101
|
Talebizadeh N, Yu Z, Kronschläger M, Söderberg P. Time evolution of active caspase-3 labelling after in vivo exposure to UVR-300 nm. Acta Ophthalmol 2014; 92:769-73. [PMID: 24698086 DOI: 10.1111/aos.12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/04/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the time evolution of active caspase-3 protein expression in albino rat lens after in vivo exposure to low-dose UVR-300 nm, as detected by immunofluorescence. METHODS Forty Sprague-Dawley rats were unilaterally exposed in vivo to 1 kJ/m(2) UVR-300 nm for 15 min. At 0.5, 8, 16 and 24 hr after the UVR exposure, the exposed and contralateral nonexposed lenses were removed and processed for immunohistochemistry. Three mid-sagittal sections from each lens were stained. The cells labelled for active caspase-3 in each section of both the exposed and nonexposed lenses were counted and recorded three times. The difference of the proportion of labelling between the exposed and contralateral nonexposed lenses within each animal was calculated. The differences of active caspase-3 labelling at four different time-points after exposure were used to determine the time evolution of active caspase-3 expression. RESULTS Caspase-3 expression was higher in the exposed than in contralateral nonexposed lenses. The mean difference between the exposed and contralateral nonexposed lenses, including all lenses from all time intervals, was 0.12 ± 0.01 (= CI 95%). The mean differences between the exposed and contralateral nonexposed lenses were 0.11 ± 0.02, 0.13 ± 0.02, 0.14 ± 0.01 and 0.09 ± 0.03 (= CI 95%) for the 0.5-, 8-, 16- and 24-hr time groups, respectively. The orthogonal comparison showed no difference in the expression of active caspase-3 between the 0.5- and the 24-hr groups (Test statistic 1.50, F1,36 = 4.11, p < 0.05) or between the 8- and the 16-hr groups (test statistic 0.05, F1,36 = 4.11, p < 0.05). There was a difference when comparing the 0.5- and 24-hr groups to the 8- and 16-hr groups (test statistic 7.01, F1,36 = 4.11, p < 0.05). CONCLUSION The expression of active caspase-3 in the lens epithelium increases after UVR exposure. There is a peak of expression approximately 16 hr after the exposure.
Collapse
Affiliation(s)
- Nooshin Talebizadeh
- Gullstrand Lab; Ophthalmology; Department of Neuroscience; University of Uppsala; Uppsala Sweden
| | - Zhaohua Yu
- Gullstrand Lab; Ophthalmology; Department of Neuroscience; University of Uppsala; Uppsala Sweden
| | - Martin Kronschläger
- Gullstrand Lab; Ophthalmology; Department of Neuroscience; University of Uppsala; Uppsala Sweden
| | - Per Söderberg
- Gullstrand Lab; Ophthalmology; Department of Neuroscience; University of Uppsala; Uppsala Sweden
| |
Collapse
|
102
|
Elkholi R, Renault TT, Serasinghe MN, Chipuk JE. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab 2014; 2:16. [PMID: 25621172 PMCID: PMC4304082 DOI: 10.1186/2049-3002-2-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
In order to solve a jigsaw puzzle, one must first have the complete picture to logically connect the pieces. However, in cancer biology, we are still gaining an understanding of all the signaling pathways that promote tumorigenesis and how these pathways can be pharmacologically manipulated by conventional and targeted therapies. Despite not having complete knowledge of the mechanisms that cause cancer, the signaling networks responsible for cancer are becoming clearer, and this information is serving as a solid foundation for the development of rationally designed therapies. One goal of chemotherapy is to induce cancer cell death through the mitochondrial pathway of apoptosis. Within this review, we present the pathways that govern the cellular decision to undergo apoptosis as three distinct, yet connected puzzle pieces: (1) How do oncogene and tumor suppressor pathways regulate apoptosis upstream of mitochondria? (2) How does the B-cell lymphoma 2 (BCL-2) family influence tumorigenesis and chemotherapeutic responses? (3) How is post-mitochondrial outer membrane permeabilization (MOMP) regulation of cell death relevant in cancer? When these pieces are united, it is possible to appreciate how cancer signaling directly impacts upon the fundamental cellular mechanisms of apoptosis and potentially reveals novel pharmacological targets within these pathways that may enhance chemotherapeutic success.
Collapse
Affiliation(s)
- Rana Elkholi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| |
Collapse
|
103
|
Fan W, Dai Y, Xu H, Zhu X, Cai P, Wang L, Sun C, Hu C, Zheng P, Zhao BQ. Caspase-3 modulates regenerative response after stroke. Stem Cells 2014; 32:473-86. [PMID: 23939807 DOI: 10.1002/stem.1503] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of long-lasting disability in humans. However, currently there are still no effective therapies available for promoting stroke recovery. Recent studies have shown that the adult brain has the capacity to regenerate neurons after stroke. Although this neurogenic response may be functionally important for brain repair after injury, the mechanisms underlying stroke-induced neurogenesis are not known. Caspase-3 is a major executioner and has been identified as a key mediator of neuronal death in the acute stage of stroke. Recently, however, accumulating data indicate that caspase-3 also participates in various biological processes that do not cause cell death. Here, we show that cleaved caspase-3 was increased in newborn neuronal precursor cells (NPCs) in the subventricular zone (SVZ) and the dentate gyrus during the period of stroke recovery, with no evidence of apoptosis. We observed that cleaved caspase-3 was expressed by NPCs and limited its self-renewal without triggering apoptosis in cultured NPCs from the SVZ of ischemic mice. Moreover, we revealed that caspase-3 negatively regulated the proliferation of NPCs through reducing the phosphorylation of Akt. Importantly, we demonstrated that peptide inhibition of caspase-3 activity significantly promoted the proliferation and migration of SVZ NPCs and resulted in a significant increase in subsequent neuronal regeneration and functional recovery after stroke. Together, our data identify a previously unknown caspase-3-dependent mechanism that constrains stroke-induced endogenous neurogenesis and should revitalize interest in targeting caspase-3 for treatment of stroke.
Collapse
Affiliation(s)
- Wenying Fan
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Arlet JB, Ribeil JA, Guillem F, Negre O, Hazoume A, Marcion G, Beuzard Y, Dussiot M, Moura IC, Demarest S, de Beauchêne IC, Belaid-Choucair Z, Sevin M, Maciel TT, Auclair C, Leboulch P, Chretien S, Tchertanov L, Baudin-Creuza V, Seigneuric R, Fontenay M, Garrido C, Hermine O, Courtois G. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature 2014; 514:242-6. [PMID: 25156257 DOI: 10.1038/nature13614] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/25/2014] [Indexed: 12/28/2022]
Abstract
β-Thalassaemia major (β-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing β-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human β-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of β-TM erythroblasts, which may provide a rationale for new targeted therapies of β-TM.
