101
|
Ben Menachem-Zidon O, Reubinoff B, Shveiky D. Transplantation of Mesenchymal Stem Cells Derived from Old Rats Improves Healing and Biomechanical Properties of Vaginal Tissue Following Surgical Incision in Aged Rats. Int J Mol Sci 2024; 25:5714. [PMID: 38891914 PMCID: PMC11172277 DOI: 10.3390/ijms25115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Pelvic floor dysfunction encompasses a group of disorders that negatively affect the quality of women's lives. These include pelvic organ prolapse (POP), urinary incontinence, and sexual dysfunction. The greatest risk factors for prolapse are increased parity and older age, with the largest group requiring surgical intervention being post-menopausal women over 65. Prolapse recurrence rates following surgery were reported to be as high as 30%. This may be attributed to ineffective healing in the elderly. Autologous stem cell transplantation during surgery may improve surgical results. In our previous studies, we showed that the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) from young donor rats improved the healing of full-thickness vaginal surgical incision in the vaginal wall of old rats, demonstrated by both histological and functional analysis. In order to translate these results into the clinical reality of autologous MSC transplantation in elderly women, we sought to study whether stem cells derived from old donor animals would provide the same effect. In this study, we demonstrate that MSC transplantation attenuated the inflammatory response, increased angiogenesis, and exhibited a time-dependent impact on MMP9 localization. Most importantly, transplantation improved the restoration of the biomechanical properties of the vagina, resulting in stronger healed vaginal tissue. These results may pave the way for further translational studies focusing on the potential clinical autologous adjuvant transplantation of MSCs for POP repair for the improvement of surgical outcomes.
Collapse
Affiliation(s)
- Ofra Ben Menachem-Zidon
- The Sidney and Judy Swartz Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Benjamin Reubinoff
- The Sidney and Judy Swartz Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Department of Obstetrics and Gynecology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - David Shveiky
- Department of Obstetrics and Gynecology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
102
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
103
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
104
|
Bao B, Wang Y, Boudreau P, Song X, Wu M, Chen X, Patik I, Tang Y, Ouahed J, Ringel A, Barends J, Wu C, Balskus E, Thiagarajah J, Liu J, Wessels MR, Lencer WI, Kasper DL, An D, Horwitz BH, Snapper SB. Bacterial Sphingolipids Exacerbate Colitis by Inhibiting ILC3-derived IL-22 Production. Cell Mol Gastroenterol Hepatol 2024; 18:101350. [PMID: 38704148 PMCID: PMC11222953 DOI: 10.1016/j.jcmgh.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.
Collapse
Affiliation(s)
- Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | - Youyuan Wang
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pavl Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, Massachusetts; Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, China
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amit Ringel
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Jay Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Wayne Isaac Lencer
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Dingding An
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Bruce Harold Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
105
|
Yoshino Y, Teruya T, Miyamoto C, Hirose M, Endo S, Ikari A. Unraveling the Mechanisms Involved in the Beneficial Effects of Magnesium Treatment on Skin Wound Healing. Int J Mol Sci 2024; 25:4994. [PMID: 38732212 PMCID: PMC11084488 DOI: 10.3390/ijms25094994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (T.T.); (C.M.); (M.H.); (S.E.)
| |
Collapse
|
106
|
Bonavina G, Mamillapalli R, Krikun G, Zhou Y, Gawde N, Taylor HS. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation. Stem Cell Res Ther 2024; 15:129. [PMID: 38693588 PMCID: PMC11064399 DOI: 10.1186/s13287-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA.
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| |
Collapse
|
107
|
Savitri C, Ha SS, Kwon JW, Kim SH, Kim Y, Park HM, Kwon H, Ji MJ, Park K. Human Fibroblast-Derived Matrix Hydrogel Accelerates Regenerative Wound Remodeling Through the Interactions with Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305852. [PMID: 38476050 PMCID: PMC11095160 DOI: 10.1002/advs.202305852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Herein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast-derived matrix (FDM) toward advanced wound healing. This FDM-gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM-gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM-gel treated in the full-thickness wounds are noticed, particularly hair follicle formation via highly upregulated β-catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM-gel significantly alleviated pro-inflammatory cytokine and promoted M2-like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages-FDM interactions through cell surface integrins α5β1 and α1β1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase-9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5β1 and obtustatin for α1β1) negatively affected those pro-healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM-gel. This study demonstrates that the FDM-gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.
Collapse
Affiliation(s)
- Cininta Savitri
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Sang Su Ha
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jae Won Kwon
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Sung Hoon Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Young‐Min Kim
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Hyun Mee Park
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Haejin Kwon
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Mi Jung Ji
- Advanced Analysis and Data CenterKISTSeoul02792Republic of Korea
| | - Kwideok Park
- Center for BiomaterialsKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| |
Collapse
|
108
|
Lee SH, Kim SH, Kim KB, Kim HS, Lee YK. Factors Influencing Wound Healing in Diabetic Foot Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:723. [PMID: 38792906 PMCID: PMC11122953 DOI: 10.3390/medicina60050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and objectives: Diabetic foot stands out as one of the most consequential and devastating complications of diabetes. Many factors, including VIPS (Vascular management, Infection management, Pressure relief, and Source of healing), influence the prognosis and treatment of diabetic foot patients. There are many studies on VIPS, but relatively few studies on "sources of healing". Nutrients that affect wound healing are known, but objective data in diabetic foot patients are insufficient. We hypothesized that "sources of healing" would have many effects on wound healing. The purpose of this study is to know the affecting factors related to the source of healing for diabetic foot patients. Materials and Methods: A retrospective review identified 46 consecutive patients who were admitted for diabetic foot management from July 2019 to April 2021 at our department. Several laboratory tests were performed for influencing factor evaluation. We checked serum levels of total protein, albumin, vitamin B, iron, zinc, magnesium, copper, Hb, HbA1c, HDL cholesterol, and LDL cholesterol. These values of diabetic foot patients were compared with normal values. Patients were divided into two groups based on wound healing rate, age, length of hospital stay, and sex, and the test values between the groups were compared. Results: Levels of albumin (37%) and Hb (89%) were low in the diabetic foot patients. As for trace elements, levels of iron (97%) and zinc (95%) were low in the patients, but levels of magnesium and copper were usually normal or high. There were no differences in demographic characteristics based on wound healing rate. However, when compared to normal adult values, diabetic foot patients in our data exhibited significantly lower levels of hemoglobin, total protein, albumin, iron, zinc, copper, and HDL cholesterol. When compared based on age and length of hospital stay, hemoglobin levels were significantly lower in both the older age group and the group with longer hospital stays. Conclusions: Serum levels of albumin, Hb, iron, and zinc were very low in most diabetic foot patients. These low values may have a negative relationship with wound healing. Nutrient replacements are necessary for wound healing in diabetic foot patients.
Collapse
Affiliation(s)
- Sang Heon Lee
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Sung Hwan Kim
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Kyung Bum Kim
- Department of Orthopaedic Surgery, NEW Korea Hospital, 283, Gimpohangang 3-ro, Gimpo-si 10086, Gyeonggi-do, Republic of Korea;
| | - Ho Sung Kim
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Young Koo Lee
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| |
Collapse
|
109
|
Harmon KA, Burnette MD, Avery JT, Kimmerling KA, Mowry KC. Varying Properties of Extracellular Matrix Grafts Impact Their Durability and Cell Attachment and Proliferation in an In Vitro Chronic Wound Model. J Tissue Eng Regen Med 2024; 2024:6632276. [PMID: 40225755 PMCID: PMC11918773 DOI: 10.1155/2024/6632276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2025]
Abstract
While acute wounds typically progress through the phases of wound healing, chronic wounds often stall in the inflammatory phase due to elevated levels of matrix metalloproteinases (MMPs) and proinflammatory cytokines. Dysregulated expression of MMPs can result in the breakdown of extracellular matrix (ECM) formed during the wound healing process, resulting in stalled wounds. Native collagen-based wound dressings offer a potential wound management option to sequester excess MMPs and support cellular interactions that allow wound progression through the natural healing process. Herein, we utilized commercially available ECM matrices, two derived from porcine small intestinal submucosa (PCMP, 2 layers; PCMP-XT, 5 layers) and one derived from propria submucosa (ovine forestomach matrix, OFM, 1 layer), to demonstrate the impact of processing methodologies (e.g., layering and crosslinking) on functional characteristics needed for the management of chronic wounds. Grafts were evaluated for structural composition using scanning electron microscopy and histology, ability to reduce MMPs using fluorometric assays, and durability in an in vitro degradation chronic wound model. Both intact (nondegraded) and partially degraded grafts were assessed for their ability to serve as a functional cell scaffold using primary human fibroblasts. Grafts differed in matrix substructure and composition. While all grafts demonstrated attenuation of MMP activity, PCMP and PCMP-XT showed larger reductions of MMP levels. OFM rapidly degraded in the in vitro degradation model (<3 hours), while PCMP and PCMP-XT were significantly more durable (>7 days). The ability of PCMP and PCMP-XT to serve as scaffolds for cellular attachment was not impacted by degradation in vitro. Three ECM grafts with varying structural and functional characteristics exhibited differential durability when degraded in a simulated chronic wound model. Those that withstood rapid degradation maintained their ability to function as a scaffold to support attachment and proliferation of fibroblasts, a cell type important for wound healing.
