101
|
Shi H, Zhang W, Zhang L, Zheng Y, Dong T. Comparison of different predictive biomarker testing assays for PD-1/PD-L1 checkpoint inhibitors response: a systematic review and network meta-analysis. Front Immunol 2023; 14:1265202. [PMID: 37822932 PMCID: PMC10562577 DOI: 10.3389/fimmu.2023.1265202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Background Accurate prediction of efficacy of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors is of critical importance. To address this issue, a network meta-analysis (NMA) comparing existing common measurements for curative effect of PD-1/PD-L1 monotherapy was conducted. Methods We searched PubMed, Embase, the Cochrane Library database, and relevant clinical trials to find out studies published before Feb 22, 2023 that use PD-L1 immunohistochemistry (IHC), tumor mutational burden (TMB), gene expression profiling (GEP), microsatellite instability (MSI), multiplex IHC/immunofluorescence (mIHC/IF), other immunohistochemistry and hematoxylin-eosin staining (other IHC&HE) and combined assays to determine objective response rates to anti-PD-1/PD-L1 monotherapy. Study-level data were extracted from the published studies. The primary goal of this study was to evaluate the predictive efficacy and rank these assays mainly by NMA, and the second objective was to compare them in subgroup analyses. Heterogeneity, quality assessment, and result validation were also conducted by meta-analysis. Findings 144 diagnostic index tests in 49 studies covering 5322 patients were eligible for inclusion. mIHC/IF exhibited highest sensitivity (0.76, 95% CI: 0.57-0.89), the second diagnostic odds ratio (DOR) (5.09, 95% CI: 1.35-13.90), and the second superiority index (2.86). MSI had highest specificity (0.90, 95% CI: 0.85-0.94), and DOR (6.79, 95% CI: 3.48-11.91), especially in gastrointestinal tumors. Subgroup analyses by tumor types found that mIHC/IF, and other IHC&HE demonstrated high predictive efficacy for non-small cell lung cancer (NSCLC), while PD-L1 IHC and MSI were highly efficacious in predicting the effectiveness in gastrointestinal tumors. When PD-L1 IHC was combined with TMB, the sensitivity (0.89, 95% CI: 0.82-0.94) was noticeably improved revealed by meta-analysis in all studies. Interpretation Considering statistical results of NMA and clinical applicability, mIHC/IF appeared to have superior performance in predicting response to anti PD-1/PD-L1 therapy. Combined assays could further improve the predictive efficacy. Prospective clinical trials involving a wider range of tumor types are needed to establish a definitive gold standard in future.
Collapse
Affiliation(s)
- Haotong Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenxia Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yawen Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
102
|
Qiu MZ, Wang C, Wu Z, Zhao Q, Zhao Z, Huang CY, Wu W, Yang LQ, Zhou ZW, Zheng Y, Pan HM, Liu Z, Zeng ZL, Luo HY, Wang F, Wang FH, Yang SY, Huang MX, Lian Z, Zhang H, Xu RH. Dynamic single-cell mapping unveils Epstein‒Barr virus-imprinted T-cell exhaustion and on-treatment response. Signal Transduct Target Ther 2023; 8:370. [PMID: 37735150 PMCID: PMC10514267 DOI: 10.1038/s41392-023-01622-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Epstein‒Barr virus (EBV)-associated gastric cancer (GC) manifests an intriguing immunotherapy response. However, the cellular basis for EBV-imprinted tumour immunity and on-treatment response remains undefined. This study aimed to finely characterize the dynamic tumour immune contexture of human EBV (+) GC treated with immunochemotherapy by longitudinal scRNA-seq and paired scTCR/BCR-seq. EBV (+) GC exhibits an inflamed-immune phenotype with increased T-cell and B-cell infiltration. Immunochemotherapy triggers clonal revival and reinvigoration of effector T cells which step to determine treatment response. Typically, an antigen-specific ISG-15+CD8+ T-cell population is highly enriched in EBV (+) GC patients, which represents a transitory exhaustion state. Importantly, baseline intratumoural ISG-15+CD8+ T cells predict immunotherapy responsiveness among GC patients. Re-emerged clonotypes of pre-existing ISG-15+CD8+ T cells could be found after treatment, which gives rise to a CXCL13-expressing effector population in responsive EBV (+) tumours. However, LAG-3 retention may render the ISG-15+CD8+ T cells into a terminal exhaustion state in non-responsive EBV (+) tumours. In accordance, anti-LAG-3 therapy could effectively reduce tumour burden in refractory EBV (+) GC patients. Our results delineate a distinct implication of EBV-imprinted on-treatment T-cell immunity in GC, which could be leveraged to optimize the rational design of precision immunotherapy.
Collapse
Affiliation(s)
- Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Chaoye Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, China
| | - Zhiying Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Qi Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chun-Yu Huang
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, China
| | - Wenwei Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Li-Qiong Yang
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yu Zheng
- Department of Internal Medical Oncology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Hong-Ming Pan
- Department of Internal Medical Oncology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Zexian Liu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Zhao-Lei Zeng
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China
| | - Si-Yu Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Meng-Xing Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhexiong Lian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haiyan Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, China.
| |
Collapse
|
103
|
Pan J, Gao Y. Prognostic significance and immune characteristics of GPR27 in gastric cancer. Aging (Albany NY) 2023; 15:9144-9166. [PMID: 37702614 PMCID: PMC10522374 DOI: 10.18632/aging.205023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Gastric cancer (GC) is one of the most typical cancerous neoplasms occurring in the digestive system. For advanced GC, immunotherapy is the final option for them to prolong survival time. Hence, we aimed to identify new molecular targets to enhance the immunotherapy response in GC individuals. Then we applied bioinformatic analysis to explore the expression profiles of G-protein-coupled receptor 27 (GPR27) transcription and GPR27 methylation. The associations between survival of GC patients and GPR27 transcription and methylation were then analyzed. We also studied the link between GPR27 expression and levels of immune cell infiltration. Finally, we gained insights into the prognostic role of GPR27 protein in 97 cases of GC individuals. According to datasets gained from TCGA, GPR27 mRNA is expressed lower in GC tissues. Down-regulation of GPR27 transcription was related with better survival in GC individuals, and GPR27 cg03024619 had the most significant prognostic value (HR=0.553, P<0.0001). In addition, the expression level of GPR27 has a clear interaction with immune cells' infiltration and their markers. Single-cell analysis displayed that GPR27 is mainly expressed in macrophages. Finally, down-regulation of GPR27 protein was observed in GC tissues and correlated with better survival outcomes. GPR27 can serve as an important prognostic biomarker and exert an immunomodulatory role in GC. Our findings highlight the significance of GPR27 in a variety of cancers, including GC, and provide clues for a better understanding of GPR27 from bioinformatics and clinically validated perspective.
Collapse
Affiliation(s)
- Jun Pan
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuanjun Gao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
104
|
Liao CX, Deng CS, Liang X, Yang JC, Chen ZZ, Lin XY, Lin CF, Chen S, Wu SS. PD-1 blockade and radiotherapy combination for advanced Epstein-Barr virus-associated intrahepatic cholangiocarcinoma: a case report and literature review. Front Immunol 2023; 14:1239168. [PMID: 37753076 PMCID: PMC10518395 DOI: 10.3389/fimmu.2023.1239168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Advanced intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor of biliary epithelial cells, known for its extremely unfavorable prognosis. In the absence of intervention, patients typically survive for less than 5 months. Current guidelines from the Chinese Society of Clinical Oncology (CSCO), National Comprehensive Cancer Network (NCCN), and European Society for Medical Oncology (ESMO) recommend chemotherapy-based systemic therapy as the standard treatment for advanced ICC. However, the first-line regimen, consisting of gemcitabine in combination with cisplatin, generally results in a median survival of approximately one year, which is considered suboptimal. Significant progress has been made in radiotherapy techniques, molecular diagnostics, and tumor immune microenvironments. The integration of immune and radiation therapies has revolutionized treatment strategies for cholangiocarcinoma. Moreover, combined therapeutic regimens have shown promising results in improving survival rates among patients with advanced ICC. In this study, we present a case report of a 70-year-old male patient diagnosed with stage IV ICC, featuring metastases to the retroperitoneal, left adrenal, and left supraclavicular lymph nodes. The patient exhibited a high tumor mutational load, significant microsatellite instability, and hyper-expression of PD-L1 (90%), along with positive Epstein-Barr virus-encoded RNA (EBER). Pembrolizumab, a programmed cell death 1 (PD-1) inhibitor, was administered in conjunction with radiotherapy. As a result, considerable shrinkage and inactivation of the primary foci were observed, accompanied by the disappearance of metastases. Ultimately, the patient achieved complete remission and maintained progression-free survival for 41 months following the initial treatment. To the best of our knowledge, this represents the longest case of complete remission using a combination of immunotherapy and radiotherapy as a first-line regimen for the high tumor mutational load, microsatellite instability, and PD-L1 expression (90%) subtype of Epstein-Barr virus-associated ICC (EBVaICC). These findings suggest that the combination of PD-1 inhibitors with radiotherapy may serve as a promising therapeutic strategy for treating this particular cancer subtype.
Collapse
Affiliation(s)
- Chun-Xu Liao
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
- Department of Ultrasonography, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Chang-Song Deng
- Department of Ultrasonography, Ningde Hospital, Ningde Hospital Affiliated to Ningde Normal University, Ningde, China
| | - Xia Liang
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Jian-Chuan Yang
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi-Zhong Chen
- Department of Pathology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Xiao-Ying Lin
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Cai-Feng Lin
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Shen Chen
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Song-Song Wu
- Department of Ultrasonography, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
105
|
Jung SH, Lee CK, Kwon WS, Yun S, Jung M, Kim HS, Chung HC, Chung YJ, Rha SY. Monitoring the Outcomes of Systemic Chemotherapy Including Immune Checkpoint Inhibitor for HER2-Positive Metastatic Gastric Cancer by Liquid Biopsy. Yonsei Med J 2023; 64:531-540. [PMID: 37634629 PMCID: PMC10462813 DOI: 10.3349/ymj.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE For precision medicine, exploration and monitoring of molecular biomarkers are essential. However, in advanced gastric cancer (GC) with visceral lesions, an invasive procedure cannot be performed repeatedly for the follow-up of molecular biomarkers. MATERIALS AND METHODS To verify the clinical implication of serial liquid biopsies targeting circulating tumor DNA (ctDNA) on treatment response, we conducted targeted deep sequencing for serially collected ctDNA of 15 HER2-positive metastatic GC patients treated with anti-PD-1 inhibitor in combination with standard systemic treatment. RESULTS In the baseline ctDNAs, 14 patients (93%) harbored more than one genetic alteration. A number of mutations in well-known cancer-related genes, such as KRAS and PIK3CA, were identified. Copy number alterations were identified in eight GCs (53.3%), and amplification of the ERBB2 gene (6/15, 40.0%) was the most recurrent. When we calculated the mean variant allele frequency (VAF) of mutations in each ctDNA as the molecular tumor burden index (mTBI), the mTBI trend was largely consistent with the VAF profiles in both responder and non-responder groups. Notably, in the longitudinal analysis of ctDNA, mTBI provided 2-42 weeks (mean 13.4 weeks) lead time in the detection of disease progression compared to conventional follow-up with CT imaging. CONCLUSION Our data indicate that the serial genetic alteration profiling of ctDNA is feasible to predict treatment response in HER2-positive GC patients in a minimally invasive manner. Practically, ctDNA profiles are useful not only for the molecular diagnosis of GC but also for the selection of GC patients with poor prognosis for systemic treatment (ClinicalTrials.gov identifier: NCT02901301).
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Department of Biochemistry, IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Sondang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Sun Kwon
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sujin Yun
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Sondang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Sondang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Sondang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
- Sondang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
106
|
Scobie MR, Zhou KI, Ahmed S, Kelley MJ. Utility of Tumor Mutational Burden as a Biomarker for Response to Immune Checkpoint Inhibition in the VA Population. JCO Precis Oncol 2023; 7:e2300176. [PMID: 38039430 DOI: 10.1200/po.23.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 12/03/2023] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are used for an increasing number of indications across various tumor types, as well as several tumor-agnostic indications in patients with advanced cancer. Although many patients benefit from ICI therapy, others do not, highlighting a need for better predictive biomarkers. Tumor mutational burden (TMB) reflects the global number of mutations within a tumor and has been widely explored as a predictive biomarker of ICI response. The current tumor type-agnostic US Food and Drug Administration approval of pembrolizumab for metastatic solid tumors defines high TMB (TMB-H) as ≥10 mut/Mb as measured by FoundationOne CDx. This fixed cutoff may not be the ideal value across all solid tumors. METHODS We performed a retrospective analysis of the association of survival outcomes with TMB in patients treated with ICI for five major cancer types, using real-world data from the VA. Survival was measured from initiation of ICI, and Kaplan-Meier survival curves were compared by log-rank test. RESULTS Overall survival (OS) was significantly longer for patients with TMB-H versus TMB low tumors in non-small-cell lung cancer (NSCLC; n = 1,593), head and neck (H&N) cancer (n = 222), and urothelial cancer (n = 332). OS was not significantly different based on TMB status in melanoma (n = 207) or esophageal/gastric cancer (n = 248). CONCLUSION Consistent with previous studies, a predictive value of TMB ≥10 mut/Mb for ICI response was found in NSCLC and H&N, but not in esophageal/gastric cancer. Although inconclusive in the literature, significant association was found in urothelial cancer. The predictive value of TMB in melanoma was inconclusive. Our analysis does not support the use of a fixed threshold for TMB as a standalone predictive biomarker for ICI across all solid tumors.