Collapse
Affiliation(s)
- Jean-Benoît Arlet
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Service de Médecine Interne, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 15 rue Leblanc 75908 Paris, France [3] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [4] Laboratory of Excellence GR-Ex, 75015 Paris, France [5]
| | - Jean-Antoine Ribeil
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Département de Biothérapie, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris, Hôpital Necker, 149 rue de Sèvres 75015 Paris, France [5]
| | - Flavia Guillem
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France
| | - Olivier Negre
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Adonis Hazoume
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Guillaume Marcion
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Yves Beuzard
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Michaël Dussiot
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France
| | - Ivan Cruz Moura
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France [5] Faculté de médecine and Université Denis Diderot Paris VII, 5 Rue Thomas Mann, 75013 Paris, France
| | - Samuel Demarest
- Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France
| | - Isaure Chauvot de Beauchêne
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | - Zakia Belaid-Choucair
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France
| | - Margaux Sevin
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Thiago Trovati Maciel
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France [5] Faculté de médecine and Université Denis Diderot Paris VII, 5 Rue Thomas Mann, 75013 Paris, France
| | - Christian Auclair
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | - Philippe Leboulch
- 1] Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France [2] Women's Hospital and Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA
| | - Stany Chretien
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Luba Tchertanov
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | | | - Renaud Seigneuric
- University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Michaela Fontenay
- 1] Laboratory of Excellence GR-Ex, 75015 Paris, France [2] Institut Cochin, INSERM, unité mixte de recherche 1016, centre national de la recherche scientifique (CNRS), unité mixte de recherche 8104, Université Paris Descartes, and Assistance publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Service d'hématologie biologique, 27 rue du Faubourg Saitn-Jacques, 75014 Paris, France
| | - Carmen Garrido
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France [3] Centre anticancéreux George François Leclerc, 1 rue professeur Marion, 21079 Dijon, France [4]
| | - Olivier Hermine
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Service d'hématologie, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France [5]
| | - Geneviève Courtois
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4]
| |
Collapse
|
105
|
Xiong S, Mu T, Wang G, Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell 2014; 5:737-49. [PMID: 25073422 PMCID: PMC4180462 DOI: 10.1007/s13238-014-0089-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
The mitochondria-mediated caspase activation pathway is a major apoptotic pathway characterized by mitochondrial outer membrane permeabilization (MOMP) and subsequent release of cytochrome c into the cytoplasm to activate caspases. MOMP is regulated by the Bcl-2 family of proteins. This pathway plays important roles not only in normal development, maintenance of tissue homeostasis and the regulation of immune system, but also in human diseases such as immune disorders, neurodegeneration and cancer. In the past decades the molecular basis of this pathway and the regulatory mechanism have been comprehensively studied, yet a great deal of new evidence indicates that cytochrome c release from mitochondria does not always lead to irreversible cell death, and that caspase activation can also have non-death functions. Thus, many unsolved questions and new challenges are still remaining. Furthermore, the dysfunction of this pathway involved in cancer development is obvious, and targeting the pathway as a therapeutic strategy has been extensively explored, but the efficacy of the targeted therapies is still under development. In this review we will discuss the mitochondria-mediated apoptosis pathway and its physiological roles and therapeutic implications.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|
106
|
Akbari-Birgani S, Hosseinkhani S, Mollamohamadi S, Baharvand H. Delay in apoptosome formation attenuates apoptosis in mouse embryonic stem cell differentiation. J Biol Chem 2014; 289:16905-16913. [PMID: 24755221 PMCID: PMC4059134 DOI: 10.1074/jbc.m113.536730] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/16/2014] [Indexed: 01/07/2023] Open
Abstract
Differentiation is an inseparable process of development in multicellular organisms. Mouse embryonic stem cells (mESCs) represent a valuable research tool to conduct in vitro studies of cell differentiation. Apoptosis as a well known cell death mechanism shows some common features with cell differentiation, which has caused a number of ambiguities in the field. The research question here is how cells could differentiate these two processes from each other. We have investigated the role of the mitochondrial apoptotic pathway and cell energy level during differentiation of mESCs into the cardiomyocytes and their apoptosis. p53 expression, cytochrome c release, apoptosome formation, and caspase-3/7 activation are observed upon induction of both apoptosis and differentiation. However, remarkable differences are detected in time of cytochrome c appearance, apoptosome formation, and caspase activity upon induction of both processes. In apoptosis, apoptosome formation and caspase activity were observed rapidly following the cytochrome c release. Unlike apoptosis, the release of cytochrome c upon differentiation took more time, and the maximum caspase activity was also postponed for 24 h. This delay suggests that there is a regulatory mechanism during differentiation of mESCs into cardiomyocytes. The highest ATP content of cells was observed immediately after cytochrome c release 6 h after apoptosis induction and then decreased, but it was gradually increased up to 48 h after differentiation. These observations suggest that a delay in the release of cytochrome c or delay in ATP increase attenuate apoptosome formation, and caspase activation thereby discriminates apoptosis from differentiation in mESCs.
Collapse
Affiliation(s)
- Shiva Akbari-Birgani
- From the Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- From the Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,
| | - Sepideh Mollamohamadi
- the Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Iranian Academic Center for Education Culture and Research (ACECR), Tehran, Iran, and
| | - Hossein Baharvand
- the Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Iranian Academic Center for Education Culture and Research (ACECR), Tehran, Iran, and the Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
107
|
Connolly PF, Jäger R, Fearnhead HO. New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 2014; 5:149. [PMID: 24795644 PMCID: PMC3997007 DOI: 10.3389/fphys.2014.00149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge.
Collapse
Affiliation(s)
- Patrick F Connolly
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences Rheinbach, Germany
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
108
|
Multiple physical stresses induce γ-globin gene expression and fetal hemoglobin production in erythroid cells. Blood Cells Mol Dis 2014; 52:214-24. [DOI: 10.1016/j.bcmd.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 01/07/2023]
|
109
|
Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell Death Dis 2014; 5:e1027. [PMID: 24481441 PMCID: PMC4040650 DOI: 10.1038/cddis.2013.550] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 01/07/2023]
Abstract
Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance.