Collapse
Affiliation(s)
- Katrina A. Harmon
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Miranda D. Burnette
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Justin T. Avery
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Kelly A. Kimmerling
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Katie C. Mowry
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| |
Collapse
|
110
|
Alenezi H, Parnell G, Schibeci S, Ozkan J, Willcox M, White AJR, Carnt N. Ocular surface immune transcriptome and tear cytokines in corneal infection patients. Front Cell Infect Microbiol 2024; 14:1346821. [PMID: 38694515 PMCID: PMC11061372 DOI: 10.3389/fcimb.2024.1346821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Background Microbial keratitis is one of the leading causes of blindness globally. An overactive immune response during an infection can exacerbate damage, causing corneal opacities and vision loss. This study aimed to identify the differentially expressed genes between corneal infection patients and healthy volunteers within the cornea and conjunctiva and elucidate the contributing pathways to these conditions' pathogenesis. Moreover, it compared the corneal and conjunctival transcriptomes in corneal-infected patients to cytokine levels in tears. Methods Corneal and conjunctival swabs were collected from seven corneal infection patients and three healthy controls under topical anesthesia. RNA from seven corneal infection patients and three healthy volunteers were analyzed by RNA sequencing (RNA-Seq). Tear proteins were extracted from Schirmer strips via acetone precipitation from 38 cases of corneal infection and 14 healthy controls. The cytokines and chemokines IL-1β, IL-6, CXCL8 (IL-8), CX3CL1, IL-10, IL-12 (p70), IL-17A, and IL-23 were measured using an antibody bead assay. Results A total of 512 genes were found to be differentially expressed in infected corneas compared to healthy corneas, with 508 being upregulated and four downregulated (fold-change (FC) <-2 or > 2 and adjusted p <0.01). For the conjunctiva, 477 were upregulated, and 3 were downregulated (FC <-3 or ≥ 3 and adjusted p <0.01). There was a significant overlap in cornea and conjunctiva gene expression in patients with corneal infections. The genes were predominantly associated with immune response, regulation of angiogenesis, and apoptotic signaling pathways. The most highly upregulated gene was CXCL8 (which codes for IL-8 protein). In patients with corneal infections, the concentration of IL-8 protein in tears was relatively higher in patients compared to healthy controls but did not show statistical significance. Conclusions During corneal infection, many genes were upregulated, with most of them being associated with immune response, regulation of angiogenesis, and apoptotic signaling. The findings may facilitate the development of treatments for corneal infections that can dampen specific aspects of the immune response to reduce scarring and preserve sight.
Collapse
Affiliation(s)
- Heba Alenezi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Grant Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stephen Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jerome Ozkan
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J. R. White
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
111
|
Bebiano LB, Presa R, Vieira F, Lourenço BN, Pereira RF. Bioinspired and Photo-Clickable Thiol-Ene Bioinks for the Extrusion Bioprinting of Mechanically Tunable 3D Skin Models. Biomimetics (Basel) 2024; 9:228. [PMID: 38667239 PMCID: PMC11048463 DOI: 10.3390/biomimetics9040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Bioinks play a fundamental role in skin bioprinting, dictating the printing fidelity, cell response, and function of bioprinted 3D constructs. However, the range of bioinks that support skin cells' function and aid in the bioprinting of 3D skin equivalents with tailorable properties and customized shapes is still limited. In this study, we describe a bioinspired design strategy for bioengineering double crosslinked pectin-based bioinks that recapitulate the mechanical properties and the presentation of cell-adhesive ligands and protease-sensitive domains of the dermal extracellular matrix, supporting the bioprinting of bilayer 3D skin models. Methacrylate-modified pectin was used as a base biomaterial enabling hydrogel formation via either chain-growth or step-growth photopolymerization and providing independent control over bioink rheology, as well as the mechanical and biochemical cues of cell environment. By tuning the concentrations of crosslinker and polymer in bioink formulation, dermal constructs were bioprinted with a physiologically relevant range of stiffnesses that resulted in strikingly site-specific differences in the morphology and spreading of dermal fibroblasts. We also demonstrated that the developed thiol-ene photo-clickable bioinks allow for the bioprinting of skin models of varying shapes that support dermis and epidermis reconstruction. Overall, the engineered bioinks expand the range of printable biomaterials for the extrusion bioprinting of 3D cell-laden hydrogels and provide a versatile platform to study the impact of material cues on cell fate, offering potential for in vitro skin modeling.
Collapse
Affiliation(s)
- Luís B. Bebiano
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rafaela Presa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisca Vieira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bianca N. Lourenço
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
112
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
113
|
Zamani S, Salehi M, Ehterami A, Fauzi MB, Abbaszadeh-Goudarzi G. Assessing the efficacy of curcumin-loaded alginate hydrogel on skin wound healing: A gene expression analysis. J Biomater Appl 2024; 38:957-974. [PMID: 38453252 DOI: 10.1177/08853282241238581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Skin tissue engineering has gained significant attention as a promising alternative to traditional treatments for skin injuries. In this study, we developed 3D hydrogel-based scaffolds, Alginate, incorporating different concentrations of Curcumin and evaluated their properties, including morphology, swelling behavior, weight loss, as well as hemo- and cytocompatibility. Furthermore, we investigated the therapeutic potential of Alginate hydrogel containing different amounts of Curcumin using an in vitro wound healing model. The prepared hydrogels exhibited remarkable characteristics, SEM showed that the pore size of hydrogels was 134.64 μm with interconnected pores, making it conducive for cellular infiltration and nutrient exchange. Moreover, hydrogels demonstrated excellent biodegradability, losing 63.5% of its weight over 14 days. In addition, the prepared hydrogels had a stable release of curcumin for 3 days. The results also show the hemocompatibility of prepared hydrogels and a low amount of blood clotting. To assess the efficacy of the developed hydrogels, 3T3 fibroblast growth was examined during various incubation times. The results indicated that the inclusion of Curcumin at a concentration of 0.1 mg/mL positively influenced cellular behavior. The animal study showed that Alginate hydrogel containing 0.1 mg/mL curcumin had high wound closure(more than 80%) after 14 days. In addition, it showed up-regulation of essential wound healing genes, including TGFβ1 and VEGF, promoting tissue repair and angiogenesis. Furthermore, the treated group exhibited down-regulation of MMP9 gene expression, indicating a reduction in matrix degradation and inflammation. The observed cellular responses and gene expression changes substantiate the therapeutic efficacy of prepared hydrogels. Consequently, our study showed the healing effect of alginate-based hydrogel containing Curcumin on skin injuries.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
114
|
Zhang Y, Gao C, Luo J, Khan A, Salem‐Bekhit MM, Salem MM, Qi Z, Jiang B. Deciphering the role of wound healing genes in skin cutaneous melanoma: Insights into expression, methylation, mutations, and therapeutic implications. Int Wound J 2024; 21:e14807. [PMID: 38591163 PMCID: PMC11002634 DOI: 10.1111/iwj.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Traditional Chinese Medicine Oncology, Cancer CenterThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Chenxi Gao
- Department of Traditional Chinese Medicine Oncology, Cancer CenterThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Juncong Luo
- Department of OncologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Arsalan Khan
- Health DepartmentGovernment of Khyber PakhtunkhwaDera Ismail KhanPakistan
| | | | - Mohamed M. Salem
- College of MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Zeng Qi
- Department of Traditional Chinese Medicine Oncology, Cancer CenterThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Bo Jiang
- Emergency DepartmentThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
115
|
Richards SM, Gubser Keller C, Kreutzer R, Greiner G, Ley S, Doelemeyer A, Dubost V, Flandre T, Kirkland S, Carbone W, Pandya R, Knehr J, Roma G, Schuierer S, Bouchez L, Seuwen K, Aebi A, Westhead D, Hintzen G, Jurisic G, Hossain I, Neri M, Manevski N, Balavenkatraman KK, Moulin P, Begrich A, Bertschi B, Huber R, Bouwmeester T, Driver VR, von Schwabedissen M, Schaefer D, Wettstein B, Wettstein R, Ruffner H. Molecular characterization of chronic cutaneous wounds reveals subregion- and wound type-specific differential gene expression. Int Wound J 2024; 21:e14447. [PMID: 38149752 PMCID: PMC10958103 DOI: 10.1111/iwj.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023] Open
Abstract
A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.
