101
|
Duan W, Jiang M, Jin J. Metabolism in HD: still a relevant mechanism? Mov Disord 2014; 29:1366-74. [PMID: 25124273 DOI: 10.1002/mds.25992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
The polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of Huntington's disease (HD). Although the underlying mechanisms by which mutant huntingtin causes neuronal dysfunction and degeneration have not been fully elucidated, compelling evidence suggests that mitochondrial dysfunction and compromised energy metabolism are key players in HD pathogenesis. Longitudinal studies of HD subjects have shown reductions in glucose utilization before the disease clinical onset. Preferential striatal neurodegeneration, a hallmark of HD pathogenesis, also has been associated with interrupted energy metabolism. Data from genetic HD models indicate that mutant huntingtin disrupts mitochondrial bioenergetics and prevents adenosine triphosphate (ATP) generation, implying altered energy metabolism as an important component of HD pathogenesis. Here we revisit the evidence of abnormal energy metabolism in the central nervous system of HD patients, review our current understanding of the molecular mechanisms underlying abnormal metabolism induced by mutant huntingtin, and discuss the promising therapeutic development by halting abnormal metabolism in HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
102
|
Petersen MH, Budtz-Jørgensen E, Sørensen SA, Nielsen JE, Hjermind LE, Vinther-Jensen T, Nielsen SMB, Nørremølle A. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion 2014; 17:14-21. [PMID: 24836434 DOI: 10.1016/j.mito.2014.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/03/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterised by movement disorder, cognitive symptoms and psychiatric symptoms with predominantly adult-onset. The mutant huntingtin protein leads to mitochondrial dysfunction in blood leukocytes. This discovery led to the investigation of the mitochondrial DNA (mtDNA) copy number relative to nuclear DNA (nDNA) in leukocytes from carriers of the HD mutation compared to healthy individuals. We found significantly reduced mtDNA/nDNA in HD mutation carriers compared to controls. A longitudinal study of archive DNA sample pairs from HD patients revealed a biphasic pattern of increasing mtDNA/nDNA before onset of motor symptoms and decreasing mtDNA/nDNA after.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Esben Budtz-Jørgensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sven Asger Sørensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jørgen Erik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Lena Elisabeth Hjermind
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Tua Vinther-Jensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Signe Marie Borch Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
103
|
Procaccio V, Bris C, Chao de la Barca J, Oca F, Chevrollier A, Amati-Bonneau P, Bonneau D, Reynier P. Perspectives of drug-based neuroprotection targeting mitochondria. Rev Neurol (Paris) 2014; 170:390-400. [DOI: 10.1016/j.neurol.2014.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 01/20/2023]
|
104
|
Izzo A, Manco R, Bonfiglio F, Calì G, De Cristofaro T, Patergnani S, Cicatiello R, Scrima R, Zannini M, Pinton P, Conti A, Nitsch L. NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Hum Mol Genet 2014; 23:4406-19. [PMID: 24698981 DOI: 10.1093/hmg/ddu157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.
