101
|
Moreno-Pino M, Manrique-de-la-Cuba MF, López-Rodríguez M, Parada-Pozo G, Rodríguez-Marconi S, Ribeiro CG, Flores-Herrera P, Guajardo M, Trefault N. Unveiling microbial guilds and symbiotic relationships in Antarctic sponge microbiomes. Sci Rep 2024; 14:6371. [PMID: 38493232 PMCID: PMC10944490 DOI: 10.1038/s41598-024-56480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.
Collapse
Affiliation(s)
- Mario Moreno-Pino
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Génesis Parada-Pozo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile
| | | | | | - Patricio Flores-Herrera
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Mariela Guajardo
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, 8580745, Santiago, Chile.
- Millenium Nucleus in Marine Agronomy of Seaweed Holobionts (MASH), Puerto Montt, Chile.
- FONDAP Center IDEAL- Dynamics of High Latitude Marine Ecosystem, Valdivia, Chile.
| |
Collapse
|
102
|
Zhang IH, Borer B, Zhao R, Wilbert S, Newman DK, Babbin AR. Uncultivated DPANN archaea are ubiquitous inhabitants of global oxygen-deficient zones with diverse metabolic potential. mBio 2024; 15:e0291823. [PMID: 38380943 PMCID: PMC10936187 DOI: 10.1128/mbio.02918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Archaea belonging to the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have been found in an expanding number of environments and perform a variety of biogeochemical roles, including contributing to carbon, sulfur, and nitrogen cycling. Generally characterized by ultrasmall cell sizes and reduced genomes, DPANN archaea may form mutualistic, commensal, or parasitic interactions with various archaeal and bacterial hosts, influencing the ecology and functioning of microbial communities. While DPANN archaea reportedly comprise a sizeable fraction of the archaeal community within marine oxygen-deficient zone (ODZ) water columns, little is known about their metabolic capabilities in these ecosystems. We report 33 novel metagenome-assembled genomes (MAGs) belonging to the DPANN phyla Nanoarchaeota, Pacearchaeota, Woesearchaeota, Undinarchaeota, Iainarchaeota, and SpSt-1190 from pelagic ODZs in the Eastern Tropical North Pacific and the Arabian Sea. We find these archaea to be permanent, stable residents of all three major ODZs only within anoxic depths, comprising up to 1% of the total microbial community and up to 25%-50% of archaea as estimated from read mapping to MAGs. ODZ DPANN appear to be capable of diverse metabolic functions, including fermentation, organic carbon scavenging, and the cycling of sulfur, hydrogen, and methane. Within a majority of ODZ DPANN, we identify a gene homologous to nitrous oxide reductase. Modeling analyses indicate the feasibility of a nitrous oxide reduction metabolism for host-attached symbionts, and the small genome sizes and reduced metabolic capabilities of most DPANN MAGs suggest host-associated lifestyles within ODZs. IMPORTANCE Archaea from the DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota) superphylum have diverse metabolic capabilities and participate in multiple biogeochemical cycles. While metagenomics and enrichments have revealed that many DPANN are characterized by ultrasmall genomes, few biosynthetic genes, and episymbiotic lifestyles, much remains unknown about their biology. We report 33 new DPANN metagenome-assembled genomes originating from the three global marine oxygen-deficient zones (ODZs), the first from these regions. We survey DPANN abundance and distribution within the ODZ water column, investigate their biosynthetic capabilities, and report potential roles in the cycling of organic carbon, methane, and nitrogen. We test the hypothesis that nitrous oxide reductases found within several ODZ DPANN genomes may enable ultrasmall episymbionts to serve as nitrous oxide consumers when attached to a host nitrous oxide producer. Our results indicate DPANN archaea as ubiquitous residents within the anoxic core of ODZs with the potential to produce or consume key compounds.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
103
|
Suarez C, Rosenqvist T, Dimitrova I, Sedlacek CJ, Modin O, Paul CJ, Hermansson M, Persson F. Biofilm colonization and succession in a full-scale partial nitritation-anammox moving bed biofilm reactor. MICROBIOME 2024; 12:51. [PMID: 38475926 DOI: 10.1186/s40168-024-01762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Partial nitritation-anammox (PNA) is a biological nitrogen removal process commonly used in wastewater treatment plants for the treatment of warm and nitrogen-rich sludge liquor from anaerobic digestion, often referred to as sidestream wastewater. In these systems, biofilms are frequently used to retain biomass with aerobic ammonia-oxidizing bacteria (AOB) and anammox bacteria, which together convert ammonium to nitrogen gas. Little is known about how these biofilm communities develop, and whether knowledge about the assembly of biofilms in natural communities can be applied to PNA biofilms. RESULTS We followed the start-up of a full-scale PNA moving bed biofilm reactor for 175 days using shotgun metagenomics. Environmental filtering likely restricted initial biofilm colonization, resulting in low phylogenetic diversity, with the initial microbial community comprised mainly of Proteobacteria. Facilitative priority effects allowed further biofilm colonization, with the growth of initial aerobic colonizers promoting the arrival and growth of anaerobic taxa like methanogens and anammox bacteria. Among the early colonizers were known 'oligotrophic' ammonia oxidizers including comammox Nitrospira and Nitrosomonas cluster 6a AOB. Increasing the nitrogen load in the bioreactor allowed colonization by 'copiotrophic' Nitrosomonas cluster 7 AOB and resulted in the exclusion of the initial ammonia- and nitrite oxidizers. CONCLUSIONS We show that complex dynamic processes occur in PNA microbial communities before a stable bioreactor process is achieved. The results of this study not only contribute to our knowledge about biofilm assembly and PNA bioreactor start-up but could also help guide strategies for the successful implementation of PNA bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Tage Rosenqvist
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Christopher J Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Catherine J Paul
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
104
|
Tsuji JM, Shaw NA, Nagashima S, Venkiteswaran JJ, Schiff SL, Watanabe T, Fukui M, Hanada S, Tank M, Neufeld JD. Anoxygenic phototroph of the Chloroflexota uses a type I reaction centre. Nature 2024; 627:915-922. [PMID: 38480893 PMCID: PMC10972752 DOI: 10.1038/s41586-024-07180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/08/2024] [Indexed: 04/01/2024]
Abstract
Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, Waterloo, Ontario, Canada.
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.
| | - N A Shaw
- University of Waterloo, Waterloo, Ontario, Canada
| | - S Nagashima
- Tokyo Metropolitan University, Tokyo, Japan
- Kanagawa University, Yokohama, Japan
| | - J J Venkiteswaran
- University of Waterloo, Waterloo, Ontario, Canada
- Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S L Schiff
- University of Waterloo, Waterloo, Ontario, Canada
| | - T Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - M Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - S Hanada
- Tokyo Metropolitan University, Tokyo, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - M Tank
- Tokyo Metropolitan University, Tokyo, Japan
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - J D Neufeld
- University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
105
|
Bustos-Diaz ED, Cruz-Perez A, Garfias-Gallegos D, D'Agostino PM, Gehringer MM, Cibrian-Jaramillo A, Barona-Gomez F. Phylometagenomics of cycad coralloid roots reveals shared symbiotic signals. Microb Genom 2024; 10:001207. [PMID: 38451250 PMCID: PMC10999742 DOI: 10.1099/mgen.0.001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Cycads are known to host symbiotic cyanobacteria, including Nostocales species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to Nostoc spp., symbiotic cyanobacteria of the genus Aulosira were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes Aulosira spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.
Collapse
Affiliation(s)
- Edder D. Bustos-Diaz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| | - Arely Cruz-Perez
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Diego Garfias-Gallegos
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Paul M. D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), 67663 Kaiserslautern, Germany
| | - Angelica Cibrian-Jaramillo
- Ecological and Evolutionary Genomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Naturalis Biodiversity Center, Leiden 2333 CR, Netherlands
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
- Institute of Biology, Leiden University, Netherlands, 2333 BE, Leiden
| |
Collapse
|
106
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
107
|
Kang Z, Martinson VG, Wang Y, Coon KL, Valzania L, Strand MR. Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen. mBio 2024; 15:e0272623. [PMID: 38055338 PMCID: PMC10790785 DOI: 10.1128/mbio.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE The host-specific microbiotas of animals can both reduce and increase disease risks from pathogens. In contrast, how environmental microbial communities affect pathogens is largely unexplored. Aquatic habitats are of interest because water enables environmental microbes to readily interact with animal pathogens. Here, we focused on mosquitoes, which are important disease vectors as terrestrial adults but are strictly aquatic as larvae. We identified a pathogen of mosquito larvae from the field as a strain of Chromobacterium haemolyticum. Comparative genomic analyses and functional assays indicate this strain and other Chromobacterium are mosquitocidal but are also opportunistic pathogens of other animals. We also identify a critical role for diversity of the environmental microbiota in disease risk. Our study characterizes both the virulence mechanisms of a pathogen and the role of the environmental microbiota in disease risk to an aquatic animal of significant importance to human health.