Collapse
Affiliation(s)
- Micaela R Scobie
- Department of Veterans Affairs, National Oncology Program, Washington, DC
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
| | - Katherine I Zhou
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Sara Ahmed
- Department of Veterans Affairs, National Oncology Program, Washington, DC
| | - Michael J Kelley
- Department of Veterans Affairs, National Oncology Program, Washington, DC
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, NC
| |
Collapse
|
107
|
Cheng Y, Bu D, Zhang Q, Sun R, Lyle S, Zhao G, Dong L, Li H, Zhao Y, Yu J, Hao X. Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J Adv Res 2023; 51:121-134. [PMID: 36351537 PMCID: PMC10491970 DOI: 10.1016/j.jare.2022.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Gastric cancer (GC)is the third leading cause of cancer-related deaths in China and immunotherapy emerging as a revolutionary treatment for GC recently. Tumor mutational burden (TMB) is a predictive biomarker of immunotherapy in multiple cancers. However, the prognostic significance and subtype of TMB in GC is not fully understood. OBJECTIVES This study aims to evaluate the prognostic value of TMB in Chinese GC and further classify TMB-high GC (GCTMB-H) patients combing with mutational signatures. METHODS Genomic profiling of 435 cancer-gene panel was performed using 206 GC samples from Chinese people. Actionable genetic alterations were compared across all the samples to generate actionable subtyping. The prognostic value of TMB in Chinese GC was evaluated. Mutational signatures were analyzed on TMB-H subtype to stratify the prognosis of TMB. Transcriptomic analysis was applied to compare the distributed immunocytes among different subtypes. RESULTS 88.3% (182/206) of GC samples had at least one mutation, while 45.1% (93/206) had at least one somatic copy number alteration (SCNA). 29.6% (61/206) of GC samples were TMB-H, including 13 MSI-H and 48 MSS tumors. According to distinct genetic alteration profiles of 69 actionable genes, we classified GC samples into eight molecular subtypes, including TMB-H, ERBB2 amplified, ATM mutated, BRCA2 mutated, CDKN2A/B deleted, PI3KCA mutated, KRAS mutated, and less-mutated subtype. TMB-H subtype presented a remarkable immune-activated phenotype as determined by transcriptomic analysis that was further validated in the TCGA GC cohort. GCTMB-H patients exhibited significantly better survival (P = 0.047). But Signature 1-high GCTMB-H patients had relatively worse prognosis (P = 0.0209, HR = 2.571) than Signature 1-low GCTMB-H patients from Chinese GC cohort, also validated in TCGA GC cohort, presenting highly activated carbohydrate, fatty acid or lipid metabolism. CONCLUSION The Signature 1-high GCTMB-H could be a marker of poor prognosis and is associated with metabolism disorder.
Collapse
Affiliation(s)
- Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rebecca Sun
- KEW, Inc., 303 Wyman Street, Waltham, MA, USA
| | | | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yi Zhao
- Research Center for Ubiquitous Computing Systems, Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Xishan Hao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
108
|
Zeng W, Zhu J, Zeng D, Guo J, Huang G, Zeng Y, Wang L, Bin J, Liao Y, Shi M, Liao W. Epigenetic Modification-Associated Molecular Classification of Gastric Cancer. J Transl Med 2023; 103:100170. [PMID: 37150296 DOI: 10.1016/j.labinv.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/02/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Epigenetic modification is involved in tumorigenesis and cancer progression. We developed an epigenetic modification-associated molecular classification of gastric cancer (GC) to identify signature genes that accurately predict prognosis and the efficacy of immunotherapy. Least absolute shrinkage and selection operator and multivariate Cox regression analysis were conducted to develop an epigenetic modification-associated molecular classification. We investigated the significance of PIP4P2, an independent prognostic factor of the classification system, in predicting the prognosis and immunotherapy efficacy of patients with GC. The epigenetic modification-associated molecular classification was highly associated with the clinicopathological characteristics of patients and the existing classification of GC. PIP4P2 was highly expressed in GC tissue and tumor-associated macrophages. High PIP4P2 expression in GC tissue-induced tumor progression by activating PI3K/AKT signal transduction had a negative impact on immunotherapy efficacy. High expression of PIP4P2 in macrophages was correlated with poor prognosis in patients with GC. PIP4P2 is an independent unfavorable prognostic factor of epigenetic modification-associated molecular classification, is involved in tumorigenic progression, and is essential for assessing the prognosis and immunotherapy efficacy of GC.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Oncology, First Peoples Hospital of Shunde, Shunde Hospital of Southern Medical University, Shunde, China; Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Jinfeng Zhu
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Jian Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Yu Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
109
|
Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas - are we close to clinical implementation? Biomark Res 2023; 11:75. [PMID: 37612756 PMCID: PMC10463641 DOI: 10.1186/s40364-023-00513-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Sarcomas are a group of diverse and complex cancers of mesenchymal origin that remains poorly understood. Recent developments in cancer immunotherapy have demonstrated a potential for better outcomes with immune checkpoint inhibition in some sarcomas compared to conventional chemotherapy. Immune checkpoint inhibitors (ICIs) are key agents in cancer immunotherapy, demonstrating improved outcomes in many tumor types. However, most patients with sarcoma do not benefit from treatment, highlighting the need for identification and development of predictive biomarkers for response to ICIs. In this review, we first discuss United States (US) Food and Drug Administration (FDA)-approved and European Medicines Agency (EMA)-approved biomarkers, as well as the limitations of their use in sarcomas. We then review eight potential predictive biomarkers and rationalize their utility in sarcomas. These include gene expression signatures (GES), circulating neutrophil-to-lymphocyte ratio (NLR), indoleamine 2,3-dioxygenase (IDO), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and mucin domain-containing protein 3 (TIM-3), TP53 mutation status, B cells, and tertiary lymphoid structures (TLS). Finally, we discuss the potential for TLS as both a predictive and prognostic biomarker for ICI response in sarcomas to be implemented in the clinic.
Collapse
Affiliation(s)
- Chin Sern Yiong
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Tzu Ping Lin
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Vivian Yujing Lim
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Duke-NUS Medical School, Oncology Academic Clinical Program, Singapore, 169857, Singapore.
| |
Collapse
|
110
|
Huang K, Lin Y, Qiu G, Wang S, Feng L, Zheng Z, Gao Y, Fan X, Zheng W, Zhuang J, Luo F, Feng S. Comprehensive characterization of pyroptosis phenotypes with distinct tumor immune profiles in gastric cancer to aid immunotherapy. Aging (Albany NY) 2023; 15:8113-8136. [PMID: 37595258 PMCID: PMC10497016 DOI: 10.18632/aging.204958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Pyroptosis is a form of programmed cell death that is essential for immunity. Herein, this study was conducted to uncover the implication of pyroptosis in immunomodulation and tumor microenvironment (TME) in gastric cancer. METHODS Prognostic pyroptosis-related genes were extracted to identify different pyroptosis phenotypes and pyroptosis genomic phenotypes via unsupervised clustering analysis in the gastric cancer meta-cohort cohort (GSE15459, GSE62254, GSE84437, GSE26253 and TCGA-STAD). The activation of hallmark gene sets was quantified by GSVA and immune cell infiltration was estimated via ssGSEA and CIBERSORT. Through PCA algorithm, pyroptosis score was conducted. The predictors of immune response (TMB and IPS) and genetic mutations were evaluated. The efficacy of pyroptosis score in predicting immune response was verified in two anti-PD-1 therapy cohorts. RESULTS Three different pyroptosis phenotypes with different prognosis, biological pathways and tumor immune microenvironment were established among 1275 gastric cancer patients, corresponding to three immune phenotypes: immune-inflamed, immune-desert, and immune-excluded. According to the pyroptosis score, patients were separated into high and low pyroptosis score groups. Low pyroptosis score indicated favorable survival outcomes, enhanced immune responses, and increased mutation frequency. Moreover, low pyroptosis score patients displayed more clinical benefits from anti-PD-1 and prolonged survival time. CONCLUSION Our findings uncovered a nonnegligible role of pyroptosis in immunomodulation and TME multiformity and complicacy in gastric cancer. Quantifying the pyroptosis score in individual tumors may tailor more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Kaida Huang
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Yubiao Lin
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Guoqin Qiu
- Chenggong Hospital Affiliated to Xiamen University, Xiamen 361003, Fujian, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Lihua Feng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Zhigao Zheng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Yingqin Gao
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Xin Fan
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Wenhui Zheng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Jianmin Zhuang
- Department of General Surgery, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Shuitu Feng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen 361000, Fujian, China
| |
Collapse
|
111
|
Li L, Tianrui K, Chunlei L, Zhendong Q, Xiaoyan C, Wenhong D. HYDIN mutation status as a potential predictor of immune checkpoint inhibitor efficacy in melanoma. Aging (Albany NY) 2023; 15:7997-8012. [PMID: 37595251 PMCID: PMC10496993 DOI: 10.18632/aging.204925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND The advent of immune checkpoint inhibitors (ICIs) has altered the outlook for cancer treatment. The estimation of predictive biomarkers could contribute to maximizing the benefits from ICIs treatment. Here, we explored the association between HYDIN mutations (HYDIN-MUT) in melanoma and ICIs efficacy. METHODS Clinical data and sequencing data from published studies were utilized to assess the association between HYDIN-MUT and the efficacy of ICIs treatment in melanoma patients. RESULTS Compared to other tumor types, HYDIN (36.14%) has the highest mutation rate in melanoma patients. In the anti-PD-1 treated cohort (n = 254), the HYDIN-MUT patients had a longer OS after ICIs treatment than the HYDIN wild-type (HYDIN-WT) patients (HR = 0.590 [95% CI, 0.410-0.847], P = 0.004); the objective response rate (ORR) and durable clinical benefit (DCB) were increased in patients with HYDIN-MUT (ORR = 46.25, DCB = 56.00%) compared to patients with HYDIN-WT (ORR = 30.99%, DCB = 42.76%) (ORR: P = 0.019; DCB: P = 0.060). In the anti-CTLA4 treated cohort (n = 174), HYDIN-MUT patients achieved significantly longer OS than HYDIN-WT patients (HR = 0.549 [95% CI, 0.366-0.823], P = 0.003); the proportion of ORR and DCB in HYDIN-MUT patients was significantly higher than that in HYDIN-WT patients (ORR 40.54% vs. 14.42%, P = 0.031; DCB 45.76% vs. 22.22%, P = 0.002). Further gene set enrichment analysis demonstrated that DNA repair and anti-tumor immunity were significantly enhanced in HYDIN-MUT patients. CONCLUSIONS HYDIN mutations are a potential predictive biomarker of ICIs efficacy in melanoma patients.
Collapse
Affiliation(s)
- Liu Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Kuang Tianrui
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li Chunlei
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qiu Zhendong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chen Xiaoyan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Deng Wenhong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
112
|
Chen M, Hua T, Yang L, Li C, Xu S, Zhu J, Zhao T. Developing a novel necroptosis-related signature to evaluate the prognostic and therapeutic characteristics of esophageal cancer. Am J Transl Res 2023; 15:5425-5445. [PMID: 37692951 PMCID: PMC10492067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The prognostic assessment and therapeutic interventions of esophageal cancer (ESCA) require novel molecular targets. The prognostic value of necroptosis, a specific mode of programmed cell death strongly linked to cancer progression, remains largely unexplored in ESCA. The primary goal of this research is to develop a necroptosis-based prognostic signature, which will represent the microenvironmental characteristics and prognosis of individuals diagnosed with ESCA. METHODS Transcriptome data of ESCA samples from The Cancer Genome Atlas were utilized to screen for necroptosis-related long non-coding RNAs (NR-lncRNAs) and genes (NRGs). The research employed the least absolute shrinkage and selection operator (LASSO) regression and univariate Cox regression analysis to identify prognostic candidates. Based on these analyses, a signature was developed in the training set and subsequently verified in the testing and entire sets. A clinicopathologic relevance assessment was carried out, after which a nomogram was established. The features of the immune microenvironment, functional pathways, mutational burden, checkpoint expression, and stemness of tumors were analyzed. Moreover, the sensitivity of individuals to immunotherapy and chemotherapy was compared for therapeutic guidance. RESULTS A necroptosis-associated signature comprising two genes and eleven lncRNAs was constructed. High-risk patients showed worse prognosis and clinicopathologic features, with more tumor-infiltrating naïve B cells, CD4+ memory resting T cells, and regulatory T cells. Furthermore, stromal and ESTIMATE scores were decreased along with increased stemness scores and tumor mutational burden in high-risk individuals. For the quantitative prediction of the outcomes of individuals, a nomogram was established. High-risk individuals showed greater sensitivity to immunotherapy while low-risk individuals benefited more from conventional chemotherapeutic or targeted therapy. CONCLUSION A necroptosis-related prognostic signature was developed to study the tumor microenvironment, mutational burden, clinical features, and the treatment response of ESCA patients. This may contribute to precision medicine for ESCA.
