101
|
Abstract
In this work we created functional microfluidic chips without actually designing them. We accomplished this by first generating a library of thousands of different random microfluidic chip designs, then simulating the behavior of each design on a computer using automated finite element analysis. The simulation results were then saved to a database which a user can query via to find chip designs suitable for a specific task. To demonstrate this functionality, we used our library to select chip designs that generate any three desired concentrations of a solute. We also fabricated and tested 16 chips from the library, confirmed that they function as predicted, and used these chips to perform a cell growth rate assay. This is one of many different applications for randomly-designed microfluidics; in principle, any microfluidic chip that can be simulated could be designed automatically using our method. Using this approach, individuals with no training in microfluidics can obtain custom chip designs for their own unique needs in just a few seconds.
Collapse
Affiliation(s)
- Junchao Wang
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Philip Brisk
- Department of Computer Science and Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - William H Grover
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| |
Collapse
|
102
|
Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production. PLoS One 2016; 11:e0162838. [PMID: 27622474 PMCID: PMC5021340 DOI: 10.1371/journal.pone.0162838] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022] Open
Abstract
The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Natalia Bravo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pamela Córdova
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gabriela Contreras
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma, Madrid, Cantoblanco, España
| | - Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
103
|
Puig-Castellví F, Alfonso I, Piña B, Tauler R. (1)H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis. Sci Rep 2016; 6:30982. [PMID: 27485935 PMCID: PMC4971537 DOI: 10.1038/srep30982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022] Open
Abstract
Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development.
Collapse
Affiliation(s)
- Francesc Puig-Castellví
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
104
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
105
|
Hill DA, Anderson LE, Hill CJ, Mostaghim A, Rodgers VGJ, Grover WH. MECs: "Building Blocks" for Creating Biological and Chemical Instruments. PLoS One 2016; 11:e0158706. [PMID: 27437989 PMCID: PMC4954702 DOI: 10.1371/journal.pone.0158706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
The development of new biological and chemical instruments for research and diagnostic applications is often slowed by the cost, specialization, and custom nature of these instruments. New instruments are built from components that are drawn from a host of different disciplines and not designed to integrate together, and once built, an instrument typically performs a limited number of tasks and cannot be easily adapted for new applications. Consequently, the process of inventing new instruments is very inefficient, especially for researchers or clinicians in resource-limited settings. To improve this situation, we propose that a family of standardized multidisciplinary components is needed, a set of “building blocks” that perform a wide array of different tasks and are designed to integrate together. Using these components, scientists, engineers, and clinicians would be able to build custom instruments for their own unique needs quickly and easily. In this work we present the foundation of this set of components, a system we call Multifluidic Evolutionary Components (MECs). “Multifluidic” conveys the wide range of fluid volumes MECs operate upon (from nanoliters to milliliters and beyond); “multi” also reflects the multiple disciplines supported by the system (not only fluidics but also electronics, optics, and mechanics). “Evolutionary” refers to the design principles that enable the library of MEC parts to easily grow and adapt to new applications. Each MEC “building block” performs a fundamental function that is commonly found in biological or chemical instruments, functions like valving, pumping, mixing, controlling, and sensing. Each MEC also has a unique symbol linked to a physical definition, which enables instruments to be designed rapidly and efficiently using schematics. As a proof-of-concept, we use MECs to build a variety of instruments, including a fluidic routing and mixing system capable of manipulating fluid volumes over five orders of magnitude, an acid-base titration instrument suitable for use in schools, and a bioreactor suitable for maintaining and analyzing cell cultures in research and diagnostic applications. These are the first of many instruments that can be built by researchers, clinicians, and students using the MEC system.
Collapse
Affiliation(s)
- Douglas A. Hill
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
| | - Lindsey E. Anderson
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
| | - Casey J. Hill
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
| | - Afshin Mostaghim
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
| | - Victor G. J. Rodgers
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
| | - William H. Grover
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
106
|
Hartmann A, Neves AR, Lemos JM, Vinga S. Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model. Math Biosci 2016; 279:83-9. [PMID: 27424949 DOI: 10.1016/j.mbs.2016.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
Abstract
This article considers a new mathematical model for the description of multiphasic cell growth. A linear hybrid model is proposed and it is shown that the two-parameter logistic model with switching parameters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The growth phases are modeled as continuous processes, while the switches between the phases are considered to be discrete events triggering a change in growth parameters. This framework provides an easily interpretable model, because the intrinsic behavior is the same along all the phases but with a different parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent more complex nonlinear models. The growth phases and parameters from datasets of different microorganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae, and Saccharomyces cerevisiae, were inferred. The segments and parameters obtained from the growth data are close to the ones determined by the experts. The fact that the model could explain the data from three different microorganisms and experiments demonstrates the strength of this modeling approach for multiphasic growth, and presumably other processes consisting of multiple phases.
Collapse
Affiliation(s)
- András Hartmann
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa - Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | - Ana Rute Neves
- Discovery, Chr. Hansen A/S - Bøge Alle 10-12, Hørsholm 2970, Denmark.
| | - João M Lemos
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa - R Alves Redol 9, Lisbon 1000-029, Portugal.