Collapse
Affiliation(s)
- Zhiwei Kang
- Hebei University, College of Life Sciences, Baoding, Hebei, China
| | - Vincent G. Martinson
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yin Wang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Coon
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luca Valzania
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Institut Curie, Paris, France
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
108
|
Wang S, Narsing Rao MP, Quadri SR. Assessing the metabolism, phylogenomic, and taxonomic classification of the halophilic genus Halarchaeum. FEMS Microbiol Lett 2024; 371:fnae001. [PMID: 38192037 DOI: 10.1093/femsle/fnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
In this study, a genomic approach was employed to evaluate the metabolic potentials and taxonomic classification of the halophilic genus Halarchaeum. Genomic analysis revealed that Halarchaeum members exhibit a predilection for amino acids as their primary energy source in high-salinity environments over carbohydrates. Genome analysis unveiled the presence of crucial genes associated with metabolic pathways, including the Embden-Meyerhof pathway, semi-phosphorylative Entner-Doudoroff pathway, and the urea cycle. Furthermore, the genomic analysis indicated that Halarchaeum members employ diverse mechanisms for osmotic regulation (encompassing both salt-in and salt-out strategies). Halarchaeum members also encode genes to alleviate acid and heat stress. The average nucleotide identity value between Halarchaeum solikamskense and Halarchaeum nitratireducens exceeded the established threshold (95%-96%) for defining distinct species. This high similarity suggests a close relationship between these two species, prompting the proposal to reclassify Halarchaeum solikamskense as a heterotypic synonym of Halarchaeum nitratireducens. The results of this study contribute to our knowledge of taxonomic classification and shed light on the adaptive strategies employed by Halarchaeum species in their specific ecological niches.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin 150086, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar-91431 Northern Borders, Kingdom of Saudi Arabia
| |
Collapse
|
109
|
Yin X, Zhou G, Wang H, Han D, Maeke M, Richter-Heitmann T, Wunder LC, Aromokeye DA, Zhu QZ, Nimzyk R, Elvert M, Friedrich MW. Unexpected carbon utilization activity of sulfate-reducing microorganisms in temperate and permanently cold marine sediments. THE ISME JOURNAL 2024; 18:wrad014. [PMID: 38365251 PMCID: PMC10811731 DOI: 10.1093/ismejo/wrad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
Significant amounts of organic carbon in marine sediments are degraded, coupled with sulfate reduction. However, the actual carbon and energy sources used in situ have not been assigned to each group of diverse sulfate-reducing microorganisms (SRM) owing to the microbial and environmental complexity in sediments. Here, we probed microbial activity in temperate and permanently cold marine sediments by using potential SRM substrates, organic fermentation products at very low concentrations (15-30 μM), with RNA-based stable isotope probing. Unexpectedly, SRM were involved only to a minor degree in organic fermentation product mineralization, whereas metal-reducing microbes were dominant. Contrastingly, distinct SRM strongly assimilated 13C-DIC (dissolved inorganic carbon) with H2 as the electron donor. Our study suggests that canonical SRM prefer autotrophic lifestyle, with hydrogen as the electron donor, while metal-reducing microorganisms are involved in heterotrophic organic matter turnover, and thus regulate carbon fluxes in an unexpected way in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Guowei Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- School of Resources and Environmental Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
| | - Dukki Han
- Department of Marine Bioscience, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea
| | - Mara Maeke
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - Tim Richter-Heitmann
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Lea C Wunder
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany
| | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Qing-Zeng Zhu
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Strasse 2-4, Bremen D-28359, Germany
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Leobener Strasse 3, Bremen D-28359, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, Bremen D-28359, Germany
| |
Collapse
|
110
|
Cleveland CS, Turk-Kubo KA, Zhao Y, Zehr JP, Webb EA. Isolation and biogeography of the oligotrophic ocean diazotroph, Crocosphaera waterburyi nov. sp. THE ISME JOURNAL 2024; 18:wrae217. [PMID: 39441996 PMCID: PMC11630315 DOI: 10.1093/ismejo/wrae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Marine N2-fixing cyanobacteria, including the unicellular genus Crocosphaera, are considered keystone species in marine food webs. Crocosphaera are globally distributed and provide new sources of nitrogen and carbon, which fuel oligotrophic microbial communities and upper trophic levels. Despite their ecosystem importance, only one pelagic, oligotrophic, phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from the North Pacific Ocean. C. waterburyi was found to be phenotypically and genotypically distinct from C. watsonii, active in situ, distributed globally, and preferred warmer temperatures in culture and the ocean. Additionally, C. waterburyi was detectable in 150- and 4000-meter sediment export traps, had a relatively larger biovolume than C. watsonii, and appeared to aggregate in the environment and laboratory culture. Therefore, it represents an additional, previously unknown link between atmospheric CO2 and N2 gas and deep ocean carbon and nitrogen export and sequestration.
Collapse
Affiliation(s)
- Catie S Cleveland
- Marine and Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA, 90089, United States
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, United States
| | - Yiming Zhao
- Marine and Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA, 90089, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, United States
| | - Eric A Webb
- Marine and Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA, 90089, United States
| |
Collapse
|
111
|
Bell E, Chen J, Richardson WDL, Fustic M, Hubert CRJ. Denitrification genotypes of endospore-forming Bacillota. ISME COMMUNICATIONS 2024; 4:ycae107. [PMID: 39263550 PMCID: PMC11388526 DOI: 10.1093/ismeco/ycae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Denitrification is a key metabolic process in the global nitrogen cycle and is performed by taxonomically diverse microorganisms. Despite the widespread importance of this metabolism, challenges remain in identifying denitrifying populations and predicting their metabolic end-products based on their genotype. Here, genome-resolved metagenomics was used to explore the denitrification genotype of Bacillota enriched in nitrate-amended high temperature incubations with confirmed N2O and N2 production. A set of 12 hidden Markov models (HMMs) was created to target the diversity of denitrification genes in members of the phylum Bacillota. Genomic potential for complete denitrification was found in five metagenome-assembled genomes from nitrate-amended enrichments, including two novel members of the Brevibacillaceae family. Genomes of complete denitrifiers encode N2O reductase gene clusters with clade II-type nosZ and often include multiple variants of the nitric oxide reductase gene. The HMM set applied to all genomes of Bacillota from the Genome Taxonomy Database identified 17 genera inferred to contain complete denitrifiers based on their gene content. Among complete denitrifiers it was common for three distinct nitric oxide reductases to be present (qNOR, bNOR, and sNOR) that may reflect the metabolic adaptability of Bacillota in environments with variable redox conditions.
Collapse
Affiliation(s)
- Emma Bell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jianwei Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - William D L Richardson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Milovan Fustic
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Geology, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
112
|
Schauberger C, Thamdrup B, Lemonnier C, Trouche B, Poulain J, Wincker P, Arnaud-Haond S, Glud RN, Maignien L. Metagenome-assembled genomes of deep-sea sediments: changes in microbial functional potential lag behind redox transitions. ISME COMMUNICATIONS 2024; 4:ycad005. [PMID: 38282644 PMCID: PMC10809760 DOI: 10.1093/ismeco/ycad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
Hadal sediments are hotspots of microbial activity in the deep sea and exhibit strong biogeochemical gradients. But although these gradients are widely assumed to exert selective forces on hadal microbial communities, the actual relationship between biogeochemistry, functional traits, and microbial community structure remains poorly understood. We tested whether the biogeochemical conditions in hadal sediments select for microbes based on their genomic capacity for respiration and carbohydrate utilization via a metagenomic analysis of over 153 samples from the Atacama Trench region (max. depth = 8085 m). The obtained 1357 non-redundant microbial genomes were affiliated with about one-third of all known microbial phyla, with more than half belonging to unknown genera. This indicated that the capability to withstand extreme hydrostatic pressure is a phylogenetically widespread trait and that hadal sediments are inhabited by diverse microbial lineages. Although community composition changed gradually over sediment depth, these changes were not driven by selection for respiratory or carbohydrate degradation capability in the oxic and nitrogenous zones, except in the case of anammox bacteria and nitrifying archaea. However, selection based on respiration and carbohydrate degradation capacity did structure the communities of the ferruginous zone, where aerobic and nitrogen respiring microbes declined exponentially (half-life = 125-419 years) and were replaced by subsurface communities. These results highlight a delayed response of microbial community composition to selective pressure imposed by redox zonation and indicated that gradual changes in microbial composition are shaped by the high-resilience and slow growth of microbes in the seafloor.