Collapse
|
110
|
Chen J, Zhao R, Semba U, Oda M, Suzuki T, Toba K, Hattori S, Okada S, Yamamoto T. Involvement of cross-linked ribosomal protein S19 oligomers and C5a receptor in definitive erythropoiesis. Exp Mol Pathol 2013; 95:364-375. [PMID: 24184702 DOI: 10.1016/j.yexmp.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
We performed a series of experiments under a working hypothesis that cross-linked oligomers of ribosomal protein S19 (RP S19) play an essential role in definitive erythropoiesis as a ligand of the C5a receptor of erythroblasts and macrophages. We found molecules functionally and immunologically indistinguishable from RP S19 oligomers in the extracellular fluid of porcine and guinea pig bone marrow. When an increased hematopoietic state was induced in guinea pigs by bloodletting, the bone marrow RP S19 oligomer concentration was concomitantly increased. However, when the RP S19 oligomers were immunologically neutralized or the C5a receptor was pharmacologically antagonized, hyper-erythropoiesis induced by bloodletting was prevented and the anemic state was retarded in guinea pigs. When the RP S19 oligomers were neutralized in mice after bloodletting, the reactive hyper proliferation of erythroblasts in the spleen was prevented. Proerythroblasts and erythroblasts prepared by bone marrow aspiration from healthy individuals were found to express significant levels of the C5a receptor and type 2 transglutaminase genes. Majority of erythroblasts in cord blood of healthy newborns bore the C5a receptor. Taken together, these results support our hypothesis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Molecular Pathology, Faculty of Life Science and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Gallardo M, Barrio S, Fernandez M, Paradela A, Arenas A, Toldos O, Ayala R, Albizua E, Jimenez A, Redondo S, Garcia-Martin RM, Gilsanz F, Albar JP, Martinez-Lopez J. Proteomic analysis reveals heat shock protein 70 has a key role in polycythemia Vera. Mol Cancer 2013; 12:142. [PMID: 24252366 PMCID: PMC4225507 DOI: 10.1186/1476-4598-12-142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023] Open
Abstract
JAK-STAT signaling through the JAK2V617F mutation is central to the pathogenesis of myeloproliferative neoplasms (MPN). However, other events could precede the JAK2 mutation. The aim of this study is to analyze the phenotypic divergence between polycytemia vera (PV) and essential thrombocytemia (ET) to find novel therapeutics targets by a proteomic and functional approach to identify alternative routes to JAK2 activation. Through 2D-DIGE and mass spectrometry of granulocyte protein from 20 MPN samples, showed differential expression of HSP70 in PV and ET besides other 60 proteins. Immunohistochemistry of 46 MPN bone marrow samples confirmed HSP70 expression. The median of positive granulocytes was 80% in PV (SD 35%) vs. 23% in ET (SD 34.25%). In an ex vivo model KNK437 was used as an inhibition model assay of HSP70, showed dose-dependent inhibition of cell growth and burst formation unit erythroid (BFU-E) in PV and ET, increased apoptosis in the erythroid lineage, and decreased pJAK2 signaling, as well as a specific siRNA for HSP70. These data suggest a key role for HSP70 in proliferation and survival of the erythroid lineage in PV, and may represent a potential therapeutic target in MPN, especially in PV.
Collapse
Affiliation(s)
- Miguel Gallardo
- Hematology Service, Hospital Universitario 12 de Octubre, Avenida, Córdoba, s/n, 28041, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A 2013; 110:18892-7. [PMID: 24191023 DOI: 10.1073/pnas.1304996110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34(+) cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation.
Collapse
|
113
|
Dick SA, Megeney LA. Cell death proteins: an evolutionary role in cellular adaptation before the advent of apoptosis. Bioessays 2013; 35:974-83. [PMID: 23943356 DOI: 10.1002/bies.201300052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Programmed cell death (PCD) or apoptosis is a broadly conserved phenomenon in metazoans, whereby activation of canonical signal pathways induces an ordered dismantling and death of a cell. Paradoxically, the constituent proteins and pathways of PCD (most notably the metacaspase/caspase protease mediated signal pathways) have been demonstrated to retain non-death functions across all phyla including yeast, nematodes, drosophila, and mammals. The ancient conservation of both death and non-death functions of PCD proteins raises an interesting evolutionary conundrum: was the primordial intent of these factors to induce cell death or to regulate other cellular adaptations? Here, we propose the hypothesis that apoptotic behavior of PCD proteins evolved or were co-opted from core non-death functions.
Collapse
Affiliation(s)
- Sarah A Dick
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
114
|
Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, Ciccoli L. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol 2013; 50:489-95. [PMID: 21437568 DOI: 10.1007/s00592-011-0274-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
An increased oxidative stress and a decreased life span of erythrocytes (RBCs) are reported in patients with diabetes. Aim of this study was to assess in RBCs from patients with type 2 diabetes whether downstream effector mechanisms of apoptosis, such as activation of caspase-3, is operative, and whether an iron-related oxidative imbalance, occurring inside RBCs and in plasma, could be involved in caspase-3 activation. In 26 patients with type 2 diabetes and in 12 healthy subjects, oxidative stress was evaluated by means of different markers; non-protein-bound iron, methemoglobin and glutathione were determined in RBCs, and non-protein-bound iron was also determined in plasma. Erythrocyte caspase-3 activation was evaluated by an immunosorbent enzyme assay. Arterial hypertension, demographic and standard biochemical data were also evaluated. The results show, for the first time, that type 2 diabetic RBCs put into motion caspase-3 activation, which is significantly higher than in control RBCs. Such an effector mechanism of "eryptosis" was positively correlated to blood glucose levels and to the increased plasma NPBI level. Caspase-3 activation was also positively correlated to occurrence of arterial hypertension. The results suggest that an extracellular oxidative milieu can be responsible for erythrocyte caspase-3 activation in patients with type 2 diabetes. In turn, caspase-3 activation can be envisaged as a novel mechanism which, by impairing the maintenance of erythrocyte shape and function, might contribute to the shortened life span of RBCs from patients with type 2 diabetes and to hemorheological disorders observed in these patients.