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa - Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| |
Collapse
|
107
|
Mitochondrial translation and cellular stress response. Cell Tissue Res 2016; 367:21-31. [DOI: 10.1007/s00441-016-2460-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
|
108
|
Thompson MK, Rojas-Duran MF, Gangaramani P, Gilbert WV. The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. eLife 2016; 5. [PMID: 27117520 PMCID: PMC4848094 DOI: 10.7554/elife.11154] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/21/2016] [Indexed: 02/06/2023] Open
Abstract
Translation is a core cellular process carried out by a highly conserved macromolecular machine, the ribosome. There has been remarkable evolutionary adaptation of this machine through the addition of eukaryote-specific ribosomal proteins whose individual effects on ribosome function are largely unknown. Here we show that eukaryote-specific Asc1/RACK1 is required for efficient translation of mRNAs with short open reading frames that show greater than average translational efficiency in diverse eukaryotes. ASC1 mutants in S. cerevisiae display compromised translation of specific functional groups, including cytoplasmic and mitochondrial ribosomal proteins, and display cellular phenotypes consistent with their gene-specific translation defects. Asc1-sensitive mRNAs are preferentially associated with the translational ‘closed loop’ complex comprised of eIF4E, eIF4G, and Pab1, and depletion of eIF4G mimics the translational defects of ASC1 mutants. Together our results reveal a role for Asc1/RACK1 in a length-dependent initiation mechanism optimized for efficient translation of genes with important housekeeping functions. DOI:http://dx.doi.org/10.7554/eLife.11154.001 Ribosomes are structures within cells that are responsible for making proteins. Molecules called messenger RNAs (or mRNAs), which contain genetic information derived from the DNA of a gene, pass through ribosomes that then “translate” that information to build proteins. Although all living cells contain ribosomes, the protein building blocks that make up the structure of the ribosome are not the same in all species. Furthermore, the exact roles that each building block plays during translation are not known. The ribosomes of plants, animals, and budding yeast contain the same protein, known as Asc1 in budding yeast and RACK1 in plants and animals. Thompson et al. have now explored the role of Asc1 in yeast cells by measuring translation in the absence of Asc1 using a technique called ribosome footprint profiling. This analysis revealed that cells lacking Asc1 translate fewer short mRNA molecules than normal cells. Short mRNAs encode small proteins that tend to play important ‘housekeeping’ roles in the cell — by forming the structural building blocks of ribosomes, for example. It has been observed previously that short mRNAs are translated at a higher rate than longer mRNAs on average, although the reasons behind this bias are still mysterious. The findings of Thompson et al. suggest that the ribosome itself may discriminate between short and long mRNAs and that the Asc1 protein is involved in calibrating the ribosome’s preference for short mRNAs. Cells need differing amounts of small proteins in different growth conditions. It will therefore be interesting to investigate whether mRNA length discrimination can be regulated by Asc1 and/or other components of the ribosome to tune gene expression to the environment. DOI:http://dx.doi.org/10.7554/eLife.11154.002
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Paritosh Gangaramani
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
109
|
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-26. [PMID: 27016735 PMCID: PMC5291244 DOI: 10.1093/nar/gkw194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.
Collapse
Affiliation(s)
- Beatrice Fermi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
110
|
Cardenas J, Da Silva NA. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 2016; 36:80-89. [PMID: 26969250 DOI: 10.1016/j.ymben.2016.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/04/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
Abstract
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Javier Cardenas
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| |
Collapse
|
111
|
Magrì A, Di Rosa MC, Tomasello MF, Guarino F, Reina S, Messina A, De Pinto V. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:789-98. [PMID: 26947057 DOI: 10.1016/j.bbabio.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
Abstract
Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC.
Collapse
Affiliation(s)
- Andrea Magrì
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Maria Carmela Di Rosa
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | | | - Francesca Guarino
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Simona Reina
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy.
| | - Vito De Pinto
- BIOMETEC, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; National Institute for Biostructures and Biosystems, Section of Catania, Italy.
| |
Collapse
|
112
|
Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome. Cell Cycle 2016; 14:1643-56. [PMID: 25839782 DOI: 10.1080/15384101.2015.1026493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.
Collapse
Key Words
- D, diauxic growth phase
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ETC, electron transport chain
- ISC, iron-sulfur clusters
- LCA, lithocholic acid
- MAM, mitochondria-associated membrane
- OS, oxidative stress
- PD, post-diauxic growth phase
- PMD, partial mitochondrial dysfunction
- ROS, reactive oxygen species
- ST, stationary growth phase
- TCA, tricarboxylic acid
- WT, wild type
- anti-aging compounds
- cell metabolism
- cellular aging
- lithocholic bile acid
- longevity
- mitochondria
- mitochondrial proteome
- mitochondrial signaling
- signal transduction
- yeast
Collapse
Affiliation(s)
- Adam Beach
- a Department of Biology; Concordia University ; Montreal , QC , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Mol Cell Biol 2016; 36:1064-77. [PMID: 26787838 DOI: 10.1128/mcb.00770-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeast Saccharomyces cerevisiae results in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria. Together, our data indicate that altered chromatin structure relieves glucose repression of mitochondrial respiration by inducing transcription of the TCA cycle and OXPHOS genes carried by both nuclear and mitochondrial DNA.
Collapse
|
114
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
115
|
Kuang YT, Bhat R, Davies R. Mechanisms of Repair of Low Water Activity and pH-Injured Z
ygosaccharomyces rouxii
YSa40 in Glycerol and Sucrose/CPB Liquid Holding System. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yeoh Tow Kuang
- School of Hospitality, Tourism and Culinary Arts; Taylor's University; Lakeside Campus Subang Jaya 47500 Selangor Malaysia
| | - Rajeev Bhat
- Food Technology Division; School of Industrial Technology; Universiti Sains Malaysia; Penang 11800 Malaysia
| | - Roland Davies
- Department of Food and Nutritional Sciences; University of Reading; Reading United Kingdom
| |
Collapse
|
116
|
Bisschops MM, Vos T, Martínez-Moreno R, Cortés PT, Pronk JT, Daran-Lapujade P. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae. MICROBIAL CELL (GRAZ, AUSTRIA) 2015; 2:429-444. [PMID: 28357268 PMCID: PMC5349206 DOI: 10.15698/mic2015.11.238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/13/2015] [Indexed: 01/08/2023]
Abstract
Stationary-phase (SP) batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.