Collapse
Affiliation(s)
- Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosanna Manco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Tiziana De Cristofaro
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
105
|
Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18. [PMID: 24633813 DOI: 10.1007/s12035-014-8663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT). One prominent target of the mutant huntingtin protein (mhtt) is the mitochondrion, affecting its morphology, distribution, and function. Thus, mitochondria have been suggested as potential therapeutic targets for the treatment of HD. Olesoxime, a cholesterol-like compound, promotes motor neuron survival and neurite outgrowth in vitro, and its effects are presumed to occur via a direct interaction with mitochondrial membranes (MMs). We examined the properties of MMs isolated from cell and animal models of HD as well as the effects of olesoxime on MM fluidity and cholesterol levels. MMs isolated from brains of aged Hdh Q111/Q111 knock-in mice showed a significant decrease in 1,6-diphenyl-hexatriene (DPH) anisotropy, which is inversely correlated with membrane fluidity. Similar increases in MM fluidity were observed in striatal STHdh Q111/Q111 cells as well as in MMs isolated from brains of BACHD transgenic rats. Treatment of STHdh cells with olesoxime decreased the fluidity of isolated MMs. Decreased membrane fluidity was also measured in olesoxime-treated MMs isolated from brains of HD knock-in mice. In both models, treatment with olesoxime restored HD-specific changes in MMs. Accordingly, olesoxime significantly counteracted the mhtt-induced increase in MM fluidity of MMs isolated from brains of BACHD rats after 12 months of treatment in vivo, possibly by enhancing MM cholesterol levels. Thus, olesoxime may represent a novel pharmacological tool to treat mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Janett Eckmann
- Department of Pharmacology, Biocenter, Goethe-University Campus Riedberg, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Chandra A, Johri A, Beal MF. Prospects for neuroprotective therapies in prodromal Huntington's disease. Mov Disord 2014; 29:285-93. [PMID: 24573776 DOI: 10.1002/mds.25835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a prototypical dominantly inherited neurodegenerative disorder characterized by progressive cognitive deterioration, psychiatric disturbances, and a movement disorder. The genetic cause of the illness is a CAG repeat expansion in the huntingtin gene, which leads to a polyglutamine expansion in the huntingtin protein. The exact mechanism by which mutant huntingtin causes HD is unknown, but it causes abnormalities in gene transcription as well as both mitochondrial dysfunction and oxidative damage. Because the penetrance of HD is complete with CAG repeats greater than 39, patients can be diagnosed well before disease onset with genetic testing. Longitudinal studies of HD patients before disease onset have shown that subtle cognitive and motor deficits occur as much as 10 years before onset, as do reductions in glucose utilization and striatal atrophy. An increase in inflammation, as shown by elevated interleukin-6, occurs approximately 15 years before onset. Detection of these abnormalities may be useful in defining an optimal time for disease intervention to try to slow or halt the degenerative process. Although reducing gene expression with small interfering RNA or short hairpin RNA is an attractive approach, other approaches targeting energy metabolism, inflammation, and oxidative damage may be more easily and rapidly moved into the clinic. The recent PREQUEL study of coenzyme Q10 in presymptomatic gene carriers showed the feasibility of carrying out clinical trials to slow or halt onset of HD. We review both the earliest detectable clinical and laboratory manifestations of HD, as well as potential neuroprotective therapies that could be utilized in presymptomatic HD.
Collapse
Affiliation(s)
- Abhishek Chandra
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York, USA
| | | | | |
Collapse
|
107
|
Ørngreen MC, Madsen KL, Preisler N, Andersen G, Vissing J, Laforêt P. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology 2014; 82:607-13. [PMID: 24453079 DOI: 10.1212/wnl.0000000000000118] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess whether bezafibrate increases fatty acid oxidation (FAO) and lowers heart rate (HR) during exercise in patients with carnitine palmitoyltransferase (CPT) II and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. METHODS This was a 3-month, randomized, double-blind, crossover study of bezafibrate in patients with CPT II (n = 5) and VLCAD (n = 5) deficiencies. Primary outcome measures were changes in FAO, measured with stable-isotope methodology and indirect calorimetry, and changes in HR during exercise. RESULTS Bezafibrate lowered low-density lipoprotein, triglyceride, and free fatty acid concentrations; however, there were no changes in palmitate oxidation, FAO, or HR during exercise. CONCLUSION Bezafibrate does not improve clinical symptoms or FAO during exercise in patients with CPT II and VLCAD deficiencies. These findings indicate that previous in vitro studies suggesting a therapeutic potential for fibrates in disorders of FAO do not translate into clinically meaningful effects in vivo. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that bezafibrate 200 mg 3 times daily is ineffective in improving changes in FAO and HR during exercise in adults with CPT II and VLCAD deficiencies.
