Although effector CD8+ T cells require <24 h to find, locate, and kill infected hepatocytes, active migration of Ag-specific CD8+ T cells into the liver was not observed during the 2-d liver stage of infection, as divided cells were only detected from day 3 postchallenge. However, the percentage of donor cells recruited into division was shown to indicate the level of Ag presentation from infected hepatocytes. By titrating the number of transferred Ag-specific effector CD8+ T cells and sporozoites, we demonstrate that achieving protection toward liver-stage malaria is reliant on CD8+ T cells being able to locate infected hepatocytes, resulting in a protection threshold dependent on a fine balance between the number of infected hepatocytes and CD8+ T cells present in the liver. With such a fine balance determining protection, achieving a high number of CD8+ T cells will be critical to the success of a cell-mediated vaccine against liver-stage malaria.
Collapse
Affiliation(s)
| | - Rhea J Longley
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Anita Gola
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
112
|
Ikram A, Obaid A, Awan FM, Hanif R, Naz A, Paracha RZ, Ali A, Janjua HA. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine. Antiviral Res 2017; 137:112-124. [PMID: 27984060 DOI: 10.1016/j.antiviral.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rumeza Hanif
- Department of Healtcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rehan Zafar Paracha
- Department of Computer Sciences, RCMS, National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan.
| |
Collapse
|
113
|
Keoshkerian E, Hunter M, Cameron B, Nguyen N, Sugden P, Bull R, Zekry A, Maher L, Seddiki N, Zaunders J, Kelleher A, Lloyd AR. Hepatitis C-specific effector and regulatory CD4 T-cell responses are associated with the outcomes of primary infection. J Viral Hepat 2016; 23:985-993. [PMID: 27558465 DOI: 10.1111/jvh.12576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
Clearance of primary hepatitis C virus (HCV) infection has been associated with strong and broadly targeted cellular immune responses. This study aimed to characterize HCV-specific CD4+ effector and regulatory T-cell numbers and cytokine production during primary infection. Antigen-specific CD4+ T-cell responses were investigated in a longitudinal cohort of subjects from pre-infection to postoutcome, including subjects who cleared [n=12] or became chronically infected [n=17]. A cross-sectional cohort with previously cleared, or chronic infection [n=15 for each], was also studied. Peripheral blood mononuclear cells were incubated with HCV antigens and surface stained for T-effector (CD4+CD25high CD134+CD39-) and T-regulatory (CD4+CD25high CD134+CD39+) markers, and culture supernatants assayed for cytokine production. Contrary to expectations, the breadth and magnitude of the HCV-specific CD4+ T-cell responses were higher in subjects who became chronically infected. Subjects who cleared the virus had HCV-specific CD4+ T-cell responses dominated by effector T cells and produced higher levels of IFN-γ, in contrast to HCV-specific CD4+ T-cell responses dominated by regulatory T cells and more IL-10 production in those who became chronically infected. Better understanding of the role of antigen-specific CD4+ T-cell responses in primary HCV will further define pathogenesis and help guide development of a preventative vaccine.
Collapse
Affiliation(s)
- E Keoshkerian
- UNSW Australia, Kirby Institute (Viral Immunology Systems Program, VISP) and School of Medical Sciences (SOMS), Kensington, NSW, Australia
| | - M Hunter
- UNSW Australia, SOMS (Infection and Immunology Research Centre, IIRC), Kensington, NSW, Australia
| | - B Cameron
- UNSW Australia, SOMS (Infection and Immunology Research Centre, IIRC), Kensington, NSW, Australia
| | - N Nguyen
- UNSW Australia, SOMS (Infection and Immunology Research Centre, IIRC), Kensington, NSW, Australia
| | - P Sugden
- UNSW Australia, SOMS (Infection and Immunology Research Centre, IIRC), Kensington, NSW, Australia
| | - R Bull
- UNSW Australia, Kirby Institute (Viral Immunology Systems Program, VISP) and School of Medical Sciences (SOMS), Kensington, NSW, Australia
| | - A Zekry
- UNSW Australia, St George and Sutherland Clinical School, Sydney, NSW, Australia
| | - L Maher
- UNSW Australia, Kirby Institute (Viral Hepatitis Epidemiology and Prevention Program VHEPP), Kensington, NSW, Australia
| | - N Seddiki
- The Vaccine Research Institute (VRI), INSERM, Créteil, France
| | - J Zaunders
- UNSW Australia, Kirby Institute (Immunovirology and Pathogenesis Program, IVPP), Kensington, NSW, Australia
| | - A Kelleher
- UNSW Australia, Kirby Institute (Immunovirology and Pathogenesis Program, IVPP), Kensington, NSW, Australia
| | - A R Lloyd
- UNSW Australia, Kirby Institute (Viral Immunology Systems Program, VISP) and School of Medical Sciences (SOMS), Kensington, NSW, Australia
| | | |
Collapse
|
114
|
Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol 2016; 90:11259-11278. [PMID: 27707928 PMCID: PMC5126381 DOI: 10.1128/jvi.01424-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR- CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.
Collapse
|
115
|
Immunoproteasome induction is suppressed in hepatitis C virus-infected cells in a protein kinase R-dependent manner. Exp Mol Med 2016; 48:e270. [PMID: 27833096 PMCID: PMC5133375 DOI: 10.1038/emm.2016.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/11/2016] [Indexed: 02/08/2023] Open
Abstract
By changing the relative abundance of generated antigenic peptides through alterations in the proteolytic activity, interferon (IFN)-γ-induced immunoproteasomes influence the outcome of CD8+ cytotoxic T lymphocyte responses. In the present study, we investigated the effects of hepatitis C virus (HCV) infection on IFN-γ-induced immunoproteasome expression using a HCV infection cell culture system. We found that, although IFN-γ induced the transcriptional expression of mRNAs encoding the β1i/LMP2, β2i/MECL-1 and β5i/LMP7 immunoproteasome subunits, the formation of immunoproteasomes was significantly suppressed in HCV-infected cells. This finding indicated that immunoproteasome induction was impaired at the translational or posttranslational level by HCV infection. Gene silencing studies showed that the suppression of immunoproteasome induction is essentially dependent on protein kinase R (PKR). Indeed, the generation of a strictly immunoproteasome-dependent cytotoxic T lymphocyte epitope was impaired in in vitro processing experiments using isolated 20S proteasomes from HCV-infected cells and was restored by the silencing of PKR expression. In conclusion, our data point to a novel mechanism of immune regulation by HCV that affects the antigen-processing machinery through the PKR-mediated suppression of immunoproteasome induction in infected cells.
Collapse
|
116
|
Ghoneim HE, Zamora AE, Thomas PG, Youngblood BA. Cell-Intrinsic Barriers of T Cell-Based Immunotherapy. Trends Mol Med 2016; 22:1000-1011. [PMID: 27825667 DOI: 10.1016/j.molmed.2016.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
Prolonged exposure of CD8+ T cells to their cognate antigen can result in exhaustion of effector functions enabling the persistence of infected or transformed cells. Recent advances in strategies to rejuvenate host effector function using Immune Checkpoint Blockade have resulted in tremendous success towards the treatment of several cancers. However, it is unclear if T cell rejuvenation results in long-lived antitumor functions. Emerging evidence suggests that T cell exhaustion may also represent a significant impediment in sustaining long-lived antitumor activity by chimeric antigen receptor T cells. Here, we discuss current findings regarding transcriptional regulation during T cell exhaustion and address the hypothesis that epigenetics may be a potential barrier to achieving the maximum benefit of T cell-based immunotherapies.