Collapse
Affiliation(s)
- Markus M. Bisschops
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Current address: Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering & The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Tim Vos
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Rubén Martínez-Moreno
- Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
- Current address: Quercus Europe S.L., L’Hospitalet de Llobregat, Catalonia, Spain
| | - Pilar T. Cortés
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
117
|
Van Zyl JHD, Den Haan R, Van Zyl WH. Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 2015; 100:505-18. [PMID: 26450509 DOI: 10.1007/s00253-015-7022-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptor proteins (SNAREs) are essential components of the yeast protein-trafficking machinery and are required at the majority of membrane fusion events in the cell, where they facilitate SNARE-mediated fusion between the protein transport vesicles, the various membrane-enclosed organelles and, ultimately, the plasma membrane. We have demonstrated an increase in secretory titers for the Talaromyces emersonii Cel7A (Te-Cel7A, a cellobiohydrolase) and the Saccharomycopsis fibuligera Cel3A (Sf-Cel3A, a β-glucosidase) expressed in Saccharomyces cerevisiae through single and co-overexpression of some of the endoplasmic reticulum (ER)-to-Golgi SNAREs (BOS1, BET1, SEC22 and SED5). Overexpression of SED5 yielded the biggest improvements for both of the cellulolytic reporter proteins tested, with maximum increases in extracellular enzyme activity of 22 % for the Sf-Cel3A and 68 % for the Te-Cel7A. Co-overexpression of the ER-to-Golgi SNAREs yielded proportionately smaller increases for the Te-Cel7A (46 %), with the Sf-Cel3A yielding no improvement. Co-overexpression of the most promising exocytic SNARE components identified in literature for secretory enhancement of the cellulolytic proteins tested (SSO1 for Sf-Cel3A and SNC1 for Te-Cel7A) with the most effective ER-to-Golgi SNARE components identified in this study (SED5 for both Sf-Cel3A and Te-Cel7A) yielded variable results, with Sf-Cel3A improved by 131 % and Te-Cel7A yielding no improvement. Improvements were largely independent of gene dosage as all strains only integrated single additional SNARE gene copies, with episomal variance between the most improved strains shown to be insignificant. This study has added further credence to the notion that SNARE proteins fulfil an essential role within a larger cascade of secretory machinery components that could contribute significantly to future improvements to S. cerevisiae as protein production host.
Collapse
Affiliation(s)
- John Henry D Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Riaan Den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, 7530, South Africa
| | - Willem H Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7602, South Africa.
| |
Collapse
|
118
|
Tsai CJ, Aslam K, Drendel HM, Asiago JM, Goode KM, Paul LN, Rochet JC, Hazbun TR. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. J Biol Chem 2015; 290:24816-34. [PMID: 26306045 DOI: 10.1074/jbc.m115.678367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.
Collapse
Affiliation(s)
- Chai-Jui Tsai
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kiran Aslam
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Holli M Drendel
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Josephat M Asiago
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kourtney M Goode
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Lake N Paul
- the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Tony R Hazbun
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| |
Collapse
|
119
|
McKnight JN, Boerma JW, Breeden LL, Tsukiyama T. Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry. Mol Cell 2015; 59:732-43. [PMID: 26300265 DOI: 10.1016/j.molcel.2015.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/25/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
Abstract
Quiescence is a conserved cell-cycle state characterized by cell-cycle arrest, increased stress resistance, enhanced longevity, and decreased transcriptional, translational, and metabolic output. Although quiescence plays essential roles in cell survival and normal differentiation, the molecular mechanisms leading to this state are not well understood. Here, we determined changes in the transcriptome and chromatin structure of S. cerevisiae upon quiescence entry. Our analyses revealed transcriptional shutoff that is far more robust than previously believed and an unprecedented global chromatin transition, which are tightly correlated. These changes require Rpd3 lysine deacetylase targeting to at least half of gene promoters via quiescence-specific transcription factors including Xbp1 and Stb3. Deletion of RPD3 prevents cells from establishing transcriptional quiescence, leading to defects in quiescence entry and shortening of chronological lifespan. Our results define a molecular mechanism for global reprogramming of transcriptome and chromatin structure for quiescence driven by a highly conserved chromatin regulator.
Collapse
Affiliation(s)
- Jeffrey N McKnight
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joseph W Boerma
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
120
|
Mazzoleni S, Landi C, Cartenì F, de Alteriis E, Giannino F, Paciello L, Parascandola P. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures. Microb Cell Fact 2015; 14:109. [PMID: 26223307 PMCID: PMC4518646 DOI: 10.1186/s12934-015-0295-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. RESULTS A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. CONCLUSIONS The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.
Collapse
Affiliation(s)
- Stefano Mazzoleni
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Carmine Landi
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Fabrizio Cartenì
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Elisabetta de Alteriis
- Dept. di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80100, Naples, Italy.
| | - Francesco Giannino
- Dept. di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Lucia Paciello
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Palma Parascandola
- Dept. di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
121
|
Nguyen-Huu TD, Gupta C, Ma B, Ott W, Josić K, Bennett MR. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change. PLoS Comput Biol 2015. [PMID: 26200924 PMCID: PMC4511807 DOI: 10.1371/journal.pcbi.1004399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels. Understanding how cells respond to environmental changes is a fundamental question in biology. Such responses are governed by interactions between genes, proteins and other cellular machinery. However, even the responses of genetically identical cells are not identical. Our aim was to examine the origins of this variability using the galactose metabolic network in the baker yeast Saccharomyces cerevisiae. This metabolic network allows yeast to consume galactose once its preferred carbon source, glucose, is depleted. We used microfluidic devices and time-lapse fluorescence microscopy to observe how individual cells respond as glucose is removed from their environment at different rates. We found that the activation of the galactose metabolic network depends on the rate of depletion. Surprisingly, cells start to consume galactose faster when glucose is depleted slowly rather than removed quickly. Furthermore, genetically identical cells can exhibit remarkably different rates of galactose consumption. We provide a simple mathematical model that explains these different observations. These results suggest that dynamic changes of environmental conditions can affect the behavior of both individual cells and the whole population.