Collapse
Affiliation(s)
- Mette Cathrine Ørngreen
- From the Neuromuscular Clinic and Research Unit (M.C.Ø, K.L.M., N.P., G.A., J.V.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; and Centre de Référence de pathologie neuromusculaire Paris-Est (P.L.), Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, France
| | | | | | | | | | | |
Collapse
|
108
|
Choi J, Chandrasekaran K, Inoue T, Muragundla A, Russell JW. PGC-1α regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiol Dis 2014; 64:118-30. [PMID: 24423644 DOI: 10.1016/j.nbd.2014.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial degeneration is considered to play an important role in the development of diabetic peripheral neuropathy in humans. Mitochondrial degeneration and the corresponding protein regulation associated with the degeneration were studied in an animal model of diabetic neuropathy. PGC-1α and its-regulated transcription factors including TFAM and NRF1, which are master regulators of mitochondrial biogenesis, are significantly downregulated in streptozotocin diabetic dorsal root ganglion (DRG) neurons. Diabetic mice develop peripheral neuropathy, loss of mitochondria, decreased mitochondrial DNA content and increased protein oxidation. Importantly, this phenotype is exacerbated in PGC-1α (-/-) diabetic mice, which develop a more severe neuropathy with reduced mitochondrial DNA and a further increase in protein oxidation. PGC-1α (-/-) diabetic mice develop an increase in total cholesterol and triglycerides, and a decrease in TFAM and NRF1 protein levels. Loss of PGC-1α causes severe mitochondrial degeneration with vacuolization in DRG neurons, coupled with reduced state 3 and 4 respiration, reduced expression of oxidative stress response genes and an increase in protein oxidation. In contrast, overexpression of PGC-1α in cultured adult mouse neurons prevents oxidative stress associated with increased glucose levels. The study provides new insights into the role of PGC-1α in mitochondrial regeneration in peripheral neurons and suggests that therapeutic modulation of PGC-1α function may be an attractive approach for treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Joungil Choi
- VA Maryland Health Care System, University of Maryland, Baltimore, MD, USA; Department of Neurology, University of Maryland, Baltimore, MD, USA
| | - Krish Chandrasekaran
- VA Maryland Health Care System, University of Maryland, Baltimore, MD, USA; Department of Neurology, University of Maryland, Baltimore, MD, USA
| | - Tatsuya Inoue
- VA Maryland Health Care System, University of Maryland, Baltimore, MD, USA; Department of Neurology, University of Maryland, Baltimore, MD, USA
| | - Anjaneyulu Muragundla
- VA Maryland Health Care System, University of Maryland, Baltimore, MD, USA; Department of Neurology, University of Maryland, Baltimore, MD, USA
| | - James W Russell
- VA Maryland Health Care System, University of Maryland, Baltimore, MD, USA; Department of Neurology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
109
|
Dumont M, Stack C, Elipenahli C, Jainuddin S, Launay N, Gerges M, Starkova N, Starkov AA, Calingasan NY, Tampellini D, Pujol A, Beal MF. PGC-1α overexpression exacerbates β-amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB J 2014; 28:1745-55. [PMID: 24398293 DOI: 10.1096/fj.13-236331] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) interacts with various transcription factors involved in energy metabolism and in the regulation of mitochondrial biogenesis. PGC-1α mRNA levels are reduced in a number of neurodegenerative diseases and contribute to disease pathogenesis, since increased levels ameliorate behavioral defects and neuropathology of Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PGC-1α and its downstream targets are reduced both in postmortem brain tissue of patients with Alzheimer's disease (AD) and in transgenic mouse models of AD. Therefore, we investigated whether increased expression of PGC-1α would exert beneficial effects in the Tg19959 transgenic mouse model of AD; Tg19959 mice express the human amyloid precursor gene (APP) with 2 familial AD mutations and develop increased β-amyloid levels, plaque deposition, and memory deficits by 2-3 mo of age. Rather than an improvement, the cross of the Tg19959 mice with mice overexpressing human PGC-1α exacerbated amyloid and tau accumulation. This was accompanied by an impairment of proteasome activity. PGC-1α overexpression induced mitochondrial abnormalities, neuronal cell death, and an exacerbation of behavioral hyperactivity in the Tg19959 mice. These findings show that PGC-1α overexpression exacerbates the neuropathological and behavioral deficits that occur in transgenic mice with mutations in APP that are associated with human AD.