Collapse
Affiliation(s)
- Emilia Maellaro
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
115
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|
116
|
Pan X, Whitten DA, Wu M, Chan C, Wilkerson CG, Pestka JJ. Early phosphoproteomic changes in the mouse spleen during deoxynivalenol-induced ribotoxic stress. Toxicol Sci 2013; 135:129-43. [PMID: 23811945 DOI: 10.1093/toxsci/kft145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) targets the innate immune system and is of public health significance because of its frequent presence in human and animal food. DON-induced proinflammatory gene expression and apoptosis in the lymphoid tissue have been associated with a ribotoxic stress response (RSR) that involves rapid phosphorylation of mitogen-activated protein kinases (MAPKs). To better understand the relationship between protein phosphorylation and DON's immunotoxic effects, stable isotope dimethyl labeling-based proteomics in conjunction with titanium dioxide chromatography was employed to quantitatively profile the immediate (≤ 30min) phosphoproteome changes in the spleens of mice orally exposed to 5mg/kg body weight DON. A total of 90 phosphoproteins indicative of novel phosphorylation events were significantly modulated by DON. In addition to critical branches and scaffolds of MAPK signaling being affected, DON exposure also altered phosphorylation of proteins that mediate phosphatidylinositol 3-kinase/AKT pathways. Gene ontology analysis revealed that DON exposure affected biological processes such as cytoskeleton organization, regulation of apoptosis, and lymphocyte activation and development, which likely contribute to immune dysregulation associated with DON-induced RSR. Consistent with these findings, DON impacted phosphorylation of proteins within diverse immune cell populations, including monocytes, macrophages, T cells, B cells, dendritic cells, and mast cells. Fuzzy c-means clustering analysis further indicated that DON evoked several distinctive temporal profiles of regulated phosphopeptides. Overall, the findings from this investigation can serve as a template for future focused exploration and modeling of cellular responses associated with the immunotoxicity evoked by DON and other ribotoxins.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
117
|
Boehm D, Mazurier C, Giarratana MC, Darghouth D, Faussat AM, Harmand L, Douay L. Caspase-3 is involved in the signalling in erythroid differentiation by targeting late progenitors. PLoS One 2013; 8:e62303. [PMID: 23658722 PMCID: PMC3642196 DOI: 10.1371/journal.pone.0062303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/23/2013] [Indexed: 02/07/2023] Open
Abstract
A role for caspase activation in erythroid differentiation has been established, yet its precise mode of action remains elusive. A drawback of all previous investigations on caspase activation in ex vivo erythroid differentiation is the lack of an in vitro model producing full enucleation of erythroid cells. Using a culture system which renders nearly 100% enucleated red cells from human CD34(+) cells, we investigated the role of active caspase-3 in erythropoiesis. Profound effects of caspase-3 inhibition were found on erythroid cell growth and differentiation when inhibitors were added to CD34(+) cells at the start of the culture and showed dose-response to the concentration of inhibitor employed. Enucleation was only reduced as a function of the reduced maturity of the culture and the increased cell death of mature cells while the majority of cells retained their ability to extrude their nuclei. Cell cycle analysis after caspase-3 inhibition showed caspase-3 to play a critical role in cell proliferation and highlighted a novel function of this protease in erythroid differentiation, i.e. its contribution to cell cycle regulation at the mitotic phase. While the effect of caspase-3 inhibitor treatment on CD34(+) derived cells was not specific to the erythroid lineage, showing a similar reduction of cell expansion in myeloid cultures, the mechanism of action in both lineages appeared to be distinct with a strong induction of apoptosis causing the decreased yield of myeloid cells. Using a series of colony-forming assays we were able to pinpoint the stage at which cells were most sensitive to caspase-3 inhibition and found activated caspase-3 to play a signalling role in erythroid differentiation by targeting mature BFU-E and CFU-E but not early BFU-E.
Collapse
Affiliation(s)
- Daniela Boehm
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Christelle Mazurier
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
| | - Marie-Catherine Giarratana
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Dhouha Darghouth
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
| | - Anne-Marie Faussat
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- IFR 65-St Antoine, Université Pierre et Marie Curie - Paris 6, Plateforme de Cytométrie, Paris, France
| | - Laurence Harmand
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
| | - Luc Douay
- Université Pierre et Marie Curie - Paris 6, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France
- INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France
- Etablissement Français du Sang Ile de France, Unité d'Ingénierie et de Thérapie Cellulaire, Créteil, France
- IFR 65-St Antoine, Université Pierre et Marie Curie - Paris 6, Plateforme de Cytométrie, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital St Antoine et Hôpital Trousseau, Service d'Hématologie Biologique, Paris, France
- * E-mail:
| |
Collapse
|
118
|
Hermine O, Arlet JB, Ribeil JA, Guillerm F, Vandekerkhove J, Courtois G. [HSP70, an erythropoiesis regulator that determines the fate of erythroblasts between death and differentiation]. Transfus Clin Biol 2013; 20:144-7. [PMID: 23643330 DOI: 10.1016/j.tracli.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Erythropoiesis is finely regulated by two major cytokines, stem cell factor (SCF) and erythropoietin (Epo). Decrease levels of Epo result in caspase activation and erythroid progenitors apoptosis. However, normal erythroid cell maturation requests caspase activation and cleavage of various caspase substrates, except the erythroid transcription factor GATA-1, that is protected by interaction with the chaperone HSP70 in the nucleus. Therefore, molecular abnormalities associated with decrease of HSP70 expression in the nucleus may result in ineffective erythropoiesis characterized by apoptosis and impaired maturation of erythroid precursors. These findings open new potential targeted therapies for erythroid disorders.
Collapse
Affiliation(s)
- O Hermine
- CNRS UMR 8143, labex des globules rouges GR-ex, hôpital Necker, institut Imagine, université Sorbonne Paris Cité, Paris Descartes, Paris, France.
| | | | | | | | | | | |
Collapse
|
119
|
Sawant DA, Tharakan B, Tobin RP, Reilly J, Hunter FA, Newell MK, Smythe WR, Childs EW. Microvascular endothelial cell hyperpermeability induced by endogenous caspase 3 activator staurosporine. J Trauma Acute Care Surg 2013; 74:516-23. [PMID: 23354245 DOI: 10.1097/ta.0b013e31827a0620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Microvascular hyperpermeability following conditions such as hemorrhagic shock occurs mainly owing to disruption of the adherens junctional protein complex in endothelial cells. The objective of this study was to examine the action of staurosporine, a potent activator of endogenous caspase 3 on the adherens junction and the cellular pathway through which it causes possible endothelial cell barrier dysfunction. METHODS Rat lung microvascular endothelial cell (RLMEC) permeability was measured by fluorescein isothiocyanate-albumin flux across the monolayer in a Transwell plate. Integrity of the endothelial cell adherens junctions was studied using immunofluorescence of β-catenin and vascular endothelial-cadherin. Mitochondrial reactive oxygen species formation was determined by using dihydrorhodamine 123 and mitochondrial transmembrane potential by JC-1 fluorescent probe and flow cytometry. Caspase 3 enzyme activity was assayed fluorometrically. Cell death assay in RLMECs was performed using propidium iodide staining and analyzed by flow cytometry. RESULTS Staurosporine (1 µM)-treated RLMEC monolayers showed significant increase in permeability, which was decreased by pretreatment with caspase 3 specific inhibitor, Z-DEVD-FMK (p < 0.05). Immunofluorescence studies showed staurosporine induced disruption of the adherens junction, which was reversed by Z-DEVD-FMK. Staurosporine treatment led to an increase in mitochondrial reactive oxygen species formation and a decrease in mitochondrial transmembrane potential. Furthermore, staurosporine induced a significant increase in caspase 3 activity (p < 0.05) but not cell death in RLMECs (p < 0.05). CONCLUSION Staurosporine-induced disruption of the adherens junction and microvascular endothelial cell hyperpermeability is associated with the activation of mitochondrial "intrinsic" apoptotic signaling cascade but without causing endothelial cell death. Our results suggest that prevention of mitochondrial-mediated activation of caspase 3 has therapeutic potential against microvascular hyperpermeability.