Collapse
Affiliation(s)
- Clemens Schauberger
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Bo Thamdrup
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| | - Clarisse Lemonnier
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| | - Blandine Trouche
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS,University of Évry, Université Paris-Saclay, 91057 Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS,University of Évry, Université Paris-Saclay, 91057 Evry, France
| | - Sophie Arnaud-Haond
- MARBEC, CNRS, IRD, Institut Français de Recherche pour L'Exploitation de la Mer, Univ Montpellier, 34200 Sète, France
| | - Ronnie N Glud
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Lois Maignien
- Microbiology of Extreme Environments Laboratory, CNRS, IFREMER, Univ Brest, F-29280 Plouzané, France
| |
Collapse
|
113
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
114
|
Bech PK, Jarmusch SA, Rasmussen JA, Limborg MT, Gram L, Henriksen NNSE. Succession of microbial community composition and secondary metabolism during marine biofilm development. ISME COMMUNICATIONS 2024; 4:ycae006. [PMID: 38390522 PMCID: PMC10881302 DOI: 10.1093/ismeco/ycae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In nature, secondary metabolites mediate interactions between microorganisms residing in complex microbial communities. However, the degree to which community dynamics can be linked to secondary metabolite potential remains largely unknown. In this study, we address the relationship between community succession and secondary metabolism variation. We used 16S and 18S rRNA gene and adenylation domain amplicon sequencing, genome-resolved metagenomics, and untargeted metabolomics to track the taxons, biosynthetic gene clusters, and metabolome dynamics in situ of microorganisms during marine biofilm succession over 113 days. Two phases were identified during the community succession, with a clear shift around Day 29, where the alkaloid secondary metabolites, pseudanes, were also detected. The microbial secondary metabolite potential changed between the phases, and only a few community members, including Myxococotta spp., were responsible for the majority of the biosynthetic gene cluster potential in the early succession phase. In the late phase, bryozoans and benthic copepods were detected, and the microbial nonribosomal peptide potential drastically decreased in association with a reduction in the relative abundance of the prolific secondary metabolite producers. Conclusively, this study provides evidence that the early succession of the marine biofilm community favors prokaryotes with high nonribosomal peptide synthetase potential. In contrast, the late succession is dominated by multicellular eukaryotes and a reduction in bacterial nonribosomal peptide synthetase potential.
Collapse
Affiliation(s)
- Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Jacob Agerbo Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen K, DK-1014, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen K, DK-1014, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | |
Collapse
|
115
|
Nesbø CL, Kublanov I, Yang M, Sharan AA, Meyer T, Edwards EA. High quality Bathyarchaeia MAGs from lignocellulose-impacted environments elucidate metabolism and evolutionary mechanisms. ISME COMMUNICATIONS 2024; 4:ycae156. [PMID: 39759836 PMCID: PMC11697101 DOI: 10.1093/ismeco/ycae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
The archaeal class Bathyarchaeia is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO2 fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 Bathyarchaeia metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar. Thirty-three MAGs belong to the Bathy-6, lineage while two are from the Bathy-8 lineage. In our previous analysis of the microbial community in the pulp mill digesters, Bathyarchaeia were abundant and positively correlated to hydrogenotrophic and methylotrophic methanogenesis. Several factors likely contribute to the success of the Bathy-6 lineage compared to Bathy-8 in the reactors. The Bathy-6 genomes are larger than those of Bathy-8 and have more genes involved in lignocellulose degradation, including carbohydrate-active enzymes not present in the Bathy-8. Bathy-6 also shares the Bathyarchaeal O-demethylase system recently identified in Bathy-8. All the Bathy-6 MAGs had numerous membrane-associated pyrroloquinoline quinone-domain proteins that we suggest are involved in lignin modification or degradation, together with Radical-S-adenosylmethionine (SAM) and Rieske domain proteins, and AA2, AA3, and AA6-family oxidoreductases. We also identified a complete B12 synthesis pathway and a complete nitrogenase gene locus. Finally, comparative genomic analyses revealed that Bathyarchaeia genomes are dynamic and have interacted with other organisms in their environments through gene transfer to expand their gene repertoire.
Collapse
Affiliation(s)
- Camilla Lothe Nesbø
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ilya Kublanov
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Minqing Yang
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Anupama Achal Sharan
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Torsten Meyer
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Elizabeth A Edwards
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
116
|
Zhao R, Zhang IH, Jayakumar A, Ward BB, Babbin AR. Age, metabolisms, and potential origin of dominant anammox bacteria in the global oxygen-deficient zones. ISME COMMUNICATIONS 2024; 4:ycae060. [PMID: 38770059 PMCID: PMC11104535 DOI: 10.1093/ismeco/ycae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Anammox bacteria inhabiting oxygen-deficient zones (ODZs) are a major functional group mediating fixed nitrogen loss in the global ocean. However, many basic questions regarding the diversity, broad metabolisms, origin, and adaptive mechanisms of ODZ anammox bacteria remain unaddressed. Here we report two novel metagenome-assembled genomes of anammox bacteria affiliated with the Scalindua genus, which represent most, if not all, of the anammox bacteria in the global ODZs. Metagenomic read-recruiting and comparison with historical data show that they are ubiquitously present in all three major ODZs. Beyond the core anammox metabolism, both organisms contain cyanase, and the more dominant one encodes a urease, indicating most ODZ anammox bacteria can utilize cyanate and urea in addition to ammonium. Molecular clock analysis suggests that the evolutionary radiation of these bacteria into ODZs occurred no earlier than 310 million years ago, ~1 billion years after the emergence of the earliest modern-type ODZs. Different strains of the ODZ Scalindua species are also found in benthic sediments, and the first ODZ Scalindua is likely derived from the benthos. Compared to benthic strains of the same clade, ODZ Scalindua uniquely encodes genes for urea utilization but has lost genes related to growth arrest, flagellum synthesis, and chemotaxis, presumably for adaptation to thrive in the global ODZ waters. Our findings expand the known metabolisms and evolutionary history of the bacteria controlling the global nitrogen budget.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Irene H Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
117
|
Violette MJ, Hyland E, Burgener L, Ghosh A, Montoya BM, Kleiner M. Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO 2-rich geyser. ISME COMMUNICATIONS 2024; 4:ycae139. [PMID: 39866677 PMCID: PMC11760937 DOI: 10.1093/ismeco/ycae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Indexed: 01/28/2025]
Abstract
Microbially induced carbonate precipitation (MICP) is a natural process with potential biotechnological applications to address both carbon sequestration and sustainable construction needs. However, our understanding of the microbial processes involved in MICP is limited to a few well-researched pathways such as ureolytic hydrolysis. To expand our knowledge of MICP, we conducted an omics-based study on sedimentary communities from travertine around the CO2-driven Crystal Geyser near Green River, Utah. Using metagenomics and metaproteomics, we identified the community members and potential metabolic pathways involved in MICP. We found variations in microbial community composition between the two sites we sampled, but Rhodobacterales were consistently the most abundant order, including both chemoheterotrophs and anoxygenic phototrophs. We also identified several highly abundant genera of Cyanobacteriales. The dominance of these community members across both sites and the abundant presence of photosynthesis-related proteins suggest that photosynthesis could play a role in MICP at Crystal Geyser. We also found abundant bacterial proteins involved in phosphorous starvation response at both sites suggesting that P-limitation shapes both composition and function of the microbial community driving MICP.