Collapse
Affiliation(s)
- Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben A Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
117
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
118
|
PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc Natl Acad Sci U S A 2016; 113:E7231-E7239. [PMID: 27799548 DOI: 10.1073/pnas.1603738113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein encoded by the autoimmune-associated protein tyrosine phosphatase nonreceptor type 22 gene, PTPN22, has wide-ranging effects in immune cells including suppression of T-cell receptor signaling and promoting efficient production of type I interferons (IFN-I) by myeloid cells. Here we show that mice deficient in PTPN22 resist chronic viral infection with lymphocytic choriomeningitis virus clone 13 (LCMV cl13). The numbers and function of viral-specific CD4 T lymphocytes is greatly enhanced, whereas expression of the IFNβ-induced IL-2 repressor, cAMP-responsive element modulator (CREM) is reduced. Reduction of CREM expression in wild-type CD4 T lymphocytes prevents the loss of IL-2 production by CD4 T lymphocytes during infection with LCMV cl13. These findings implicate the IFNβ/CREM/IL-2 axis in regulating T-lymphocyte function during chronic viral infection.
Collapse
|
119
|
Merat SJ, Molenkamp R, Wagner K, Koekkoek SM, van de Berg D, Yasuda E, Böhne M, Claassen YB, Grady BP, Prins M, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance. PLoS One 2016; 11:e0165047. [PMID: 27776169 PMCID: PMC5077102 DOI: 10.1371/journal.pone.0165047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/24/2016] [Indexed: 01/18/2023] Open
Abstract
Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.
Collapse
Affiliation(s)
| | - Richard Molenkamp
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, the Netherlands
| | - Sylvie M. Koekkoek
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | - Bart P. Grady
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of infectious diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Menno D. de Jong
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Janke Schinkel
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
120
|
Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programed death-ligand 1 (Avelumab). AIDS 2016; 30:2487-2493. [PMID: 27490642 PMCID: PMC5051527 DOI: 10.1097/qad.0000000000001217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The programed death-1 (PD1)/programed death-ligand 1 (PD-L1) pathway plays a critical role in balancing immunity and host immunopathology. During chronic HIV/SIV infection, there is persistent immune activation accompanied by accumulation of virus-specific cells with terminally differentiated phenotypes and expression of regulatory receptors such as PD1. These observations led us to hypothesize that the PD1/PD-L1 pathway contributes to the functional dysregulation and ineffective viral control, and its blockade may be a potential immunotherapeutic target.
Collapse
|
121
|
El-Bendary M, Hawas S, El-Hammady D, Al-Hadidy AHM, Eldegla H. Profile of expression of certain markers of apoptosis in chronic hepatitis C and hepatitis B patients in an Egyptian population. Arch Virol 2016; 161:2369-2378. [PMID: 27262945 DOI: 10.1007/s00705-016-2897-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
Increased peripheral blood mononuclear cell (PBMC) apoptosis during viral hepatitis has been suggested to cause impaired regulation of the immune response and maintenance of the infection. The purpose of this work was to study the expression of some apoptotic markers in chronic hepatitis B (CHB) and C (CHC) infections in order to understand the underlying mechanisms of immune failure and viral persistence. This study aims to evaluate the level of PBMC apoptosis and the expression of the apoptosis-related proteins Fas and Bcl-2 in CHB and CHC patients. This case control study was carried out on 38 cases (group I: 20 chronic HCV patients; group II: 18 chronic HBV patients) attending the Tropical Medicine Clinic, Mansoura University Hospital, in addition to 10 healthy controls. Morphological assessment of apoptosis of cultured PBMCs was done. The level of Fas and Bcl-2 expression by PBMCs was detected using flow cytometry. An increased level of apoptosis correlated with increased Fas expression, but no increase in Bcl-2 expression was found on the surface of PBMCs in CHC and CHB patients compared to controls. No significant difference in the level of apoptosis, Fas, or Bcl2 expression between CHC and CHB patients was detected. Modulation of apoptosis, particularly by manipulation of Fas receptor activation, may be of therapeutic benefit in chronic CHB and CHC.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine and Hepatology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Samia Hawas
- Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dina El-Hammady
- Tropical Medicine and Hepatology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Heba Eldegla
- Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
122
|
Huang J, Huang K, Xu R, Wang M, Liao Q, Xiong H, Li C, Tang X, Shan Z, Zhang M, Rong X, Nelson K, Fu Y. The Associations of HLA-A*02:01 and DRB1*11:01 with Hepatitis C Virus Spontaneous Clearance Are Independent of IL28B in the Chinese Population. Sci Rep 2016; 6:31485. [PMID: 27511600 PMCID: PMC4980596 DOI: 10.1038/srep31485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Spontaneous clearance of hepatitis C virus (HCV) occurs in 10-40% of the infections. Specific human leukocyte antigen (HLA) alleles have been identified in associating with HCV clearance. However, data on the association of HLA with the spontaneous clearance of HCV are scarce in the Chinese population. In the current study we studied the HLA class I and class II genes in 231 Chinese voluntary blood donors who had cleared HCV infection spontaneously compared to 429 subjects with chronic HCV infections. We also studied their IL28B SNP (rs8099917) genotype, since a number of investigators have found a strong association of IL28B with spontaneous or treatment induced HCV clearance. We found that HLA-A*02:01 and DQB1*05:02 distributed differently between the two groups after Bonferroni correction (odds ratio [OR] = 1.839, Pc = 0.024 and OR = 0.547, Pc = 0.016, respectively). Multivariate logistic regression analysis suggested that A*02:01 and DRB1*11:01 (OR = 1.798, P = 0.008 and OR = 1.921, P = 0.005, respectively) were associated with HCV spontaneous clearance, independent of age, gender and IL28B polymorphism. We concluded that in the Chinese population, HLA-A*02:01 and DRB1*11:01 might be associated with the host capacity to clear HCV independent of IL28B, which suggesting that the innate and adaptive immune responses both play an important role in the control of HCV.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Huaping Xiong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Faculty of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Kenrad Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| |
Collapse
|
123
|
Demers KR, Makedonas G, Buggert M, Eller MA, Ratcliffe SJ, Goonetilleke N, Li CK, Eller LA, Rono K, Maganga L, Nitayaphan S, Kibuuka H, Routy JP, Slifka MK, Haynes BF, McMichael AJ, Bernard NF, Robb ML, Betts MR. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog 2016; 12:e1005805. [PMID: 27486665 PMCID: PMC4972399 DOI: 10.1371/journal.ppat.1005805] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
The loss of HIV-specific CD8+ T cell cytolytic function is a primary factor underlying progressive HIV infection, but whether HIV-specific CD8+ T cells initially possess cytolytic effector capacity, and when and why this may be lost during infection, is unclear. Here, we assessed CD8+ T cell functional evolution from primary to chronic HIV infection. We observed a profound expansion of perforin+ CD8+ T cells immediately following HIV infection that quickly waned after acute viremia resolution. Selective expression of the effector-associated transcription factors T-bet and eomesodermin in cytokine-producing HIV-specific CD8+ T cells differentiated HIV-specific from bulk memory CD8+ T cell effector expansion. As infection progressed expression of perforin was maintained in HIV-specific CD8+ T cells with high levels of T-bet, but not necessarily in the population of T-betLo HIV-specific CD8+ T cells that expand as infection progresses. Together, these data demonstrate that while HIV-specific CD8+ T cells in acute HIV infection initially possess cytolytic potential, progressive transcriptional dysregulation leads to the reduced CD8+ T cell perforin expression characteristic of chronic HIV infection. Previous studies have demonstrated that HIV-specific CD8+ T cells are critical for the initial control of HIV infection. However, this control is typically incomplete, being able to neither clear infection nor maintain plasma viremia below undetectable levels. Mounting evidence has implicated CD8+ T cell cytotoxic capacity as a critical component of the HIV-specific response associated with spontaneous long-term control of HIV replication. CD8+ T cell cytotoxic responses are largely absent in the vast majority of HIV chronically infected individuals and it is unclear when or why this functionality is lost. In this study we show that HIV-specific CD8+ T cells readily express the cytolytic protein perforin during the acute phase of chronic progressive HIV infection but rapidly lose the ability to upregulate this molecule following resolution of peak viremia. Maintenance of perforin expression by HIV-specific CD8+ T cells appears to be associated with the expression level of the transcription factor T-bet, but not with the T-bet paralogue, Eomes. These findings further delineate qualitative attributes of CD8+ T cell-mediated immunity that may serve as targets for future HIV vaccine and therapeutic research.