Collapse
Affiliation(s)
- Mingzhi Chen
- Department of Thoracic and Cardiovascular Surgery, Yixing Hospital Affiliated to Jiangsu UniversityYixing 214200, Jiangsu, China
| | - Tianzhen Hua
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General HospitalBeijing 100048, China
- Chinese PLA Medical SchoolBeijing 100853, China
| | - Lanjie Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Naval Medical UniversityShanghai 200433, China
| | - Chunzhen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Naval Medical UniversityShanghai 200433, China
| | - Shuhua Xu
- Department of Surgery, Dongtai Hospital of Traditional Chinese MedicineYancheng 224200, Jiangsu, China
| | - Ji Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Naval Medical UniversityShanghai 200433, China
| | - Tiejun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
113
|
Li S, Chen D, Zhang H, Yang Y, Huai J, Huang L, Fan K, Lin T, Ding B. Clinical significance of expression level of ZNF471 in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:199-208. [PMID: 37693683 PMCID: PMC10492033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND As a tumor suppressor gene, zinc finger protein 471 (ZNF471) has an essential role in tumor occurrence and development. Due to promoter hypermethylation, it can be underexpressed or silenced in gastric cancer (GC) cell lines. In this study, we investigated relationships between clinical characteristics and ZNF471 expression levels in tissues of patients with GC. METHODS We used immunohistochemistry (IHC) to detect ZNF471 expression in paraffin tissue specimens, and quantitative real-time PCR (qRT-PCR) and western blot (WB) analysis to measure expression levels of ZNF471 in fresh tissue specimens. We analyzed relationships between ZNF471 expression levels and characteristics, such as tumor size, gender, age, TNM stage, and lymph node metastasis. RESULTS Immunohistochemistry revealed the expression of ZNF471 protein from paraffin blocks of GC tissues was significantly lower than that of adjacent tissues. Expression levels of ZNF471 mRNA and protein in fresh GC tissues were markedly lower than those in adjacent tissues and in normal gastric mucosal tissues from healthy subjects. ZNF471 expression was significantly correlated with tumor size, lymph node metastasis, and TNM stage (all P<0.05). There were no significant associations with gender, age, distant metastasis, or pathologic type. Expression of ZNF471 mRNA and protein was not significantly different between adjacent tissues of patients with GC and normal gastric mucosal tissue from healthy subjects. CONCLUSION ZNF471 functions as a tumor suppressor during the pathogenesis of GC. Thus, it is a promising biomarker for diagnosis and therapy of GC.
Collapse
Affiliation(s)
- Siyuan Li
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Diyang Chen
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Huamin Zhang
- Health Services Policy and Management, Harbin Medical UniversityHarbin 150000, Heilongjiang, China
| | - Yong Yang
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Jianguo Huai
- Department of Pathology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Linna Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Kai Fan
- Postgraduate School, Wannan Medical CollegeWuhu 241000, Anhui, China
| | - Tongyuan Lin
- Department of Pharmacy, Division of Science and Education, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| | - Baijing Ding
- Department of Gastroenterology, The First People’s Hospital of WuhuWuhu 241000, Anhui, China
| |
Collapse
|
114
|
Zhou C, Li Y, Li J, Song B, Li H, Liang B, Gu S, Li H, Chen C, Li S, Peng C, Liu F, Xiao J, Long X, Li P, Xiong Z, Yi X, Liao W, Shi L. A Phase 1/2 Multicenter Randomized Trial of Local Ablation plus Toripalimab versus Toripalimab Alone for Previously Treated Unresectable Hepatocellular Carcinoma. Clin Cancer Res 2023; 29:2816-2825. [PMID: 37223896 DOI: 10.1158/1078-0432.ccr-23-0410] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE To assess the safety and efficacy of local ablation plus PD-1 inhibitor toripalimab in previously treated unresectable hepatocellular carcinoma (HCC). PATIENTS AND METHODS In the multicenter, two-stage, and randomized phase 1/2 trial, patients were randomly assigned to receive toripalimab alone (240 mg, every 3 weeks), subtotal local ablation followed by toripalimab starting on post-ablation day 3 (Schedule D3), or on post-ablation day 14 (Schedule D14). The first endpoint of stage 1 was to determine which combination schedule could continue and progression-free survival (PFS) as the primary endpoint for stage 1/2. RESULTS A total of 146 patients were recruited. During stage 1, Schedule D3 achieved numerically higher objective response rate (ORR) than Schedule D14 for non-ablation lesions (37.5% vs. 31.3%), and was chosen for stage 2 evaluation. For the entire cohort of both stages, patients with Schedule D3 had a significantly higher ORR than with toripalimab alone (33.8% vs. 16.9%; P = 0.027). Moreover, patients with Schedule D3 had improved median PFS (7.1 vs. 3.8 months; P < 0.001) and median overall survival (18.4 vs. 13.2 months; P = 0.005), as compared with toripalimab alone. In addition, six (9%) patients with toripalimab, eight (12%) with Schedule D3, and 4 (25%) with Schedule D14 developed grade 3 or 4 adverse events, and one patient (2%) with Schedule D3 manifested grade 5 treatment-related pneumonitis. CONCLUSIONS In patients with previously treated unresectable HCC, subtotal ablation plus toripalimab improved the clinical efficacy as compared with toripalimab alone, with an acceptable safety profile.
Collapse
Affiliation(s)
- Chunhui Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Yan Li
- Department of Vascular and Tumor Intervention, the First Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Botian Song
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Hanfeng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Bin Liang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Changsha, China
| | - Shanzhi Gu
- Department of Interventional Radiology, Hunan Cancer Hospital of Xiangya School, Central South University, Changsha, China
| | - Haiping Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Changyong Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Sai Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Changli Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Fei Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Ping Li
- Department of Vascular and Tumor Intervention, the First Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhengping Xiong
- Department of Interventional Radiology, Hunan Cancer Hospital of Xiangya School, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| |
Collapse
|
115
|
Nie Y, Zhao W, Lu L, Zhou F. Predictive biomarkers and new developments of immunotherapy in gastric cancer: a 2023 update. Am J Cancer Res 2023; 13:3169-3184. [PMID: 37559976 PMCID: PMC10408463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Gastric cancer is an extremely common digestive tract tumor. The promotion and application of standardized therapy, treatment scheme optimization, and development of new targeted drugs and immunotherapies have improved gastric cancer survival somewhat. However, gastric cancer prognosis generally remains non-optimistic. Immune checkpoint inhibitors (ICI) have gradually become a new choice for gastric cancer treatment and can prolong the survival of some patients. Among them, high-microsatellite instability, Epstein-Barr virus-positive status, or high-tumor mutational burden patients with gastric cancer may be the potential population to benefit from immunotherapy. Nevertheless, there remains a lack of unified and effective predictive markers. Accordingly, this review mainly focused on the possible predictive biomarkers of anti-PD-1/PD-L1 in gastric cancer treatment. Furthermore, the application of anti-PD-1/PD-L1 therapy-related clinical trials on gastric cancer is discussed. The current findings suggest that immunotherapy is a promising application in gastric cancer treatment. Therefore, combining immunotherapy and other therapies may be the trend in the future. Nevertheless, exploring biomarkers to predict ICI response remains a major challenge.
Collapse
Affiliation(s)
- Yanli Nie
- Department of Gastrointestinal Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Wei Zhao
- PLA Rocket Force Characteristic Medical CenterBeijing 100088, China
| | - Li Lu
- Department of Gastrointestinal Surgical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Fuxiang Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| |
Collapse
|
116
|
Jang JY, Jeon Y, Jeong SY, Lim SH, Kang WK, Lee J, Kim ST. The Optimal Tumor Mutational Burden Cutoff Value as a Novel Marker for Predicting the Efficacy of Programmed Cell Death-1 Checkpoint Inhibitors in Advanced Gastric Cancer. J Gastric Cancer 2023; 23:476-486. [PMID: 37553133 PMCID: PMC10412974 DOI: 10.5230/jgc.2023.23.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE The optimal tumor mutational burden (TMB) value for predicting treatment response to programmed cell death-1 (PD-1) checkpoint inhibitors in advanced gastric cancer (AGC) remains unclear. We aimed to investigate the optimal TMB cutoff value that could predict the efficacy of PD-1 checkpoint inhibitors in AGC. MATERIALS AND METHODS Patients with AGC who received pembrolizumab or nivolumab between October 1, 2020, and July 27, 2021, at Samsung Medical Center in Korea were retrospectively analyzed. The TMB levels were measured using a next-generation sequencing assay. Based on receiver operating characteristic curve analysis, the TMB cutoff value was determined. RESULTS A total 53 patients were analyzed. The TMB cutoff value for predicting the overall response rate (ORR) to PD-1 checkpoint inhibitors was defined as 13.31 mutations per megabase (mt/Mb) with 56% sensitivity and 95% specificity. Based on this definition, 7 (13.2%) patients were TMB-high (TMB-H). The ORR differed between the TMB-low (TMB-L) and TMB-H (8.7% vs. 71.4%, P=0.001). The progression-free survival and overall survival (OS) for 53 patients were 1.93 (95% confidence interval [CI], 1.600-2.268) and 4.26 months (95% CI, 2.992-5.532). The median OS was longer in the TMB-H (20.8 months; 95% CI, 2.292-39.281) than in the TMB-L (3.31 months; 95% CI, 1.604-5.019; P=0.049). CONCLUSIONS The TMB cutoff value for predicting treatment response in AGC patients who received PD-1 checkpoint inhibitor monotherapy as salvage treatment was 13.31 mt/Mb. When applying the programmed death ligand-1 status to TMB-H, patients who would benefit from PD-1 checkpoint inhibitors can be selected.
Collapse
Affiliation(s)
- Jae Yeon Jang
- Division of Hematology-Oncology, Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngkyung Jeon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Jeong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
117
|
Abushukair H, Ababneh O, Al-Bzour A, Sahin IH, Saeed A. Next generation immuno-oncology biomarkers in gastrointestinal cancer: what does the future hold? Expert Rev Mol Diagn 2023; 23:863-873. [PMID: 37642360 DOI: 10.1080/14737159.2023.2252739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers pose a significant health burden worldwide, necessitating advancements in diagnostic and treatment approaches. One promising avenue is the utilization of next-generation biomarkers, which hold the potential to revolutionize GI cancer management. AREAS COVERED This review explores the latest breakthroughs and expert opinions surrounding the application of next-generation immunotherapy biomarkers. It encompasses various aspects of the currently utilized biomarkers of immunotherapy in the context of GI cancers focusing on microsatellite stable cancers. It explores the promising research on the next generation of biomarkers addressing the challenges associated with integrating them into clinical practice and the need for standardized protocols and regulatory guidelines. EXPERT OPINION Immune profiling, multiplex immunohistochemistry, analysis of immune cell subsets, and novel genomic and epigenomic markers integrated with machine-learning approaches offer new avenues for identifying robust biomarkers. Liquid biopsy-based approaches, such as circulating tumor DNA (ctDNA) and exosome-based analyses, hold promise for real-time monitoring and early detection of treatment response.
Collapse
Affiliation(s)
- Hassan Abushukair
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Obada Ababneh
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ayah Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ibrahim Halil Sahin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
118
|
Wang Q, Zhang B, Wang H, Hu M, Feng H, Gao W, Lu H, Tan Y, Dong Y, Xu M, Guo T, Ji X. Identification of a six-gene signature to predict survival and immunotherapy effectiveness of gastric cancer. Front Oncol 2023; 13:1210994. [PMID: 37404760 PMCID: PMC10316024 DOI: 10.3389/fonc.2023.1210994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Background Gastric cancer (GC) ranks as the fifth most prevalent malignancy and the second leading cause of oncologic mortality globally. Despite staging guidelines and standard treatment protocols, significant heterogeneity exists in patient survival and response to therapy for GC. Thus, an increasing number of research have examined prognostic models recently for screening high-risk GC patients. Methods We studied DEGs between GC tissues and adjacent non-tumor tissues in GEO and TCGA datasets. Then the candidate DEGs were further screened in TCGA cohort through univariate Cox regression analyses. Following this, LASSO regression was utilized to generate prognostic model of DEGs. We used the ROC curve, Kaplan-Meier curve, and risk score plot to evaluate the signature's performance and prognostic power. ESTIMATE, xCell, and TIDE algorithm were used to explore the relationship between the risk score and immune landscape relationship. As a final step, nomogram was developed in this study, utilizing both clinical characteristics and a prognostic model. Results There were 3211 DEGs in TCGA, 2371 DEGs in GSE54129, 627 DEGs in GSE66229, and 329 DEGs in GSE64951 selected as candidate genes and intersected with to obtain DEGs. In total, the 208 DEGs were further screened in TCGA cohort through univariate Cox regression analyses. Following this, LASSO regression was utilized to generate prognostic model of 6 DEGs. External validation showed favorable predictive efficacy. We studied interaction between risk models, immunoscores, and immune cell infiltrate based on six-gene signature. The high-risk group exhibited significantly elevated ESTIMATE score, immunescore, and stromal score relative to low-risk group. The proportions of CD4+ memory T cells, CD8+ naive T cells, common lymphoid progenitor, plasmacytoid dentritic cell, gamma delta T cell, and B cell plasma were significantly enriched in low-risk group. According to TIDE, the TIDE scores, exclusion scores and dysfunction scores for low-risk group were lower than those for high-risk group. As a final step, nomogram was developed in this study, utilizing both clinical characteristics and a prognostic model. Conclusion In conclusion, we discovered a 6 gene signature to forecast GC patients' OS. This risk signature proves to be a valuable clinical predictive tool for guiding clinical practice.