Collapse
Affiliation(s)
- Marlene J Violette
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Place, Thomas Hall, Raleigh, NC 27607, United States
| | - Ethan Hyland
- Department of Marine, Earth, & Atmospheric Sciences, North Carolina State University, 2800 Faucette Drive, Jordan Hall, Raleigh, NC 27607, United States
| | - Landon Burgener
- Department of Geological Sciences, Brigham Young University, Carl F. Eyring Science Center, Provo, UT 84602, United States
| | - Adit Ghosh
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, United States
| | - Brina M Montoya
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Fitts Wool Hall, Raleigh, NC 27606, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Place, Thomas Hall, Raleigh, NC 27607, United States
| |
Collapse
|
118
|
Kastner PD, Noell SE, Essig DA. Complete genome sequence of a winter season Vibrio facilitates discovery of a novel subclade of cold-adapted species in the albus clade. Microb Genom 2024; 10:001178. [PMID: 38230915 PMCID: PMC10868602 DOI: 10.1099/mgen.0.001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
In temperate marine climate zones, seasonal changes in water temperature contribute to distinct populations of warm- and cold-water vibrios. We report here the complete genome sequence (BUSCO score=94.8) of the novel strain Vibrio sp. VB16 isolated in late winter from the intertidal zone near Virginia Beach, Virginia, USA with the ability to form colonies at 4 °C. The 5.2 Mbp genome is composed of a large (3.6 Mbp) and small (1.6 Mbp) chromosome. Based on paired average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH), V. sp. VB16 is the same species as V. sp. UBA2437 from a North Sea tidal flat and is closely related to V. sp. DW001 from Antarctic sea ice. Our phylogenomic and bioinformatic analyses placed VB16, UBA2437 and DW001 into a cold-tolerant subclade within the albus clade, along with two non-cold-tolerant subclades. Orthovenn analysis indicated that VB16 and its other albus clade members shared 1544 gene orthologue clusters, including clusters for biosynthesis of polar flagella and tight adhesion pili that predict multiple lifestyles, either free-living or as an opportunistic pathogen within a marine eukaryotic host. The cold-tolerant subclade shared 552 orthologue proteins, including genes known to promote survival in cold or freezing temperatures, such as the eicosapentaenoic acid biosynthetic gene cluster, syp exopolysaccharide gene cluster and novel giant proteins with ice-binding domains. This subclade represents a group of psychrotolerant or 'moderate psychrophile' winter season Vibrio species. The discovery of this subclade opens the door for experimental work on the physiological features, virulence potential and ecological importance of this subclade.
Collapse
Affiliation(s)
- Paul D. Kastner
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Stephen E. Noell
- Te Aka Mātuatua – School of Science, Thermophile Research Unit, Te Whare Wānanga o Waikato – University of Waikato, Hamilton, New Zealand
| | - David A. Essig
- Department of Biology, Geneva College, Beaver Falls, PA, USA
| |
Collapse
|
119
|
Tian M, Zhang W, Zhang G, Bahadur A, Wu S, Yu X, Wu Y, Jia P, Chen T, Liu G. A novel UV-resistant bacterium Sphingomonas endolithica sp. nov., and genomic analysis, isolated from the north slope of Mount Everest. Antonie Van Leeuwenhoek 2023; 117:5. [PMID: 38153511 DOI: 10.1007/s10482-023-01903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Gram-stain-negative, aerobic, rod-shaped, non-motile bacterium strain ZFBP2030T was isolated from a rock on the North slope of Mount Everest. This strain contained a unique ubiquinone-10 (Q-10) as a predominant respiratory quinone. Among the tested fatty acids, the strain contained summed feature 8, C14:0 2OH, and C16:0, as major cellular fatty acids. The polar lipid profile contained phosphatidyl glycerol, phosphatidyl ethanolamine, three unidentified phospholipids, two unidentified aminolipids, and six unidentified lipids. The cell-wall peptidoglycan was a meso-diaminopimelic acid, and cell-wall sugars were ribose and galactose. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain ZFBP2030T was a member of the genus Sphingomonas, exhibiting high sequence similarity to the 16S rRNA gene sequences of Sphingomonas aliaeris DH-S5T (97.9%), Sphingomonas alpina DSM 22537T (97.3%) and Sphingomonas hylomeconis CCTCC AB 2013304T (97.0%). The 16S rRNA gene sequence similarity between ZFBP2030T and other typical strains was less than 97.0%. The average amino acid identity values, average nucleotide identity, and digital DNA-DNA hybridization values between strain ZFBP2030T and its highest sequence similarity strains were 56.9-79.9%, 65.1-82.2%, and 19.3-25.8%, respectively. The whole-genome size of the novel strain ZFBP2030T was 4.1 Mbp, annotated with 3838 protein-coding genes and 54 RNA genes. Moreover, DNA G + C content was 64.7 mol%. Stress-related functions predicted in the subsystem classification of the strain ZFBP2030T genome included osmotic, oxidative, cold/heat shock, detoxification, and periplasmic stress responses. The overall results of this study clearly showed that strain ZFBP2030T is a novel species of the genus Sphingomonas, for which the name Sphingomonas endolithica sp. nov. is proposed. The type of strain is ZFBP2030T (= EE 013T = GDMCC 1.3123T = JCM 35386T).
Collapse
Affiliation(s)
- Mao Tian
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Yu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Yujie Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Puchao Jia
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Guangxiu Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
120
|
Trouche B, Schauberger C, Bouderka F, Auguet JC, Belser C, Poulain J, Thamdrup B, Wincker P, Arnaud-Haond S, Glud RN, Maignien L. Distribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments. ISME COMMUNICATIONS 2023; 3:133. [PMID: 38135695 PMCID: PMC10746724 DOI: 10.1038/s43705-023-00341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Ammonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade's ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.
Collapse
Affiliation(s)
- Blandine Trouche
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Clemens Schauberger
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Feriel Bouderka
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Bo Thamdrup
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | | | - Ronnie N Glud
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, USA.
| |
Collapse
|
121
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
122
|
Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, Neely CJ, Reiter T. Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton. mBio 2023; 14:e0167623. [PMID: 37947402 PMCID: PMC10746220 DOI: 10.1128/mbio.01676-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Single-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which automates the binning of population-level eukaryotic and prokaryotic genomes from metagenomic reads. We show exciting insight into what protistan communities are present and their trophic roles in the ocean. Scalable computational tools, like EukHeist, may accelerate the identification of meaningful genetic signatures from large data sets and complement researchers' efforts to leverage MAG databases for addressing ecological questions, resolving evolutionary relationships, and discovering potentially novel biodiversity.
Collapse
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sarah K. Hu
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Arianna I. Krinos
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts, USA
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Benjamin J. Tully
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher J. Neely
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Taylor Reiter
- Population Health and Reproduction, University of California, Davis, Davis, California, USA
| |
Collapse
|
123
|
Liu J, Spencer N, Utter DR, Grossman A, Santos NC, Shi W, Baker JL, Hasturk H, He X, Bor B. Persistent enrichment of multidrug resistant Klebsiella in oral and nasal communities during long-term starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572173. [PMID: 38187725 PMCID: PMC10769290 DOI: 10.1101/2023.12.18.572173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess a clinically-significant antibiotic-resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, how Klebsiella transitions from an asymptomatic colonizer to a pathogen remains unclear. Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments. When Klebsiella was present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became dominated by Klebsiella. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated dominance under starvation. K.pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella, other understudied opportunistic pathogens, such as Peptostreptococcus, dominate under starvation conditions. Our findings establish an environmental circumstance that allows for the outgrowth of Klebsiella and other opportunistic pathogens. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions may contribute to the colonization-to-infection transition of these opportunistic pathogens.
Collapse
Affiliation(s)
- Jett Liu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Nell Spencer
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Daniel R. Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Grossman
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Nídia C.D. Santos
- Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- Albert Einstein School of Dental Medicine, Albert Einstein Israelite Hospital, São Paulo, SP, Brazil
| | - Wenyuan Shi
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Jonathon L. Baker
- Department of Oral Rehabilitation & Biosciences, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, ADA Forsyth Institute, Cambridge, MA 02138, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
124
|
Kumar G, Gan HM, Popielarz H, Steele J, Parthasarathy A, Hudson AO, Savka MA. Endophytic bacteria associated with wild-type banana seed ( Musa balbisiana): whole genome sequencing. Microbiol Resour Announc 2023; 12:e0065023. [PMID: 37921458 PMCID: PMC10720562 DOI: 10.1128/mra.00650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
We present the whole-genome sequences of five endophytic bacteria isolated from Musa balbisiana seeds. These strains represent five different genera: Bacillus, Brachybacterium, Enterobacter, Enterococcus, and Pantoea. Among these, three genera (Bacillus, Pantoea, and Enterobacter) were previously recognized for their antagonistic effects against Fusarium wilt, a highly destructive disease that affects banana plants.
Collapse
Affiliation(s)
- Girish Kumar
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
- Patriot Biotech Sdn Bhd, Subang Jaya, Malaysia
| | - Hailey Popielarz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Julia Steele
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
125
|
Hägglund E, Andersson SGE, Guy L. TADA: taxonomy-aware dataset aggregator. Bioinformatics 2023; 39:btad742. [PMID: 38060257 PMCID: PMC10733731 DOI: 10.1093/bioinformatics/btad742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023] Open
Abstract
SUMMARY The profusion of sequenced genomes across the bacterial and archeal domains offers unprecedented possibilities for phylogenetic and comparative genomic analyses. In general, phylogenetic reconstruction is improved by the use of more data. However, including all available data is (i) not computationally tractable, and (ii) prone to biases, as the abundance of genomes is very unequally distributed over the biological diversity. Thus, in most cases, subsampling taxa to build a phylogeny is necessary. Currently, though, there is no available software to perform that handily. Here we present TADA, a taxonomic-aware dataset selection workflow that allows sampling across user-defined portions of the prokaryotic diversity with variable granularity, while setting constraints on genome quality and balance between branches. AVAILABILITY AND IMPLEMENTATION TADA is implemented as a snakemake workflow and is freely available at https://github.com/emilhaegglund/TADA.