Collapse
Affiliation(s)
- Korey R. Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George Makedonas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinksa University Hospital Huddinge, Stockholm, Sweden
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Sarah J. Ratcliffe
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nilu Goonetilleke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England
| | - Chris K. Li
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kathleen Rono
- Walter Reed Project-Kenya, Kenya Medical Research Institute, Kericho, Kenya
| | | | - Sorachai Nitayaphan
- Department of Retrovirology, United States Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Makerere University Medical School, Kampala, Uganda
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Andrew J. McMichael
- NDM Research Building, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
124
|
Moreno-Cubero E, Larrubia JR. Specific CD8 + T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol 2016; 22:6469-6483. [PMID: 27605882 PMCID: PMC4968127 DOI: 10.3748/wjg.v22.i28.6469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
Collapse
|
125
|
Hepatitis C Virus Stimulates Murine CD8α-Like Dendritic Cells to Produce Type I Interferon in a TRIF-Dependent Manner. PLoS Pathog 2016; 12:e1005736. [PMID: 27385030 PMCID: PMC4934921 DOI: 10.1371/journal.ppat.1005736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) induces interferon (IFN) stimulated genes in the liver despite of distinct innate immune evasion mechanisms, suggesting that beyond HCV infected cells other cell types contribute to innate immune activation. Upon coculture with HCV replicating cells, human CD141+ myeloid dendritic cells (DC) produce type III IFN, whereas plasmacytoid dendritic cells (pDC) mount type I IFN responses. Due to limitations in the genetic manipulation of primary human DCs, we explored HCV mediated stimulation of murine DC subsets. Coculture of HCV RNA transfected human or murine hepatoma cells with murine bone marrow-derived DC cultures revealed that only Flt3-L DC cultures, but not GM-CSF DC cultures responded with IFN production. Cells transfected with full length or subgenomic viral RNA stimulated IFN release indicating that infectious virus particle formation is not essential in this process. Use of differentiated DC from mice with genetic lesions in innate immune signalling showed that IFN secretion by HCV-stimulated murine DC was independent of MyD88 and CARDIF, but dependent on TRIF and IFNAR signalling. Separating Flt3-L DC cultures into pDC and conventional CD11b-like and CD8α-like DC revealed that the CD8α-like DC, homologous to the human CD141+ DC, release interferon upon stimulation by HCV replicating cells. In contrast, the other cell types and in particular the pDC did not. Injection of human HCV subgenomic replicon cells into IFN-β reporter mice confirmed the interferon induction upon HCV replication in vivo. These results indicate that HCV-replicating cells stimulate IFN secretion from murine CD8α-like DC independent of infectious virus production. Thus, this work defines basic principles of viral recognition by murine DC populations. Moreover, this model should be useful to explore the interaction between dendritic cells during HCV replication and to define how viral signatures are delivered to and recognized by immune cells to trigger IFN release. HCV is an RNA virus that, following exposure, in most cases establishes chronic infection. The virus has evolved numerous immune evasion strategies, including direct interference with interferon production. Nevertheless, HCV infection activates interferon-stimulated genes in the liver, implying that non-infected cells secrete IFN. Several DC subsets have been implicated in HCV sensing and production of IFN; however, the molecular mechanism resulting in HCV sensing is poorly understood. Using murine bone marrow derived DC, we dissected basic principles of HCV innate immune recognition and activation of dendritic cells. We show that HCV recognition by murine DCs depends on TRIF and IFN receptor signalling. This indicated the involvement of TLR3 and of the IFN receptor dependent amplification loop. Infectious virus production is dispensable since cells carrying subgenomic HCV replicons are also recognized. Moreover, specific DC subtypes, i.e. CD8α-like DC, are responsible for recognition of HCV. These findings highlight that specific murine DC subpopulations are uniquely capable of recognizing HCV replicating cells independent of infectious virus production. These observations open novel opportunities to explore the mechanisms of inter-cellular communication that mediate activation and IFN production of non-infected immune cells and to dissect the role of DC subsets in immune control.
Collapse
|
126
|
Abstract
Hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) are responsible for most cases of viral hepatitis. Infection by each type of virus results in a different typical natural disease course and clinical outcome that are determined by virological and immunological factors. HCV tends to establish a chronic persistent infection, whereas HAV does not. HBV is effectively controlled in adults, although it persists for a lifetime after neonatal infection. In this Review, we discuss the similarities and differences in immune responses to and immunopathogenesis of HAV, HBV and HCV infections, which may explain the distinct courses and outcomes of each hepatitis virus infection.
Collapse
|
127
|
Huik K, Avi R, Pauskar M, Kallas E, Jõgeda EL, Karki T, Rüütel K, Talu A, Abel-Ollo K, Uusküla A, Carrillo A, Ahuja SK, He W, Lutsar I. A CCL5 Haplotype Is Associated with Low Seropositivity Rate of HCV Infection in People Who Inject Drugs. PLoS One 2016; 11:e0156850. [PMID: 27304910 PMCID: PMC4909289 DOI: 10.1371/journal.pone.0156850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/22/2016] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The role of CC chemokine receptor 5 (CCR5) and its ligand CCL5 on the pathogenesis of HIV infection has been well studied but not for HCV infection. Here, we investigated whether CCL5 haplotypes influence HIV and HCV seropositivity among 373 Caucasian people who inject drugs (PWID) from Estonia. METHODS Study included 373 PWID; 56% were HIV seropositive, 44% HCV seropositive and 47% co-infected. Four CCL5 haplotypes (A-D) were derived from three CCL5 polymorphisms (rs2107538/rs2280788/rs2280789) typed by Taqman allelic discrimination assays. The data of CCR5 haplotypes were used from our previous study. The association between CCL5 haplotypes with HIV and/or HCV seropositivity was determined using logistic regression analysis. RESULTS Possessing CCL5 haplotype D (defined by rs2107538A/rs2280788G/rs2280789C) decreased the odds of HCV seropositivity compared to those not possessing it (OR = 0.19; 95% CI 0.09-0.40), which remained significant after adjustment to co-variates (OR = 0.08; 95% CI 0.02-0.29). An association of this haplotype with HIV seropositivity was not found. In step-wise logistic regression with backward elimination CCL5 haplotype D and CCR5 HHG*1 had reduced odds for HCV seropositivity (OR = 0.28 95% CI 0.09-0.92; OR = 0.23 95% CI 0.08-0.68, respectively) compared to those who did not possess these haplotypes, respectively. CONCLUSIONS Our results suggest that among PWID CCL5 haplotype D and CCR5 HHG*1 independently protects against HCV. Our findings highlight the importance of CCL5 genetic variability and CCL5-CCR5 axis on the susceptibility to HCV.