Collapse
Affiliation(s)
- Magali Dumont
- 1Weill Cornell Medical College, Department of Neurology and Neuroscience, 525 East 68th St., Rm. A569A, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des 2014; 20:5574-93. [PMID: 24606804 PMCID: PMC4823001 DOI: 10.2174/1381612820666140305224906] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/03/2014] [Indexed: 11/22/2022]
Abstract
In the developing and mature brain, mitochondria act as central hubs for distinct but interwined pathways, necessary for neural development, survival, activity, connectivity and plasticity. In neurons, mitochondria assume diverse functions, such as energy production in the form of ATP, calcium buffering and generation of reactive oxygen species. Mitochondrial dysfunction contributes to a range of neurodevelopmental and neurodegenerative diseases, making mitochondria a potential target for pharmacological-based therapies. Pathogenesis associated with these diseases is accompanied by an increase in mitochondrial mass, a quantitative increase to overcome a qualitative deficiency due to mutated mitochondrial proteins that are either nuclear- or mitochondrial-encoded. This compensatory biological response is maladaptive, as it fails to sufficiently augment the bioenergetically functional mitochondrial mass and correct for the ATP deficit. Since regulation of neuronal mitochondrial biogenesis has been scantily investigated, our current understanding on the network of transcriptional regulators, co-activators and signaling regulators mainly derives from other cellular systems. The purpose of this review is to present the current state of our knowledge and understanding of the transcriptional and signaling cascades controlling neuronal mitochondrial biogenesis and the various therapeutic approaches to enhance the functional mitochondrial mass in the context of neurodevelopmental disorders and adult-onset neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Regenerative Biology, 2300 I Street N.W., Washington DC 20037.
| |
Collapse
|
111
|
Hofer A, Noe N, Tischner C, Kladt N, Lellek V, Schauß A, Wenz T. Defining the action spectrum of potential PGC-1α activators on a mitochondrial and cellular level in vivo. Hum Mol Genet 2013; 23:2400-15. [PMID: 24334768 DOI: 10.1093/hmg/ddt631] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Previous studies have demonstrated a therapeutic benefit of pharmaceutical PGC-1α activation in cellular and murine model of disorders linked to mitochondrial dysfunction. While in some cases, this effect seems to be clearly associated with boosting of mitochondrial function, additional alterations as well as tissue- and cell-type-specific effects might play an important role. We initiated a comprehensive analysis of the effects of potential PGC-1α-activating drugs and pharmaceutically targeted the PPAR (bezafibrate, rosiglitazone), AMPK (AICAR, metformin) and Sirt1 (resveratrol) pathways in HeLa cells, neuronal cells and PGC-1α-deficient MEFs to get insight into cell type specificity and PGC-1α dependence of their working action. We used bezafibrate as a model drug to assess the effect on a tissue-specific level in a murine model. Not all analyzed drugs activate the PGC pathway or alter mitochondrial protein levels. However, they all affect supramolecular assembly of OXPHOS complexes and OXPHOS protein stability. In addition, a clear drug- and cell-type-specific influence on several cellular stress pathways as well as on post-translational modifications could be demonstrated, which might be relevant to fully understand the action of the analyzed drugs in the disease state. Importantly, the effect on the activation of mitochondrial biogenesis and stress response program upon drug treatment is PGC-1α dependent in MEFs demonstrating not only the pleiotropic effects of this molecule but points also to the working mechanism of the analyzed drugs. The definition of the action spectrum of the different drugs forms the basis for a defect-specific compensation strategy and a future personalized therapeutic approach.
Collapse
Affiliation(s)
- Annette Hofer
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
112
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
113
|
Noe N, Dillon L, Lellek V, Diaz F, Hida A, Moraes CT, Wenz T. RETRACTED: Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion 2013; 13:417-26. [PMID: 23261681 PMCID: PMC3755107 DOI: 10.1016/j.mito.2012.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This retraction was suggested by the University of Cologne Investigation committee and seconded by the authors who the journal was able to contact (Wenz, T., Dillon, L., Diaz, F., Hida, A., and Moraes, C.T.). Following an investigation of the last author, Dr. Tina Wenz, by the University of Cologne, Germany, the university determined that data presented in this article have been inappropriately manipulated https://www.portal.uni-koeln.de/9015.html?&tx_news_pi1%5Bnews%5D=4335&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=1deb8399d7f796d65ca9f6ae4764a1ce. Specifically, western blot images in Figure 5F (tubulin in cortex), 2F (COXI in hippocampus) and 3B (Sod2 in hippocampus) were re-used from an earlier article published elsewhere [Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging" Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, and Moraes CT. Proc Natl Acad Sci U S A. 2009;106:20405-10, doi: 10.1073/pnas.0911570106] representing different experimental findings. Therefore, whether or not the main conclusions are still valid, the authors request retraction of this publication because the scientific integrity of the study was compromised. The authors sincerely apologize to the scientific community.