Collapse
|
119
|
Sprooten J, Laureano RS, Vanmeerbeek I, Govaerts J, Naulaerts S, Borras DM, Kinget L, Fucíková J, Špíšek R, Jelínková LP, Kepp O, Kroemer G, Krysko DV, Coosemans A, Vaes RD, De Ruysscher D, De Vleeschouwer S, Wauters E, Smits E, Tejpar S, Beuselinck B, Hatse S, Wildiers H, Clement PM, Vandenabeele P, Zitvogel L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in oncology. Oncoimmunology 2023; 12:2219591. [PMID: 37284695 PMCID: PMC10240992 DOI: 10.1080/2162402x.2023.2219591] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jitka Fucíková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Lenka Palová Jelínková
- Department of Immunology, Charles University, 2Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio Biotech, Prague, Czech Republic
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Liguecontre le Cancer, Université de Paris, sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Institut du Cancer Paris CARPEM, Paris, France
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Insitute Ghent, Ghent University, Ghent, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven De Vleeschouwer
- Department Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Department Neuroscience, Laboratory for Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (Breathe), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholiek Universiteit Leuven, Leuven, Belgium
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
| | - Benoit Beuselinck
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Paul M. Clement
- Laboratory of Experimental Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Ugent Center for Inflammation Research (IRC), Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laurence Zitvogel
- Tumour Immunology and Immunotherapy of Cancer, European Academy of Tumor Immunology, Gustave Roussy Cancer Center, Inserm, Villejuif, France
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
120
|
Wang X, Hui S, Tan C, Deng Z, Wang X, Weng W, Zhang M, Ni S, Wang L, Huang D, Wang W, Xu M, Sheng W. Comprehensive analysis of immune subtypes reveals the prognostic value of cytotoxicity and FAP + fibroblasts in stomach adenocarcinoma. Cancer Immunol Immunother 2023; 72:1763-1778. [PMID: 36650362 PMCID: PMC10991216 DOI: 10.1007/s00262-023-03368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND The heterogeneity limits the effective application of immune checkpoint inhibitors for patients with stomach adenocarcinoma (STAD). Precise immunotyping can help select people who may benefit from immunotherapy and guide postoperative management by describing the characteristics of tumor microenvironment. METHODS Gene expression profiles and clinical information of patients were collected from ACRG and TCGA-STAD datasets. The immune subtypes (ISs) were identified by consensus clustering analysis. The tumor immune microenvironments (TIME) of each IS were characterized using a series of immunogenomics methods and further confirmed by multiplex immunohistochemistry (mIHC) staining in clinical samples. Two online datasets and one in-house dataset were utilized to construct and validate a prognostic immune-related gene (IRG) signature. RESULTS STAD patients were stratified into five reproducible ISs. IS1 (immune deserve subtype) had low immune infiltration and the highest degree of HER2 gene mutation. With abundant CD8+ T cells infiltration and activated cytotoxicity reaction, patients in the IS2 (immune-activated subtype) had the best overall survival (OS). IS3 and IS4 subtypes were both in the reactive stroma state and indicated the worst prognosis. However, IS3 (immune-inhibited subtype) was characterized by enrichment of FAP+ fibroblasts and upregulated TGF-β signaling pathway, while IS4 (activated stroma subtype) was characterized by enrichment of ACTA2+ fibroblasts. In addition, mIHC staining confirmed that TGF-β upregulated FAP+ fibroblasts were independent risk factor of OS. IS5 (chronic inflammation subtype) displayed moderate immune cells infiltration and had a relatively good survival. Lastly, we developed a nine-IRG signature model with a robust performance on overall survival prognostication. CONCLUSIONS The immunotyping is indicative for characterize the TIME heterogeneity and the prediction of tumor prognosis for STADs, which may provide valuable stratification for the design of future immunotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sun Hui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, People's Republic of China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenfeng Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Institute of Pathology, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
121
|
Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives. J Hematol Oncol 2023; 16:57. [PMID: 37245017 DOI: 10.1186/s13045-023-01451-3] [Citation(s) in RCA: 349] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Most patients are diagnosed at advanced stages due to the subtle symptoms of earlier disease and the low rate of regular screening. Systemic therapies for GC, including chemotherapy, targeted therapy and immunotherapy, have evolved significantly in the past few years. For resectable GC, perioperative chemotherapy has become the standard treatment. Ongoing investigations are exploring the potential benefits of targeted therapy or immunotherapy in the perioperative or adjuvant setting. For metastatic disease, there have been notable advancements in immunotherapy and biomarker-directed therapies recently. Classification based on molecular biomarkers, such as programmed cell death ligand 1 (PD-L1), microsatellite instability (MSI), and human epidermal growth factor receptor 2 (HER2), provides an opportunity to differentiate patients who may benefit from immunotherapy or targeted therapy. Molecular diagnostic techniques have facilitated the characterization of GC genetic profiles and the identification of new potential molecular targets. This review systematically summarizes the main research progress in systemic treatment for GC, discusses current individualized strategies and presents future perspectives.
Collapse
Affiliation(s)
- Wen-Long Guan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Ye He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
122
|
Chi H, Gao X, Xia Z, Yu W, Yin X, Pan Y, Peng G, Mao X, Teichmann AT, Zhang J, Tran LJ, Jiang T, Liu Y, Yang G, Wang Q. FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC. Front Mol Biosci 2023; 10:1200335. [PMID: 37275958 PMCID: PMC10235772 DOI: 10.3389/fmolb.2023.1200335] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Endometrial cancer (UCEC) is a highly heterogeneous gynecologic malignancy that exhibits variable prognostic outcomes and responses to immunotherapy. The Familial sequence similarity (FAM) gene family is known to contribute to the pathogenesis of various malignancies, but the extent of their involvement in UCEC has not been systematically studied. This investigation aimed to develop a robust risk profile based on FAM family genes (FFGs) to predict the prognosis and suitability for immunotherapy in UCEC patients. Methods: Using the TCGA-UCEC cohort from The Cancer Genome Atlas (TCGA) database, we obtained expression profiles of FFGs from 552 UCEC and 35 normal samples, and analyzed the expression patterns and prognostic relevance of 363 FAM family genes. The UCEC samples were randomly divided into training and test sets (1:1), and univariate Cox regression analysis and Lasso Cox regression analysis were conducted to identify the differentially expressed genes (FAM13C, FAM110B, and FAM72A) that were significantly associated with prognosis. A prognostic risk scoring system was constructed based on these three gene characteristics using multivariate Cox proportional risk regression. The clinical potential and immune status of FFGs were analyzed using CiberSort, SSGSEA, and tumor immune dysfunction and rejection (TIDE) algorithms. qRT-PCR and IHC for detecting the expression levels of 3-FFGs. Results: Three FFGs, namely, FAM13C, FAM110B, and FAM72A, were identified as strongly associated with the prognosis of UCEC and effective predictors of UCEC prognosis. Multivariate analysis demonstrated that the developed model was an independent predictor of UCEC, and that patients in the low-risk group had better overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores exhibited good prognostic power. Patients in the low-risk group exhibited a higher tumor mutational load (TMB) and were more likely to benefit from immunotherapy. Conclusion: This study successfully developed and validated novel biomarkers based on FFGs for predicting the prognosis and immune status of UCEC patients. The identified FFGs can accurately assess the prognosis of UCEC patients and facilitate the identification of specific subgroups of patients who may benefit from personalized treatment with immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wanying Yu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xisheng Yin
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yifan Pan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Mao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tianxiao Jiang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
123
|
Dong B, Wu Y, Zhang J, Gu Y, Xie R, He X, Pang X, Wang X, Cui Y. A novel immunogenic cell death-related subtype classification and risk signature for predicting prognosis and immunotherapy efficacy in gastric cancer. Front Immunol 2023; 14:1162876. [PMID: 37215130 PMCID: PMC10196197 DOI: 10.3389/fimmu.2023.1162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The majority of gastric cancer (GC) patients are in a progressive stage at the initial stage of treatment, and the overall response rate to immunotherapy remains unsatisfactory largely due to the lack of effective prognostic biomarkers. Immunogenic cell death (ICD) was identified as a new form of regulated cell death that can activate adaptive immune responses and further promote immunotherapy efficacy. Therefore, we attempted to characterize the ICD-associated signature to stratify patients who could benefit from immunotherapy. In our study, two subgroups of patients were identified based on the data of 34 ICD-related genes extracted from The Cancer Genome Atlas database via consensus clustering. The estimated scores, stromal scores, immune scores, tumor purity, and survival rate showed significant differences between the low and high ICD groups. Then, we constructed an ICD-related risk signature, including IFNB1, IL6, LY96, and NT5E, using least absolute shrinkage and selection operator Cox regression analysis; then, high- and low-risk groups could be clearly distinguished. Notably, the risk score is a reliable predictor of the prognosis and immunotherapy outcome in GC, which was further validated in an immunohistochemistry assay. These results suggest that ICD is closely associated with the prognosis and tumor immune microenvironment in GC. Taken together, this study first constructed and validated a prognostic ICD-related signature to predict the survival and effect of immunotherapy in GC, which provided new insight for potent individualized immunotherapy strategies.
Collapse
Affiliation(s)
- Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yingchao Wu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Ran Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
124
|
Liu Y, Hu P, Xu L, Zhang X, Li Z, Li Y, Qiu H. Current Progress on Predictive Biomarkers for Response to Immune Checkpoint Inhibitors in Gastric Cancer: How to Maximize the Immunotherapeutic Benefit? Cancers (Basel) 2023; 15:2273. [PMID: 37190201 PMCID: PMC10137150 DOI: 10.3390/cancers15082273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Gastric cancer is the fifth most prevalent cancer and the fourth leading cause of cancer death globally. Delayed diagnosis and pronounced histological and molecular variations increase the complexity and challenge of treatment. Pharmacotherapy, which for a long time was systemic chemotherapy based on 5-fluorouracil, is the mainstay of management for advanced gastric cancer. Trastuzumab and programmed cell death 1 (PD-1) inhibitors have altered the therapeutic landscape, contributing to noticeably prolonged survivorship in patients with metastatic gastric cancer. However, research has revealed that immunotherapy is only beneficial to some individuals. Biomarkers, such as programmed cell death ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational load (TMB), have been shown to correlate with immune efficacy in numerous studies and are increasingly employed for the selection of patients most likely to respond to immunotherapy. Gut microorganisms, genetic mutations like POLE/POLD1 and NOTCH4, tumor lymphoid infiltrating cells (TILs), and other novel biomarkers have the potential to develop into new predictors. Prospective immunotherapy for gastric cancer should be guided by a biomarker-driven precision management paradigm, and multidimensional or dynamic marker testing could be the way to go.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Qiu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.)
| |
Collapse
|
125
|
Inagaki C, Kawakami H, Maeda D, Sakai D, Urakawa S, Nishida K, Kudo T, Doki Y, Eguchi H, Wada H, Satoh T. The potential clinical utility of cell-free DNA for gastric cancer patients treated with nivolumab monotherapy. Sci Rep 2023; 13:5652. [PMID: 37024664 PMCID: PMC10079661 DOI: 10.1038/s41598-023-32645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
To assess the potential clinical utility of cell-free DNA (cfDNA)-based biomarkers for identifying gastric cancer (GC) patients who benefit from nivolumab. From 31 GC patients treated with nivolumab monotherapy (240 mg/body, Bi-weekly) in 3rd or later line setting, we prospectively collected blood samples at baseline and before the 3rd dose. We compared cfDNA-based molecular findings, including microsatellite instability (MSI) status, to tissue-based biomarkers. We assessed the clinical value of blood tumor mutation burden (bTMB) and copy number alterations (CNA) as well as the cfDNA dynamics. The concordance between deficient-MMR and cfDNA-based MSI-high was 100% (3/3). Patients with bTMB ≥ 6 mut/Mb had significantly better progression-free survival (PFS) and overall survival (OS); however, such significance disappeared when excluding MSI-High cases. The combination of bTMB and CNA positivity identified patients with survival benefit regardless of MSI status (both PFS and OS, P < 0.001), with the best survival in those with bTMB≥6mut/Mb and CNAnegative. Moreover, patients with decreased bTMB during treatment had a better disease control rate (P = 0.04) and longer PFS (P = 0.04). Our results suggest that a combination of bTMB and CNA may predict nivolumab efficacy for GC patients regardless of MSI status. bTMB dynamics have a potential utility as an on-treatment biomarker.