Collapse
Affiliation(s)
- Devendra A Sawant
- Department of Surgery, Texas A&M Health Science Center College of Medicine and Scott and White Health Care, Temple, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Ineffective erythropoiesis in β -thalassemia. ScientificWorldJournal 2013; 2013:394295. [PMID: 23606813 PMCID: PMC3628659 DOI: 10.1155/2013/394295] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/03/2013] [Indexed: 01/06/2023] Open
Abstract
In humans, β-thalassemia dyserythropoiesis is characterized by expansion of early erythroid precursors and erythroid progenitors and then ineffective erythropoiesis. This ineffective erythropoiesis is defined as a suboptimal production of mature erythrocytes originating from a proliferating pool of immature erythroblasts. It is characterized by (1) accelerated erythroid differentiation, (2) maturation blockade at the polychromatophilic stage, and (3) death of erythroid precursors. Despite extensive knowledge of molecular defects causing β-thalassemia, less is known about the mechanisms responsible for ineffective erythropoiesis. In this paper, we will focus on the underlying mechanisms leading to premature death of thalassemic erythroid precursors in the bone marrow.
Collapse
|
121
|
Abstract
Post-transcriptional control of gene expression is crucial for the control of cellular differentiation. Erythroid precursor cells loose their organelles in a timely controlled manner during terminal maturation to functional erythrocytes. Extrusion of the nucleus precedes the release of young reticulocytes into the blood stream. The degradation of mitochondria is initiated by reticulocyte 15-lipoxygenase (r15-LOX) in mature reticulocytes. At that terminal stage the release of r15-LOX mRNA from its translational silenced state induces the synthesis of r15-LOX. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator of r15-LOX mRNA translation. HnRNP K that binds to the differentiation control element (DICE) in the 3′ untranslated region (UTR) inhibits r15-LOX mRNA translation initiation. During erythroid cell maturation, activation of r15-LOX mRNA translation is mediated by post-translational modifications of hnRNP K and a decrease of the hnRNP K level. To further elucidate its function in the post-transcriptional control of gene expression, we investigated hnRNP K degradation employing an inducible erythroid cell system that recapitulates both nuclear extrusion and the timely controlled degradation of mitochondria, mediated by the activation of r15-LOX synthesis. Interestingly, we detected a specific N-terminal cleavage intermediate of hnRNP K lacking DICE-binding activity that appeared during erythroid differentiation and puromycin-induced apoptosis. Employing mass spectrometry and enzymatic analyses, we identified Caspase-3 as the enzyme that cleaves hnRNP K specifically. In vitro studies revealed that cleavage by Caspase-3 at amino acids (aa) D334-G335 removes the C-terminal hnRNP K homology (KH) domain 3 that confers binding of hnRNP K to the DICE. Our data suggest that the processing of hnRNP K by Caspase-3 provides a save-lock mechanism for its timely release from the r15-LOX mRNA silencing complex and activation of r15-LOX mRNA synthesis in erythroid cell differentiation.
Collapse
|
122
|
Venero JL, Burguillos MA, Joseph B. Caspases playing in the field of neuroinflammation: old and new players. Dev Neurosci 2013; 35:88-101. [PMID: 23445938 DOI: 10.1159/000346155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Neuroinflammation is a complex immune response against the harmful effects of diverse stimuli within the central nervous system. Caspases are a family of intracellular cysteine proteases that mediate proteolytic events indispensable for transduction of signaling pathway-controlling biological phenomena such as apoptosis and inflammation. To date, 14 players have been identified in mammals. For many years, caspases were simply divided into 'apoptotic' and 'proinflammatory' caspases and this classification remains useful to some extent. However, increasing evidence indicates that many of these so-called apoptotic caspases also exert nonapoptotic functions. In addition, the role of certain members of the supposed inflammatory caspases in the inflammatory process per se has also been discussed. In this review, we highlight the role for 'apoptotic' and 'proinflammatory' caspases in the regulation of the inflammation response with a special focus on the central nervous system.
Collapse
Affiliation(s)
- Jose L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | | | | |
Collapse
|
123
|
Vartanian AA. RETRACTED ARTICLE: Signaling pathways in tumor vasculogenic mimicry. BIOCHEMISTRY (MOSCOW) 2012; 77:1044-55. [DOI: 10.1134/s000629791209012x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Chang L, Zhang X, Liu W, Song Y, Gao X, Ling W, Wu Y. Immunoreactivity of Ki-67/β-tubulin and immunocolocalization with active caspase-3 in rat dentate gyrus during postnatal development. J Chem Neuroanat 2012; 46:10-8. [PMID: 22959929 DOI: 10.1016/j.jchemneu.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/25/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022]
Abstract
This study was based on our previous report that the expression of active caspase-3 kept at a high level in dentate gyrus during postnatal development, which is not related to an apoptotic event. We addressed the hypothesis that the active caspase-3 expression may be related to a nonapoptotic role in the regulation of the cell cycle and differentiation or other physiological functions. To confirm this hypothesis, through a temporal investigation from postnatal day (P) 0, 4, 7, 10, 14, 21, 28, to 56, based on immunofluorescent method, we dual labeled active caspase-3 with Ki-67 or β-tubulin in the dentate gyrus. Our results showed a minority of active caspase-3 positive cells were colabeled with the proliferation marker Ki-67 in stratum moleculare (MOL), granular cell layer (GCL), subgranular zone (SGZ) and polymorphic stratum (POLY) from P0 to P14, and the colabeled cells decreased gradually with age. From P21 to P56, the colocalization of the two proteins was mainly focused on SGZ. There was a positive correlation between the positive cells of active caspase-3 with that of Ki-67. In addition, an extensive colocalization between active caspase-3 and β-tubulin was observed at all the age groups. There was a strong positive correlation between the intensity of active caspase-3 in GCL with that of β-tubulin in MOL, GCL and POLY of dentate gyrus and the stratum lucidum of CA3. Our data raised the possibility of a nonapoptotic role of active caspase-3 in dentate gyrus, which may be partly associated with cellular proliferation and differentiation, and also may be related to neurite outgrowth, axonal transport, or dendrite elongation of granular cells during postnatal development.