Collapse
Affiliation(s)
| | | | - Robert Kreutzer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Department of PathologyAnaPath Services GmbHLiestalSwitzerland
| | | | - Svenja Ley
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Arno Doelemeyer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Valerie Dubost
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Thierry Flandre
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Susan Kirkland
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Harvantis Pharma Consulting LtdLondonUK
| | - Walter Carbone
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Research and Development CoordinatorELI TechGroup Corso SvizzeraTorinoItaly
| | - Rishika Pandya
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Judith Knehr
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Guglielmo Roma
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Discovery Data ScienceGSK VaccinesSienaItaly
| | - Sven Schuierer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Laure Bouchez
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Therapeutics Department, Executive in ResidenceGeneral InceptionBaselSwitzerland
| | - Klaus Seuwen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Alexandra Aebi
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - David Westhead
- Leeds Institute of Data AnalyticsUniversity of LeedsLeedsUK
| | - Gabriele Hintzen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational ScienceAffimed GmbHMannheimGermany
| | - Giorgia Jurisic
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Imtiaz Hossain
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Marilisa Neri
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Nenad Manevski
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational PKPD and Clinical Pharmacology, Pharmaceutical Sciences, pREDF. Hoffmann‐La Roche AGBaselSwitzerland
| | | | - Pierre Moulin
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Annette Begrich
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Roland Huber
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Vickie R. Driver
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- INOVA HealthcareWound Healing and Hyperbaric CentersFalls ChurchVirginiaUSA
| | | | - Dirk Schaefer
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Barbara Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Reto Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Heinz Ruffner
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| |
Collapse
|
116
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
117
|
Kondej K, Zawrzykraj M, Czerwiec K, Deptuła M, Tymińska A, Pikuła M. Bioengineering Skin Substitutes for Wound Management-Perspectives and Challenges. Int J Mol Sci 2024; 25:3702. [PMID: 38612513 PMCID: PMC11011330 DOI: 10.3390/ijms25073702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Non-healing wounds and skin losses constitute significant challenges for modern medicine and pharmacology. Conventional methods of wound treatment are effective in basic healthcare; however, they are insufficient in managing chronic wound and large skin defects, so novel, alternative methods of therapy are sought. Among the potentially innovative procedures, the use of skin substitutes may be a promising therapeutic method. Skin substitutes are a heterogeneous group of materials that are used to heal and close wounds and temporarily or permanently fulfill the functions of the skin. Classification can be based on the structure or type (biological and synthetic). Simple constructs (class I) have been widely researched over the years, and can be used in burns and ulcers. More complex substitutes (class II and III) are still studied, but these may be utilized in patients with deep skin defects. In addition, 3D bioprinting is a rapidly developing method used to create advanced skin constructs and their appendages. The aforementioned therapies represent an opportunity for treating patients with diabetic foot ulcers or deep skin burns. Despite these significant developments, further clinical trials are needed to allow the use skin substitutes in the personalized treatment of chronic wounds.
Collapse
Affiliation(s)
- Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Małgorzata Zawrzykraj
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Katarzyna Czerwiec
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| |
Collapse
|
118
|
Doğan A, Okumuş EB, Turhan SŞ. Conditioned medium of induced pluripotent stem cell derived neuromesodermal progenitors enhances cell migration in vitro. Mol Biol Rep 2024; 51:441. [PMID: 38520606 DOI: 10.1007/s11033-024-09375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Identification of novel cell-based therapy sources has been of great interest in recent years to provide alternative and available therapy options in clinics. Conditioned medium (CM) can be a valuable supply for growth factors, cytokines and chemokines as a source of stem cell secretome. Exploring the role of new CM sources for tissue regeneration might be a promising approach for therapeutic purposes. METHODS AND RESULTS In the current study, neuromesodermal progenitors (NMPs) derived from induced pluripotent stem cells (iPSCs) were used to collect CM. Fibroblast derived iPSCs were successfully differentiated into NMPs and NMPs were characterized by double positive T/Bra and Sox2 staining. CM was collected from NMPs, and the content was characterized by membrane analysis. In vitro wound healing assay was used as a model system to observe potential activity of CM on cell migration. Fibroblasts, keratinocytes and endothelial cells were used to evaluate the effect of NMP-derived CM (NMP-CM) on cell migration in vitro. Several important proteins related to wound healing such as ANGPT 1, ANGPT 2, MCP-1, PDGF-AA, SDF-1α, TIMP-1 and TIMP-2 were increased in NMP-CM. NMP-CM increased cell proliferation and migration in vitro. CONCLUSIONS In vitro data obtained from three distinct cell types suggest a promising role of NMP-CM on cell migration. NMP-CM can be used for wound management in the further future after detailed in vitro and in vivo research.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| | - Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| |
Collapse
|
119
|
Rafey HA, Amin A, Ross SA, El-Shazly M, Zahid MA, Niaz SI, Ul Mahmood F, Ullah H. Multiple integrated computational approach to analyse wound healing potential of Symplocos racemosa bark as Matrix metalloproteinase inhibitors. Nat Prod Res 2024:1-10. [PMID: 38497294 DOI: 10.1080/14786419.2024.2321488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
The healing of wounds is the flagging concern in chronic wound cases especially when accompanied by pathogenic, diabetic comorbidities. Matrix metalloproteinases are associated with widespread pathological ailments, and the selective inhibitors for metalloproteinases can be of great interest in wound healing strategies. In the present research study, six constituents of Symplocos racemosa Roxb were evaluated for the docking aptitudes on human matrix metalloproteinase MMP 2 (PDB ID: 1QIB) and MMP 9 (PDB ID: 4H1Q) utilising Autodock Vina followed by the visualisation using Discovery studio (DS). The Pymol was used to generate the poses and the best binding pose was chosen for the docking aptitudes. 2D interactions and the 3D poses of the docked complex were accomplished using DS and LigPlot + software respectively. Working on SWISS ADME and OSIRIS software accomplished the physicochemical characteristics, absorption, distribution, metabolism, excretion, molecular properties, bioactivity score, and toxicity predictions. The molecule's physiochemical investigations discovered that all of the ligands comply with Lipinski's rule of five except compound 6, which deviated with two violations. Docking studies against 4H1Q revealed that compounds 1, 3, 5 and 6 exhibited maximum interactions with the target protein, with the free binding energies of -8.3 kJ Mol-1, -9.3 kJ Mol-1, -7.2 kJ Mol-1 and -11.0 kJ Mol-1 respectively. In case of the 1QIB target, compounds 1, 3 and 6 displayed remarkable binding energies of -8.7 kJ mol-1, -9.0 kJ mol-1 and -8.8 kJ mol-1. Bioactivity prediction study revealed that all of the selected Phytoconstituents displayed incredible Bioactivity scores. None of the selected chemical compounds was found to be irritant to the skin as discovered by toxicity studies. The contacts of the ligand-protein complex during the simulation studies revealed that the H-bond interactions of the ligands with LEU188, ALA189, GLN402, ARG420, MET422, PRO421, and ARG424 of 4H1Q were stable for more than 30% of the simulation time. It was thus concluded that the tested compounds predominantly compounds 1, 5 and 6 might rank among the vital supplementary lead drugs in chronic wounds and healing complexities. It is also worth noting the potential aptitude of the compound 3, however, its toxicity concern must be considered.
Collapse
Affiliation(s)
- Hafiz Abdul Rafey
- SCPS, Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Adnan Amin
- Natural products research lab, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Samir Anis Ross
- The National Center for Natural Products Research, and Professor at Bio Molecular Science Department, Division of Pharmacognosy, University of Mississippi, University, MS, USA
| | - Mohamed El-Shazly
- Natural Products Chemistry and Food Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Shah Iram Niaz
- Natural products research lab, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Fakhar Ul Mahmood
- Natural products research lab, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
120
|
Beram FM, Ali SN, Mesbahian G, Pashizeh F, Keshvadi M, Mashayekhi F, Khodadadi B, Bashiri Z, Moeinzadeh A, Rezaei N, Namazifard S, Hossein-Khannazer N, Tavakkoli Yaraki M. 3D Printing of Alginate/Chitosan-Based Scaffold Empowered by Tyrosol-Loaded Niosome for Wound Healing Applications: In Vitro and In Vivo Performances. ACS APPLIED BIO MATERIALS 2024; 7:1449-1468. [PMID: 38442406 DOI: 10.1021/acsabm.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 μm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.