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Daisuke Sakai
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| | - Shinya Urakawa
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kentaro Nishida
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| |
Collapse
|
126
|
Xiaona X, Liu Q, Zhou X, Liang R, Yang S, Xu M, Zhao H, Li C, Chen Y, Xueding C. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in lung adenocarcinoma. Comput Biol Med 2023; 158:106831. [PMID: 37037146 DOI: 10.1016/j.compbiomed.2023.106831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
Copper-dependent cell death, called cuproptosis, is connected to tumor development, prognosis, and the immune response. Nevertheless, the function of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) remains unknown. This work used R software packages to classify the raw data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases of LUAD patients. Afterward, the connections of the various subgroups, clinical pathological traits, and immune infiltration (IMIF) features with the TME mutation status were explored. Ultimately, a nomogram and calibration curve were developed, aiming at enhancing the clinical application of CRG scores and estimating the survival probability of patients. Moreover, the relationships between cuproptosis and the molecular traits, immune cell infiltration of tumor tissue, prognosis, and clinical treatment of patients were investigated in this work. Subsequently, the CRG score was established to predict overall survival (OS), and its credible predictive ability in LUAD patients was identified. Afterward, a highly credible nomogram was created to contribute to the clinical viability of the CRG score. Furthermore, as demonstrated, gene signatures could be applied in assessing tumor immune cell infiltration, clinical traits, and prognosis. In addition, high tumor mutation burden, immunological activity, and significant survival probability were characterized by low CRG scores, and high CRG scores were related to immunosuppression and stromal pathway activation. The current work also discovered a predictive CRG-related signature for LUAD patients, probably contributing to TME trait clarification and more potent immunotherapy strategy exploration.
Collapse
Affiliation(s)
- Xie Xiaona
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianzi Liu
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Xuehua Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Rongtao Liang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Shengbo Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Min Xu
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, University Town, Wenzhou, Zhejiang, 325035, China
| | - Chengye Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Yanfan Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Cai Xueding
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
127
|
Chen YX, Wang ZX, Jin Y, Zhao Q, Liu ZX, Zuo ZX, Ju HQ, Cui C, Yao J, Zhang Y, Li M, Feng J, Tian L, Xia XJ, Feng H, Yao S, Wang FH, Li YH, Wang F, Xu RH. An immunogenic and oncogenic feature-based classification for chemotherapy plus PD-1 blockade in advanced esophageal squamous cell carcinoma. Cancer Cell 2023; 41:919-932.e5. [PMID: 37059106 DOI: 10.1016/j.ccell.2023.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Although chemotherapy plus PD-1 blockade (chemo+anti-PD-1) has become the standard first-line therapy for advanced esophageal squamous cell carcinoma (ESCC), reliable biomarkers for this regimen are lacking. Here we perform whole-exome sequencing on tumor samples from 486 patients of the JUPITER-06 study and develop a copy number alteration-corrected tumor mutational burden that depicts immunogenicity more precisely and predicts chemo+anti-PD-1 efficacy. We identify several other favorable immunogenic features (e.g., HLA-I/II diversity) and risk oncogenic alterations (e.g., PIK3CA and TET2 mutation) associated with chemo+anti-PD-1 efficacy. An esophageal cancer genome-based immuno-oncology classification (EGIC) scheme incorporating these immunogenic features and oncogenic alterations is established. Chemo+anti-PD-1 achieves significant survival improvements in EGIC1 (immunogenic feature-favorable and oncogenic alteration-negative) and EGIC2 (either immunogenic feature-favorable or oncogenic alteration-negative) subgroups, but not the EGIC3 subgroup (immunogenic feature-unfavorable and oncogenic alteration-positive). Thus, EGIC may guide future individualized treatment strategies and inform mechanistic biomarker research for chemo+anti-PD-1 treatment in patients with advanced ESCC.
Collapse
Affiliation(s)
- Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Qi Zhao
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Xiang Zuo
- Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huai-Qiang Ju
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chengxu Cui
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jun Yao
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, China
| | - Yanqiao Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Mengxia Li
- Army Medical Center of PLA, Chongqing 400042, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lin Tian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Jun Xia
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Feng
- Shanghai Junshi Biosciences, Shanghai 200126, China; TopAlliance Biosciences, Rockville, MD 20850, USA
| | - Sheng Yao
- Shanghai Junshi Biosciences, Shanghai 200126, China; TopAlliance Biosciences, Rockville, MD 20850, USA
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China.
| |
Collapse
|
128
|
Narita Y, Muro K. Updated Immunotherapy for Gastric Cancer. J Clin Med 2023; 12:jcm12072636. [PMID: 37048719 PMCID: PMC10094960 DOI: 10.3390/jcm12072636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer treatments are evolving rapidly. For example, immune checkpoint inhibitors, especially those that target PD-1 or PD-L1, have long-term efficacy in a subset of gastric cancer patients, and are currently the first-line therapy. Immunotherapies approved for use in untreated gastric cancer patients include monotherapy and chemotherapy-immunotherapy combinations. Major clinical trials have reported efficacy and safety data suggesting that PD-L1 expression is important for regimen selection, although other biomarkers, clinicopathologic factors, and patient preference might also be relevant in other situations. Currently, several novel biomarkers and therapeutic strategies are being assessed, which might refine the current treatment paradigm. In this review, we describe the current treatment regimens for patients with gastric cancer and detail the approach we use for the selection of first-line immunotherapy regimens.
Collapse
Affiliation(s)
- Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| |
Collapse
|
129
|
Dou S, Zhang L, Li R, Yao Y, Jiang W, Ye L, Sun J, Li J, Wu S, Zhong L, Sun S, Zhu G. Adjuvant PD-1 Antibody in Recurrent, Previously Irradiated Oral Cavity Cancer Treated with Salvage Surgery. Clin Transl Radiat Oncol 2023; 40:100623. [PMID: 37096116 PMCID: PMC10121773 DOI: 10.1016/j.ctro.2023.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Objectives The role of re-irradiation after salvage surgery for recurrent oral cavity cancer (OCC) is controversial. We evaluated the efficacy and safety of adjuvant toripalimab (PD-1 antibody) in this patient setting. Materials and methods In this phase II study, patients after salvage surgery with OCC occurring in an area of previously irradiated were enrolled. Patients received toripalimab 240 mg once every 3 weeks for 12 months, or combined with S-1 orally for 4-6 cycles. The primary endpoint was 1-year progression-free survival (PFS). Results Between April 2019 and May 2021, 20 patients were enrolled. Sixty percent patients had ENE or positive margins, 80% were restaged as stage IV, and 80% were previously treated with chemotherapy. The 1-year PFS and overall survival (OS) were 58.2%, and 93.8%, respectively, for patients with CPS ≥ 1, which was significantly better than those of the real-world reference cohort (p = 0.001 and 0.019). No grade 4-5 toxicities were reported, and only one patient experienced grade 3 immune related adrenal insufficiency and discontinued treatment. The 1-year PFS and OS were significantly different for patients with CPS < 1, CPS 1-19 and CPS ≥ 20 (p = 0.011 and 0.017, respectively). The peripheral blood B cell proportion was also correlated with PD in 6 months (p = 0.044). Conclusion Adjuvant toripalimab or combine with S-1 after salvage surgery showed improved PFS compared with a real-world reference cohort in recurrent, previously irradiated OCC, and favorable PFS were observed in patients with a higher CPS and peripheral B cell proportion. Further randomized trials are warranted.
Collapse
Affiliation(s)
- Shengjin Dou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Lin Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Rongrong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Yanli Yao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Wen Jiang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Lulu Ye
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Jingjing Sun
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Jiang Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Sicheng Wu
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Laiping Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
| | - Shuyang Sun
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
- Corresponding authors at: Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China (S. Sun). Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China (G. Zhu).
| | - Guopei Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science
- Corresponding authors at: Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China (S. Sun). Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China (G. Zhu).
| |
Collapse
|
130
|
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F, Bagheri N. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci 2023; 318:121459. [PMID: 36720453 DOI: 10.1016/j.lfs.2023.121459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is a severe malignancy, accounting for the third most common cancer death worldwide. Despite the development of chemo-radiation therapy, there has not been sufficient survival advantage in patients with GC who were treated by these methods. GC immunogenicity is hampered by a highly immunosuppressive microenvironment; therefore, further understanding of the molecular biology of GC is the potential to achieve new therapeutic strategies in GC therapy, including specific immunotherapy. Current immunotherapies are mainly based on cytokines, immune checkpoints, monoclonal antibodies (mAb), bispecific antibodies (BisAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor (CAR). Immunotherapy has made significant progress in the treatment of GC, so that studies show that nivolumab as a programmed death 1 (PD1) inhibitor has proper safety and effectiveness as a third-line treatment for GC patients. Multiple monoclonal antibodies like ramucirumab and claudiximab were effective in treating GC patients, especially in combination with other treatments. Despite the challenges of CAR therapy in solid tumors, CAR therapy targets various GC cells targets; among them, intercellular adhesion molecule (ICAM)-1 CAR-T cell and CLDN18.2 CAR-T cell have shown promising results. Although responses to all these treatments are encouraging and in some cases, durable, these successes are not seen in all treated patients. The present review represents the development of various immunotherapies especially CAR-T cell therapy, its current use, clinical data in GC, and their limitations.
Collapse
Affiliation(s)
- Mahshad Entezam
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
131
|
Wu HX, Pan YQ, He Y, Wang ZX, Guan WL, Chen YX, Yao YC, Shao NY, Xu RH, Wang F. Clinical Benefit of First-Line Programmed Death-1 Antibody Plus Chemotherapy in Low Programmed Cell Death Ligand 1-Expressing Esophageal Squamous Cell Carcinoma: A Post Hoc Analysis of JUPITER-06 and Meta-Analysis. J Clin Oncol 2023; 41:1735-1746. [PMID: 36473145 PMCID: PMC10022847 DOI: 10.1200/jco.22.01490] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pembrolizumab or nivolumab plus chemotherapy was approved as a first-line treatment for high programmed cell death ligand 1 (PD-L1)-expressing esophageal squamous cell carcinoma (ESCC) by the European Medicines Agency, whereas the US Food and Drug Administration approved this regimen regardless of PD-L1 expression. The superiority of programmed death-1 (PD-1) antibody plus chemotherapy over chemotherapy alone in patients with low PD-L1-expressing ESCC remains debatable. METHODS Post hoc analysis of the Chinese JUPITER-06 study focusing on efficacy stratified by PD-L1 tumor proportion score (TPS; using JS311 antibody) was conducted. Electronic databases were searched to identify eligible randomized controlled trials for meta-analysis. Study-level pooled analyses of hazard ratios (HRs) for overall survival and progression-free survival and odds ratios for objective response rate according to PD-L1 expression were performed. RESULTS The post hoc analysis of JUPITER-06 showed more prominent clinical benefit with PD-1 antibody plus chemotherapy than with chemotherapy alone in both the high and low PD-L1-expressing subgroups. Five randomized controlled trials were included in the meta-analysis, and two PD-L1 expression scoring criteria, TPS (≥ 1%/< 1%) and combined positive score (CPS, ≥ 10/< 10), were analyzed. Significant overall survival benefit by adding PD-1 antibody to chemotherapy was observed in both the TPS < 1% (HR, 0.74; 95% CI, 0.56 to 0.97) and CPS < 10 (HR, 0.77; 95% CI, 0.66 to 0.89) subgroups. Similarly, significantly prolonged progression-free survival was observed in both the TPS < 1% (HR, 0.66; 95% CI, 0.50 to 0.86) and CPS < 10 (HR, 0.63; 95% CI, 0.47 to 0.84) subgroups. In addition, the objective response rate of the TPS < 1% subgroup was significantly improved (odds ratio, 1.71; 95% CI, 1.27 to 2.29). In all high PD-L1-expressing subgroups, the pooled benefit of PD-1 antibody plus chemotherapy was significantly better than that of chemotherapy. CONCLUSION This study provided novel evidence supporting the superiority of PD-1 antibody plus chemotherapy to chemotherapy alone in patients with advanced ESCC with low PD-L1 expression. Further studies of predictive biomarkers are warranted.