Collapse
Affiliation(s)
- Truong D. Nguyen-Huu
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Chinmaya Gupta
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Bo Ma
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Matthew R. Bennett
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Institute of Biosciences and Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
122
|
Wanichthanarak K, Wongtosrad N, Petranovic D. Genome-wide expression analyses of the stationary phase model of ageing in yeast. Mech Ageing Dev 2015; 149:65-74. [PMID: 26079307 DOI: 10.1016/j.mad.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022]
Abstract
Ageing processes involved in replicative lifespan (RLS) and chronological lifespan (CLS) have been found to be conserved among many organisms, including in unicellular Eukarya such as yeast Saccharomyces cerevisiae. Here we performed an integrated approach of genome wide expression profiles of yeast at different time points, during growth and starvation. The aim of the study was to identify transcriptional changes in those conditions by using several different computational analyses in order to propose transcription factors, biological networks and metabolic pathways that seem to be relevant during the process of chronological ageing in yeast. Specifically, we performed differential gene expression analysis, gene-set enrichment analysis and network-based analysis, and we identified pathways affected in the stationary phase and specific transcription factors driving transcriptional adaptations. The results indicate signal propagation from G protein-coupled receptors through signaling pathway components and other stress and nutrient-induced transcription factors resulting in adaptation of yeast cells to the lack of nutrients by activating metabolism associated with aerobic metabolism of carbon sources such as ethanol, glycerol and fatty acids. In addition, we found STE12, XBP1 and TOS8 as highly connected nodes in the subnetworks of ageing yeast.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Nutvadee Wongtosrad
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
123
|
Sundaram V, Petkova MI, Pujol-Carrion N, Boada J, de la Torre-Ruiz MA. Tor1, Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival. Mol Microbiol 2015; 97:93-109. [DOI: 10.1111/mmi.13013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Venkatraghavan Sundaram
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Mima I. Petkova
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Nuria Pujol-Carrion
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Jordi Boada
- Department of Experimental Medicine; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| | - Maria Angeles de la Torre-Ruiz
- Department of Basic Medical Sciences; IRB-Lleida; University of Lleida; Av. Alcalde Rovira Roure n° 80 25198 Lleida Spain
| |
Collapse
|
124
|
Takeda K, Starzynski C, Mori A, Yanagida M. The critical glucose concentration for respiration-independent proliferation of fission yeast, Schizosaccharomyces pombe. Mitochondrion 2015; 22:91-5. [DOI: 10.1016/j.mito.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
|
125
|
Williams TC, Espinosa MI, Nielsen LK, Vickers CE. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:43. [PMID: 25886317 PMCID: PMC4427958 DOI: 10.1186/s12934-015-0223-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022] Open
Abstract
Background Engineering dynamic, environmentally- and temporally-responsive control of gene expression is one of the principle objectives in the field of synthetic biology. Dynamic regulation is desirable because many engineered functions conflict with endogenous processes which have evolved to facilitate growth and survival, and minimising conflict between growth and production phases can improve product titres in microbial cell factories. There are a limited number of mechanisms that enable dynamic regulation in yeast, and fewer still that are appropriate for application in an industrial setting. Results To address this problem we have identified promoters that are repressed during growth on glucose, and activated during growth on sucrose. Catabolite repression and preferential glucose utilisation allows active growth on glucose before switching to production on sucrose. Using sucrose as an activator of gene expression circumvents the need for expensive inducer compounds and enables gene expression to be triggered during growth on a fermentable, high energy-yield carbon source. The ability to fine-tune the timing and population density at which gene expression is activated from the SUC2 promoter was demonstrated by varying the ratio of glucose to sucrose in the growth medium. Finally, we demonstrated that the system could also be used to repress gene expression (a process also required for many engineering projects). We used the glucose/sucrose system to control a heterologous RNA interference module and dynamically repress the expression of a constitutively regulated GFP gene. Conclusions The low noise levels and high dynamic range of the SUC2 promoter make it a promising option for implementing dynamic regulation in yeast. The capacity to repress gene expression using RNA interference makes the system highly versatile, with great potential for metabolic engineering applications. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0223-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas C Williams
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Monica I Espinosa
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
126
|
Suresh HG, da Silveira Dos Santos AX, Kukulski W, Tyedmers J, Riezman H, Bukau B, Mogk A. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:1601-15. [PMID: 25761633 PMCID: PMC4436773 DOI: 10.1091/mbc.e14-11-1559] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/02/2015] [Indexed: 11/11/2022] Open
Abstract
Lipid homeostasis is modulated upon starvation at three different levels manifested in reversible 1) spatial confinement of lipid biosynthetic enzymes, 2) mitochondrial and endoplasmic reticular reorganization, and 3) loss of organelle contact sites, thus highlighting a novel mechanism regulating lipid biosynthesis by simply modulating flux through the pathway. Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Wanda Kukulski
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens Tyedmers
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
127
|
Carquet M, Pompon D, Truan G. Transcription interference and ORF nature strongly affect promoter strength in a reconstituted metabolic pathway. Front Bioeng Biotechnol 2015; 3:21. [PMID: 25767795 PMCID: PMC4341558 DOI: 10.3389/fbioe.2015.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Fine tuning of individual enzyme expression level is necessary to alleviate metabolic imbalances in synthetic heterologous pathways. A known approach consists of choosing a suitable combination of promoters, based on their characterized strengths in model conditions. We questioned whether each step of a multiple-gene synthetic pathway could be independently tunable at the transcription level. Three open reading frames, coding for enzymes involved in a synthetic pathway, were combinatorially associated to different promoters on an episomal plasmid in Saccharomyces cerevisiae. We quantified the mRNA levels of the three genes in each strain of our generated combinatorial metabolic library. Our results evidenced that the ORF nature, position, and orientation induce strong discrepancies between the previously reported promoters' strengths and the observed ones. We conclude that, in the context of metabolic reconstruction, the strength of usual promoters can be dramatically affected by many factors. Among them, transcriptional interference and ORF nature seem to be predominant.