Collapse
Affiliation(s)
| | - Saba Naeimaei Ali
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | | | - Farzaneh Mashayekhi
- Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran 14535, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993891176, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Niloufar Rezaei
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Saina Namazifard
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, 500 West First Street, Arlington, Texas 76019, United States
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
121
|
Wu SH, Rethi L, Pan WY, Nguyen HT, Chuang AEY. Emerging horizons and prospects of polysaccharide-constructed gels in the realm of wound healing. Colloids Surf B Biointerfaces 2024; 235:113759. [PMID: 38280240 DOI: 10.1016/j.colsurfb.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
Polysaccharides, with the abundant availability, biodegradability, and inherent safety, offer a vast array of promising applications. Leveraging the remarkable attributes of polysaccharides, biomimetic and multifunctional hydrogels have emerged as a compelling avenue for efficacious wound dressing. The gels emulate the innate extracellular biomatrix as well as foster cellular proliferation. The distinctive structural compositions and profusion of functional groups within polysaccharides confer excellent physical/chemical traits as well as distinct restorative involvements. Gels crafted from polysaccharide matrixes serve as a robust defense against bacterial threats, effectively shielding wounds from harm. This comprehensive review delves into wound physiology, accentuating the significance of numerous polysaccharide-based gels in the wound healing context. The discourse encompasses an exploration of polysaccharide hydrogels tailored for diverse wound types, along with an examination of various therapeutic agents encapsulated within hydrogels to facilitate wound repair, incorporating recent patent developments. Within the scope of this manuscript, the perspective of these captivating gels for promoting optimal healing of wounds is vividly depicted. Nevertheless, the pursuit of knowledge remains ongoing, as further research is warranted to bioengineer progressive polysaccharide gels imbued with adaptable features. Such endeavors hold the promise of unlocking substantial potential within the realm of wound healing, propelling us toward multifaceted and sophisticated solutions.
Collapse
Affiliation(s)
- Shen-Han Wu
- Taipei Medical University Hospital, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan; Ph.D Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
122
|
Steiglitz BM, Maher RJ, Gratz KR, Schlosser S, Foster J, Pradhan-Bhatt S, Comer AR, Allen-Hoffmann BL. The viable bioengineered allogeneic cellularized construct StrataGraft® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing. Burns 2024; 50:424-432. [PMID: 38087659 DOI: 10.1016/j.burns.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND StrataGraft® (allogeneic cultured keratinocytes and dermal fibroblasts in murine collagen-dsat) is an FDA-approved viable bioengineered allogeneic cellularized construct for adult patients with deep partial-thickness burns requiring surgery. We characterized the structural and functional properties of StrataGraft to improve product understanding by evaluating extracellular matrix (ECM) molecule distribution and secreted protein factor expression in vitro. METHODS ECM protein expression was determined using indirect immunofluorescence on construct cross sections using commercial antibodies against collagen III, IV, VI, laminin-332, and decorin. Human collagen I expression was verified by enzyme-linked immunosorbent assay (ELISA) for collagen I C-terminal propeptide. Soluble protein factor secretion was quantified by multiplex biomarker assays and singleplex ELISA in conditioned media from meshed constructs. RESULTS StrataGraft cellular components produced collagen I, collagen III, collagen VI, and decorin in patterns indicating an organized ECM. Distributions of collagen IV and laminin-332 indicated formation of basement membranes and dermal-epidermal junctions. Soluble protein factors were observed in the pg/cm2/h range from 1 h to the experiment end at 168 h. CONCLUSIONS The organization of the ECM proteins was like human skin and the viable cellular components provided sustained secretion of soluble wound healing factors, making StrataGraft an attractive option for treating severe burns.
Collapse
Affiliation(s)
| | | | | | | | - Jenna Foster
- Mallinckrodt Pharmaceuticals, Bridgewater, NJ, USA
| | | | - Allen R Comer
- Stratatech, a Mallinckrodt Company, Madison, WI, USA
| | - B Lynn Allen-Hoffmann
- Department of Pathology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
123
|
Tejedor S, Wågberg M, Correia C, Åvall K, Hölttä M, Hultin L, Lerche M, Davies N, Bergenhem N, Snijder A, Marlow T, Dönnes P, Fritsche-Danielson R, Synnergren J, Jennbacken K, Hansson K. The Combination of Vascular Endothelial Growth Factor A (VEGF-A) and Fibroblast Growth Factor 1 (FGF1) Modified mRNA Improves Wound Healing in Diabetic Mice: An Ex Vivo and In Vivo Investigation. Cells 2024; 13:414. [PMID: 38474378 PMCID: PMC10930761 DOI: 10.3390/cells13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.
Collapse
Affiliation(s)
- Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
| | - Maria Wågberg
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Karin Åvall
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Mikko Hölttä
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Leif Hultin
- Imaging and Data Analytics, Clinical and Pharmacological Safety Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden;
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Science, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (M.L.); (N.D.)
| | - Nils Bergenhem
- Alliance Management, Business Development and Licensing, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA 02451, USA
| | - Arjan Snijder
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Tom Marlow
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden; (A.S.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- SciCross AB, 541 35 Skövde, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28 Skövde, Sweden; (P.D.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| | - Kenny Hansson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden (C.C.); (K.Å.); (K.J.)
| |
Collapse
|
124
|
Cavallo I, Sivori F, Mastrofrancesco A, Abril E, Pontone M, Di Domenico EG, Pimpinelli F. Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. BIOLOGY 2024; 13:109. [PMID: 38392327 PMCID: PMC10886835 DOI: 10.3390/biology13020109] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Wound repair and skin regeneration is a very complex orchestrated process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. Each phase involves the activation of different cells and the production of various cytokines, chemokines, and other inflammatory mediators affecting the immune response. The microbial skin composition plays an important role in wound healing. Indeed, skin commensals are essential in the maintenance of the epidermal barrier function, regulation of the host immune response, and protection from invading pathogenic microorganisms. Chronic wounds are common and are considered a major public health problem due to their difficult-to-treat features and their frequent association with challenging chronic infections. These infections can be very tough to manage due to the ability of some bacteria to produce multicellular structures encapsulated into a matrix called biofilms. The bacterial species contained in the biofilm are often different, as is their capability to influence the healing of chronic wounds. Biofilms are, in fact, often tolerant and resistant to antibiotics and antiseptics, leading to the failure of treatment. For these reasons, biofilms impede appropriate treatment and, consequently, prolong the wound healing period. Hence, there is an urgent necessity to deepen the knowledge of the pathophysiology of delayed wound healing and to develop more effective therapeutic approaches able to restore tissue damage. This work covers the wound-healing process and the pathogenesis of chronic wounds infected by biofilm-forming pathogens. An overview of the strategies to counteract biofilm formation or to destroy existing biofilms is also provided.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Elva Abril
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Martina Pontone
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, 00144 Rome, Italy
| |
Collapse
|
125
|
Ashames A, Ijaz M, Buabeid M, Yasin H, Yaseen S, Bhandare RR, Murtaza G. In Vivo Wound Healing Potential and Molecular Pathways of Amniotic Fluid and Moringa Olifera-Loaded Nanoclay Films. Molecules 2024; 29:729. [PMID: 38338472 PMCID: PMC10856228 DOI: 10.3390/molecules29030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 02/12/2024] Open
Abstract
Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Akram Ashames
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Munaza Ijaz
- Department of Microbiology, University of Central Punjab, Lahore 54000, Pakistan;
| | - Manal Buabeid
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi P.O. Box 3798, United Arab Emirates;
| | - Haya Yasin
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
| | - Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Richie R. Bhandare
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (H.Y.); (R.R.B.)