Collapse
Affiliation(s)
- Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
126
|
Momper L, Casar CP, Osburn MR. A metagenomic view of novel microbial and metabolic diversity found within the deep terrestrial biosphere at DeMMO: A microbial observatory in South Dakota, USA. Environ Microbiol 2023; 25:3719-3737. [PMID: 37964716 DOI: 10.1111/1462-2920.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
The deep terrestrial subsurface is a large and diverse microbial habitat and vast repository of biomass. However, in relation to its size and physical heterogeneity we have limited understanding of taxonomic and metabolic diversity in this realm. Here we present a detailed metagenomic analysis of samples from the Deep Mine Microbial Observatory (DeMMO) spanning depths from the surface to 1.5 km into the crust. From eight geochemically and spatially distinct fluid samples we reconstructed ~600 partial to near-complete metagenome-assembled genomes (MAGs), representing 50 distinct phyla and including 18 candidate phyla. These novel clades include members of the candidate phyla radiation, two new MAGs from OLB16, a phylum originally identified in DeMMO fluids and for which only one other MAG is currently available, and new MAGs from the Eisenbacteria, Omnitrophota, and Edwardsbacteria. We find that microbes spanning this expansive phylogenetic diversity and physical subsurface space gain a competitive edge by maintaining a wide variety of functional pathways, are often capable of numerous dissimilatory energy metabolisms and poised to take advantage of nutrients as they become available in isolated fracture fluids. Our results support and expand on emerging themes of tight nutrient cycling and genomic plasticity in deep subsurface biosphere taxa.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
- Exponent, Inc, Menlo Park, California, USA
| | - Caitlin P Casar
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Magdalena R Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
127
|
Gellman RH, Olm MR, Terrapon N, Enam F, Higginbottom SK, Sonnenburg JL, Sonnenburg ED. Hadza Prevotella require diet-derived microbiota-accessible carbohydrates to persist in mice. Cell Rep 2023; 42:113233. [PMID: 38510311 PMCID: PMC10954246 DOI: 10.1016/j.celrep.2023.113233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Industrialization has transformed the gut microbiota, reducing the prevalence of Prevotella relative to Bacteroides. Here, we isolate Bacteroides and Prevotella strains from the microbiota of Hadza hunter-gatherers in Tanzania, a population with high levels of Prevotella. We demonstrate that plant-derived microbiota-accessible carbohydrates (MACs) are required for persistence of Prevotella copri but not Bacteroides thetaiotaomicron in vivo. Differences in carbohydrate metabolism gene content, expression, and in vitro growth reveal that Hadza Prevotella strains specialize in degrading plant carbohydrates, while Hadza Bacteroides isolates use both plant and host-derived carbohydrates, a difference mirrored in Bacteroides from non-Hadza populations. When competing directly, P. copri requires plant-derived MACs to maintain colonization in the presence of B. thetaiotaomicron, as a no-MAC diet eliminates P. copri colonization. Prevotella's reliance on plant-derived MACs and Bacteroides' ability to use host mucus carbohydrates could explain the reduced prevalence of Prevotella in populations consuming a low-MAC, industrialized diet.
Collapse
Affiliation(s)
- Rebecca H. Gellman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolé cules Biologiques, INRAE, CNRS, Aix-Marseille Université, Marseille, France
| | - Fatima Enam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven K. Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
- Lead contact
| |
Collapse
|
128
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
129
|
Shen Z, Robert L, Stolpman M, Che Y, Allen KJ, Saffery R, Walsh A, Young A, Eckert J, Deming C, Chen Q, Conlan S, Laky K, Li JM, Chatman L, Kashaf SS, Kong HH, Frischmeyer-Guerrerio PA, Perrett KP, Segre JA. A genome catalog of the early-life human skin microbiome. Genome Biol 2023; 24:252. [PMID: 37946302 PMCID: PMC10636849 DOI: 10.1186/s13059-023-03090-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. RESULTS Here we use deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who are part of the VITALITY trial in Australia as well as 67 maternally matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9483 prokaryotic genomes from 1056 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 21%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also find evidence for microbial sharing at the community, bacterial species, and strain levels between mothers and infants. CONCLUSIONS Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and development in early life.
Collapse
Affiliation(s)
- Zeyang Shen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lukian Robert
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Milan Stolpman
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - You Che
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Katrina J Allen
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Audrey Walsh
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Angela Young
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jana Eckert
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Qiong Chen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jenny Min Li
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lindsay Chatman
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | | | - Kirsten P Perrett
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC, Australia
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
130
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenomics, phenotypic, and functional traits of five novel (Earth-derived) bacterial species isolated from the International Space Station and their prevalence in metagenomes. Sci Rep 2023; 13:19207. [PMID: 37932283 PMCID: PMC10628120 DOI: 10.1038/s41598-023-44172-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
131
|
Watanabe T, Yabe T, Tsuji JM, Fukui M. Desulfoferula mesophilus gen. nov. sp. nov., a mesophilic sulfate-reducing bacterium isolated from a brackish lake sediment. Arch Microbiol 2023; 205:368. [PMID: 37923857 DOI: 10.1007/s00203-023-03711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
A novel sulfate-reducing bacterium (strain 12FAKT) was isolated from sediment sampled from a brackish lake in Japan. Respiratory growth was observed with formate and pyruvate as an electron donor. Sulfate, thiosulfate, elemental sulfur and dimethyl sulfoxide were utilized as an electron acceptor. The isolate grew over a temperature range of 18-42 °C (optimum 35-37 °C), a NaCl concentration range of 50-450 mM (optimum 150-300 mM) and a pH range of 6.6-7.5. The 12FAKT genome consists of a circular chromosome with a length of 4.5 Mbp and G + C content of 63.6%. Based on 16S rRNA gene sequence similarity, the closest cultured relative was Desulfarculus baarsii 2st14T (92.2%). Genome-based phylogenetic analysis placed strain 12FAKT within the family Desulfarculaceae but did not affiliate the strain with any existing genus. Taken together, we propose a novel species of a novel genus, Desulfoferula mesophilus gen. nov. sp. nov. with the type strain 12FAKT (= DSM 115219T = JCM 39399T).
Collapse
Affiliation(s)
- Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| | - Tatsuya Yabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
| | - Jackson M Tsuji
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima, Yokosuka, Kanagawa, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
132
|
Pavia MJ, Finn D, Macedo-Tafur F, Tello-Espinoza R, Penaccio C, Bouskill N, Cadillo-Quiroz H. Genes and genome-resolved metagenomics reveal the microbial functional make up of Amazon peatlands under geochemical gradients. Environ Microbiol 2023; 25:2388-2403. [PMID: 37501535 DOI: 10.1111/1462-2920.16469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
The Pastaza-Marañón Foreland Basin (PMFB) holds the most extensive tropical peatland area in South America. PMFB peatlands store ~7.07 Gt of organic carbon interacting with multiple microbial heterotrophic, methanogenic, and other aerobic/anaerobic respirations. Little is understood about the contribution of distinct microbial community members inhabiting tropical peatlands. Here, we studied the metagenomes of three geochemically distinct peatlands spanning minerotrophic, mixed, and ombrotrophic conditions. Using gene- and genome-centric approaches, we evaluate the functional potential of the underlying microbial communities. Abundance analyses show significant differences in C, N, P, and S acquisition genes. Furthermore, community interactions mediated by toxin-antitoxin and CRISPR-Cas systems were enriched in oligotrophic soils, suggesting that non-metabolic interactions may exert additional controls in low-nutrient environments. Additionally, we reconstructed 519 metagenome-assembled genomes spanning 28 phyla. Our analyses detail key differences across the geochemical gradient in the predicted microbial populations involved in degradation of organic matter, and the cycling of N and S. Notably, we observed differences in the nitric oxide (NO) reduction strategies between sites with high and low N2 O fluxes and found phyla putatively capable of both NO and sulfate reduction. Our findings detail how gene abundances and microbial populations are influenced by geochemical differences in tropical peatlands.