Collapse
Affiliation(s)
- Hao-Xiang Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yi-Qian Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Ye He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zi-Xian Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Wen-Long Guan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yan-Xing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yi-Chen Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Ning-Yi Shao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Feng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
132
|
Yu L, He R, Cui Y. Characterization of tumor microenvironment and programmed death-related genes to identify molecular subtypes and drug resistance in pancreatic cancer. Front Pharmacol 2023; 14:1146280. [PMID: 37007021 PMCID: PMC10063807 DOI: 10.3389/fphar.2023.1146280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Immunotherapy has been a key option for the treatment of many types of cancer. A positive response to immunotherapy is heavily dependent on tumor microenvironment (TME) interaction. However, in pancreatic adenocarcinoma (PAAD), the association between TME mode of action and immune cell infiltration and immunotherapy, clinical outcome remained unknown.Methods: We systematically evaluated 29 TME genes in PAAD signature. Molecular subtypes of distinct TME signatures in PAAD were characterized by consensus clustering. After this, we comprehensively analyzed their clinical features, prognosis, and immunotherapy/chemotherapy response using correlation analysis, Kaplan-Meier curves analysis, ssGSEA analysis. 12 programmed cell death (PCD) patterns were acquired from previous study. Differentially expressed genes (DEGs) were acquired based on differential analysis. Key genes affecting overall survival (OS) of PAAD were screened by COX regression analysis and used to develop a RiskScore evaluation model. Finally, we assessed the value of RiskScore in predicting prognosis and treatment response in PAAD.Results: We identified 3 patterns of TME-associated molecular subtypes (C1, C2, C3), and observed that clinicopathological characteristics, prognosis, pathway features and immune features, immunotherapy/chemosensitivity of patients were correlated with the TME related subtypes. C1 subtype was more sensitive to the four chemotherapeutic drugs. PCD patterns were more likely to occur at C2 or C3. At the same time, we also detected 6 key genes that could affect the prognosis of PAAD, and 5 genes expressions were closely associated to methylation level. Low-risk patients with high immunocompetence had favorable prognostic results and high immunotherapy benefit. Patients in the high-risk group were more sensitive to chemotherapeutic drugs. RiskScore related to TME was an independent prognostic factor for PAAD.Conclusion: Collectively, we identified a prognostic signature of TME in PAAD patients, which could help elucidate the specific mechanism of action of TME in tumors and help to explore more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yunfu Cui,
| |
Collapse
|
133
|
Shi GM, Huang XY, Wu D, Sun HC, Liang F, Ji Y, Chen Y, Yang GH, Lu JC, Meng XL, Wang XY, Sun L, Ge NL, Huang XW, Qiu SJ, Yang XR, Gao Q, He YF, Xu Y, Sun J, Ren ZG, Fan J, Zhou J. Toripalimab combined with lenvatinib and GEMOX is a promising regimen as first-line treatment for advanced intrahepatic cholangiocarcinoma: a single-center, single-arm, phase 2 study. Signal Transduct Target Ther 2023; 8:106. [PMID: 36928584 PMCID: PMC10020443 DOI: 10.1038/s41392-023-01317-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 03/18/2023] Open
Abstract
Advanced intrahepatic cholangiocarcinoma (ICC) has a dismal prognosis. Here, we report the efficacy and safety of combining toripalimab, lenvatinib, and gemcitabine plus oxaliplatin (GEMOX) as first-line therapy for advanced ICC. Thirty patients with pathologically confirmed advanced ICC received intravenous gemcitabine (1 g/m2) on Days 1 and 8 and oxaliplatin (85 mg/m2) Q3W for six cycles along with intravenous toripalimab (240 mg) Q3W and oral lenvatinib (8 mg) once daily for one year. The expression of programmed death-ligand 1 (PD-L1) and genetic status was investigated in paraffin-embedded tissues using immunohistochemistry and whole-exome sequencing (WES) analysis. The primary endpoint was the objective response rate (ORR). Secondary outcomes included safety, overall survival (OS), progression-free survival (PFS), disease control rate (DCR) and duration of response (DoR). As of July 1, 2022, the median follow-up time was 23.5 months, and the ORR was 80%. Twenty-three patients achieved partial response, and one achieved complete response. Patients (21/30) with DNA damage response (DDR)-related gene mutations showed a higher ORR, while patients (14/30) with tumor area positivity ≥1 (PD-L1 staining) showed a trend of high ORR, but without significant difference. The median OS, PFS, and DoR were 22.5, 10.2, and 11.0 months, respectively. The DCR was 93.3%. Further, 56.7% of patients experienced manageable grade ≥3 adverse events (AEs), commonly neutropenia (40.0%) and leukocytopenia (23.3%). In conclusion, toripalimab plus lenvatinib and GEMOX are promising first-line regimens for the treatment of advanced ICC. A phase-III, multicenter, double-blinded, randomized study to validate our findings was approved by the National Medical Products Administration (NMPA, No. 2021LP01825).Trial registration Clinical trials: NCT03951597.
Collapse
Affiliation(s)
- Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Liang
- Department of Statistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Chen
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xian-Long Meng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Ying Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI Shenzhen, Tianjin, China
| | - Lei Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI Shenzhen, Tianjin, China
| | - Ning-Ling Ge
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Feng He
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng-Gang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
134
|
Nakazawa N, Sohda M, Tateno K, Watanabe T, Kimura A, Kogure N, Hosaka H, Naganuma A, Sekiguchi M, Saito K, Ogata K, Sano A, Sakai M, Ogawa H, Shirabe K, Saeki H. Albumin-derived Neutrophil-to-Lymphocyte Ratio Score as a Marker of Nivolumab Treatment Sensitivity in Gastric Cancer: A Multicenter Study. In Vivo 2023; 37:818-824. [PMID: 36881071 PMCID: PMC10026635 DOI: 10.21873/invivo.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Establishment of powerful and easy-to-evaluate biomarkers that can predict immune checkpoint inhibitor sensitivity in patients with gastric cancer (GC) would be highly useful. The albumin-derived neutrophil-to-lymphocyte ratio (Alb-dNLR) score reportedly is an excellent measure of both immunity and nutritional status. However, the association between nivolumab treatment sensitivity and Alb-dNLR in GC has also not been adequately investigated. This multicenter retrospective study was designed to evaluate the association of Alb-dNLR with therapeutic sensitivity of nivolumab in GC patients. PATIENTS AND METHODS This was a retrospective multicenter study with patients from five sites. The data from 58 patients who received nivolumab for postoperative recurrent or unresectable advanced GC between October 2017 and December 2018 were analyzed. Blood tests had been performed before nivolumab administration. We analyzed the correlation between the Alb-dNLR score and clinicopathological factors, including best overall response. RESULTS Of the 58 patients, 21 (36.2%) comprised the disease control (DC) group and 37 (63.8%) comprised the progressive disease (PD) group. The nivolumab treatment responses were subjected to receiver operating characteristic analysis. The cutoff value was set to 2.90 g/dl for Alb and to 3.55 for dNLR. All eight patients in the high Alb-dNLR group had PD (p=0.0049). The low Alb-dNLR group had significantly better overall survival (p=0.0023) and progression-free survival rates (p<0.0001). CONCLUSION The Alb-dNLR score was a very simple and sensitive predictor of nivolumab therapeutic sensitivity and has very good biomarker properties.
Collapse
Affiliation(s)
- Nobuhiro Nakazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan;
| | - Kohei Tateno
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayoshi Watanabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiharu Kimura
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Norimichi Kogure
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hisashi Hosaka
- Department of Gastroenterology, Gunma Prefectural Cancer Center, Ohta, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Masanori Sekiguchi
- Department of Gastroenterology, Isesaki Municipal Hospital, Isesaki, Japan
| | - Kana Saito
- Department of Surgery, Japan Community Healthcare Organization Gunma Central Hospital, Maebashi, Japan
| | - Kyoichi Ogata
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
135
|
Bhamidipati D, Subbiah V. Impact of tissue-agnostic approvals for patients with gastrointestinal malignancies. Trends Cancer 2023; 9:237-249. [PMID: 36494311 PMCID: PMC9974757 DOI: 10.1016/j.trecan.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) malignancies encompass a broad range of tumors with limited treatment options, particularly for advanced disease. With the development and implementation of next-generation sequencing (NGS) in routine practice, molecular-targeting therapies have been increasingly incorporated into the treatment paradigm for various cancers. Several drugs have achieved tissue-agnostic regulatory approvals, which offer promising biomarker-driven therapy options for patients with advanced GI malignancies. In this review, we focus on the clinical evidence for recent drug approvals for neurotrophic tyrosine receptor kinase (NTRK) fusion, microsatellite instability-high (MSI-H) phenotype, tumor mutation burden-high (TMB-H), BRAF V600E, and rearranged during transfection (RET), in the context of GI malignancies. We also highlight the future landscape of tissue-agnostic targets, such as human epidermal growth factor receptor 2 (HER2)/neu, fibroblast growth factor receptor (FGFR), and neuregulin (NRG)-1.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
136
|
Wang ZX, Pan YQ, Li X, Tsubata T, Xu RH. Immunotherapy in gastrointestinal cancers: advances, challenges, and countermeasures. Sci Bull (Beijing) 2023; 68:763-766. [PMID: 37003944 DOI: 10.1016/j.scib.2023.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
137
|
Zhu Y, Zhang H, Pan C, He G, Cui X, Yu X, Zhang X, Wu D, Yang J, Wu X, Luo H, Liu X. Integrated tumor genomic and immune microenvironment analysis identifies predictive biomarkers associated with the efficacy of neoadjuvant therapy for triple-negative breast cancer. Cancer Med 2023; 12:5846-5858. [PMID: 36271505 PMCID: PMC10028167 DOI: 10.1002/cam4.5372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Although neoadjuvant chemotherapy (NAC) is currently the best therapy for triple-negative breast cancer (TNBC), resistance still occurs in a considerable proportion, thus it is crucial to understand resistance mechanisms and identify predictive biomarkers for patients selection. METHODS Biopsy samples were collected from 21 patients with TNBC who underwent NAC. Whole-exome sequencing (WES), targeted sequencing, and multiplex immunohistochemistry (mIHC) were carried out on the clinical samples and used to identify and validate potential biomarkers associated with response to NAC. In addition, data on 190 TNBC patients who had undergone chemotherapy were obtained from The Cancer Genome Atlas (TCGA) and analyzed to further validate our findings. RESULTS Both the tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were significantly higher in responders than in non-responders. Higher response rates and longer survival rates were observed in patients with higher TMB. Patients with higher ratios of CD8 to M2 macrophages had higher response rates and improved survival rates. Finally, the integrated analysis demonstrated that the combination of TMB and the ratio of CD8 T cells to M2 macrophages could further distinguish patients who benefitted from the treatment in both enrolled patients and public data. CONCLUSIONS The findings of this study indicated that the combination of TMB and the ratio of CD8 T cells to M2 macrophages may be a potential biomarker for improving the recognition of NAC responders, thereby providing a basis for developing precision NAC regimens.
Collapse
Affiliation(s)
- Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongfei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaohu Pan
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Gao He
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoli Cui
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqiang Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongfang Wu
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Junzhe Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haitao Luo
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
138
|
Xu T, Wang W, Bao R, Xia X, Zhang J, Huang M, Chen X, Wang R, Zhang H, Liu X, Li Q, Shu Y. Anti-PD-1 plus anti-angiogenesis combined with chemotherapy in patients with HER2-negative advanced or metastatic gastric cancer: a multi-institutional retrospective study. J Gastrointest Oncol 2023; 14:175-186. [PMID: 36915465 PMCID: PMC10007938 DOI: 10.21037/jgo-23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Background Immunotherapy plus chemotherapy have been confirmed to be effective in treating advanced or metastatic gastric cancer (GC). Anti- programmed death-1 (PD-1) plus antiangiogenic agents have shown promising activity and tolerant toxicity in subsequent therapy of late-stage gastric cancer. The aim of this study was to assess the efficacy and safety of anti-PD-1 plus anti-angiogenic agents and chemotherapy in advanced or metastatic GC and to explore the potential biomarkers associated with response. Methods We retrospectively reviewed thirty human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic GC patients who received PD-1 plus anti-angiogenic drugs and chemotherapy. Conversion therapy was defined when the patients could undergo resection post combination therapy. Clinical data were retrieved from medical records. We conducted exploratory biomarker analysis of baseline gene mutations and tumor mutation burden (TMB) using the next-generation sequencing (NGS), PD-L1 by immunohistochemistry (IHC), and the tumor immune microenvironment (TIME) by multiplex immunofluorescence. Results A total of 30 patients received anti-PD-1plus anti-angiogenic drugs and chemotherapy during the study period. The objective response rate (ORR) was 76.7% [95% confidence interval (CI): 57.7-90.1%] and disease control rate (DCR) was 86.7% (95% CI: 69.3-96.2%). A total of 11 patients (36.7%) achieved conversion therapy and underwent surgery. The R0 resection rate was 90.9%. Of the 11 patients, 9 (81.8%) responded to the treatment, 1 with a pathological complete response (pCR) and 8 with a major pathological response (MPR). No adverse events of grade 3 or higher occurred. Neither PD-L1 expression nor TMB was significantly correlated with treatment response. Analysis of TIME revealed that the fraction of CD8+ T cell in the invasive margin was higher in responders than non-responders before treatment. TAM2 in the tumor center and CD8+ T cell in the invasive margin was significantly increased after combination therapy, which suggested that combination therapy promoted infiltration of CD8+ T cells, thereby exerting an antitumor effect. Conclusions Immunotherapy plus anti-angiogenic drugs and chemotherapy is a promising treatment strategy for advanced or metastatic GC patients. Tumor infiltration CD8+ T cells may serve as potential predictive biomarker.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjie Wang
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Ruikang Bao
- Gusu School, Nanjing Medical University, Suzhou, China.,Department of Radio-Oncology, Suzhou Municipal Hospital, Suzhou, China
| | - Xihua Xia
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Junling Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Xiaofeng Chen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xisheng Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Li
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
139
|