Collapse
Affiliation(s)
- Lirong Chang
- Department of Anatomy, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Tallack MR, Magor GW, Dartigues B, Sun L, Huang S, Fittock JM, Fry SV, Glazov EA, Bailey TL, Perkins AC. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res 2012; 22:2385-98. [PMID: 22835905 PMCID: PMC3514668 DOI: 10.1101/gr.135707.111] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KLF1 (formerly known as EKLF) regulates the development of erythroid cells from bi-potent progenitor cells via the transcriptional activation of a diverse set of genes. Mice lacking Klf1 die in utero prior to E15 from severe anemia due to the inadequate expression of genes controlling hemoglobin production, cell membrane and cytoskeletal integrity, and the cell cycle. We have recently described the full repertoire of KLF1 binding sites in vivo by performing KLF1 ChIP-seq in primary erythroid tissue (E14.5 fetal liver). Here we describe the KLF1-dependent erythroid transcriptome by comparing mRNA-seq from Klf1+/+ and Klf1−/− erythroid tissue. This has revealed novel target genes not previously obtainable by traditional microarray technology, and provided novel insights into the function of KLF1 as a transcriptional activator. We define a cis-regulatory module bound by KLF1, GATA1, TAL1, and EP300 that coordinates a core set of erythroid genes. We also describe a novel set of erythroid-specific promoters that drive high-level expression of otherwise ubiquitously expressed genes in erythroid cells. Our study has identified two novel lncRNAs that are dynamically expressed during erythroid differentiation, and discovered a role for KLF1 in directing apoptotic gene expression to drive the terminal stages of erythroid maturation.
Collapse
Affiliation(s)
- Michael R Tallack
- Mater Medical Research Institute, Mater Hospital, Brisbane, Queensland 4101, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012; 46:316-31. [PMID: 22752662 DOI: 10.1007/s12035-012-8289-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023]
Abstract
Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.
Collapse
|
127
|
Meshkini A, Yazdanparast R. Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int J Biochem Cell Biol 2012; 44:1718-28. [PMID: 22743331 DOI: 10.1016/j.biocel.2012.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
Evidence is emerging that Foxo family proteins serve as biochemical signal integrators in complex signaling networks mediating and modulating diverse cellular functions. Herein, we report that besides the well-established function of Foxo3a as a transcriptional regulator of multiple target genes in nucleus, a substantial fraction of Foxo3a translocates to mitochondria leading to disruption of mitochondrial membrane potential, release of cytochrome c and caspase activation during erythroid differentiation mediated by guanosine 5'-triphosphate (GTP). In fact, non transcriptional role of Foxo3a in mitochondria was achieved through the protein-protein interaction with pro-apoptotic protein Bax and its translocation to mitochondrial membrane. Furthermore, our results revealed that mitochondrial localization of Foxo3a was modulated by intracellular GTP content which is sensed by PKC signaling element. Collectively, our findings provided insight into a novel Foxo3a mechanism in leukemia cells which led to engagement of cells in the maturation pathway.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Institute of Biochemistry and Biophysics, PO Box 13145-1384, University of Tehran, Tehran, Iran
| | | |
Collapse
|
128
|
Mjahed H, Girodon F, Fontenay M, Garrido C. Heat shock proteins in hematopoietic malignancies. Exp Cell Res 2012; 318:1946-58. [PMID: 22652452 DOI: 10.1016/j.yexcr.2012.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 01/13/2023]
Abstract
Inducible heat shock proteins are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. Their basal expression is low in nonstressed, normal and nontransformed cells. However, in cancer cells and particularly in hematological malignancies, they are surprisingly abundant. Malignant cells have to rewire their metabolic requirements and therefore have a higher need for chaperones. This cancer cell addiction for HSPs is the basis for the use of HSP inhibitors in cancer therapy. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can essentially block the apoptotic pathways at several steps, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, a controlled caspase activation and chromatin condensation are frequently observed. It is, therefore, not surprising that HSPs may be implicated in the differentiation process. HSPs may determine the fate of the cells by orchestrating the decision of apoptosis versus differentiation. This review will focus on the role of HSPs in hematological malignancies and the emerging therapeutic options that are being either proposed or used to target these protective proteins.
Collapse
Affiliation(s)
- Hajare Mjahed
- Inserm, UMR866, Faculty of Medicine, 7 Boulevard Jeanne D'Arc, F-21000 Dijon, France
| | | | | | | |
Collapse
|
129
|
Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 2012; 13:322-30. [PMID: 22402666 DOI: 10.1038/embor.2012.19] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023] Open
Abstract
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
Collapse
|
130
|
Betin VMS, MacVicar TDB, Parsons SF, Anstee DJ, Lane JD. A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress. Autophagy 2012; 8:664-76. [PMID: 22441018 DOI: 10.4161/auto.19227] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Atg4 cysteine proteases play crucial roles in the processing of Atg8 proteins during autophagy, but their regulation during cellular stress and differentiation remains poorly understood. We have found that two Atg4 family members--Atg4C and Atg4D--contain cryptic mitochondrial targeting sequences immediately downstream of their canonical (DEVD) caspase cleavage sites. Consequently, caspase-cleaved Atg4D (ΔN63 Atg4D) localizes to the mitochondrial matrix when expressed in mammalian cells, where it undergoes further processing to a ~42 kDa mitochondrial form. Interestingly, caspase cleavage is not needed for Atg4D mitochondrial import, because ~42 kDa mitochondrial Atg4D is observed in cells treated with caspase inhibitors and in cells expressing caspase-resistant Atg4D (DEVA(63)). Using HeLa cell lines stably expressing ΔN63 Atg4D, we showed that mitochondrial Atg4D sensitizes cells to cell death in the presence of the mitochondrial uncoupler, CCCP, and that mitochondrial cristae are less extensive in these cells. We further showed that the organization of mitochondrial cristae is altered during the mitochondrial clearance phase in differentiating primary human erythroblasts stably expressing ΔN63 Atg4D, and that these cells have elevated levels of mitochondrial reactive oxygen species (ROS) during late stages of erythropoiesis. Together these data suggest that the import of Atg4D during cellular stress and differentiation may play important roles in the regulation of mitochondrial physiology, ROS, mitophagy and cell viability.
Collapse
Affiliation(s)
- Virginie M S Betin
- Cell Biology Laboratories, Department of Biochemistry, School of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol UK
| | | | | | | | | |
Collapse
|
131
|
Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 2012; 119:4283-90. [PMID: 22294729 DOI: 10.1182/blood-2011-11-394858] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.