Collapse
Affiliation(s)
- Kristi Huik
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
- * E-mail:
| | - Radko Avi
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Merit Pauskar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Eveli Kallas
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Ene-Ly Jõgeda
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Tõnis Karki
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kristi Rüütel
- National Institute for Health Development, Tallinn 11619, Estonia
| | - Ave Talu
- Institute of Family Medicine and Public Health, University of Tartu, Tartu 50411, Estonia
| | - Katri Abel-Ollo
- National Institute for Health Development, Tallinn 11619, Estonia
| | - Anneli Uusküla
- Institute of Family Medicine and Public Health, University of Tartu, Tartu 50411, Estonia
| | - Andrew Carrillo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229–3900, United States of America
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas 78229, United States of America
| | - Sunil K. Ahuja
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229–3900, United States of America
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas 78229, United States of America
| | - Weijing He
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229–3900, United States of America
- Veterans Administration Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas 78229, United States of America
| | - Irja Lutsar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
128
|
Abdelwahab SF. Cellular immune response to hepatitis-C-virus in subjects without viremia or seroconversion: is it important? Infect Agent Cancer 2016; 11:23. [PMID: 27186234 PMCID: PMC4867533 DOI: 10.1186/s13027-016-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) causes chronic infection and represents a global health burden. To date, there is no licensed vaccine for HCV. The high viral replication rate and the existence of several HCV genotypes and quasispecies hamper the development of an effective universal vaccine. In this regard, the current HCV vaccine candidates show genotype-specific protection or narrow cross reactivity against other genotypes. Importantly, HCV spontaneous clearance occurs in 15-50 % of infected subjects, indicating that natural resistance to chronic infection exists. This phenomenon was demonstrated among humans and chimpanzees and continues to motivate researchers attempting to develop an effective HCV vaccine. However, what constitutes a protective immune response or correlate of protection against HCV infection is still vague. Additionally, the mechanisms behind successful HCV clearance suggest the coordination of several arms of the immune system, with cell-mediated immunity (CMI) playing a crucial role in this process. By contrast, although neutralizing antibodies have been identified, they are isolate-specific and poorly correlate with viral clearance. Antigen-specific CD4 T cells, instead, correlate with transient decline in HCV viremia and long-lasting control of the infection. Unfortunately, HCV has been very successful in evading host immune mechanisms, leading to complications such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Interestingly, CMI to HCV antigens were shown among exposed individuals without viremia or seroconversion, suggesting the clearance of prior HCV infection(s). These individuals include family members living with HCV-infected subjects, healthcare workers, IV drug users, and sexual contacts. The correlates of protection could be closely monitored among these individuals. This review provides a summary of HCV-specific immune responses in general and of CMI in particular in these cohorts. The importance of these CMI responses are discussed.
Collapse
Affiliation(s)
- Sayed F. Abdelwahab
- />Departement of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511 Egypt
- />Department of Microbiology, College of Pharmacy, Taif University, Taif, 21974 Kingdom of Saudi Arabia
| |
Collapse
|
129
|
Kelly C, Swadling L, Capone S, Brown A, Richardson R, Halliday J, von Delft A, Oo Y, Mutimer D, Kurioka A, Hartnell F, Collier J, Ammendola V, Sorbo MD, Grazioli F, Esposito ML, Marco SD, Siani L, Traboni C, Hill AV, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. Chronic hepatitis C viral infection subverts vaccine-induced T-cell immunity in humans. Hepatology 2016; 63:1455-70. [PMID: 26474390 PMCID: PMC4842008 DOI: 10.1002/hep.28294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high-magnitude, durable CD4(+) and CD8(+) T-cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1-infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV NS proteins in a dose escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon-γ enzyme-linked immunospot assays. Cross-reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV-specific T-cell responses following vaccination was markedly reduced. CD8(+) HCV-specific T-cell responses were detected in 15/24 patients at the highest dose, whereas CD4(+) T-cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T-cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. CONCLUSION Vaccination with potent HCV adenoviral vectored vaccines fails to restore T-cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure with implications for cancer and other persistent infections.
Collapse
Affiliation(s)
- Christabel Kelly
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | - Leo Swadling
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Stefania Capone
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Anthony Brown
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - John Halliday
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | | | - Ye Oo
- Department of HepatologyQueen Elizabeth HospitalBirminghamUK
| | - David Mutimer
- Department of HepatologyQueen Elizabeth HospitalBirminghamUK
| | - Ayako Kurioka
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Jane Collier
- Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | | | | | - Loredana Siani
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Cinzia Traboni
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Adrian V.S. Hill
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| | - Stefano Colloca
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Alfredo Nicosia
- Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly,CEINGENaplesItaly,Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | | | | | - Paul Klenerman
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
130
|
Kadolsky UD, Yates AJ. How is the effectiveness of immune surveillance impacted by the spatial distribution of spreading infections? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0289. [PMID: 26150655 PMCID: PMC4528487 DOI: 10.1098/rstb.2014.0289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
What effect does the spatial distribution of infected cells have on the efficiency of their removal by immune cells, such as cytotoxic T lymphocytes (CTL)? If infected cells spread in clusters, CTL may initially be slow to locate them but subsequently kill more rapidly than in diffuse infections. We address this question using stochastic, spatially explicit models of CTL interacting with different patterns of infection. Rather than the effector : target ratio, we show that the relevant quantity is the ratio of a CTL's expected time to locate its next target (search time) to the average time it spends conjugated with a target that it is killing (handling time). For inefficient (slow) CTL, when the search time is always limiting, the critical density of CTL (that required to control 50% of infections, C(*)) is independent of the spatial distribution and derives from simple mass-action kinetics. For more efficient CTL such that handling time becomes limiting, mass-action underestimates C(*), and the more clustered an infection the greater is C(*). If CTL migrate chemotactically towards targets the converse holds-C(*) falls, and clustered infections are controlled most efficiently. Real infections are likely to spread patchily; this combined with even weak chemotaxis means that sterilizing immunity may be achieved with substantially lower numbers of CTL than standard models predict.