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| |
Collapse
|
126
|
Gefen A, Alves P, Beeckman D, Cullen B, Lázaro‐Martínez JL, Lev‐Tov H, Santamaria N, Swanson T, Woo K, Söderström B, Svensby A, Malone M, Nygren E. Fluid handling by foam wound dressings: From engineering theory to advanced laboratory performance evaluations. Int Wound J 2024; 21:e14674. [PMID: 38353372 PMCID: PMC10865423 DOI: 10.1111/iwj.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
This article describes the contemporary bioengineering theory and practice of evaluating the fluid handling performance of foam-based dressings, with focus on the important and clinically relevant engineering structure-function relationships and on advanced laboratory testing methods for pre-clinical quantitative assessments of this common type of wound dressings. The effects of key wound dressing material-related and treatment-related physical factors on the absorbency and overall fluid handling of foam-based dressings are thoroughly and quantitively analysed. Discussions include exudate viscosity and temperature, action of mechanical forces and the dressing microstructure and associated interactions. Based on this comprehensive review, we propose a newly developed testing method, experimental metrics and clinical benchmarks that are clinically relevant and can set the standard for robust fluid handling performance evaluations. The purpose of this evaluative framework is to translate the physical characteristics and performance determinants of a foam dressing into achievable best clinical outcomes. These guiding principles are key to distinguishing desirable properties of a dressing that contribute to optimal performance in clinical settings.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary CareGhent UniversityGhentBelgium
- Department of Mathematics and Statistics, Faculty of SciencesHasselt UniversityHasseltBelgium
| | - Paulo Alves
- Wounds Research Lab, Centre for Interdisciplinary Research in Health, Faculty of Nursing and Health SciencesUniversidade Católica PortuguesaPortoPortugal
| | - Dimitri Beeckman
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary CareGhent UniversityGhentBelgium
- Swedish Centre for Skin and Wound Research, Faculty of Medicine and Health, School of Health SciencesÖrebro UniversityÖrebroSweden
| | | | | | - Hadar Lev‐Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Hospital Miller School of MedicineMiamiFloridaUSA
| | - Nick Santamaria
- School of Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | | | - Kevin Woo
- School of NursingQueen's UniversityKingstonOntarioCanada
| | - Bengt Söderström
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| | - Anna Svensby
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| | - Matthew Malone
- Research and Development, Bioactives and Wound Biology, Mölnlycke Health Care AB, Gothenburg, Sweden; and Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| |
Collapse
|
127
|
Portocarrero Huang G, Idkowiak-Baldys J, Liebel F, Jones C, Haxaire C, DiNatale L, Bayat A, Glynn JR. L-4-thiazolylalanine (Protinol), a novel non-proteinogenic amino acid, demonstrates epidermal and dermal efficacy with clinically observable benefits. Int J Cosmet Sci 2024; 46:24-38. [PMID: 37562497 DOI: 10.1111/ics.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Facial skin undergoes major structural and functional changes as a result of intrinsic and extrinsic factors. The goal of the current work is to demonstrate L-4-thiazolylalaine (L4, Protinol), a non-proteinogenic amino acid shown to stimulate the production of dermal proteins by fibroblasts, is an alternative efficacious topical ingredient for visible signs of ageing. METHODS In vitro studies using 3D human skin tissue models were performed to show changes in protein and gene expression of key dermal markers in samples treated with 0.3% L4 compared to vehicle control. In vivo evaluation of skin turnover was measured in volunteers after treatment with L4 compared to retinol. Skin biopsies (n = 30) were taken to investigate epidermal and dermal changes in cases treated with L4 and compared to retinol. Finally, a clinical evaluation (n = 28) was conducted to assess the efficacy of L4 over a base formulation using various ageing parameters within a population of women 46-66 years old with mild-to-moderate wrinkles. RESULTS In vitro studies on 3D tissues displayed significant changes in the dermal matrix via an increase in HA and pro-collagen I production and a decrease in the expression of inflammatory genes. In vivo biopsy studies demonstrated that L4 and retinol independently increased epidermal thickness and collagen remodelling significantly more compared with the base formula. Clinical evaluation showed firmer and smoother skin at day 28 post-treatment with L4 over the vehicle control without causing side effects such as redness or irritation. CONCLUSION L4 is a novel, multi-functional ingredient which offers a superior alternative to currently available technologies for improving epidermal and dermal parameters that change during ageing and photodamage.
Collapse
Affiliation(s)
- Gloria Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Jolanta Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Frank Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Constantina Jones
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Coline Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Lisa DiNatale
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Ardeshir Bayat
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - John R Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
128
|
Abirami G, Alexpandi R, Jayaprakash E, Roshni PS, Ravi AV. Pyrogallol loaded chitosan-based polymeric hydrogel for controlling Acinetobacter baumannii wound infections: Synthesis, characterization, and topical application. Int J Biol Macromol 2024; 259:129161. [PMID: 38181925 DOI: 10.1016/j.ijbiomac.2023.129161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Antibacterial hydrogels have emerged as a promising approach for wound healing, owing to their ability to integrate antibacterial agents into the hydrogel matrix. Benefiting from its remarkable antibacterial and wound-healing attributes, pyrogallol has been introduced into chitosan-gelatin for the inaugural development of an innovative antibacterial polymeric hydrogel tailored for applications in wound healing. Hence, we observed the effectiveness of pyrogallol in inhibiting the growth of A. baumannii, disrupting mature biofilms, and showcasing robust antioxidant activity both in vitro and in vivo. In addition, pyrogallol promoted the migration of human epidermal keratinocytes and exhibited wound healing activity in zebrafish. These findings suggest that pyrogallol holds promise as a therapeutic agent for wound healing. Interestingly, the pyrogallol-loaded chitosan-gelatin (Pyro-CG) hydrogel exhibited enhanced mechanical strength, stability, controlled drug release, biodegradability, antibacterial activity, and biocompatibility. In vivo results established that Pyro-CG hydrogel promotes wound closure and re-epithelialization in A. baumannii-induced wounds in molly fish. Therefore, the prepared Pyro-CG polymeric hydrogel stands poised as a potent and promising agent for wound healing with antibacterial properties. This holds considerable promise for the development of effective therapeutic interventions to address the increasing menace of A. baumannii-induced wound infections.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Erusappan Jayaprakash
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Prithiviraj Swasthikka Roshni
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
129
|
Milovanovic D, Vukman P, Gavrilovic D, Begovic N, Stijak L, Sreckovic S, Kadija M. The Influence of Platelet-Rich Fibrin on the Healing of Bone Defects after Harvesting Bone-Patellar Tendon-Bone Grafts. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:154. [PMID: 38256414 PMCID: PMC10820173 DOI: 10.3390/medicina60010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: A bone-patellar tendon-bone (BTB) autograft in anterior cruciate ligament reconstruction (ACLR) is still considered the gold standard among many orthopedic surgeons, despite anterior knee pain and kneeling pain being associated with bone defects at the harvest site. Bioregenerative products could be used to treat these defects, perhaps improving both the postoperative discomfort and the overall reconstruction. Materials and methods: During a year-long period, 40 patients were enrolled in a pilot study and divided into a study group, in which bone defects were filled with Vivostat® PRF (platelet-rich fibrin), and a standard group, in which bone defects were not filled. The main outcome was a decrease in the height and width of the bone defects, as determined by magnetic resonance imaging on the control exams during the one-year follow-up. The secondary outcomes included an evaluation of kneeling pain, measured with a visual analog scale (VAS), and an evaluation of the subjective knee scores. Results: The application of Vivostat® PRF resulted in a more statistically significant reduction in the width of the defect compared with that of the standard group, especially at 8 and 12 months post operation (p < 0.05). Eight months following the surgery, the study group's anterior knee pain intensity during kneeling was statistically considerably lower than that of the standard group (p < 0.05), and the statistical difference was even more obvious (p < 0.01) at the last follow-up. Each control examination saw a significant decrease in pain intensity in both the groups, with the values at each exam being lower than those from the prior exam (p < 0.01). A comparison of subjective functional test results 12 months post operation with the preoperative ones did not prove a statistically significant difference between the groups. Conclusions: The use of Vivostat® PRF reduces kneeling pain and accelerates the narrowing of bone defects after ACLR with a BTB graft, but without confirmation of its influence on the subjective knee score.
Collapse
Affiliation(s)
- Darko Milovanovic
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (P.V.); (M.K.)
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (N.B.)
| | - Petar Vukman
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (P.V.); (M.K.)
| | - Dusica Gavrilovic
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ninoslav Begovic
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (N.B.)
- Institute for Mother and Child Health Care of Serbia, Radoja Dakica 6-8, 11070 Belgrade, Serbia
| | - Lazar Stijak
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (N.B.)
| | - Svetlana Sreckovic
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (P.V.); (M.K.)
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (N.B.)
- Center for Anesthesiology and Resuscitation, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Marko Kadija
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (P.V.); (M.K.)
- School of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia; (N.B.)
| |
Collapse
|
130
|
Huang JY, Wong TY, Tu TY, Tang MJ, Lin HH, Hsueh YY. Assessment of Tilapia Skin Collagen for Biomedical Research Applications in Comparison with Mammalian Collagen. Molecules 2024; 29:402. [PMID: 38257315 PMCID: PMC10819363 DOI: 10.3390/molecules29020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells' spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Tzyy-Yue Wong
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Ting-Yuan Tu
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
131
|
Gutmann M, Reinhardt D, Seidensticker C, Raschig M, Hahn L, Moscaroli A, Behe M, Meinel L, Lühmann T. Matrix Metalloproteinase-Responsive Delivery of PEGylated Fibroblast Growth Factor 2. ACS Biomater Sci Eng 2024; 10:156-165. [PMID: 37988287 DOI: 10.1021/acsbiomaterials.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Attachment of polyethylene glycol (PEG) chains is a common, well-studied, and Food and Drug Administration-approved method to address the pharmacokinetic challenges of therapeutic proteins. Occasionally, PEGylation impairs the activity of pharmacodynamics (PD). To overcome this problem, disease-relevant cleavable linkers between the polymer and the therapeutic protein can unleash full PD by de-PEGylating the protein at its target site. In this study, we engineered a matrix metalloproteinase (MMP)-responsive fibroblast growth factor 2 (FGF-2) mutant that was site-specifically extended with a PEG polymer chain. Using bioinspired strategies, the bioconjugate was designed to release the native protein at the desired structure/environment with preservation of the proliferative capacity in vitro on NIH3T3 cells. In vivo, hepatic exposure was diminished but not its renal distribution over time compared to unconjugated FGF-2. By releasing the growth factor from the PEG polymer in response to MMP cleavage, restored FGF-2 may enter hard-to-reach tissues and activate cell surface receptors or nuclear targets.