Collapse
|
132
|
Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem 2012; 287:8384-97. [PMID: 22275359 DOI: 10.1074/jbc.m112.341586] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is now known that the function of the caspase family of proteases is not restricted to effectors of programmed cell death. For example, there is a significant non-apoptotic role for caspase-3 in cell differentiation. Our own studies in the developing lens show that caspase-3 is activated downstream of the canonical mitochondrial death pathway to act as a molecular switch in signaling lens cell differentiation. Importantly, for this function, caspase-3 is activated at levels far below those that induce apoptosis. We now have provided evidence that regulation of caspase-3 for its role in differentiation induction is dependent on the insulin-like growth factor-1 receptor (IGF-1R) survival-signaling pathway. IGF-1R executed this regulation of caspase-3 by controlling the expression of molecules in the Bcl-2 and inhibitor of apoptosis protein (IAP) families. This effect of IGF-1R was mediated through NFκB, demonstrated here to function as a crucial downstream effector of IGF-1R. Inhibition of expression or activation of NFκB blocked expression of survival proteins in the Bcl-2 and IAP families and removed controls on the activation state of caspase-3. The high level of caspase-3 activation that resulted from inhibiting this IGF-1R/NFκB signaling pathway redirected cell fate from differentiation toward apoptosis. These results provided the first evidence that the IGF-1R/NFκB cell survival signal is a crucial regulator of the level of caspase-3 activation for its non-apoptotic function in signaling cell differentiation.
Collapse
Affiliation(s)
- Subhasree Basu
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
133
|
Abstract
Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.
Collapse
|
134
|
|
135
|
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood 2011; 119:1532-42. [PMID: 22160620 DOI: 10.1182/blood-2011-03-343475] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal human erythroid cell maturation requests the transcription factor GATA-1 and a transient activation of caspase-3, with GATA-1 being protected from caspase-3-mediated cleavage by interaction with the chaperone heat shock protein 70 (Hsp70) in the nucleus. Erythroid cell dysplasia observed in early myelodysplastic syndromes (MDS) involves impairment of differentiation and excess of apoptosis with a burst of caspase activation. Analysis of gene expression in MDS erythroblasts obtained by ex vivo cultures demonstrates the down-regulation of a set of GATA-1 transcriptional target genes, including GYPA that encodes glycophorin A (GPA), and the up-regulation of members of the HSP70 family. GATA-1 protein expression is decreased in MDS erythroblasts, but restores in the presence of a pan-caspase inhibitor. Expression of a mutated GATA-1 that cannot be cleaved by caspase-3 rescues the transcription of GATA-1 targets, and the erythroid differentiation, but does not improve survival. Hsp70 fails to protect GATA-1 from caspases because the protein does not accumulate in the nucleus with active caspase-3. Expression of a nucleus-targeted mutant of Hsp70 protects GATA-1 and rescues MDS erythroid cell differentiation. Alteration of Hsp70 cytosolic-nuclear shuttling is a major feature of MDS that favors GATA-1 cleavage and differentiation impairment, but not apoptosis, in dysplastic erythroblasts.
Collapse
|
136
|
Alvarez MM, Chakraborty C. Cadmium inhibits motility factor-dependent migration of human trophoblast cells. Toxicol In Vitro 2011; 25:1926-33. [DOI: 10.1016/j.tiv.2011.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/19/2022]
|
137
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
138
|
Coulon S, Dussiot M, Grapton D, Maciel TT, Wang PHM, Callens C, Tiwari MK, Agarwal S, Fricot A, Vandekerckhove J, Tamouza H, Zermati Y, Ribeil JA, Djedaini K, Oruc Z, Pascal V, Courtois G, Arnulf B, Alyanakian MA, Mayeux P, Leanderson T, Benhamou M, Cogné M, Monteiro RC, Hermine O, Moura IC. Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia. Nat Med 2011; 17:1456-65. [PMID: 22019886 DOI: 10.1038/nm.2462] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/04/2011] [Indexed: 01/04/2023]
Abstract
Anemia because of insufficient production of and/or response to erythropoietin (Epo) is a major complication of chronic kidney disease and cancer. The mechanisms modulating the sensitivity of erythroblasts to Epo remain poorly understood. We show that, when cultured with Epo at suboptimal concentrations, the growth and clonogenic potential of erythroblasts was rescued by transferrin receptor 1 (TfR1)-bound polymeric IgA1 (pIgA1). Under homeostatic conditions, erythroblast numbers were increased in mice expressing human IgA1 compared to control mice. Hypoxic stress of these mice led to increased amounts of pIgA1 and erythroblast expansion. Expression of human IgA1 or treatment of wild-type mice with the TfR1 ligands pIgA1 or iron-loaded transferrin (Fe-Tf) accelerated recovery from acute anemia. TfR1 engagement by either pIgA1 or Fe-Tf increased cell sensitivity to Epo by inducing activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways. These cellular responses were mediated through the TfR1-internalization motif, YXXΦ. Our results show that pIgA1 and TfR1 are positive regulators of erythropoiesis in both physiological and pathological situations. Targeting this pathway may provide alternate approaches to the treatment of ineffective erythropoiesis and anemia.
Collapse
Affiliation(s)
- Séverine Coulon
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte Recherche (UMR) 8147, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Yakovlev AA, Gulyaeva NV. Pleiotropic functions of brain proteinases: Methodological considerations and search for caspase substrates. BIOCHEMISTRY (MOSCOW) 2011; 76:1079-86. [DOI: 10.1134/s0006297911100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
140
|
Maragno AL, Pironin M, Alcalde H, Cong X, Knobeloch KP, Tangy F, Zhang DE, Ghysdael J, Quang CT. ISG15 modulates development of the erythroid lineage. PLoS One 2011; 6:e26068. [PMID: 22022510 PMCID: PMC3192153 DOI: 10.1371/journal.pone.0026068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 11/24/2022] Open
Abstract
Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15(-/-) bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation.