Collapse
Affiliation(s)
- Marie Carquet
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Denis Pompon
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| | - Gilles Truan
- Université de Toulouse, INSA, UPS, INP, LISBP , Toulouse , France ; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse , France ; CNRS, UMR5504 , Toulouse , France
| |
Collapse
|
128
|
Becker E, Liu Y, Lardenois A, Walther T, Horecka J, Stuparevic I, Law MJ, Lavigne R, Evrard B, Demougin P, Riffle M, Strich R, Davis RW, Pineau C, Primig M. Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development. J Proteomics 2015; 119:30-44. [PMID: 25662576 DOI: 10.1016/j.jprot.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Diploid budding yeast undergoes rapid mitosis when it ferments glucose, and in the presence of a non-fermentable carbon source and the absence of a nitrogen source it triggers sporulation. Rich medium with acetate is a commonly used pre-sporulation medium, but our understanding of the molecular events underlying the acetate-driven transition from mitosis to meiosis is still incomplete. We identified 263 proteins for which mRNA and protein synthesis are linked or uncoupled in fermenting and respiring cells. Using motif predictions, interaction data and RNA profiling we find among them 28 likely targets for Ume6, a subunit of the conserved Rpd3/Sin3 histone deacetylase-complex regulating genes involved in metabolism, stress response and meiosis. Finally, we identify 14 genes for which both RNA and proteins are detected exclusively in respiring cells but not in fermenting cells in our sample set, including CSM4, SPR1, SPS4 and RIM4, which were thought to be meiosis-specific. Our work reveals intertwined transcriptional and post-transcriptional control mechanisms acting when a MATa/α strain responds to nutritional signals, and provides molecular clues how the carbon source primes yeast cells for entering meiosis. BIOLOGICAL SIGNIFICANCE Our integrated genomics study provides insight into the interplay between the transcriptome and the proteome in diploid yeast cells undergoing vegetative growth in the presence of glucose (fermentation) or acetate (respiration). Furthermore, it reveals novel target genes involved in these processes for Ume6, the DNA binding subunit of the conserved histone deacetylase Rpd3 and the co-repressor Sin3. We have combined data from an RNA profiling experiment using tiling arrays that cover the entire yeast genome, and a large-scale protein detection analysis based on mass spectrometry in diploid MATa/α cells. This distinguishes our study from most others in the field-which investigate haploid yeast strains-because only diploid cells can undergo meiotic development in the simultaneous absence of a non-fermentable carbon source and nitrogen. Indeed, we report molecular clues how respiration of acetate might prime diploid cells for efficient spore formation, a phenomenon that is well known but poorly understood.
Collapse
Affiliation(s)
| | - Yuchen Liu
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Thomas Walther
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Joe Horecka
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Igor Stuparevic
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Michael J Law
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Régis Lavigne
- Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Bertrand Evrard
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Randy Strich
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Charles Pineau
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France; Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Michael Primig
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
129
|
Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie van Leeuwenhoek 2015; 107:1029-48. [DOI: 10.1007/s10482-015-0395-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
|
130
|
Kamei Y, Tamada Y, Nakayama Y, Fukusaki E, Mukai Y. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. J Biol Chem 2014; 289:32081-32093. [PMID: 25294875 DOI: 10.1074/jbc.m114.600528] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence.
Collapse
Affiliation(s)
- Yuka Kamei
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan and
| | - Yoshihiro Tamada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan and.
| |
Collapse
|
131
|
Choudhury A, Hodgman CE, Anderson MJ, Jewett MC. Evaluating fermentation effects on cell growth and crude extract metabolic activity for improved yeast cell-free protein synthesis. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
132
|
Maldonado EN, Lemasters JJ. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 2014; 19 Pt A:78-84. [PMID: 25229666 DOI: 10.1016/j.mito.2014.09.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Non-proliferating cells generate the bulk of cellular ATP by fully oxidizing respiratory substrates in mitochondria. Respiratory substrates cross the mitochondrial outer membrane through only one channel, the voltage dependent anion channel (VDAC). Once in the matrix, respiratory substrates are oxidized in the tricarboxylic acid cycle to generate mostly NADH that is further oxidized in the respiratory chain to generate a proton motive force comprised mainly of membrane potential (ΔΨ) to synthesize ATP. Mitochondrial ΔΨ then drives the release of ATP(4-) from the matrix in exchange for ADP(3-) in the cytosol via the adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane. Thus, mitochondrial function in non-proliferating cells drives a high cytosolic ATP/ADP ratio, essential to inhibit glycolysis. By contrast, the bioenergetics of the Warburg phenotype of proliferating cells is characterized by enhanced aerobic glycolysis and the suppression of mitochondrial metabolism. Suppressed mitochondrial function leads to lower production of mitochondrial ATP and hence lower cytosolic ATP/ADP ratios that favor enhanced glycolysis. Thus, the cytosolic ATP/ADP ratio is a key feature that determines if cell metabolism is predominantly oxidative or glycolytic. Here, we describe two novel mechanisms to explain the suppression of mitochondrial metabolism in cancer cells: the relative closure of VDAC by free tubulin and the inactivation of ANT. Both mechanisms contribute to low ATP/ADP ratios that activate glycolysis.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
133
|
Corrêa LFDM, Passos FJV, Viloria MIV, Martins Filho OA, de Carvalho AT, Passos FML. Signals of aging associated with lower growth rates in Kluyveromyces lactis cultures under nitrogen limitation. Can J Microbiol 2014; 60:605-12. [PMID: 25204685 DOI: 10.1139/cjm-2014-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of aging on the specific growth rate of Kluyveromyces lactis cultures, as a function of (NH4)2SO4 concentration, were evaluated. The growth kinetic parameters maximum specific growth rate and saturation constant for (NH4)2SO4 were calculated to be 0.44 h(-1) and 0.15 mmol·L(-1), respectively. Batch cultures were allowed to age for 16 days without influence of cell density or starvation. The specific growth rates of these cultures were determined each day and decreased as the population aged at different nitrogen concentrations. Aging signals (N-acetylglucosamine content of the cell wall, cell dimensions, and apoptosis markers) were measured. Apoptosis markers were detected after 5 days at limiting (NH4)2SO4 concentrations (0.57, 3.80, and 7.60 mmol·L(-1)) but only after 8 days at a nonlimiting (NH4)2SO4 concentration (38.0 mmol·L(-1)). Similarly, continuous cultures of K. lactis performed under nitrogen limitation and, at lower dilution rates, accumulated cells exhibiting aging signals. The results demonstrate that aging affects growth rate and raise the question of whether nitrogen limitation accelerates aging. Because aging is correlated with growth rate, and each dilution rate of the continuous cultures tends to select and accumulate cells with a respective age, cultures growing at lower growth rates can be useful to investigate yeast physiological responses, including aging.