Xu C, Li F, Liu Z, Yan C, Xiao J. Pan-cancer analysis of the prognostic and immunological role of SNX29: a potential target for survival and immunotherapy. BMC Med Genomics 2023; 16:34. [PMID: 36829159 PMCID: PMC9951530 DOI: 10.1186/s12920-023-01466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND There is growing evidence that the SNX family is critical for clinical prognosis, immune infiltration and drug sensitivity in many types of tumors. The relationships between the SNX29 gene and clinical prognosis as well as pan-cancer cell infiltration and drug sensitivity have not been fully elucidated. METHODS In the current study, we explored the correlation between SNX29 expression and 33 types of malignancies via TCGA and GTEx. The relationship between SNX29 expression and prognostic outcome in the pan-caner cohort was also analyzed. Immune infiltration, microsatellite instability, tumor mutational burden and potential therapeutic targets of SNX29 were investigated by analyzing public databases. RESULTS The expression of SNX29 was found to be significantly upregulated in most tumor tissues compared to normal tissues. SNX29 expression was associated with prognosis and clinical stage. In the immune infiltration analysis, a significant relationship was found between SNX29 expression and the level of immune infiltration. In addition, we found associations between the SNX29 gene and tumor mutation burden, microsatellite instability, immunoinhibition-related genes and autophagy-related genes. Finally, the expression of SNX29 was significantly associated with the sensitivity of various tumor cell lines to 8 antitumor drugs. These results suggest that SNX29 expression is important in determining the progression, immune infiltration and drug sensitivity of various cancers. CONCLUSION This study provides novel insights into the potential pan-cancer targets of SNX29.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China.,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Fanghan Li
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zilin Liu
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China.,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Chuanjing Yan
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Jiangwei Xiao
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| |
Collapse
|
140
|
Yao J, You Q, Zhang X, Zhang Y, Xu J, Zhao X, Li J, Wang X, Gong Z, Zhang D, Wang W. PIK3CA somatic mutations as potential biomarker for immunotherapy in elder or TP53 mutated gastric cancer patients. Clin Genet 2023; 103:200-208. [PMID: 36346122 DOI: 10.1111/cge.14260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Immune checkpoint inhibitors (ICIs) improve overall survival in patients with advanced gastric cancer (GC). However, the molecular characterization of GC in ICIs responders is unclear. A total of 288 advanced GC patients were included in this study. Next-generation sequencing analysis was performed on tumor tissue and paired blood to screen for somatic mutants in 639 tumor-associated genes. We demonstrated that ARID1A, HER2/3/4, KMT2C/2D, LRP1B, PIK3CA, SPTA1, and TP53 mutations were significantly correlated with high tumor mutation burden (TMB) score, as well as HER2 amplification. For HER2 and PIK3CA mutations types, this relationship was statistically significant with age and TP53 mutation status, which was also found in the CDH1 gene. These results were confirmed by sequencing 873 GC cases in the cBioPortal database. PIK3CA mutations appear to be associated with longer survival in elderly population and TP53 mutant subtypes. For the first time, we found that GC patients ≥60 years old or with TP53 mutated type and PIK3CA mutations were associated with higher TMB and better ICI response. Building upon the age and TP53 mutation status, this study suggested a novel stratification approach to GC patients and explored the correlations between genetic somatic mutations and TMB score.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaokai Zhao
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing, China
| | - Jieyi Li
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing, China
| | - Xintao Wang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing, China
| | - Ziying Gong
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing, China
| | - Daoyun Zhang
- Jiaxing Key Laboratory of Precision Medicine and Companion Diagnostics, Jiaxing Yunying Medical Inspection Co., Ltd., Jiaxing, China
- Department of R&D, Zhejiang Yunying Medical Technology Co., Ltd., Jiaxing, China
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
141
|
Wang J, Xiu J, Farrell A, Baca Y, Arai H, Battaglin F, Kawanishi N, Soni S, Zhang W, Millstein J, Shields AF, Grothey A, Weinberg BA, Marshall JL, Lou E, Khushman M, Sohal DPS, Hall MJ, Liu T, Oberley M, Spetzler D, Korn WM, Shen L, Lenz HJ. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: a retrospective cohort study. Lancet Oncol 2023; 24:151-161. [PMID: 36681091 PMCID: PMC10599647 DOI: 10.1016/s1470-2045(22)00783-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Genomic signatures contributing to high tumour mutational burden (TMB-H) independent from mismatch-repair deficiency (dMMR) or microsatellite instability-high (MSI-H) status are not well studied. We aimed to characterise molecular features of microsatellite stable (MSS) TMB-H gastrointestinal tumours. METHODS Molecular alterations of 48 606 gastrointestinal tumours from Caris Life Sciences (CARIS) identified with next-generation sequencing were compared among MSS-TMB-H, dMMR/MSI-H, and MSS-TMB-low (L) tumours, using χ2 or Fisher's exact tests. Antitumour immune response within the tumour environment was predicted by analysing the infiltration of immune cells and immune signatures using The Cancer Genome Atlas database. The Kaplan-Meier method and the log-rank test were used to evaluate the impact of gene alterations on the efficacy of immune checkpoint inhibitors in MSS gastrointestinal cancers from the CARIS database, a Memorial Sloan Kettering Cancer Center cohort, and a Peking University Cancer Hospital cohort. FINDINGS MSS-TMB-H was observed in 1600 (3·29%) of 48 606 tumours, dMMR/MSI-H in 2272 (4·67%), and MSS-TMB-L in 44 734 (92·03%). Gene mutations in SMAD2, MTOR, NFE2L2, RB1, KEAP1, TERT, and RASA1 might impair antitumour immune response despite TMB-H, while mutations in 16 other genes (CDC73, CTNNA1, ERBB4, EZH2, JAK2, MAP2K1, MAP2K4, PIK3R1, POLE, PPP2R1A, PPP2R2A, PTPN11, RAF1, RUNX1, STAG2, and XPO1) were related to TMB-H with enhanced antitumour immune response independent of dMMR/MSI-H, constructing a predictive model (modified TMB [mTMB]) for immune checkpoint inhibitor efficacy. Patients with any mutation in the mTMB gene signature, in comparison with patients with mTMB wildtype tumours, showed a superior survival benefit from immune checkpoint inhibitors in MSS gastrointestinal cancers in the CARIS cohort (n=95, median overall survival 18·77 months [95% CI 17·30-20·23] vs 7·03 months [5·73-8·34]; hazard ratio 0·55 [95% CI 0·31-0·99], p=0·044). In addition, copy number amplification in chromosome 11q13 (eg, CCND1, FGF genes) was more prevalent in MSS-TMB-H tumours than in the dMMR/MSI-H or MSS-TMB-L subgroups. INTERPRETATION Not all mutations related to TMB-H can enhance antitumour immune response. More composite biomarkers should be investigated (eg, mTMB signature) to tailor treatment with immune checkpoint inhibitors. Our data also provide novel insights for the combination of immune checkpoint inhibitors and drugs targeting cyclin D1 or FGFs. FUNDING US National Cancer Institute, Gloria Borges WunderGlo Foundation, Dhont Family Foundation, Gene Gregg Pancreas Research Fund, San Pedro Peninsula Cancer Guild, Daniel Butler Research Fund, Victoria and Philip Wilson Research Fund, Fong Research Project, Ming Hsieh Research Fund, Shanghai Sailing Program, China National Postdoctoral Program for Innovative Talents, China Postdoctoral Science Foundation, National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Jingyuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Axel Grothey
- West Cancer Center and Research Institute, Germantown, TN, USA
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - John L Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Davendra P S Sohal
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tianshu Liu
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
142
|
Yoshinami Y, Shoji H. Recent advances in immunotherapy and molecular targeted therapy for gastric cancer. Future Sci OA 2023; 9:FSO842. [PMID: 37009054 PMCID: PMC10061264 DOI: 10.2144/fsoa-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Our increasing understanding of the molecular biological characteristics of cancer and of cancer genomics is facilitating the development of immunotherapy and molecular targeted drugs for gastric cancer. After the approval of immune checkpoint inhibitors (ICIs) for melanoma in 2010, many different cancers have been shown to respond to such treatments. Thus, the anti-PD-1 antibody nivolumab was reported to prolong survival in 2017, and ICIs have become the mainstay of treatment development. Many clinical trials of combination therapies with cytotoxic agents and molecular-targeted agents, as well as combinations of immunotherapeutic agents acting via different mechanisms, are currently underway for each treatment line. As a result, further improvements in therapeutic outcomes for gastric cancer are anticipated in the near future.
Collapse
Affiliation(s)
- Yuri Yoshinami
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
143
|
Cao Y, Lu M, Sun Y, Gong J, Li J, Lu Z, Li J, Zhang X, Li Y, Peng Z, Zhou J, Wang X, Shen L. Surufatinib plus toripalimab in patients with advanced solid tumors: a single-arm, open-label, phase 1 trial. J Cancer Res Clin Oncol 2023; 149:779-789. [PMID: 35166929 PMCID: PMC9931771 DOI: 10.1007/s00432-021-03898-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE This phase 1 trial evaluated the safety, preliminary efficacy, and pharmacokinetics of surufatinib, a small molecular tyrosine kinase inhibitor, combined with toripalimab, a programmed cell death protein-1 antibody, in patients with advanced solid tumors. METHODS This is an open-label, dose-escalation and expansion study in patients with solid tumors who had failed standard therapies or had no effective treatment. In the dose-escalation stage, patients were treated with surufatinib, at dose levels of 200, 250, or 300 mg once daily (QD) in combination with toripalimab 240 mg, every 3 weeks (Q3W), to estimate maximum tolerated dose. Additional patients were enrolled in the dose expansion stage to further assess the efficacy, safety, and pharmacokinetics profile. Recommended phase 2 dose (RP2D) was determined based on the safety, tolerability, and preliminary efficacy from dose-escalation and expansion stages. RESULTS From Feb 14, 2019 to Dec 20, 2020, 33 patients were screened, of which 30 patients were enrolled. One patient in the 300 mg cohort experienced dose limited toxicity, a grade 3 hyperthyroidism. The most frequent treatment-related adverse events of grade ≥ 3 were hypertension (20.0%), transaminases increased (13.3%), and blood bilirubin increased (13.3%). No treatment-related death or treatment discontinuation was identified. The RP2D was determined to be surufatinib 250 mg QD plus toripalimab 240 mg Q3W. Objective response rate was 24.1% (95% confidence interval 10.3‒43.5%) in this study. CONCLUSIONS Surufatinib plus toripalimab was well tolerated, with no unexpected safety signals, and showed preliminary anti-tumor activity in patients with advanced solid tumors. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT03879057; registration date: March 18, 2019.
Collapse
Affiliation(s)
- Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Yu Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jie Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
- Department of Early Drug Development Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
144
|
CD47-targeted immunotherapy unleashes antitumour immunity in Epstein-Barr virus-associated gastric cancer. Clin Immunol 2023; 247:109238. [PMID: 36690192 DOI: 10.1016/j.clim.2023.109238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The aims of this study were to enhance the antitumour immunity in Epstein-Barr virus-associated gastric cancer (EBVaGC). We performed RNA-seq analysis to compare the differential expression genes between EBVaGC and EBV-negative gastric cancer (EBVnGC) patients. The expression levels of CD68, CD163 and CD47 were analyzed by immunohistochemistry. Different subsets of macrophages were investigated by a coincubation model. The effects of CD47 blockade were also detected. The expression levels of CD68, CD163 and CD47 were significantly higher in EBVaGC, and were associated with poor prognoses. Macrophages coincubated with EBV+ AGS cells tended to be immunosuppressed, which could be reversed by CD47 deficiency or blocking CD47. EBV resulted in cGAS-STING pathway activation, which stimulated CD47 expression and inhibited macrophage phagocytosis. Anti-CD47 therapy activated cGAS-STING signaling, which was responsible for production of IFN-β, resulting in activation of antitumour immunity. Our results provide a promising new strategy for CD47-targeted immunotherapy in EBVaGC.
Collapse
|
145
|
Zeng Z, Liu Z, Li J, Sun J, Ma M, Ye X, Yu J, Kang W. Baseline splenic volume as a biomarker for clinical outcome and circulating lymphocyte count in gastric cancer. Front Oncol 2023; 12:1065716. [PMID: 36793344 PMCID: PMC9923954 DOI: 10.3389/fonc.2022.1065716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Background The spleen is the largest peripheral lymphoid organ in the body. Studies have implicated the spleen in the development of cancer. However, it is unknown whether splenic volume (SV) is associated with the clinical outcome of gastric cancer. Methods Data of gastric cancer patients treated with surgical resection were retrospectively analyzed. Patients were divided into three groups: underweight, normal-weight and overweight. Overall survival was compared in patients with high and low splenic volume. The correlation between splenic volume and peripheral immune cells were analyzed. Results Of 541 patients, 71.2% were male and the median age was 60. Underweight, normal-weight and overweight patients accounted for 5.4%, 62.3% and 32.3%, respectively. High splenic volume was associated with unfavorable prognosis across the three groups. In addition, the increase of splenic volume during neoadjuvant chemotherapy was not associated with prognosis. The baseline splenic volume was negatively correlated with lymphocytes (r=-0.21, p<0.001) and positively correlated with NLR (neutrophil-to-lymphocyte ratio) (r=0.24, p<0.001). In a group of patients (n=56), splenic volume was found to have negative correlation with CD4+T cells (r=-0.27, p=0.041) and NK cells (r=-0.30, p=0.025). Conclusions The presence of high splenic volume is a biomarker of unfavorable prognosis and reduced circulating lymphocytes in gastric cancer.
Collapse
|
146
|
Alfaro A, Zanabria D, Aguilar A, Jimenez-Solano SA, Zevallos A, Fajardo W. Gastric adenocarcinoma with high‑level microsatellite instability: A case report. Mol Clin Oncol 2023; 18:16. [PMID: 36798468 PMCID: PMC9926044 DOI: 10.3892/mco.2023.2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/16/2022] [Indexed: 01/28/2023] Open
Abstract
Gastric cancer (GC) ranks fifth on the list of the most common malignancies worldwide. In Peru, gastric neoplasms are considered the second leading cause of mortality among males. Among the molecular subgroups of GC, microsatellite instability presents a favorable prognosis due to its hypermutated phenotype, which activates immunosurveillance. The present study describes the case of a 75-year-old patient, who was admitted in the hospital with a history of upper gastrointestinal bleeding and recurrent hospital admission, due to severe anemia. The patient presented with pale skin, normal vital functions, slight swelling of the lower extremities, and abdominal distention and bloating upon a physical examination. An endoscopic examination revealed an infiltrating circular ulcerated lesion. The histopathological analysis identified a moderately differentiated intestinal-type adenocarcinoma with pathological stage T3N0M0. Tumor genomic profiling demonstrated alterations in 15 different genes with a tumor mutational burden of 28 mutations/Mb. Finally, the patient underwent a partial gastrectomy without pre-operative chemotherapy. After 4 days, the patient presented with post-operative complications for which he was re-operated on. The patient did not survive. To the best of our knowledge, in the present case, pernicious anemia was an early sign of GC and a gastroscopy had to be performed. Furthermore, MutS homolog 3 alterations probably conditioned the presence of multiple frame-shift mutations.