Collapse
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Debora Reinhardt
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Christian Seidensticker
- Medizinische Klinik und Poliklinik Für Innere Medizin II, Klinikum Rechts der Isar der TU München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, DE-97074 Würzburg, Germany
| |
Collapse
|
132
|
Li J, Zhao Q, Gao X, Dai T, Bai Z, Sheng J, Tian Y, Bai Z. Dendrobium officinale Kinura et Migo glycoprotein promotes skin wound healing by regulating extracellular matrix secretion and fibroblast proliferation on the proliferation phase. Wound Repair Regen 2024; 32:55-66. [PMID: 38113346 DOI: 10.1111/wrr.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 12/21/2023]
Abstract
Dendrobium officinale Kinura et Migo (DOKM) has a variety of medicinal applications; however, its ability to promote wound healing has not been previously reported. The purpose of this study is to investigate the proliferative phase of the wound-healing effect of DOKM glycoprotein (DOKMG) in rats and to elucidate its mechanism of action in vitro. In the present study, the ointment mixture containing DOKMG was applied to the dorsal skin wounds of the full-thickness skin excision rat model, and the results showed that the wound healing speed was faster in the proliferative phase than vaseline. Histological analysis demonstrates that DOKMG promoted the re-epithelialization of wound skin. Immunofluorescence staining and quantitative polymerase chain reaction assays revealed that DOKMG promotes the secretion of Fibronectin and inhibits the secretion of Collagen IV during the granulation tissue formation period, indicating that DOKMG could accelerate the formation of granulation tissue by precisely regulating extracellular matrix (ECM) secretion. In addition, we demonstrated that DOKMG enhanced the migration and proliferation of fibroblast (3T6 cell) in two-dimensional trauma by regulating the secretion of ECM, via a mechanism that may implicate the AKT and JAK/STAT pathways under the control of epidermal growth factor receptor (EGFR) signalling. In summary, we have demonstrated that DOKMG promotes wound healing during the proliferative phase. Therefore, we suggest that DOKMG may have a potential therapeutic application for the treatment and management of cutaneous wounds.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Qian Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Tianyi Dai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Bai
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zhongbin Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
133
|
Zhang Z, Xue H, Xiong Y, Geng Y, Panayi AC, Knoedler S, Dai G, Shahbazi MA, Mi B, Liu G. Copper incorporated biomaterial-based technologies for multifunctional wound repair. Theranostics 2024; 14:547-570. [PMID: 38169658 PMCID: PMC10758067 DOI: 10.7150/thno.87193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
The treatment of wounds is a worldwide challenge, and wound infection can affect the effectiveness of wound treatment and further increase the disease burden. Copper is an essential trace element that has been shown to have broad-spectrum antibacterial effects and to be involved in the inflammation, proliferation, and remodeling stages of wound healing. Compared to treatments such as bioactive factors and skin grafts, copper has the advantage of being low-cost and easily available, and has received a lot of attention in wound healing. Recently, biomaterials made by incorporating copper into bioactive glasses, polymeric scaffolds and hydrogels have been used to promote wound healing by the release of copper ions. In addition, copper-incorporated biomaterials with catalytic, photothermal, and photosensitive properties can also accelerate wound healing through antibacterial and wound microenvironment regulation. This review summarizes the antibacterial mechanisms of copper- incorporated biomaterials and their roles in wound healing, and discusses the current challenges. A comprehensive understanding of the role of copper in wounds will help to facilitate new preclinical and clinical studies, thus leading to the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 Groningen AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 Groningen AV, The Netherlands
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Gouhui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
134
|
Pouliou C, Piperi C. Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options. Curr Med Chem 2024; 31:6187-6203. [PMID: 38726786 DOI: 10.2174/0109298673297545240507091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 10/16/2024]
Abstract
Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
Collapse
Affiliation(s)
- Chrysi Pouliou
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
| | - Christina Piperi
- Dental School, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, Athens, 11527, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens, 11527, Greece
| |
Collapse
|
135
|
Samadian A, Kratochvílová M, Hokynková A, Šín P, Nováková M, Štěpka P, Pokorná A, Babula P. Changes in gene expression in pressure ulcers debrided by different approaches - a pilot study. Physiol Res 2023; 72:S535-S542. [PMID: 38165757 PMCID: PMC10861252 DOI: 10.33549/physiolres.935222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/11/2023] [Indexed: 02/01/2024] Open
Abstract
Pressure ulcers (PUs), also known as pressure injuries, are chronic wounds that represent potential lifelong complications. Pressure ulcers of a deep category (III and IV) are often indicated for surgical treatment - debridement and surgical reconstruction. Sharp surgical debridement is widely used in the debridement of PUs; however, the Versajet® hydrosurgery system is becoming an increasingly popular tool for tangential excision in surgery due to its numerous advantages. This work focused on the expression of selected genes, especially those associated with oxidative stress, in PUs debrided by two approaches - sharp surgical debridement and debridement using Versajet® hydrosurgery system. Expression of following genes was evaluated: NFE2L2, ACTA2, NFKB1, VEGFA, MKI67, HMOX1, HMOX2, HIF1A, and SOD2. ACTB and PSMB were used as housekeeping genes. So far, five patients have been enrolled in the study. Preliminary results suggest no significant difference in gene expression with different pressure ulcer treatment approaches except NFE2L2, despite the macroscopic differences. However, the results revealed correlations between the expression of some genes, namely HIF1A and SOD2, VEGFA and SOD2 and VEGFA and HIF1A. These results may indicate a connection between hypoxia, oxidative stress, pressure ulcer healing processes and angiogenesis.
Collapse
Affiliation(s)
- A Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, Department of Burns and Plastic Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Illescas-Montes R, Rueda-Fernández M, González-Acedo A, Melguizo-Rodríguez L, García-Recio E, Ramos-Torrecillas J, García-Martínez O. Effect of Punicalagin and Ellagic Acid on Human Fibroblasts In Vitro: A Preliminary Evaluation of Their Therapeutic Potential. Nutrients 2023; 16:23. [PMID: 38201853 PMCID: PMC10781179 DOI: 10.3390/nu16010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pomegranate is a fruit that contains various phenolic compounds, including punicalagin and ellagic acid, which have been attributed to anti-inflammatory, antioxidant, and anticarcinogenic properties, among others. OBJECTIVE To evaluate the effect of punicalagin and ellagic acid on the viability, migration, cell cycle, and antigenic profile of cultured human fibroblasts (CCD-1064Sk). MTT spectrophotometry was carried out to determine cell viability, cell culture inserts were used for migration trials, and flow cytometry was performed for antigenic profile and cell cycle analyses. Cells were treated with each phenolic compound for 24 h at doses of 10-5 to 10-9 M. RESULTS Cell viability was always significantly higher in treated versus control cells except for punicalagin at 10-9 M. Doses of punicalagin and ellagic acid in subsequent assays were 10-6 M or 10-7 M, which increased the cell migration capacity and upregulated fibronectin and α-actin expression without altering the cell cycle. CONCLUSIONS These in vitro findings indicate that punicalagin and ellagic acid promote fibroblast functions that are involved in epithelial tissue healing.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Manuel Rueda-Fernández
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Anabel González-Acedo
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Enrique García-Recio
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| |
Collapse
|
137
|
He S, Bai J, Liu Y, Zeng Y, Wang L, Chen X, Wang J, Weng J, Zhao Y, Peng W, Zhi W. A polyglutamic acid/tannic acid-based nano drug delivery system: Antibacterial, immunoregulation and sustained therapeutic strategies for oral ulcers. Int J Pharm 2023; 648:123607. [PMID: 37967688 DOI: 10.1016/j.ijpharm.2023.123607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Oral ulcers are a common inflammatory mucosal ulcer, and the moist and dynamic environment in the oral cavity makes topical pharmacological treatment of oral ulcers challenging. Herein, oral ulcer tissue adhesion nanoparticles were prepared by using esterification reaction between polyglutamic acid and tannic acid, and at the same time doxycycline hydrochloride was loaded into the nanoparticles. The obtained slow drug release effect of the drug-loaded nanoparticles reduced the toxicity of the drug, and by penetrating into the fine crevice region of the wound tissue and adhering to it, they could in-situ release the carried drug more effectively and thus have shown significant antibacterial effects. In addition, tannic acid in the system conferred adhesion, antioxidant and immune regulation activities to the nanocarriers. A rat oral ulcer model based on fluorescent labeling was established to investigate the retention of nanoparticles at the ulcer, and the results showed that the retention rate of drug-loaded nanoparticles at the ulcer was 17 times higher than that of pure drug. Due to the antibacterial and immune regulation effects of the drug-loaded nanoparticles, the healing of oral ulcer wounds was greatly accelerated. Such application of doxycycline hydrochloride loaded polyglutamic acid/tannic acid nanoparticles is a novel and effective treatment strategy for oral ulcer.