Collapse
Affiliation(s)
- Lygia Fátima da Mata Corrêa
- a Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n 36571-000, Laboratório de Fisiologia de Microrganismos, BIOAGRO, Viçosa - MG, Brasil
| | | | | | | | | | | |
Collapse
|
134
|
Review of clinical practice utility of positron emission tomography with 18F-fluorodeoxyglucose in assessing tumour response to therapy. Radiol Med 2014; 120:345-51. [PMID: 25155349 PMCID: PMC4377159 DOI: 10.1007/s11547-014-0446-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/28/2014] [Indexed: 12/17/2022]
Abstract
Positron emission tomography, most commonly with 18F-fluorodeoxyglucose, is being used for evaluation of tumour response to therapy. Limitations of this method are associated with (1) fluorodeoxyglucose pharmacokinetic properties, (2) the detection system, (3) discrepancies between metabolic and anatomic images, and (4) acquisition standardization. Response to therapy may be evaluated with qualitative (Deauville score), semiquantitative (standardised uptake value), and quantitative methods (European Organization for Research and Treatment of Cancer; Positron Emission Tomography Response Criteria in Solid Tumours). Methods under evaluation include metabolic tumour volume, total lesion glycolysis, and heterogeneity of fluorodeoxyglucose uptake. The development of positron emission tomography scanners that have larger fields of view may facilitate tumour assessment based on kinetic modelling. Increased clinical use of these methods will depend on the development and validation of intuitive and simple analytic tools.
Collapse
|
135
|
Wanichthanarak K, Nookaew I, Petranovic D. yStreX: yeast stress expression database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau068. [PMID: 25024351 PMCID: PMC4095678 DOI: 10.1093/database/bau068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past decade genome-wide expression analyses have been often used to study how expression of genes changes in response to various environmental stresses. Many of these studies (such as effects of oxygen concentration, temperature stress, low pH stress, osmotic stress, depletion or limitation of nutrients, addition of different chemical compounds, etc.) have been conducted in the unicellular Eukaryal model, yeast Saccharomyces cerevisiae. However, the lack of a unifying or integrated, bioinformatics platform that would permit efficient and rapid use of all these existing data remain an important issue. To facilitate research by exploiting existing transcription data in the field of yeast physiology, we have developed the yStreX database. It is an online repository of analyzed gene expression data from curated data sets from different studies that capture genome-wide transcriptional changes in response to diverse environmental transitions. The first aim of this online database is to facilitate comparison of cross-platform and cross-laboratory gene expression data. Additionally, we performed different expression analyses, meta-analyses and gene set enrichment analyses; and the results are also deposited in this database. Lastly, we constructed a user-friendly Web interface with interactive visualization to provide intuitive access and to display the queried data for users with no background in bioinformatics. Database URL:http://www.ystrexdb.com
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden and Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Intawat Nookaew
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden and Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USADepartment of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden and Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dina Petranovic
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden and Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
136
|
Kang WK, Kim YH, Kim BS, Kim JY. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J Microbiol 2014; 52:652-8. [PMID: 24997552 DOI: 10.1007/s12275-014-4173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/07/2023]
Abstract
Silent Information Regulator 2 (Sir2), a conserved NAD(+)-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phase-dependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
137
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
138
|
Mehrotra S, Galdieri L, Zhang T, Zhang M, Pemberton LF, Vancura A. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:751-63. [PMID: 24907648 DOI: 10.1016/j.bbagrm.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
Abstract
Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG.
Collapse
Affiliation(s)
- Swati Mehrotra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Tiantian Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Man Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lucy F Pemberton
- Center for Cell Signalling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
139
|
Kang HJ, Chang M, Kang CM, Park YS, Yoon BJ, Kim TH, Yun CW. The expression of PHO92 is regulated by Gcr1, and Pho92 is involved in glucose metabolism in Saccharomyces cerevisiae. Curr Genet 2014; 60:247-53. [PMID: 24850134 DOI: 10.1007/s00294-014-0430-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/09/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022]
Abstract
Ydr374c (Pho92) contains a YTH domain in its C-terminal region and is a human YTHDF2 homologue. Previously, we reported that Pho92 regulates phosphate metabolism by regulating PHO4 mRNA stability. In this study, we found that growth of the ∆pho92 strain on SG media was slower than that of the wild type and that PHO92 expression was up-regulated by non-fermentable carbon sources, such as ethanol and glycerol, but not by fermentable carbon sources. Furthermore, two conserved Gcr1-binding regions were identified in the upstream, untranslated region of PHO92. Gcr1 is an important factor involved in the coordinated regulation of glycolytic gene expression. Mutation of two Gcr1-binding sites of the PHO92 upstream region resulted in a growth defect on SD media. Finally, mutagenesis of the Gcr1-binding sites of the PHO92 upstream region and deletion of GCR1 resulted in up-regulation of PHO92, and this resulted from inhibition of PHO4 mRNA degradation. Based on these results, we suggest that Gcr1 regulates the expression of PHO92, and Pho92 is involved in glucose metabolism.