Collapse
Affiliation(s)
- Ulrich D Kadolsky
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Andrew J Yates
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
131
|
Liu X, Guan JH, Jiang BC, Li ZSN, Zhu GZ. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C. Viral Immunol 2016; 29:322-31. [PMID: 27082819 DOI: 10.1089/vim.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) and interleukin-17-producing T helper (Th17) cells were mutually antagonistic in the pathogenesis of chronic hepatitis C virus (HCV) infection. However, the regulation of imbalance between Tregs and Th17 cells was poorly understood in HCV infection. A recent report revealed the immunomodulatory role of Toll-like receptor (TLR) 2 in regulating the balance of Tregs/Th17 functions in multiple sclerosis. Thus, the aim of the current study was to assess the effect of TLR2 stimulation on the suppressive function of Tregs and Th17 differentiation in chronic hepatitis C. A total of 65 patients with chronic hepatitis C receiving pegylated interferon-a2a and ribavirin therapy for 48 weeks, as well as 20 of normal controls (NCs) were enrolled. Cellular proliferation and cytokine production was tested in purified CD4(+)CD25(+)CD127(dim/-) Tregs in response to the stimulation of Pam3Csk4, an agonist of TLR2. In treatment-naive patients, Tregs, but not Th17 cells, from chronic hepatitis C patients expressed higher levels of TLR2 compared with NCs. Stimulation with Pam3Csk4 enhanced the suppressive function of Tregs and production of IL-10 in chronic hepatitis C more than in NCs. However, TLR2 stimulation did not promote Th17 differentiation of Tregs in chronic hepatitis C patients. Moreover, effective anti-HCV therapy resulted in the induction of IL-17-secreting phenotypic shift of Tregs without loss of inhibitive function upon TLR2 stimulation. These data provided a novel mechanism underlying modulating the balance of Tregs/Th17 cells in chronic hepatitis C. HCV infection shifted Tregs/Th17 cells through TLR2 stimulation by inducing Tregs to produce IL-10 and enhancing inhibitive function of effector T cells, resulting in viral persistence.
Collapse
Affiliation(s)
- Xin Liu
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Jing-Hui Guan
- 2 Department of Blood Transfusion, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Zhen-Sheng-Nan Li
- 3 Class of Undergraduation, College of Medicine, Jilin University , Changchun, China
| | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
132
|
Heterologous Immunity between Adenoviruses and Hepatitis C Virus: A New Paradigm in HCV Immunity and Vaccines. PLoS One 2016; 11:e0146404. [PMID: 26751211 PMCID: PMC4709057 DOI: 10.1371/journal.pone.0146404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023] Open
Abstract
Adenoviruses (Ad) are commonly used as vectors for gene therapy and/or vaccine delivery. Recombinant Ad vectors are being tested as vaccines for many pathogens. We have made a surprising observation that peptides derived from various hepatitis C virus (HCV) antigens contain extensive regions of homology with multiple adenovirus proteins, and conclusively demonstrate that adenovirus vector can induce robust, heterologous cellular and humoral immune responses against multiple HCV antigens. Intriguingly, the induction of this cross-reactive immunity leads to significant reduction of viral loads in a recombinant vaccinia-HCV virus infected mouse model, supporting their role in antiviral immunity against HCV. Healthy human subjects with Ad-specific pre-existing immunity demonstrated cross-reactive cellular and humoral immune responses against multiple HCV antigens. These findings reveal the potential of a previously uncharacterized property of natural human adenovirus infection to dictate, modulate and/or alter the course of HCV infection upon exposure. This intrinsic property of adenovirus vectors to cross-prime HCV immunity can also be exploited to develop a prophylactic and/or therapeutic vaccine against HCV.
Collapse
|
133
|
von Delft A, Humphreys IS, Brown A, Pfafferott K, Lucas M, Klenerman P, Lauer GM, Cox AL, Gaudieri S, Barnes E. The broad assessment of HCV genotypes 1 and 3 antigenic targets reveals limited cross-reactivity with implications for vaccine design. Gut 2016; 65:112-23. [PMID: 26092843 PMCID: PMC4717358 DOI: 10.1136/gutjnl-2014-308724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Developing a vaccine that is cross-reactive between HCV genotypes requires data on T cell antigenic targets that extends beyond genotype-1. We characterised T cell immune responses against HCV genotype-3, the most common infecting genotype in the UK and Asia, and assessed within genotype and between genotype cross-reactivity. DESIGN T cell targets were identified in 140 subjects with either acute, chronic or spontaneously resolved HCV genotype-3 infection using (1) overlapping peptides and (2) putative human leucocyte antigens (HLA)-class-I wild type and variant epitopes through the prior assessment of polymorphic HCV genomic sites associated with host HLA, in IFNγ-ELISpot assays. CD4+/CD8+ T cell subsets were defined and viral variability at T cell targets was determined through population analysis and viral sequencing. T cell cross-reactivity between genotype-1 and genotype-3 variants was assessed. RESULTS In resolved genotype-3 infection, T cells preferentially targeted non-structural proteins at a high magnitude, whereas in chronic disease T cells were absent or skewed to target structural proteins. Additional responses to wild type but not variant HLA predicted peptides were defined. Major sequence viral variability was observed within genotype-3 and between genotypes 1 and 3 HCV at T cell targets in resolved infection and at dominant epitopes, with limited T cell cross-reactivity between viral variants. Overall 41 CD4/CD8+ genotype-3 T cell targets were identified with minimal overlap with those described for HCV genotype-1. CONCLUSIONS HCV T cell specificity is distinct between genotypes with limited T cell cross-reactivity in resolved and chronic disease. Therefore, viral regions targeted in natural HCV infection may not serve as attractive targets for a vaccine that aims to protect against multiple HCV genotypes.
Collapse
Affiliation(s)
| | | | | | | | - Michaela Lucas
- Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia,School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Western Australia, Australia,School of Pathology and Laboratory Medicine, University of Western Australia, Western Australia, Australia
| | | | | | - Andrea L Cox
- John Hopkins University, Baltimore, Maryland, USA
| | - Silvana Gaudieri
- Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia,School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
134
|
Fabre T, Shoukry NH. Immunology of the Liver. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016:13-22. [DOI: 10.1016/b978-0-12-374279-7.19005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
135
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
136
|
Yusim K, Richardson R, Tao N, Dalwani A, Agrawal A, Szinger J, Funkhouser R, Korber B, Kuiken C. Los alamos hepatitis C immunology database. ACTA ACUST UNITED AC 2015; 4:217-25. [PMID: 16309340 DOI: 10.2165/00822942-200504040-00002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Los Alamos Hepatitis C Virus (HCV) Sequence Database (http://hcv.lanl.gov or http://hcv-db.org) was officially launched in September 2003. The sister HCV Immunology Database was made public in September 2004. The HCV Immunology Database is based on the Human Immunodeficiency Virus (HIV) Immunology Database. The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. This article describes in detail the types of data and services that the new database offers, the tools provided and the database framework. The data and some of the HCV database tools are available for download for non-commercial use.