Collapse
Affiliation(s)
- Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhao Liu
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linyu Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiangli Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
138
|
Vali S, Saso S, Bracewell Milnes T, Nicopoullos J, Thum MY, Smith JR, Jones BP. The Clinical Application of Platelet-Rich Plasma in the Female Reproductive System: A Narrative Review. Life (Basel) 2023; 13:2348. [PMID: 38137949 PMCID: PMC10744710 DOI: 10.3390/life13122348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Platelet-rich plasma is an autologous plasma containing platelets prepared from fresh whole blood drawn from a peripheral vein. Through processing, it can be prepared to contain supraphysiologic levels of platelets at three to five times greater than the level of normal plasma. PRP has been explored both in vivo and ex vivo in the human endometrium model in its ability to harness the intrinsic regenerative capacity of the endometrium. Intrauterine autologous PRP infusions have been shown to increase endometrial thickness and reduce the rate of intrauterine adhesions. In the setting of recurrent implantation failure, intrauterine infusion of PRP has been shown to increase clinical pregnancy rate. PRP also appears to hold a potential role in select patients with premature ovarian insufficiency, poor ovarian responders and in improving outcomes following frozen-thawed transplantation of autologous ovarian tissue. Further studies are required to explore the potential role of PRP in reproductive medicine further, to help standardise PRP protocols and evaluate which routes of administration are most effective.
Collapse
Affiliation(s)
- Saaliha Vali
- Hammersmith Hospital, Imperial College NHS Trust, London W12 OHS, UK; (S.S.); (J.R.S.); (B.P.J.)
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
| | - Srdjan Saso
- Hammersmith Hospital, Imperial College NHS Trust, London W12 OHS, UK; (S.S.); (J.R.S.); (B.P.J.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
| | - Timothy Bracewell Milnes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
- Lister Fertility Clinic, The Lister Hospital, London SW1W 8RH, UK
| | - James Nicopoullos
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
- Lister Fertility Clinic, The Lister Hospital, London SW1W 8RH, UK
| | - Meen-Yau Thum
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
- Lister Fertility Clinic, The Lister Hospital, London SW1W 8RH, UK
| | - James Richard Smith
- Hammersmith Hospital, Imperial College NHS Trust, London W12 OHS, UK; (S.S.); (J.R.S.); (B.P.J.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
| | - Benjamin P. Jones
- Hammersmith Hospital, Imperial College NHS Trust, London W12 OHS, UK; (S.S.); (J.R.S.); (B.P.J.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; (T.B.M.); (J.N.); (M.-Y.T.)
- Lister Fertility Clinic, The Lister Hospital, London SW1W 8RH, UK
| |
Collapse
|
139
|
Pinto BF, Lopes PH, Trufen CEM, Ching ATC, De Azevedo IDLMJ, Nishiyama MY, Pohl PC, Tambourgi DV. Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D. Arch Toxicol 2023; 97:3285-3301. [PMID: 37707622 DOI: 10.1007/s00204-023-03602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Collapse
|
140
|
Jeon T, Makabenta JMV, Park J, Nabawy A, Cicek YA, Mirza SS, Welton J, Hassan MA, Huang R, Mager J, Rotello VM. Antimicrobial polymer-siRNA polyplexes as a dual-mode platform for the treatment of wound biofilm infections. MATERIALS HORIZONS 2023; 10:5500-5507. [PMID: 37815454 PMCID: PMC10841859 DOI: 10.1039/d3mh01108a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Treatment of wound biofilm infections faces challenges from both pathogens and uncontrolled host immune response. Treating both issues through a single vector would provide enhanced wound healing. Here, we report the use of a potent cationic antimicrobial polymer to generate siRNA polyplexes for dual-mode treatment of wound biofilms in vivo. These polyplexes act both as an antibiofilm agent and a delivery vehicle for siRNA for the knockdown of biofilm-associated pro-inflammatory MMP9 in host macrophages. The resulting polyplexes were effective in vitro, eradicating MRSA biofilms and efficiently delivering siRNA to macrophages in vitro with concomitant knockdown of MMP9. These polyplexes were likewise effective in an in vivo murine wound biofilm model, significantly reducing bacterial load in the wound (∼99% bacterial clearance) and reducing MMP9 expression by 80% (qRT-PCR). This combination therapeutic strategy dramatically reduced wound purulence and significantly expedited wound healing. Taken together, these polyplexes provide an effective and translatable strategy for managing biofilm-infected wounds.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA.
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Janelle Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA.
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
141
|
Anastasiou IA, Sarantis P, Eleftheriadou I, Tentolouris KN, Mourouzis I, Karamouzis MV, Pantos K, Tentolouris N. Effects of Hypericin on Cultured Primary Normal Human Dermal Fibroblasts Under Increased Oxidative Stress. INT J LOW EXTR WOUND 2023:15347346231212332. [PMID: 37956650 DOI: 10.1177/15347346231212332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Wound healing is a dynamic process that begins with inflammation, proliferation, and cell migration of a variety of fibroblast cells. As a result, identifying possible compounds that may improve fibroblast cell wound healing capacity is crucial. Hypericin is a natural quinine that has been reported to possess a wide range of pharmacological profiles, including antioxidant and anti-inflammatory, activities. Herein we examined for the first time the effect of hypericin on normal human dermal fibroblasts (NHDFs) under oxidative stress. METHODS NHDF were exposed to different concentrations of hypericin (0-20 μg/mL) for 24 h. For the oxidative stress evaluation, H2O2 was used as a stressor factor. Cell viability and proliferation levels were evaluated. Immunohistochemistry and flow cytometry were performed to assess cell apoptosis levels and with confocal microscopy we identified the mitochondrial superoxide production under oxidative stress and after the treatment with hypericin. Scratch assay was performed under oxidative stress to evaluate the efficacy of hypericin in wound closure. To gain an insight into the molecular mechanisms of hypericin bioactivity, we analyzed the relative expression levels of genes involved in oxidative response and in wound healing process. RESULTS We found that the exposure of NHDF to hypericin under oxidative stress resulted in an increase in cell viability and ATP levels. We found a decrease in apoptosis and mitochondrial superoxide levels after treatment with hypericin. Moreover, treatment with hypericin reduced wound area and promoted wound closure. The levels of selected genes showed that hypericin upregulated the levels of antioxidants genes. Moreover, treatment with hypericin in wound under oxidative stress downregulated the levels of proinflammatory cytokines, and metalloproteinases; and upregulated transcription factors and extracellular matrix genes. CONCLUSION These findings indicated that hypericin possesses significant in vitro antioxidant activity on NHDF and provide new insights into its potential beneficial role in the management of diabetic ulcers.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos N Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
142
|
Leonida MD, Kumar I, Benzecry A, Song J, Jean C, Belbekhouche S. Green Synthesis of Zein-Based Nanoparticles Encapsulating Lupulone: Antibacterial and Antiphotoaging Agents. ACS Biomater Sci Eng 2023; 9:6165-6174. [PMID: 37909769 DOI: 10.1021/acsbiomaterials.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Prolonged skin exposure to UV radiation may result in sunburn, with possible inflammatory and oxidative stress to the skin, skin photoaging, photocarcinogenesis, even DNA damage, and apoptosis if sunscreen protection is not used. Due to the advantages that they offer, high encapsulation capability, increased stability of encapsulated bioactive agents, and release control, nanoparticulate materials have been used in sunscreens despite the hazard that they present: their capacity to penetrate the skin causing toxic side effects (especially the chemical sunscreens). The present study reports the preparation of nanoparticulate composites containing only GRAS substances and using an eco-friendly, inexpensive procedure. The ingredients used have properties that are beneficial to the skin. Zein (Z), a prolamin-rich protein from corn, is biodegradable and biocompatible, is a moisture attractor, and shows effective absorption by cells. Lupulone (L), extracted from hops, is an antibacterial and antioxidant agent that has a stimulating effect on the collagen production in the body due to its content of phytohormones. Gum arabic (GA) is a natural glycoprotein used in beverages and cosmetics as an emulsifier/stabilizer. Composite matrices containing Z/GA/L were prepared using a simple method (antisolvent), which replaces the flammable solvent ethanol with aqueous propylene glycol. The nanocomposites were characterized by FTIR, composition, encapsulation efficiency, and loading capacity for L, size, zeta potential, and morphology (SEM). Their biological activity was investigated as well. The zein-based nanoparticles showed antioxidant and antimicrobial effects (even some synergistic, unexpected behavior) and modulatory activity on the matrix metalloproteinase MMP-1. Due to their properties, the nanoparticles discussed herein show potential for use in formulations for the skin, especially for mature skin, replacing chemical substances with potential side effects used typically in topical delivery systems.