Collapse
Affiliation(s)
- Hyun-Jun Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
140
|
Rezaei MN, Dornez E, Jacobs P, Parsi A, Verstrepen KJ, Courtin CM. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation. Food Microbiol 2014; 39:108-15. [DOI: 10.1016/j.fm.2013.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 01/09/2023]
|
141
|
Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc Natl Acad Sci U S A 2014; 111:7012-7. [PMID: 24706893 DOI: 10.1073/pnas.1319221111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The yeast Hsp31 minifamily proteins (Hsp31, Hsp32, Hsp33, Hsp34) belong to the highly conserved DJ-1 superfamily. The human DJ-1 protein is associated with cancer and neurodegenerative disorders, such as Parkinson disease. However, the precise function of human and yeast DJ-1 proteins is unclear. Here we show that the yeast DJ-1 homologs have a role in diauxic-shift (DS), characterized by metabolic reprogramming because of glucose limitation. We find that the Hsp31 genes are strongly induced in DS and in stationary phase (SP), and that deletion of these genes reduces chronological lifespan, impairs transcriptional reprogramming at DS, and impairs the acquisition of several typical characteristics of SP, including autophagy induction. In addition, under carbon starvation, the HSP31 family gene-deletion strains display impaired autophagy, disrupted target of rapamycin complex 1 (TORC1) localization to P-bodies, and caused abnormal TORC1-mediated Atg13 phosphorylation. Repression of TORC1 by rapamycin in the gene-deletion strains completely reversed their sensitivity to heat shock. Taken together, our data indicate that Hsp31 minifamily is required for DS reprogramming and cell survival in SP, and plays a role upstream of TORC1. The enhanced understanding of the cellular function of these genes sheds light into the biological role of other members of the superfamily, including DJ-1, which is an attractive target for therapeutic intervention in cancer and in Parkinson disease.
Collapse
|
142
|
Over-expression of native Saccharomyces cerevisiae exocytic SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 2014; 98:5567-78. [DOI: 10.1007/s00253-014-5647-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 12/30/2022]
|
143
|
Bisschops MMM, Zwartjens P, Keuter SGF, Pronk JT, Daran-Lapujade P. To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1020-30. [PMID: 24487068 DOI: 10.1016/j.bbamcr.2014.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
The PAS kinase Rim15 is proposed to integrate signals from different nutrient-sensing pathways and to control transcriptional reprogramming of Saccharomyces cerevisiae upon nutrient depletion. Despite this proposed role, previous transcriptome analyses of rim15 mutants solely focused on growing cultures. In the present work, retentostat cultivation enabled analysis of the role of Rim15 under severely calorie-restricted, virtually non-growing conditions. Under these conditions, deletion of RIM15 affected transcription of over 10-fold more genes than in growing cultures. Transcriptional responses, metabolic rates and cellular morphology indicated a key role of Rim15 in controlled cell-cycle arrest upon nutrient depletion. Moreover, deletion of rim15 reduced heat-shock tolerance in non-growing, but not in growing cultures. The failure of rim15 cells to adapt to calorie restriction by entering a robust post-mitotic state resembles cancer cell physiology and shows that retentostat cultivation of yeast strains can provide relevant models for healthy post-mitotic and transformed human cells.
Collapse
Affiliation(s)
- Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Priscilla Zwartjens
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Sebastiaan G F Keuter
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands.
| |
Collapse
|
144
|
Timón-Gómez A, Proft M, Pascual-Ahuir A. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS One 2013; 8:e79405. [PMID: 24244496 PMCID: PMC3828368 DOI: 10.1371/journal.pone.0079405] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022] Open
Abstract
Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Markus Proft
- Department of Mechanisms of Plant Stress Responses, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Valencia, Spain
- * E-mail: (APA); (MP)
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail: (APA); (MP)
| |
Collapse
|
145
|
Genetic and functional investigation of Zn(2)Cys(6) transcription factors RSE2 and RSE3 in Podospora anserina. EUKARYOTIC CELL 2013; 13:53-65. [PMID: 24186951 DOI: 10.1128/ec.00172-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Podospora anserina, the two zinc cluster proteins RSE2 and RSE3 are essential for the expression of the gene encoding the alternative oxidase (aox) when the mitochondrial electron transport chain is impaired. In parallel, they activated the expression of gluconeogenic genes encoding phosphoenolpyruvate carboxykinase (pck) and fructose-1,6-biphosphatase (fbp). Orthologues of these transcription factors are present in a wide range of filamentous fungi, and no other role than the regulation of these three genes has been evidenced so far. In order to better understand the function and the organization of RSE2 and RSE3, we conducted a saturated genetic screen based on the constitutive expression of the aox gene. We identified 10 independent mutations in 9 positions in rse2 and 11 mutations in 5 positions in rse3. Deletions were generated at some of these positions and the effects analyzed. This analysis suggests the presence of central regulatory domains and a C-terminal activation domain in both proteins. Microarray analysis revealed 598 genes that were differentially expressed in the strains containing gain- or loss-of-function mutations in rse2 or rse3. It showed that in addition to aox, fbp, and pck, RSE2 and RSE3 regulate the expression of genes encoding the alternative NADH dehydrogenase, a Zn2Cys6 transcription factor, a flavohemoglobin, and various hydrolases. As a complement to expression data, a metabolome profiling approach revealed that both an rse2 gain-of-function mutation and growth on antimycin result in similar metabolic alterations in amino acids, fatty acids, and α-ketoglutarate pools.