Collapse
Affiliation(s)
- Alejandro Alfaro
- Department of Pathology, Hospital Nacional Dos de Mayo, Lima 15003, Peru
| | | | - Alfredo Aguilar
- Basic and Translational Research Unit, Oncosalud-AUNA, Lima 15036, Peru
| | - Sergio A. Jimenez-Solano
- Faculty of Natural Sciences and Mathematics, Universidad Nacional Federico Villarreal, Lima 15007, Peru
| | - Alejandra Zevallos
- School of Medicine, Universidad Privada San Juan Bautista, Lima 15067, Peru,Correspondence to: Professor Alejandra Zevallos, School of Medicine, Universidad Privada San Juan Bautista, Avenue José Antonio Lavalle N˚ 302-304 (Ex Hacienda Villa), Chorrillos, Lima 15067, Peru
| | - Williams Fajardo
- Department of Pathology, Hospital Nacional Dos de Mayo, Lima 15003, Peru,School of Medicine, Universidad Privada San Juan Bautista, Lima 15067, Peru
| |
Collapse
|
147
|
Wang C, Wu L, Yuan H, Yu H, Xu J, Chen S, Yan S, Wang X. A powerful antitumor "trident": the combination of radio-, immuno- and anti-angiogenesis therapy based on mesoporous silica single coated gold nanoparticles. J Mater Chem B 2023; 11:879-889. [PMID: 36594928 DOI: 10.1039/d2tb02046g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although immunotherapy in combination with anti-angiogenesis therapy has made a breakthrough in the first-line treatment of cancer, considering the low responder rate and the adverse events, it is vital to propose a new combination modality. In this study, we report single encapsulated mesoporous silica coated gold nanoparticles that synergize sensitizing radiotherapy with the current combination therapy. Distinguished from simply combining two treatments, the nanoparticle-mediated "trident" therapy resolved the problem of matching the dose between radiation and drug, which determines the outcome since drug demand rises with immunosuppression from increased sensitivity to radiotherapy. The nanomedicine produced energy depositions when radiation was introduced, and released the loaded toripalimab and bevacizumab, exhibiting significant anti-tumor properties. In vitro tumor cell viability results indicated the highest inhibition by the "trident" therapy and in vivo animal models also revealed the earliest decrease in tumor tissue volume. As a result, the "trident" therapy is expected to further improve the anti-tumor benefits of the combination of immunotherapy and anti-angiogenesis therapy and provides a versatile perspective on cancer treatment.
Collapse
Affiliation(s)
- Cheng Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| | - Lingyun Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Huili Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| | - Hao Yu
- The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Jiaqi Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Si Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| | - Senxiang Yan
- The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Xu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| |
Collapse
|
148
|
Wang Z, Wu L, Li B, Cheng Y, Li X, Wang X, Han L, Wu X, Fan Y, Yu Y, Lv D, Shi J, Huang J, Zhou S, Han B, Sun G, Guo Q, Ji Y, Zhu X, Hu S, Zhang W, Wang Q, Jia Y, Wang Z, Song Y, Wu J, Shi M, Li X, Han Z, Liu Y, Yu Z, Liu AW, Wang X, Zhou C, Zhong D, Miao L, Zhang Z, Zhao H, Yang J, Wang D, Wang Y, Li Q, Zhang X, Ji M, Yang Z, Cui J, Gao B, Wang B, Liu H, Nie L, He M, Jin S, Gu W, Shu Y, Zhou T, Feng J, Yang X, Huang C, Zhu B, Yao Y, Tang X, Yu J, Maher E, Feng H, Yao S, Keegan P, Wang J. Toripalimab Plus Chemotherapy for Patients With Treatment-Naive Advanced Non-Small-Cell Lung Cancer: A Multicenter Randomized Phase III Trial (CHOICE-01). J Clin Oncol 2023; 41:651-663. [PMID: 36206498 PMCID: PMC9870236 DOI: 10.1200/jco.22.00727] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The CHOICE-01 study investigated the efficacy and safety of toripalimab in combination with chemotherapy as a first-line treatment for advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients (N = 465) with treatment-naive, advanced NSCLC without EGFR/ALK mutations were randomly assigned 2:1 to receive toripalimab 240 mg (n = 309) or placebo (n = 156) once every 3 weeks in combination with chemotherapy for 4-6 cycles, followed by the maintenance of toripalimab or placebo once every 3 weeks plus standard care. Stratification factors included programmed death ligand-1 expression status, histology, and smoking status. The primary end point was progression-free survival (PFS) by investigator per RECIST v1.1. Secondary end points included overall survival and safety. RESULTS At the final PFS analysis, PFS was significantly longer in the toripalimab arm than in the placebo arm (median PFS, 8.4 v 5.6 months, hazard ratio = 0.49; 95% CI, 0.39 to 0.61; two-sided P < .0001). At the interim OS analysis, the toripalimab arm had a significantly longer OS than the placebo arm (median OS not reached v 17.1 months, hazard ratio = 0.69; 95% CI, 0.53 to 0.92; two-sided P = .0099). The incidence of grade ≥ 3 adverse events was similar between the two arms. Treatment effects were similar regardless of programmed death ligand-1 status. Genomic analysis using whole-exome sequencing from 394 available tumor samples revealed that patients with high tumor mutational burden were associated with significantly better PFS in the toripalimab arm (median PFS 13.1 v 5.5 months, interaction P = .026). Notably, patients with mutations in the focal adhesion-PI3K-Akt signaling pathway achieved significantly better PFS and OS in the toripalimab arm (interaction P values ≤ .001). CONCLUSION Toripalimab plus chemotherapy significantly improves PFS and OS in patients with treatment-naive advanced NSCLC while having a manageable safety profile. Subgroup analysis showed the OS benefit was mainly driven by the nonsquamous subpopulation.
Collapse
Affiliation(s)
- Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Baolan Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | | | - Xiaoling Li
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xicheng Wang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liang Han
- Xuzhou Central Hospital, Xuzhou, China
| | - Xiaohong Wu
- Jiangnan University Affiliated Hospital, Wuxi, China
| | - Yun Fan
- Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yan Yu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongqing Lv
- Taizhou Hospital of Zhejiang Province, Linhai, China
| | | | - Jianjin Huang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shaozhang Zhou
- Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Baohui Han
- Shanghai Chest Hospital, Shanghai, China
| | - Guogui Sun
- Tangshan People's Hospital, Tangshan, China
| | - Qisen Guo
- Shangdong Cancer Hospital, Jinan, China
| | - Youxin Ji
- Qingdao Central Hospital, Qingdao, China
| | - Xiaoli Zhu
- Zhongda Hospital Southeast University, Nanjing, China
| | - Sheng Hu
- Hubei Cancer Hospital, Wuhan, China
| | - Wei Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Yuming Jia
- The Second People's Hospital of Yibin, Yibin, China
| | - Ziping Wang
- Peking University Cancer Hospital, Beijing, China
| | - Yong Song
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingxun Wu
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Meiqi Shi
- Jiangsu Cancer Hospital, Nanjing, China
| | - Xingya Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Han
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yunpeng Liu
- The First Hospital of China Medical University, Shenyang, China
| | - Zhuang Yu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - An-Wen Liu
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuwen Wang
- Qilu Hospital of Shandong University, Jinan, China
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Shanghai, China
| | | | - Liyun Miao
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Hui Zhao
- The Second Hospital of Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong Wang
- Army Medical Center of PLA, Daping Hospital, Daping, China
| | - Yingyi Wang
- Peking Union Medical College Hospital, Beijing, China
| | - Qiang Li
- Shanghai East Hospital of Tongji University, Shanghai, China
| | | | - Mei Ji
- The First People's Hospital of Changzhou, Changzhou, China
| | - Zhenzhou Yang
- The Second Affiliated Hospital of Chongqing University, Chongqing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Jilin, China
| | - Beili Gao
- Ruijin Hospital Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Buhai Wang
- Subei People's Hospital of Jiangsu Province, Yanghzou, China
| | - Hu Liu
- Anhui Provincial Cancer Hospital, Hefei, China
| | - Lei Nie
- Shanxi Provincial Tumor Hospital, Xian, China
| | - Mei He
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shi Jin
- Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Wei Gu
- Nanjing First Hospital, Nanjing, China
| | - Yongqian Shu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Zhou
- ChangZhou Cancer Hospital, Changzhou, China
| | - Jian Feng
- Affiliated Hospital of Nantong University, Nantong, China
| | | | | | - Bo Zhu
- Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Yu Yao
- First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Xiongwen Tang
- TopAlliance Biosciences, Rockville, MD,Shanghai Junshi Biosciences, Shanghai, China
| | | | | | - Hui Feng
- TopAlliance Biosciences, Rockville, MD,Shanghai Junshi Biosciences, Shanghai, China
| | - Sheng Yao
- TopAlliance Biosciences, Rockville, MD,Shanghai Junshi Biosciences, Shanghai, China
| | | | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Jie Wang, MD, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; e-mail:
| |
Collapse
|
149
|
Huang W, Zhang Y, Chen S, Yin H, Liu G, Zhang H, Xu J, Yu J, Xia Y, He Y, Zhang C. Personalized immune subtypes based on machine learning predict response to checkpoint blockade in gastric cancer. Brief Bioinform 2023; 24:6960975. [PMID: 36572651 DOI: 10.1093/bib/bbac554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-β signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed 'GSClassifier', an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model 'PAD for individual' with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided 'GSClassifier' as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.
Collapse
Affiliation(s)
- Weibin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yuhui Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Songyao Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Haofan Yin
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Guangyao Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Huaqi Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Jiannan Xu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Jishang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yujian Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
150
|
Yu F, Huang X, Zhou D, Zhao Z, Wu F, Qian B, Wang Q, Chen J, Liang Q, Jiang Y, Ding Q, He Q, Tang J, Wang X, Liu W, Chen C. Genetic, DNA methylation, and immune profile discrepancies between early-stage single primary lung cancer and synchronous multiple primary lung cancer. Clin Epigenetics 2023; 15:4. [PMID: 36611170 PMCID: PMC9824942 DOI: 10.1186/s13148-023-01422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To explore the possible carcinogenesis and help better diagnose and treat patients with synchronous multiple primary lung cancers (sMPLC), we systematically investigated the genetic and DNA methylation profiles of early-stage sMPLC and single primary lung cancer (SPLC) and explored the immune profiles in the tumor microenvironment. METHODS Hundred and ninety-one patients with 191 nodules in the SPLC group and 132 patients with 295 nodules in the sMPLC group were enrolled. All the samples were subjected to wide panel-genomic sequencing. Genome-wide DNA methylation was assessed using the Infinium Human Methylation 850 K BeadChip. RNA-seq and CIBERSORT analyses were performed to identify the immune characteristics in these two groups. RESULTS Lesions from sMPLC patients had lower TMB levels than that from SPLC patients. sMPLC had a similar genetic mutational landscape with SPLC, despite some subgroup genetic discrepancies. Distinct DNA methylation patterns were identified between the two groups. The differentially methylated genes were related to immune response pathways. RNA-seq analyses revealed more immune-related DEGs in sMPLC. Accordingly, more immune-related biological processes and pathways were identified in sMPLC. Aberrant DNA methylation was associated with the abnormal expression of immune-related genes. CIBERSORT analysis revealed the infiltration of immune cells was different between the two groups. CONCLUSION Our study for the first time demonstrated genetic, epigenetic, and immune profile discrepancies between sMPLC and SPLC. Relative to the similar genetic mutational landscape, the DNA methylation patterns and related immune profiles were significantly different between sMPLC and SPLC, indicating their essential roles in the initiation and development of sMPLC.
Collapse
Affiliation(s)
- Fenglei Yu
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xiaojie Huang
- grid.452708.c0000 0004 1803 0208Department of Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, Hunan People’s Republic of China
| | - Danting Zhou
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zhenyu Zhao
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Fang Wu
- grid.452708.c0000 0004 1803 0208Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, Hunan People’s Republic of China
| | - Banglun Qian
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Qiang Wang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Juan Chen
- grid.452708.c0000 0004 1803 0208Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan People’s Republic of China
| | - Qingchun Liang
- grid.452708.c0000 0004 1803 0208Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, Hunan People’s Republic of China
| | - Yi Jiang
- grid.452708.c0000 0004 1803 0208Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, Hunan People’s Republic of China
| | - Qi Ding
- grid.512993.5Geneplus-Beijing Institute, Beijing, People’s Republic of China
| | - Qiongzhi He
- grid.512993.5Geneplus-Beijing Institute, Beijing, People’s Republic of China
| | - Jingqun Tang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xiang Wang
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Wenliang Liu
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Chen Chen
- grid.452708.c0000 0004 1803 0208Department of Thoracic Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan People’s Republic of China ,grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|