Collapse
Affiliation(s)
- Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Damien Finn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Franco Macedo-Tafur
- Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Rodil Tello-Espinoza
- Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Christa Penaccio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
133
|
Wu-Woods NJ, Barlow JT, Trigodet F, Shaw DG, Romano AE, Jabri B, Eren AM, Ismagilov RF. Microbial-enrichment method enables high-throughput metagenomic characterization from host-rich samples. Nat Methods 2023; 20:1672-1682. [PMID: 37828152 PMCID: PMC10885704 DOI: 10.1038/s41592-023-02025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/27/2023] [Indexed: 10/14/2023]
Abstract
Host-microbe interactions have been linked to health and disease states through the use of microbial taxonomic profiling, mostly via 16S ribosomal RNA gene sequencing. However, many mechanistic insights remain elusive, in part because studying the genomes of microbes associated with mammalian tissue is difficult due to the high ratio of host to microbial DNA in such samples. Here we describe a microbial-enrichment method (MEM), which we demonstrate on a wide range of sample types, including saliva, stool, intestinal scrapings, and intestinal mucosal biopsies. MEM enabled high-throughput characterization of microbial metagenomes from human intestinal biopsies by reducing host DNA more than 1,000-fold with minimal microbial community changes (roughly 90% of taxa had no significant differences between MEM-treated and untreated control groups). Shotgun sequencing of MEM-treated human intestinal biopsies enabled characterization of both high- and low-abundance microbial taxa, pathways and genes longitudinally along the gastrointestinal tract. We report the construction of metagenome-assembled genomes directly from human intestinal biopsies for bacteria and archaea at relative abundances as low as 1%. Analysis of metagenome-assembled genomes reveals distinct subpopulation structures between the small and large intestine for some taxa. MEM opens a path for the microbiome field to acquire deeper insights into host-microbe interactions by enabling in-depth characterization of host-tissue-associated microbial communities.
Collapse
Affiliation(s)
- Natalie J Wu-Woods
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Jacob T Barlow
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dustin G Shaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Anna E Romano
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred-Wegener-Institute for Marine and Polar Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Rustem F Ismagilov
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
134
|
Hay MC, Mitchell AC, Soares AR, Debbonaire AR, Mogrovejo DC, Els N, Edwards A. Metagenome-assembled genomes from High Arctic glaciers highlight the vulnerability of glacier-associated microbiota and their activities to habitat loss. Microb Genom 2023; 9. [PMID: 37937832 DOI: 10.1099/mgen.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.
Collapse
Affiliation(s)
- Melanie C Hay
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Andrew C Mitchell
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
| | - Andre R Soares
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Aliyah R Debbonaire
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Diana C Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nora Els
- Department of Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard and Jan Mayen
| |
Collapse
|
135
|
Zhang DF, He W, Shao Z, Ahmed I, Zhang Y, Li WJ, Zhao Z. EasyCGTree: a pipeline for prokaryotic phylogenomic analysis based on core gene sets. BMC Bioinformatics 2023; 24:390. [PMID: 37838689 PMCID: PMC10576351 DOI: 10.1186/s12859-023-05527-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Genome-scale phylogenetic analysis based on core gene sets is routinely used in microbiological research. However, the techniques are still not approachable for individuals with little bioinformatics experience. Here, we present EasyCGTree, a user-friendly and cross-platform pipeline to reconstruct genome-scale maximum-likehood (ML) phylogenetic tree using supermatrix (SM) and supertree (ST) approaches. RESULTS EasyCGTree was implemented in Perl programming languages and was built using a collection of published reputable programs. All the programs were precompiled as standalone executable files and contained in the EasyCGTree package. It can run after installing Perl language environment. Several profile hidden Markov models (HMMs) of core gene sets were prepared in advance to construct a profile HMM database (PHD) that was enclosed in the package and available for homolog searching. Customized gene sets can also be used to build profile HMM and added to the PHD via EasyCGTree. Taking 43 genomes of the genus Paracoccus as the testing data set, consensus (a variant of the typical SM), SM, and ST trees were inferred via EasyCGTree successfully, and the SM trees were compared with those inferred via the pipelines UBCG and bcgTree, using the metrics of cophenetic correlation coefficients (CCC) and Robinson-Foulds distance (topological distance). The results suggested that EasyCGTree can infer SM trees with nearly identical topology (distance < 0.1) and accuracy (CCC > 0.99) to those of trees inferred with the two pipelines. CONCLUSIONS EasyCGTree is an all-in-one automatic pipeline from input data to phylogenomic tree with guaranteed accuracy, and is much easier to install and use than the reference pipelines. In addition, ST is implemented in EasyCGTree conveniently and can be used to explore prokaryotic evolutionary signals from a different perspective. The EasyCGTree version 4 is freely available for Linux and Windows users at Github ( https://github.com/zdf1987/EasyCGTree4 ).
Collapse
Affiliation(s)
- Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization and College of Oceanography, Hohai University, Nanjing, 210098, China.
| | - Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization and College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zongze Shao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization and College of Oceanography, Hohai University, Nanjing, 210098, China.
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Iftikhar Ahmed
- National Agricultural Research Centre (NARC), Land Resources Research Institute (LRRI), National Culture Collection of Pakistan (NCCP), Islamabad, 45500, Pakistan
| | - Yuqin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Jun Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization and College of Oceanography, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization and College of Oceanography, Hohai University, Nanjing, 210098, China
| |
Collapse
|
136
|
Coe LSY, Fei C, Weston J, Amin SA. Phycobacter azelaicus gen. nov. sp. nov., a diatom symbiont isolated from the phycosphere of Asterionellopsis glacialis. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889154 DOI: 10.1099/ijsem.0.006104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A diatom-associated bacterium, designated as strain F10T, was isolated from a pure culture of the pennate diatom Asterionellopsis glacialis A3 and has since been used to characterize molecular mechanisms of symbiosis between phytoplankton and bacteria, including interactions using diatom-derived azelaic acid. Its origin from a hypersaline environment, combined with its capacity for quorum sensing, biofilm formation, and potential for dimethylsulfoniopropionate methylation/cleavage, suggest it is within the family Roseobacteraceae. Initial phylogenetic analysis of the 16S rRNA gene sequence placed this isolate within the Phaeobacter genus, but recent genomic and phylogenomic analyses show strain F10T is a separate lineage diverging from the genus Pseudophaeobacter. The genomic DNA G+C content is 60.0 mol%. The predominant respiratory quinone is Q-10. The major fatty acids are C18 : 1 ω7c and C16 : 0. Strain F10T also contains C10 : 03-OH and the furan-containing fatty acid 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on genomic, phylogenomic, phenotypic and chemotaxonomic characterizations, strain F10T represents a novel genus and species with the proposed name, Phycobacter azelaicus gen. nov. sp. nov. The type strain is F10T (=NCMA B37T=NCIMB 15470T=NRIC 2002T).
Collapse
Affiliation(s)
- Lisa S Y Coe
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Cong Fei
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - James Weston
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
- Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu Dhabi, Abu Dhabi, PO Box 129188, UAE
| |
Collapse
|
137
|
Dhulappa A, Rao MPN, Wang H, Rekadwad BN, Kang YQ. Proposal to transfer Bacillus massiliigorillae to the genus Peribacillus as Peribacillus massiliigorillae comb. nov., and Bacillus sinesaloumensis to the genus Ferdinandcohnia as Ferdinandcohnia sinesaloumensis comb. nov. Arch Microbiol 2023; 205:343. [PMID: 37755612 DOI: 10.1007/s00203-023-03675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
The present study was carried out to clarify the taxonomic position of Bacillus massiliigorillae and Bacillus sinesaloumensis. The 16S rRNA gene sequences extracted from the Bacillus sinesaloumensis Marseille-P3516T (FTOX00000000) and Bacillus massiliigorillae G2T (CAVL000000000) genomes showed 98.5 and 99.1% similarity with the type strains of Ferdinandcohnia humi and Peribacillus endoradicis, respectively. The amino acid identity (AAI) values of Bacillus sinesaloumensis Marseille-P3516T were higher with Ferdinandcohnia members, while Bacillus massiliigorillae G2T with Peribacillus members. In phylogenomic and phylogenetic trees, Bacillus sinesaloumensis Marseille-P3516T and Bacillus massiliigorillae G2T clade with members of the genera Ferdinandcohnia and Peribacillus, respectively. Based on the above results, we propose to transfer Bacillus massiliigorillae to the genus Peribacillus as Peribacillus massiliigorillae comb. nov., and Bacillus sinesaloumensis to the genus Ferdinandcohnia as Ferdinandcohnia sinesaloumensis comb. nov.