Collapse
Affiliation(s)
- Ana Leticia Maragno
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Martine Pironin
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Hélène Alcalde
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Xiuli Cong
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | | | - Frederic Tangy
- Unité de Génomique Virale et Vaccination, CNRS URA-3015, Institut Pasteur, Paris, France
| | - Dong-Er Zhang
- University of California San Diego, Moores University of California San Diego Cancer Center, La Jolla, California, United States of America
| | - Jacques Ghysdael
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| | - Christine Tran Quang
- CNRS (Centre National de la Recherche Scientifique) UMR3306, Orsay, France
- INSERM (Institut National de la Santé et de la Recherche Médicale) U1005, Orsay, France
- Institut Curie, Centre Universitaire, Bat 110 91405, Orsay, France
| |
Collapse
|
141
|
Abstract
The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2330, USA.
| | | |
Collapse
|
142
|
Abstract
M-CSF-driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides inhibits proteolytic processes and restores expression of the full-length protein that negatively regulates the transcription of genes encoding inflammatory cytokines (eg, NPM1 is recruited with NF-κB on the MCP1 gene promoter to decrease its transcription). In mice with heterozygous npm gene deletion, cytokine production in response to lipopolysaccharides, including CXCL1 (KC), MCP1, and MIP2, is dramatically enhanced. These results indicate a dual function of NPM1 in M-CSF-differentiated macrophages. Proteolysis of the protein participates in the establishment of a mature macrophage phenotype. In response to inflammatory stimuli, the full-length protein negatively regulates inflammatory cytokine production.
Collapse
|
143
|
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are suggested to have key roles in the pathogenesis of several neurodegenerative disorders. We recently published an article in Nature revealing an unexpected role for executioner caspases in the microglia activation process. We showed that caspases 8 and 3/7, commonly known to have executioner roles for apoptosis, can promote microglia activation in the absence of death. We found these caspases to be activated in microglia of PD and AD subjects. Inhibition of this signaling pathway hindered microglia activation and importantly reduced neurotoxicity in cell and animal models of disease. Here we review evidence suggesting that microglia can have a key role in the pathology of neurodegenerative disorders. We discuss possible underlying mechanisms regulating their activation and neurotoxic effect. We focus on the provocative hypothesis that caspase inhibition can be neuroprotective by targeting the microglia rather than the neurons themselves.
Collapse
|
144
|
Glucocorticoid regulation of astrocytic fate and function. PLoS One 2011; 6:e22419. [PMID: 21811605 PMCID: PMC3141054 DOI: 10.1371/journal.pone.0022419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/22/2011] [Indexed: 12/26/2022] Open
Abstract
Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.
Collapse
|
145
|
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol 2011; 1:5. [PMID: 22655227 PMCID: PMC3356092 DOI: 10.3389/fonc.2011.00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.
Collapse
|
146
|
Abstract
Caspases, a family of aspartate-specific cysteine proteases, play a major role in apoptosis and a variety of physiological and pathological processes. Fourteen mammalian caspases have been identified and can be divided into two groups: inflammatory caspases and apoptotic caspases. Based on the structure and function, the apoptotic caspases are further grouped into initiator/apical caspases (caspase-2, -8, -9, and -10) and effector/executioner caspases (caspase-3, -6, and -7). In this paper, we discuss what we have learned about the role of individual effector caspase in mediating both apoptotic and nonapoptotic events, with special emphasis on leukemia-specific oncoproteins in relation to effector caspases.
Collapse
|
147
|
Huber HJ, Duessmann H, Wenus J, Kilbride SM, Prehn JHM. Mathematical modelling of the mitochondrial apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:608-15. [PMID: 20950651 DOI: 10.1016/j.bbamcr.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/23/2022]
Abstract
Mitochondria are pivotal for cellular bioenergetics, but are also a core component of the cell death machinery. Hypothesis-driven research approaches have greatly advanced our understanding of the role of mitochondria in cell death and cell survival, but traditionally focus on a single gene or specific signalling pathway at a time. Predictions originating from these approaches become limited when signalling pathways show increased complexity and invariably include redundancies, feedback loops, anisotropies or compartmentalisation. By introducing methods from theoretical chemistry, control theory, and biophysics, computational models have provided new quantitative insights into cell decision processes and have led to an increased understanding of the key regulatory principles of apoptosis. In this review, we describe the currently applied modelling approaches, discuss the suitability of different modelling techniques, and evaluate their contribution to the understanding of the mitochondrial apoptosis pathway. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Heinrich J Huber
- Department of Physiology and Mental Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
148
|
Yokoyama T, Etoh T, Udayanga KGS, Takahara E, Qi WM, Warita K, Matsumoto Y, Miki T, Takeuchi Y, Hoshi N, Kitagawa H. Immunohistochemical detection of phosphatidylserine and thrombospondin on denucleating erythroblasts in rat bone marrow. J Vet Med Sci 2011; 73:949-52. [PMID: 21427522 DOI: 10.1292/jvms.10-0437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that apoptotic factors play some roles in the denucleation of erythroblasts has been confirmed by the immunohistological detection of both phosphatidylserine and thrombospondin as phagocytosis-inducing factors in general apoptotic events. Both phosphatidylserine and thrombospondin were detected on the surface of cell membrane of mature erythroblasts, while thrombospondin was also detected in more immature erythroblasts. The intensities of their immune reactions increased as the erythroids matured. During denucleation, the positivities of both phosphatidylserine and thrombospondin were restricted on the surface of the cell membrane surrounding the protruding nuclei. Thus, the apoptotic process involves denucleation of erythroblasts and phosphatidylserine, and thrombospondin acts as phagocytosis-inducing factors in the denucleation event.
Collapse
Affiliation(s)
- Toshifumi Yokoyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Graduate School of Science and Technology, Kobe University, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Hadji A, Clybouw C, Auffredou MT, Alexia C, Poalas K, Burlion A, Feraud O, Leca G, Vazquez A. Caspase-3 triggers a TPCK-sensitive protease pathway leading to degradation of the BH3-only protein puma. Apoptosis 2011; 15:1529-39. [PMID: 20640889 DOI: 10.1007/s10495-010-0528-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein Puma (p53-upregulated modulator of apoptosis) belongs to the BH3-only group of the Bcl-2 family and is a major regulator of apoptosis. Although the transcriptional regulation of Puma is clearly established, little is known about the regulation of its expression at the protein levels. We show here that various signals--including the cytokine TGFβ, the death effector TRAIL or chemical drugs such as anisomycin--downregulate Puma protein levels via a novel pathway based on the sequential activation of caspase-3 and a protease inhibited by the serpase inhibitor N-tosyl-L-phenylalanine chloromethyl ketone. This pathway is specific for Puma because (1) the levels of other BH3-only proteins, such as Bim and Noxa were not modified by these stimuli and (2) this caspase-mediated degradation was dependent on both the BH3 and C-terminal domains of Puma. Our data also show that Puma is regulated during the caspase-3-dependent differentiation of murine embryonic stem cells and suggest that this pathway may be relevant and important during caspase-mediated cell differentiation not associated with apoptosis.
Collapse
Affiliation(s)
- Abbas Hadji
- INSERM U.1014, Batiment Lavoisier, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M, Diederich M. Sustained exposure to the DNA demethylating agent, 2′-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 2011; 81:364-78. [DOI: 10.1016/j.bcp.2010.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
|