Collapse
|
146
|
Dikicioglu D, Pir P, Oliver SG. Predicting complex phenotype-genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory. Biotechnol J 2013; 8:1017-34. [PMID: 24031036 PMCID: PMC3910164 DOI: 10.1002/biot.201300138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/15/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022]
Abstract
There is an increasing use of systems biology approaches in both "red" and "white" biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype-phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism.
Collapse
Affiliation(s)
- Duygu Dikicioglu
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Pınar Pir
- Babraham Institute, Babraham Research Campus, CB22 3AT, Cambridge, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| |
Collapse
|
147
|
Ethanol and acetate acting as carbon/energy sources negatively affect yeast chronological aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:802870. [PMID: 24062879 PMCID: PMC3767056 DOI: 10.1155/2013/802870] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
In Saccharomyces cerevisiae, the chronological lifespan (CLS) is defined as the length of time that a population of nondividing cells can survive in stationary phase. In this phase, cells remain metabolically active, albeit at reduced levels, and responsive to environmental signals, thus simulating the postmitotic quiescent state of mammalian cells. Many studies on the main nutrient signaling pathways have uncovered the strong influence of growth conditions, including the composition of culture media, on CLS. In this context, two byproducts of yeast glucose fermentation, ethanol and acetic acid, have been proposed as extrinsic proaging factors. Here, we report that ethanol and acetic acid, at physiological levels released in the exhausted medium, both contribute to chronological aging. Moreover, this combined proaging effect is not due to a toxic environment created by their presence but is mainly mediated by the metabolic pathways required for their utilization as carbon/energy sources. In addition, measurements of key enzymatic activities of the glyoxylate cycle and gluconeogenesis, together with respiration assays performed in extreme calorie restriction, point to a long-term quiescent program favoured by glyoxylate/gluconeogenesis flux contrary to a proaging one based on the oxidative metabolism of ethanol/acetate via TCA and mitochondrial respiration.
Collapse
|
148
|
Leadsham JE, Sanders G, Giannaki S, Bastow EL, Hutton R, Naeimi WR, Breitenbach M, Gourlay CW. Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metab 2013; 18:279-86. [PMID: 23931758 DOI: 10.1016/j.cmet.2013.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/14/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Many disease states, including the aging process, are associated with the accumulation of mitochondria harboring respiratory dysfunction. Mitochondrial dysfunction is often accompanied by increased ROS levels that can contribute to cellular dysfunction and disease etiology. Here we use the model eukaryote S. cerevisiae to investigate whether reduced cytochrome c oxidase (COX) activity, commonly reported in aging organisms and associated with neurodegenerative disorders, leads to ROS production from mitochondria. We provide evidence that although reduced COX complex activity correlates with ROS accumulation, mitochondria are not the major production center. Instead we show that COX-deficient mitochondria activate Ras upon their outer membrane that establishes a pro-ROS accumulation environment by suppressing antioxidant defenses and the ERAD-mediated turnover of the ER-localized NADPH oxidase Yno1p. Our data suggest that dysfunctional mitochondria can serve as a signaling platform to promote the loss of redox homeostasis, ROS accumulation, and accelerate aging in yeast.
Collapse
|
149
|
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 2013; 14:R48. [PMID: 23710766 PMCID: PMC4053722 DOI: 10.1186/gb-2013-14-5-r48] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sirtuins are a conserved family of NAD⁺-dependent histone/protein deacetylases that regulate numerous cellular processes, including heterochromatin formation and transcription. Multiple sirtuins are encoded by each eukaryotic genome, raising the possibility of cooperativity or functional overlap. The scope and variety of chromatin binding sites of the sirtuins in any specific organism remain unclear. RESULTS Here we utilize the ChIP-seq technique to identify and functionally characterize the genome-wide targets of the sirtuins, Sir2, Hst1 to Hst4, and the DNA binding partner of Hst1, Sum 1, in Saccharomyces cerevisiae. Unexpectedly, Sir2, Hst1 and Sum1, but not the other sirtuins, exhibit co-enrichment at several classes of chromatin targets. These include telomeric repeat clusters, tRNA genes, and surprisingly, the open reading frames (ORFs) of multiple highly expressed RNA polymerase II-transcribed genes that function in processes such as fermentation, glycolysis, and translation. Repression of these target genes during the diauxic shift is specifically dependent on Sir2/Hst1/Sum1 binding to the ORF and sufficiently high intracellular NAD⁺ concentrations. Sir2 recruitment to the ORFs is independent of the canonical SIR complex and surprisingly requires Sum1. The shared Sir2/Hst1/Sum1 targets also significantly overlap with condensin and cohesin binding sites, where Sir2, Hst1, and Sum1 were found to be important for condensin and cohesin deposition, suggesting a possible mechanistic link between metabolism and chromatin architecture during the diauxic shift. CONCLUSIONS This study demonstrates the existence of overlap in sirtuin function, and advances our understanding of conserved sirtuin-regulated functions, including the regulation of glycolytic gene expression and condensin loading.
Collapse
Affiliation(s)
- Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Veena Valsakumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, 1340 Jefferson Park Ave, Charlottesville, VA 22908, USA
| |
Collapse
|
150
|
Ullah A, Lopes MI, Brul S, Smits GJ. Intracellular pH homeostasis in Candida glabrata in infection-associated conditions. Microbiology (Reading) 2013; 159:803-813. [DOI: 10.1099/mic.0.063610-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Azmat Ullah
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Maria Inês Lopes
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Gertien J. Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| |
Collapse
|