Collapse
Affiliation(s)
- Karina Yusim
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Rao X, Hoof I, van Baarle D, Keşmir C, Textor J. HLA Preferences for Conserved Epitopes: A Potential Mechanism for Hepatitis C Clearance. Front Immunol 2015; 6:552. [PMID: 26579127 PMCID: PMC4625101 DOI: 10.3389/fimmu.2015.00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infections affect more than 170 million people worldwide. Most of these individuals are chronically infected, but some clear the infection rapidly. Host factors seem to play a key role in HCV clearance, among them are the human leukocyte antigen (HLA) class I molecules. Certain HLA molecules, e.g., B*27 and B*57, are associated with viral clearance. To identify potential mechanisms for these associations, we assess epitope distribution differences between HLA molecules using experimentally verified and in silico predicted HCV epitopes. Specifically, we show that the NS5B protein harbors the largest fraction of conserved regions among all HCV proteins. Such conserved regions could be good targets for cytotoxic T-cell (CTL) responses. We find that the protective HLA-B*27 molecule preferentially presents cytotoxic T-cell (CTL) epitopes from NS5B and, in general, presents the most strongly conserved epitopes among the 23 HLA molecules analyzed. In contrast, HLA molecules known to be associated with HCV persistence do not have similar preferences and appear to target the variable P7 protein. Overall, our analysis suggests that by targeting highly constrained - and thereby conserved - regions of HCV, the protective HLA molecule HLA-B*27 reduces the ability of HCV to escape the cytotoxic T-cell response of the host. For visualizing the distribution of both experimentally verified and predicted epitopes across the HCV genome, we created the HCV epitope browser, which is available at theory.bio.uu.nl/ucqi/hcv.
Collapse
Affiliation(s)
- Xiangyu Rao
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Debbie van Baarle
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Johannes Textor
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
138
|
Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, Kurioka A, Ammendola V, Del Sorbo M, Grazioli F, Esposito ML, Siani L, Traboni C, Hill A, Colloca S, Davis M, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med 2015; 6:261ra153. [PMID: 25378645 DOI: 10.1126/scitranslmed.3009185] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Stefania Capone
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Richard D Antrobus
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Singapore Immunology Network, Singapore 138648, Singapore
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Dan Bowen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Joannah Fergusson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Loredana Siani
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Adrian Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stefano Colloca
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Mark Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Alfredo Nicosia
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | - Antonella Folgori
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK.
| |
Collapse
|
139
|
CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathog 2015; 11:e1005177. [PMID: 26485519 PMCID: PMC4618999 DOI: 10.1371/journal.ppat.1005177] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/30/2015] [Indexed: 12/31/2022] Open
Abstract
Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion. Chronic viral infection induces an acquired state of T cell dysfunction known as exhaustion. Discovering surface markers of exhausted T cells is important for both to identify exhausted T cells as well as to develop potential therapies. We report that the ectonucleotidase CD39 is expressed by T cells specific for chronic viral infections in humans and a mouse model, but is rare in T cells following clearance of acute infections. In the mouse model of chronic viral infection, CD39 demarcates a subpopulation of dysfunctional, exhausted CD8+ T cells with the phenotype of irreversible exhaustion. CD39 expression therefore identifies terminal CD8+ T cell exhaustion in mice and humans, and implicates the purinergic pathway in the regulation of exhaustion.
Collapse
|
140
|
Dutta DK, Rhodes K, Wood SC. In silico prediction of Ebola Zaire GP(1,2) immuno-dominant epitopes for the Balb/c mouse. BMC Immunol 2015; 16:59. [PMID: 26445317 PMCID: PMC4596288 DOI: 10.1186/s12865-015-0126-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/01/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ebola is a Filovirus (FV) that induces a highly communicable and deadly hemorrhagic fever. Currently, there are no approved vaccines to treat FV infections. Protection from FV infection requires cell mediated and humoral immunity. Glycoprotein GP1,2 Fc Zaire, a recombinant FV human Fc fusion protein, has been shown to confer protection against mouse adapted Zaire Ebola virus. The present studies are focused upon identifying immunodominant epitopes using in silico methods and developing tetramers as a diagnostic reagent to detect cell mediated immune responses to GP1,2 Fc. Methods The GP1,2 Ebola Zaire sequence from the 1976 outbreak was analyzed by both BIMAS and SYFPEITHI algorithms to identify potential immuno-dominant epitopes. Several peptides were synthesized and screened in flow-based MHC stability studies. Three candidate peptides, P8, P9 and P10, were identified and, following immunization in Balb/c mice, all three peptides induced IFN-γ as detected by ELISpot and intracellular staining. Results Significantly, P8, P9 and P10 generated robust cytotoxic T-cell responses (CTL) as determined by a flow cytometry-based Caspase assay. Antigen specific cells were also detected, using tetramers. Both P9 and P10 have sequence homology with highly conserved regions of several strains of FV. Conclusions In sum, three immunodominant sequences of the Ebola GP1,2 have been identified using in silico methods that may confer protection against mouse adapted Ebola Zaire. The development of tetramer reagents will provide unique insight into the potency and durability of medical countermeasure vaccines for known bioterrorism threat agents in preclinical models.
Collapse
Affiliation(s)
- Debargh K Dutta
- Division of Biology, Chemistry and Materials Science, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA. .,Department of Medicine, USUHS, 4301 Jones Bridge road, Bethesda, MD, 20814, USA.
| | - Kelly Rhodes
- Division of Biology, Chemistry and Materials Science, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA. .,University of Maryland, College Park, MD, 20742, USA.
| | - Steven C Wood
- Division of Biology, Chemistry and Materials Science, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA.
| |
Collapse
|
141
|
Kaźmierczak J, Caraballo Cortes K, Bukowska-Ośko I, Radkowski M. Virus-Specific Cellular Response in Hepatitis C Virus Infection. Arch Immunol Ther Exp (Warsz) 2015; 64:101-10. [PMID: 26429740 DOI: 10.1007/s00005-015-0364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Studies performed on chimpanzees and humans have revealed that strong, multispecific and sustained CD4(+) and CD8(+) T cell immune responses is a major determinant of hepatitis C virus (HCV) clearance. However, spontaneous elimination of the virus occurs in minority of infected individuals and cellular response directed against HCV antigens is not persistent in individuals with chronic infection. This review presents characteristics of the HCV-specific T cell response in patients with different clinical course of infection, including acute and chronic infection, persons who spontaneously eliminated HCV and non-infected subjects exposed to HCV. Detection of HCV-specific response, especially in non-infected subjects exposed to HCV, may be indicative of HCV prevalence in population and rate of spontaneous viral clearance. Understanding the mechanisms and role of HCV-specific cellular immune response would contribute to better understanding of HCV epidemiology, immunopathogenesis and may help to design an effective vaccine.
Collapse
Affiliation(s)
- Justyna Kaźmierczak
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland.
| | - Kamila Caraballo Cortes
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| |
Collapse
|
142
|
Zhu DY, Deng XZ, Jiang LF, Xiao W, Pei JP, Li BJ, Wang CJ, Zhang JH, Zhang Q, Zhou ZX, Ding WL, Xu XD, Yue M. Potential Role of Hepatitis C Virus Alternate Reading Frame Protein in Negative Regulation of T-Bet Gene Expression. Inflammation 2015; 38:1823-1834. [PMID: 25894282 DOI: 10.1007/s10753-015-0160-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease and has led to cirrhosis or hepatocellular carcinoma in a majority of infected individuals. We have previously demonstrated that the HCV alternate reading frame protein (F protein) is related to Th1/Th2 bias in chronic hepatitis C (CHC) patients, and we aimed to explore the relative molecular mechanisms here. A total of 104 cases including CHC patients and healthy donors were enrolled. T-bet and GATA-3 expression levels were analyzed in peripheral blood mononuclear cells (PBMCs). The levels of signal transducer and activator of transcription-1/-6(STAT1/6) and phosphorylated STAT1/6(pSTAT1/6) in PBMCs were measured by Western blotting. Our results showed that the levels of T-bet in PBMCs, as well as the levels of gamma interferon (IFN-γ) in sera, were decreased in anti-F protein antibody seropositive patients compared with anti-F protein antibody seronegative patients, whereas the levels of GATA-3 did not show difference between the two groups. Moreover, the decreased pSTAT1 and increased pSTAT6 were observed in PBMCs by HCV core/F protein stimulation with constant STAT1/6 expression. Taken together, it suggested that T-bet may be involved in Th1/Th2 bias induced by HCV F protein, and the disruption of STAT phosphorylation may participate in this mediation.