Collapse
Affiliation(s)
- Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile
| | - Haijie Wang
- Department of Clinical Laboratory, Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, Guizhou, 550081, China
| | - Bhagwan Narayan Rekadwad
- Department of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Talent Base of Microbiology and Human Health of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, GuiyangGuizhou, 550025, China.
| |
Collapse
|
138
|
Zhang K, Narsing Rao MP, Banerjee A, Wang J, Ning SY, Zi J, Wang Y, Wan Y. Description of Tellurirhabdus bombi sp. nov., Isolated from Bumblebee. Curr Microbiol 2023; 80:337. [PMID: 37668731 DOI: 10.1007/s00284-023-03440-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
A Gram-stain-negative, aerobic, non-motile, and rod-shaped bacterium, designated IE-0392T, was isolated from a bumblebee. The 16S rRNA gene sequence (highest 16S rRNA gene sequence similarity with the type strain of Tellurirhabdus rosea (90.0%) and phylogenetic analysis suggest that strain IE-0392T was a member of the genus Tellurirhabdus. Strain IE-0392T optimally grew at 25 ℃ and pH 7.0. Menaquinone 7 (MK-7) was the only isoprenoid quinone present in strain IE-0392T. The major fatty acids (> 10%) of strain IE-0392T were iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The polar lipids of strain IE-0392T were phosphatidylethanolamine, phosphatidylserine, unidentified aminophospholipids, unidentified aminolipid, unidentified phospholipid, and unidentified lipids. The genomic DNA G + C content of strain IE-0392T was 48.8%. The amino acid identity (AAI) and the average nucleotide identity (ANI) values suggest that strain IE-0392T is a novel member of the genus Tellurirhabdus. The results suggest that strain IE-0392T represents a novel species of the genus Tellurirhabdus, for which the name Tellurirhabdus bombi sp. nov., is proposed. The type strain is IE-0392T (= GDMCC 1.2794T = JCM 35040T).
Collapse
Affiliation(s)
- Kun Zhang
- Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile
| | - Aparna Banerjee
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile
| | - Jun Wang
- Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | | | - Jing Zi
- Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Yan Wang
- Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Yi Wan
- Shaanxi Institute of Microbiology, Xi'an, 710043, China.
| |
Collapse
|
139
|
Zajkowski T, Lee MD, Sharma S, Vallota-Eastman A, Kuska M, Malczewska M, Rothschild LJ. Conserved functions of prion candidates suggest a primeval role of protein self-templating. Proteins 2023; 91:1298-1315. [PMID: 37519023 DOI: 10.1002/prot.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Universities Space Research Association at NASA Ames Research Center, Mountain View, California, USA
- Polish Astrobiology Society, Warsaw, Poland
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- KBR, NASA Ames Research Center, Mountain View, California, USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Alec Vallota-Eastman
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Mikołaj Kuska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Małgorzata Malczewska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Mountain View, California, USA
| |
Collapse
|
140
|
Ettinger CL, Ostovar T, Yacoub M, Ahrendt S, Hice RH, Federici BA, Stajich JE. Genomes and transcriptomes help unravel the complex life cycle of the blastoclad fungus, Coelomomyces lativittatus, an obligate parasite of mosquitoes and microcrustaceans. Mycologia 2023; 115:630-647. [PMID: 37494633 DOI: 10.1080/00275514.2023.2228182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Species of the phylum Blastocladiomycota, early-diverging zoosporic (flagellated) lineages of fungi, are vastly understudied. This phylum includes the genus Coelomomyces, which consists of more than 80 fungal species that are obligate parasites of arthropods. Known Coelomomyces species lack a complete asexual life cycle, instead surviving through an obligate heterecious alternation of generations life cycle. Despite their global distribution and interesting life cycle, little is known about the genomics of any Coelomomyces species. To address this, we generated three draft-level genomes and annotations for C. lativittatus representing its haploid meiospore, orange gamete, and amber gamete life stages. These draft genome assemblies ranged in size from 5002 to 5799 contigs, with a total length of 19.8-22.8 Mb and a mean of 7416 protein-coding genes. We then demonstrated the utility of these genomes by combining the draft annotations as a reference for analysis of C. lativittatus transcriptomes. We analyzed transcriptomes from across host-associated life stages, including infected larvae and excised mature sporangia from the mosquito Anopheles quadrimaculatus. We identified differentially expressed genes and enriched GO terms both across and within life stages and used these to make hypotheses about C. lativittatus biology. Generally, we found the C. lativittatus transcriptome to be a complex and dynamic expression landscape; GO terms related to metabolism and transport processes were enriched during infection and terms related to dispersal were enriched during sporulation. We further identified five high mobility group (HMG)-box genes in C. lativittatus, three belonging to clades with mating type (MAT) loci from other fungi, as well as four ortholog expansions in C. lativittatus compared with other fungi. The C. lativittatus genomes and transcriptomes reported here are a valuable resource and may be leveraged toward furthering understanding of the biology of these and other early-diverging fungal lineages.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Talieh Ostovar
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
- UCR/SDSU Joint Doctoral Program in Evolutionary Biology, San Diego State University, San Diego, California 92182
| | - Mark Yacoub
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Steven Ahrendt
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, Riverside, California 92521
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, Riverside, California 92521
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California 92521
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
141
|
Kennedy MS, Zhang M, DeLeon O, Bissell J, Trigodet F, Lolans K, Temelkova S, Carroll KT, Fiebig A, Deutschbauer A, Sidebottom AM, Lake J, Henry C, Rice PA, Bergelson J, Chang EB. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Cell Rep 2023; 42:113009. [PMID: 37598339 PMCID: PMC10528517 DOI: 10.1016/j.celrep.2023.113009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
To understand how a bacterium ultimately succeeds or fails in adapting to a new host, it is essential to assess the temporal dynamics of its fitness over the course of colonization. Here, we introduce a human-derived commensal organism, Bacteroides thetaiotaomicron (Bt), into the guts of germ-free mice to determine whether and how the genetic requirements for colonization shift over time. Combining a high-throughput functional genetics assay and transcriptomics, we find that gene usage changes drastically during the first days of colonization, shifting from high expression of amino acid biosynthesis genes to broad upregulation of diverse polysaccharide utilization loci. Within the first week, metabolism becomes centered around utilization of a predominant dietary oligosaccharide, and these changes are largely sustained through 6 weeks of colonization. Spontaneous mutations in wild-type Bt also evolve around this locus. These findings highlight the importance of considering temporal colonization dynamics in developing more effective microbiome-based therapies.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Manjing Zhang
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Orlando DeLeon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jacie Bissell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Karen Lolans
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sara Temelkova
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Department of Biomedical Sciences, The University of Chicago, Chicago, IL, USA
| | - Joash Lake
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Chris Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Joy Bergelson
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
142
|
Chan DTC, Baldwin GS, Bernstein HC. Revealing the Host-Dependent Nature of an Engineered Genetic Inverter in Concordance with Physiology. BIODESIGN RESEARCH 2023; 5:0016. [PMID: 37849456 PMCID: PMC10432152 DOI: 10.34133/bdr.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 10/19/2023] Open
Abstract
Broad-host-range synthetic biology is an emerging frontier that aims to expand our current engineerable domain of microbial hosts for biodesign applications. As more novel species are brought to "model status," synthetic biologists are discovering that identically engineered genetic circuits can exhibit different performances depending on the organism it operates within, an observation referred to as the "chassis effect." It remains a major challenge to uncover which genome-encoded and biological determinants will underpin chassis effects that govern the performance of engineered genetic devices. In this study, we compared model and novel bacterial hosts to ask whether phylogenomic relatedness or similarity in host physiology is a better predictor of genetic circuit performance. This was accomplished using a comparative framework based on multivariate statistical approaches to systematically demonstrate the chassis effect and characterize the performance dynamics of a genetic inverter circuit operating within 6 Gammaproteobacteria. Our results solidify the notion that genetic devices are strongly impacted by the host context. Furthermore, we formally determined that hosts exhibiting more similar metrics of growth and molecular physiology also exhibit more similar performance of the genetic inverter, indicating that specific bacterial physiology underpins measurable chassis effects. The result of this study contributes to the field of broad-host-range synthetic biology by lending increased predictive power to the implementation of genetic devices in less-established microbial hosts.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Hans C. Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT, The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
143
|
Hessler T, Huddy RJ, Sachdeva R, Lei S, Harrison STL, Diamond S, Banfield JF. Vitamin interdependencies predicted by metagenomics-informed network analyses and validated in microbial community microcosms. Nat Commun 2023; 14:4768. [PMID: 37553333 PMCID: PMC10409787 DOI: 10.1038/s41467-023-40360-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Metagenomic or metabarcoding data are often used to predict microbial interactions in complex communities, but these predictions are rarely explored experimentally. Here, we use an organism abundance correlation network to investigate factors that control community organization in mine tailings-derived laboratory microbial consortia grown under dozens of conditions. The network is overlaid with metagenomic information about functional capacities to generate testable hypotheses. We develop a metric to predict the importance of each node within its local network environments relative to correlated vitamin auxotrophs, and predict that a Variovorax species is a hub as an important source of thiamine. Quantification of thiamine during the growth of Variovorax in minimal media show high levels of thiamine production, up to 100 mg/L. A few of the correlated thiamine auxotrophs are predicted to produce pantothenate, which we show is required for growth of Variovorax, supporting that a subset of vitamin-dependent interactions are mutualistic. A Cryptococcus yeast produces the B-vitamin pantothenate, and co-culturing with Variovorax leads to a 90-130-fold fitness increase for both organisms. Our study demonstrates the predictive power of metagenome-informed, microbial consortia-based network analyses for identifying microbial interactions that underpin the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Tomas Hessler
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert J Huddy
- Reasearch Office, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rohan Sachdeva
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Shufei Lei
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Susan T L Harrison
- The Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
- The Future Water Institute, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, University of Cape Town, Cape Town, South Africa
| | - Spencer Diamond
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA.