Collapse
Affiliation(s)
- Mihaela D Leonida
- Chemistry, Biochemistry, and Physics Dept., Fairleigh Dickinson University, 1000 River Rd., Teaneck, New Jersey 07666, United States
| | - Ish Kumar
- Chemistry, Biochemistry, and Physics Dept., Fairleigh Dickinson University, 1000 River Rd., Teaneck, New Jersey 07666, United States
| | - Alice Benzecry
- Department of Biological Sciences, Fairleigh Dickinson University, 1000 River Rd., Teaneck, New Jersey 07666, United States
| | - Jennifer Song
- Chemistry, Biochemistry, and Physics Dept., Fairleigh Dickinson University, 1000 River Rd., Teaneck, New Jersey 07666, United States
| | - Cristopher Jean
- Department of Biological Sciences, Fairleigh Dickinson University, 1000 River Rd., Teaneck, New Jersey 07666, United States
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
143
|
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int J Mol Sci 2023; 24:16042. [PMID: 38003234 PMCID: PMC10671561 DOI: 10.3390/ijms242216042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.
Collapse
Affiliation(s)
| | | | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Ave 8, 630090 Novosibirsk, Russia; (I.A.S.); (M.A.Z.)
| |
Collapse
|
144
|
Shou Y, Le Z, Cheng HS, Liu Q, Ng YZ, Becker DL, Li X, Liu L, Xue C, Yeo NJY, Tan R, Low J, Kumar ARK, Wu KZ, Li H, Cheung C, Lim CT, Tan NS, Chen Y, Liu Z, Tay A. Mechano-Activated Cell Therapy for Accelerated Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304638. [PMID: 37681325 DOI: 10.1002/adma.202304638] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. A powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) is developed to accelerate diabetic wound healing. The hydrogel encapsulates U.S. Food and Drug Administration (FDA)-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a nongenetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition, and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, a mechanosensitive fibroblast subpopulation is identified that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. The "all-in-one" system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - David Laurence Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 308232, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Natalie Jia Ying Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Runcheng Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Arun R K Kumar
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119288, Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
145
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
146
|
Ishimura T, Ishii A, Yamada H, Osaki K, Toda N, Mori KP, Ohno S, Kato Y, Handa T, Sugioka S, Ikushima A, Nishio H, Yanagita M, Yokoi H. Matrix metalloproteinase-10 deficiency has protective effects against peritoneal inflammation and fibrosis via transcription factor NFκΒ pathway inhibition. Kidney Int 2023; 104:929-942. [PMID: 37652204 DOI: 10.1016/j.kint.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.
Collapse
Affiliation(s)
- Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruomi Nishio
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
147
|
Thai VL, Ramos-Rodriguez DH, Mesfin M, Leach JK. Hydrogel degradation promotes angiogenic and regenerative potential of cell spheroids for wound healing. Mater Today Bio 2023; 22:100769. [PMID: 37636986 PMCID: PMC10450977 DOI: 10.1016/j.mtbio.2023.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic nonhealing wounds are debilitating and diminish one's quality of life, necessitating the development of improved strategies for effective treatment. Biomaterial- and cell-based therapies offer an alternative treatment compared to conventional wound care for regenerating damaged tissues. Cell-based approaches frequently utilize endothelial cells (ECs) to promote vascularization and mesenchymal stromal cells (MSCs) for their potent secretome that promotes host cell recruitment. Spheroids have improved therapeutic potential over monodisperse cells, while degradable scaffolds can influence cellular processes conducive to long-term tissue regeneration. However, the role of biomaterial degradation on the therapeutic potential of heterotypic EC-MSC spheroids for wound healing is largely unknown. We formed poly(ethylene) glycol (PEG) hydrogels with varying ratios of matrix metalloproteinase (MMP)-degradable and non-degradable crosslinkers to develop three distinct constructs - fully degradable, partially degradable, and non-degradable - and interrogate the influence of degradation rate on engineered cell carriers for wound healing. We found that the vulnerability to degradation was critical for cellular proliferation, while inhibition of degradation impaired spheroid metabolic activity. Higher concentrations of degradable crosslinker promoted robust cell spreading, outgrowth, and secretion of proangiogenic cytokines (i.e., VEGF, HGF) that are critical in wound healing. The degree of degradation dictated the unique secretory profile of spheroids. When applied to a clinically relevant full-thickness ex vivo skin model, degradable spheroid-loaded hydrogels restored stratification of the epidermal layer, confirming the efficacy of scaffolds to promote wound healing. These results highlight the importance of matrix remodeling and its essential role in the therapeutic potential of heterotypic spheroids.
Collapse
Affiliation(s)
- Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | | | - Meron Mesfin
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
148
|
Kruzicova A, Chalupova M, Kuzminova G, Parak T, Klusakova J, Sopuch T, Suchy P. Effect of novel carboxymethyl cellulose-based dressings on acute wound healing dynamics. VET MED-CZECH 2023; 68:403-411. [PMID: 38028207 PMCID: PMC10666658 DOI: 10.17221/89/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The clinical implications and efficacy of newly developed modified cellulose materials were evaluated in an acute wound animal model. In the current study, sixty male rats were divided into four groups. A full-thickness circular excision wound was created in the suprascapular area. Newly developed matrices (acidic partially carboxymethylated cellulose; acidic partially carboxymethylated cellulose impregnated with a povidone-iodine solution) were applied in two test groups, while fifteen animals were used as a control group without any primary dressing. Aquacel Ag, a clinically used dressing, was selected as the reference material. To compare the efficacy in vivo, the wound size and production of selected cytokines and growth factors (TNF-α, TGF-β1, and VEGF), which play a key role in the healing process, were measured at two, seven, and fourteen days after surgery. The activity of matrix metalloproteinases 2 and 9, which actively participate in cell signalling and are essential for tissue remodelling, was determined in wound tissue by gelatin zymography. A positive effect of the newly developed dressing materials on the healing process, tissue granulation, and wound re-epithelialisation was demonstrated.
Collapse
Affiliation(s)
- Alzbeta Kruzicova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Marta Chalupova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Gabriela Kuzminova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Tomas Parak
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | | | - Tomas Sopuch
- Holzbecher, Ltd. – Bleaching & Dyeing Plant, Zlic, Czech Republic
| | - Pavel Suchy
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
149
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
150
|
Riccio M, Bondioli E, Senesi L, Zingaretti N, Gargiulo P, De Francesco F, Parodi PC, Zavan B. Fragmented Dermo-Epidermal Units (FdeU) as an Emerging Strategy to Improve Wound Healing Process: An In Vitro Evaluation and a Pilot Clinical Study. J Clin Med 2023; 12:6165. [PMID: 37834809 PMCID: PMC10573238 DOI: 10.3390/jcm12196165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Innovative strategies have shown beneficial effects in healing wound management involving, however, a time-consuming and arduous process in clinical contexts. Micro-fragmented skin tissue acts as a slow-released natural scaffold and continuously delivers growth factors, and much other modulatory information, into the microenvironment surrounding damaged wounds by a paracrine function on the resident cells which supports the regenerative process. In this study, in vitro and in vivo investigations were conducted to ascertain improved effectiveness and velocity of the wound healing process with the application of fragmented dermo-epidermal units (FdeU), acquired via a novel medical device (Hy-Tissue® Micrograft Technology). MTT test; LDH test; ELISA for growth factor investigation (IL) IL-2, IL-6, IL-7 IL-8, IL-10; IGF-1; adiponectin; Fibroblast Growth Factor (FGF); Vascular Endothelial Growth Factor (VEGF); and Tumor Necrosis Factor (TNF) were assessed. Therefore, clinical evaluation in 11 patients affected by Chronic Wounds (CW) and treated with FdeU were investigated. Functional outcome was assessed pre-operatory, 2 months after treatment (T0), and 6 months after treatment (T1) using the Wound Bed Score (WBS) and Vancouver Scar Scale (VSS). In this current study, we demonstrate the potential of resident cells to proliferate from the clusters of FdeU seeded in a monolayer that efficiently propagate the chronic wound. Furthermore, in this study we report how the discharge of trophic/reparative proteins are able to mediate the in vitro paracrine function of proliferation, migration, and contraction rate in fibroblasts and keratinocytes. Our investigations recommend FdeU as a favorable tool in wound healing, displaying in vitro growth-promoting potential to enhance current therapeutic mechanisms.
Collapse
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Elena Bondioli
- Burn Center and Emilia Romagna Regional Skin Bank, Bufalini Hospital, AUSL della Romagna, 47521 Cesena, Italy;
| | - Letizia Senesi
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Paolo Gargiulo
- Engineering Department, King’s College, London WC2R 2LS, UK;
- Institute for Biomedical and Neural Engineering, Reykjavík University, 101 Reykjavík, Iceland
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti di Ancona), Via Conca 71, Torrette di Ancona, 60123 Ancona, Italy; (M.R.); (L.S.); (F.D.F.)
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy; (N.Z.); (P.C.P.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| |
Collapse
|