Collapse
Affiliation(s)
- Dan Yan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Wong YC, Tay SS, McCaughan GW, Bowen DG, Bertolino P. Immune outcomes in the liver: Is CD8 T cell fate determined by the environment? J Hepatol 2015; 63:1005-14. [PMID: 26103545 DOI: 10.1016/j.jhep.2015.05.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
The liver is known for its tolerogenic properties. This unique characteristic is associated with persistent infection of the liver by the hepatitis B and C viruses. Improper activation of cellular adaptive immune responses within the liver and immune exhaustion over time both contribute to ineffective cytotoxic T cell responses to liver-expressed antigens in animal models, and likely play a role in incomplete clearance of chronic hepatitis virus infections in humans. However, under some conditions, functional immune responses can be elicited against hepatic antigens, resulting in control of hepatotropic infections. In order to develop improved therapeutics in immune-mediated chronic liver diseases, including viral hepatitis, it is essential to understand how intrahepatic immunity is regulated. This review focuses on CD8 T cell immunity directed towards foreign antigens expressed in the liver, and explores how the liver environment dictates the outcome of intrahepatic CD8 T cell responses. Potential strategies to rescue unresponsive CD8 T cells in the liver are also discussed.
Collapse
Affiliation(s)
- Yik Chun Wong
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Szun Szun Tay
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Geoffrey W McCaughan
- Liver Cancer and Injury Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
144
|
Gardiner CM. NK cell function and receptor diversity in the context of HCV infection. Front Microbiol 2015; 6:1061. [PMID: 26483779 PMCID: PMC4588102 DOI: 10.3389/fmicb.2015.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects over 170 million people in the world. While a minority of individuals are able to naturally clear this hepatotropic virus using their immune system, most people go on to develop a lifetime chronic infection that can result in severe liver pathology, potentially leading to liver cirrhosis and hepatic cellular carcinoma. Investigations into acute immune responses and spontaneous clearance of the virus are severely hampered by difficulties in identification of relevant patient cohorts. While the role for the adaptive immune response in viral clearance is well established, it is becoming clear that the innate immune system also impacts on HCV outcome. The innate immune response to infection is likely to influence the type of adaptive immune response that develops and will ultimately influence if the virus is cleared or develops into a chronic infection. Natural Killer (NK) cells are lymphocytes that have important anti-viral functions including direct cytotoxicity of infected cells and the production of inflammatory cytokines, e.g., IFN-γ. They are generally considered to be cells of the innate immune system, although there is increasing evidence that NK cells adapt and persist in response to particular viral infections. NK cells are altered in patients with acute and chronic HCV infection. There is increasing evidence from both cellular and genetic studies that NK cells modulate HCV outcome. This review will describe and discuss the current experimental and clinical evidence of a role for NK cells in HCV infection and describe recent discoveries that are likely to play a role in future research.
Collapse
Affiliation(s)
- Clair M Gardiner
- NK Cell Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
145
|
Conserved Motifs within Hepatitis C Virus Envelope (E2) RNA and Protein Independently Inhibit T Cell Activation. PLoS Pathog 2015; 11:e1005183. [PMID: 26421924 PMCID: PMC4589396 DOI: 10.1371/journal.ppat.1005183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023] Open
Abstract
T cell receptor (TCR) signaling is required for T-cell activation, proliferation, differentiation, and effector function. Hepatitis C virus (HCV) infection is associated with impaired T-cell function leading to persistent viremia, delayed and inconsistent antibody responses, and mild immune dysfunction. Although multiple factors appear to contribute to T-cell dysfunction, a role for HCV particles in this process has not been identified. Here, we show that incubation of primary human CD4+ and CD8+ T-cells with HCV RNA-containing serum, HCV-RNA containing extracellular vesicles (EVs), cell culture derived HCV particles (HCVcc) and HCV envelope pseudotyped retrovirus particles (HCVpp) inhibited TCR-mediated signaling. Since HCVpp’s contain only E1 and E2, we examined the effect of HCV E2 on TCR signaling pathways. HCV E2 expression recapitulated HCV particle-induced TCR inhibition. A highly conserved, 51 nucleotide (nt) RNA sequence was sufficient to inhibit TCR signaling. Cells expressing the HCV E2 coding RNA contained a short, virus-derived RNA predicted to be a Dicer substrate, which targeted a phosphatase involved in Src-kinase signaling (PTPRE). T-cells and hepatocytes containing HCV E2 RNA had reduced PTPRE protein levels. Mutation of 6 nts abolished the predicted Dicer interactions and restored PTPRE expression and proximal TCR signaling. HCV RNA did not inhibit distal TCR signaling induced by PMA and Ionomycin; however, HCV E2 protein inhibited distal TCR signaling. This inhibition required lymphocyte-specific tyrosine kinase (Lck). Lck phosphorylated HCV E2 at a conserved tyrosine (Y613), and phospho-E2 inhibited nuclear translocation of NFAT. Mutation of Y613 restored distal TCR signaling, even in the context of HCVpps. Thus, HCV particles delivered viral RNA and E2 protein to T-cells, and these inhibited proximal and distal TCR signaling respectively. These effects of HCV particles likely aid in establishing infection and contribute to viral persistence. Globally, approximately 200 million people are persistently infected with Hepatitis C virus (HCV). Mechanisms by which HCV establishes persistent infection are complex, and several host and viral factors appear to contribute to the ability of HCV to evade immune clearance. T cell activation through the T cell receptor (TCR) is an essential first step in the generation of an adaptive immune response. Although HCV infection is associated with impaired T cell function, the mechanisms for this dysfunction are poorly understood. Here, we demonstrate that HCV particles inhibit T cell activation by interfering with proximal and distal signals that are triggered by activation through the TCR. First, HCV envelope (E2) RNA was processed into a small RNA that targeted a regulatory phosphatase, inhibiting proximal TCR signaling. Second, the lymphocyte specific Src kinase (Lck) phosphorylated HCV E2 at tyrosine 613 (Y613), and phospho-E2 inhibited nuclear translocation of activated NFAT, reducing distal TCR activation signals. The RNA and protein motifs involved are highly conserved among all HCV isolates, and mutation restored TCR signaling. Thus, HCV particles interfere with TCR signaling and impair T cell activation using two distinct mechanisms. This may contribute to HCV persistence and T cell dysfunction during HCV infection.