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- The Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
144
|
Aronson HS, Thomas C, Bhattacharyya MK, Eckstein SR, Jensen SR, Barco RA, Macalady JL, Amend JP. Thiovibrio frasassiensis gen. nov., sp. nov., an autotrophic, elemental sulphur disproportionating bacterium isolated from sulphidic karst sediment, and proposal of Thiovibrionaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37609857 DOI: 10.1099/ijsem.0.006003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A novel, autotrophic, mesophilic bacterium, strain RS19-109T, was isolated from sulphidic stream sediments in the Frasassi Caves, Italy. The cells of this strain grew chemolithoautotrophically under anaerobic conditions while disproportionating elemental sulphur (S0) and thiosulphate, but not sulphite with bicarbonate/CO2 as a carbon source. Autotrophic growth was also observed with molecular hydrogen as an electron donor, and S0, sulphate, thiosulphate, nitrate and ferric iron as electron acceptors. Oxygen was not used as an electron acceptor and sulphide was not used as an electron donor. Weak growth was observed with sulphate as an electron acceptor and organic carbon as an electron donor and carbon source. The strain also showed weak growth by fermentation of tryptone. It grew at pH 5.5–7.5 (optimum, pH 7.0), 4–35 °C (optimum, 30 °C) and between 0–1.7 % NaCl. Strain RS19-109T was found to be phylogenetically distinct based on 16S rRNA gene sequence similarity (89.2 %) to its closest relative,
Desulfurivibrio alkaliphilus
AHT2T. The draft genome sequence for strain RS19-109T had average nucleotide identity, average amino acid identity and in silico DNA–DNA hybridization values of 72.2, 63.0 and 18.3 %, respectively, compared with the genome sequence of
D. alkaliphilus
AHT2T. On the basis of its physiological and genomic properties, strain RS19-109T is proposed as the type strain of a novel species of a novel genus, Thiovibrio frasassiensis gen. nov., sp. nov. A novel family, Thiovibrionaceae fam. nov., is proposed to accommodate Thiovibrio within the order
Desulfobulbales
. Strain RS19-109T has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 115074T) and the American Type Culture Collection (=ATCC TSD-325T).
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
| | - Cais Thomas
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Maia K Bhattacharyya
- Environmental Studies Program, University of Southern California, College Academic Services Building, Los Angeles, CA 90089, USA
| | - Shaan R Eckstein
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Sophia R Jensen
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, 503 Deike Building University Park, PA 16802, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
- Department of Earth Sciences, University of Southern California, Zumberge Hall of Science, Los Angeles, CA 90089, USA
| |
Collapse
|
145
|
Zhang R, Aris-Brosou S, Storck V, Liu J, Abdelhafiz MA, Feng X, Meng B, Poulain AJ. Mining-impacted rice paddies select for Archaeal methylators and reveal a putative (Archaeal) regulator of mercury methylation. ISME COMMUNICATIONS 2023; 3:74. [PMID: 37454192 PMCID: PMC10349881 DOI: 10.1038/s43705-023-00277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.21-513 mg kg-1 dry wt. soil; MeHg: 1.21-6.82 ng g-1 dry wt. soil), we resorted to metagenomics to determine the microbial determinants involved in MeHg production under contrasted contamination settings. We show that Hg methylating Archaea, along with methane-cycling genes, were enriched in severely contaminated paddy soils. Metagenome-resolved Genomes of novel putative Hg methylators belonging to Nitrospinota (UBA7883), with poorly resolved taxonomy despite high completeness, showed evidence of facultative anaerobic metabolism and adaptations to fluctuating redox potential. Furthermore, we found evidence of environmental filtering effects that influenced the phylogenies of not only hgcA genes under different THg concentrations, but also of two housekeeping genes, rpoB and glnA, highlighting the need for further experimental validation of whether THg drives the evolution of hgcAB. Finally, assessment of the genomic environment surrounding hgcAB suggests that this gene pair may be regulated by an archaeal toxin-antitoxin (TA) system, instead of the more frequently found arsR-like genes in bacterial methylators. This suggests the presence of distinct hgcAB regulation systems in bacteria and archaea. Our results support the emerging role of Archaea in MeHg cycling under mining-impacted environments and shed light on the differential control of the expression of genes involved in MeHg formation between Archaea and Bacteria.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Veronika Storck
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | | |
Collapse
|
146
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
147
|
Mateos K, Chappell G, Klos A, Le B, Boden J, Stüeken E, Anderson R. The evolution and spread of sulfur cycling enzymes reflect the redox state of the early Earth. SCIENCE ADVANCES 2023; 9:eade4847. [PMID: 37418533 PMCID: PMC10328410 DOI: 10.1126/sciadv.ade4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
The biogeochemical sulfur cycle plays a central role in fueling microbial metabolisms, regulating the Earth's redox state, and affecting climate. However, geochemical reconstructions of the ancient sulfur cycle are confounded by ambiguous isotopic signals. We use phylogenetic reconciliation to ascertain the timing of ancient sulfur cycling gene events across the tree of life. Our results suggest that metabolisms using sulfide oxidation emerged in the Archean, but those involving thiosulfate emerged only after the Great Oxidation Event. Our data reveal that observed geochemical signatures resulted not from the expansion of a single type of organism but were instead associated with genomic innovation across the biosphere. Moreover, our results provide the first indication of organic sulfur cycling from the Mid-Proterozoic onwards, with implications for climate regulation and atmospheric biosignatures. Overall, our results provide insights into how the biological sulfur cycle evolved in tandem with the redox state of the early Earth.
Collapse
Affiliation(s)
- Katherine Mateos
- Carleton College, Northfield, MN, USA
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Garrett Chappell
- Carleton College, Northfield, MN, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aya Klos
- Carleton College, Northfield, MN, USA
| | - Bryan Le
- Carleton College, Northfield, MN, USA
| | - Joanne Boden
- University of St. Andrews, School of Earth and Environmental Sciences, Bute Building, Queen’s Terrace, St Andrews, Fife KY16 9TS, UK
| | - Eva Stüeken
- University of St. Andrews, School of Earth and Environmental Sciences, Bute Building, Queen’s Terrace, St Andrews, Fife KY16 9TS, UK
| | - Rika Anderson
- Carleton College, Northfield, MN, USA
- NASA NExSS Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
148
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenetic affiliations and genomic characterization of novel bacterial species and their abundance in the International Space Station. RESEARCH SQUARE 2023:rs.3.rs-3126314. [PMID: 37461605 PMCID: PMC10350232 DOI: 10.21203/rs.3.rs-3126314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D. Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
149
|
Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, Yu FB, Jain S, Neff N, Jha AR, Sonnenburg ED, Sonnenburg JL. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 2023; 186:3111-3124.e13. [PMID: 37348505 PMCID: PMC10330870 DOI: 10.1016/j.cell.2023.05.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/12/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.
Collapse
Affiliation(s)
- Matthew M Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Dylan Dahan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Surya Tripathi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sean P Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
150
|
Thieringer PH, Boyd ES, Templeton AS, Spear JR. Metapangenomic investigation provides insight into niche differentiation of methanogenic populations from the subsurface serpentinizing environment, Samail Ophiolite, Oman. Front Microbiol 2023; 14:1205558. [PMID: 37465028 PMCID: PMC10350532 DOI: 10.3389/fmicb.2023.1205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|