Collapse
|
146
|
Martini H, Citro A, Martire C, D'Ettorre G, Labbadia G, Accapezzato D, Piconese S, De Marzio P, Cavallari EN, Calvo L, Rizzo F, Severa M, Coccia EM, Grazi GL, Di Filippo S, Sidney J, Vullo V, Sette A, Barnaba V. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection. J Infect Dis 2015; 213:674-83. [PMID: 26386427 DOI: 10.1093/infdis/jiv460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
CD8(+) T cells specific to caspase-cleaved antigens derived from apoptotic T cells represent a principal player in chronic immune activation. Here, we found that both apoptotic epitope-specific and hepatitis C virus (HCV)-specific CD8(+) T cells were mostly confined within the effector memory (EM) or terminally differentiated EM CD45RA(+) cell subsets expressing a dysfunctional T-helper 1-like signature program in chronic HCV infection. However, apoptotic epitope-specific CD8(+) T cells produced tumor necrosis factor α and interleukin 2 at the intrahepatic level significantly more than HCV-specific CD8(+) T cells, despite both populations expressing high levels of programmed death 1 receptor. Contextually, only apoptotic epitope-specific CD8(+) T cells correlated with both interferon-stimulated gene levels in T cells and hepatic fibrosis score. Together, these data suggest that, compared with HCV-specific CD8(+) T cells, apoptotic epitope-specific CD8(+) T cells can better sustain chronic immune activation, owing to their capacity to produce tumor necrosis factor α, and exhibit greater resistance to inhibitory signals during chronic HCV infection.
Collapse
Affiliation(s)
| | | | | | - Gabriella D'Ettorre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | | | | | | | | | - Eugenio N Cavallari
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | | | - Fabiana Rizzo
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Martina Severa
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Eliana M Coccia
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità
| | - Gian Luca Grazi
- Chirurgia Epato-bilio-pancreatica, Istituto Nazionale dei Tumori Regina Elena
| | - Simona Di Filippo
- Chirurgia Epato-bilio-pancreatica, Istituto Nazionale dei Tumori Regina Elena
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Vincenzo Vullo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
147
|
Cook AM, McDonnell AM, Lake RA, Nowak AK. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology 2015; 5:e1066062. [PMID: 27141331 PMCID: PMC4839331 DOI: 10.1080/2162402x.2015.1066062] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/29/2022] Open
Abstract
The glucocorticoid (GC) steroid dexamethasone (Dex) is used as a supportive care co-medication for cancer patients undergoing standard care pemetrexed/platinum doublet chemotherapy. As trials for new cancer immunotherapy treatments increase in prevalence, it is important to track the immunological changes induced by co-medications commonly used in the clinic, but not specifically included in trial design or in pre-clinical models. Here, we document a number of Dex -induced immunological effects, including a large-scale lymphodepletive effect particularly affecting CD4+ T cells but also CD8+ T cells. The proportion of regulatory T cells within the CD4+ compartment did not change after Dex was administered, however a significant increase in proliferation and activation of regulatory T cells was observed. We also noted Dex -induced proportional changes in dendritic cell (DC) subtypes. We discuss these immunological effects in the context of chemoimmunotherapy strategies, and suggest a number of considerations to be taken into account when designing future studies where Dex and other GCs may be in use.
Collapse
Affiliation(s)
- Alistair M Cook
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia; National Centre for Asbestos Related Diseases, Perth, WA, Australia
| | - Alison M McDonnell
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia; National Centre for Asbestos Related Diseases, Perth, WA, Australia
| | - Richard A Lake
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia; National Centre for Asbestos Related Diseases, Perth, WA, Australia
| | - Anna K Nowak
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia; National Centre for Asbestos Related Diseases, Perth, WA, Australia
| |
Collapse
|
148
|
Tawar RG, Colpitts CC, Timm J, Fehm T, Roggendorf M, Meisel H, Meyer N, Habersetzer F, Cosset FL, Berg T, Zeisel MB, Baumert TF. Acute hepatitis C virus infection induces anti-host cell receptor antibodies with virus-neutralizing properties. Hepatology 2015; 62:726-36. [PMID: 26010076 DOI: 10.1002/hep.27906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) causes persistent infection in the majority of infected individuals. The mechanisms of persistence and clearance are only partially understood. Antibodies (Abs) against host cell entry receptors have been shown to inhibit HCV infection in cell culture and animal models. In this study, we aimed to investigate whether anti-receptor Abs are induced during infection in humans in vivo and whether their presence is associated with outcome of infection. We established an enzyme-linked immunosorbant assay using a recombinant CD81-claudin-1 (CLDN1) fusion protein to detect and quantify Abs directed against extracellular epitopes of the HCV CD81-CLDN1 coreceptor complex. The presence of anti-receptor Abs was studied in serum of patients from a well-defined cohort of a single-source HCV outbreak of pregnant women and several control groups, including uninfected pregnant women, patients with chronic hepatitis B and D virus (HBV/HDV) infection, and healthy individuals. Virus-neutralizing activity of Abs was determined using recombinant cell culture-derived HCV (HCVcc). Our results demonstrate that HCV-infected patients have statistically significantly higher anti-CD81/CLDN1 Ab titers during the early phase of infection than controls. The titers were significantly higher in resolvers compared to persisters. Functional studies using immunoadsorption and HCV cell culture models demonstrate that HCV-neutralizing anti-receptor Abs are induced in the early phase of HCV infection, but not in control groups. CONCLUSION The virus-neutralizing properties of these Abs suggest a role for control of viral infection in conjunction with antiviral responses. Characterization of these anti-receptor Abs opens new avenues to prevent and treat HCV infection.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Helga Meisel
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Medicine, Berlin, Germany
| | - Nicolas Meyer
- Pôle de Santé Publique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Lyon, France; Inserm, U1111, Lyon France; Ecole Normale Supérieure; CNRS UMR 5308, Lyon, France; LabEx Ecofect, University of Lyon, Lyon, France
| | - Thomas Berg
- Department of Internal Medicine, Neurology and Dermatology, Gastroenterology and Rheumatology Clinic, Section of Hepatology, University of Leipzig, Leipzig, Germany
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
149
|
Shuldiner SR, Gong L, Muir AJ, Altman RB, Klein TE. PharmGKB summary: peginterferon-α pathway. Pharmacogenet Genomics 2015; 25:465-74. [PMID: 26111151 PMCID: PMC4757589 DOI: 10.1097/fpc.0000000000000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Li Gong
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew J. Muir
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| | - Teri E. Klein
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
150
|
Green CA, Scarselli E, Sande CJ, Thompson AJ, de Lara CM, Taylor KS, Haworth K, Del Sorbo M, Angus B, Siani L, Di Marco S, Traboni C, Folgori A, Colloca S, Capone S, Vitelli A, Cortese R, Klenerman P, Nicosia A, Pollard AJ. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults. Sci Transl Med 2015; 7:300ra126. [PMID: 26268313 PMCID: PMC4669850 DOI: 10.1126/scitranslmed.aac5745] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease.
Collapse
Affiliation(s)
- Christopher A Green
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
| | - Elisa Scarselli
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Charles J Sande
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Amber J Thompson
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Catherine M de Lara
- Experimental Medicine Division, Nuffield Department of Medicine, Peter Medawar Building, University of Oxford, Oxford OX1 3SY, UK
| | - Kathryn S Taylor
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Kathryn Haworth
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | | | - Brian Angus
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Loredana Siani
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefania Di Marco
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefano Colloca
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefania Capone
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Alessandra Vitelli
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, Peter Medawar Building, University of Oxford, Oxford OX1 3SY, UK
| | - Alfredo Nicosia
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, Via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| |
Collapse
|