Collapse
Affiliation(s)
- Natalie Noe
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Lloye Dillon
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Veronika Lellek
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Francisca Diaz
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Aline Hida
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Tina Wenz
- Institute for Genetics and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
114
|
Johri A, Chandra A, Flint Beal M. PGC-1α, mitochondrial dysfunction, and Huntington's disease. Free Radic Biol Med 2013; 62:37-46. [PMID: 23602910 PMCID: PMC3722269 DOI: 10.1016/j.freeradbiomed.2013.04.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
The constant high energy demand of neurons makes them rely heavily on their mitochondria. Dysfunction of mitochondrial energy metabolism leads to reduced ATP production, impaired calcium buffering, and generation of reactive oxygen species. There is strong evidence that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Huntington's disease (HD). Studies over the past few years have implicated an impaired function of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional master coregulator of mitochondrial biogenesis, metabolism, and antioxidant defenses, in causing mitochondrial dysfunction in HD. Here we have attempted to discuss in a nutshell, the key findings on the role of PGC-1α in mitochondrial dysfunction in HD and its potential as a therapeutic target to cure HD.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA.
| | - Abhishek Chandra
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
115
|
Moraes CT. Adrenoleukodystrophy and the mitochondrial connection: clues for supplementing Lorenzo's oil. ACTA ACUST UNITED AC 2013; 136:2339-41. [PMID: 23842565 DOI: 10.1093/brain/awt189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos T Moraes
- University of Miami, Miller School of Medicine, Miami, FL 33133, USA.
| |
Collapse
|
116
|
Damiano M, Diguet E, Malgorn C, D'Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D, Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Déglon N, Beal MF, Brouillet E. A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 2013; 22:3869-82. [PMID: 23720495 PMCID: PMC3766181 DOI: 10.1093/hmg/ddt242] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron–Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment.
Collapse
Affiliation(s)
- Maria Damiano
- The first two authors contributed equally to the present study
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhu J, Wang KZQ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 2013; 9:1663-76. [PMID: 23787782 DOI: 10.4161/auto.24135] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are highly dynamic organelles of crucial importance to the proper functioning of neuronal, cardiac and other cell types dependent upon aerobic efficiency. Mitochondrial dysfunction has been implicated in numerous human conditions, to include cancer, metabolic diseases, neurodegeneration, diabetes, and aging. In recent years, mitochondrial turnover by macroautophagy (mitophagy) has captured the limelight, due in part to discoveries that genes linked to Parkinson disease regulate this quality control process. A rapidly growing literature is clarifying effector mechanisms that underlie the process of mitophagy; however, factors that regulate positive or negative cellular outcomes have been less studied. Here, we review the literature on two major pathways that together may determine cellular adaptation vs. cell death in response to mitochondrial dysfunction. Mitochondrial biogenesis and mitophagy represent two opposing, but coordinated processes that determine mitochondrial content, structure, and function. Recent data indicate that the capacity to undergo mitochondrial biogenesis, which is dysregulated in disease states, may play a key role in determining cell survival following mitophagy-inducing injuries. The current literature on major pathways that regulate mitophagy and mitochondrial biogenesis is summarized, and mechanisms by which the interplay of these two processes may determine cell fate are discussed. We conclude that in primary neurons and other mitochondrially dependent cells, disruptions in any phase of the mitochondrial recycling process can contribute to cellular dysfunction and disease. Given the emerging importance of crosstalk among regulators of mitochondrial function, autophagy, and biogenesis, signaling pathways that coordinate these processes may contribute to therapeutic strategies that target or regulate mitochondrial turnover and regeneration.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Pathology; Division of Neuropathology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | | | | |
Collapse
|
118
|
Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease. J Neurochem 2013; 125:410-9. [PMID: 23373812 DOI: 10.1111/jnc.12190] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is a devastating genetic neurodegenerative disease caused by CAG trinucleotide expansion in the exon-1 region of the huntingtin gene. Currently, no cure is available. It is becoming increasingly apparent that mutant Huntingtin (HTT) impairs metabolic homeostasis and causes transcriptional dysregulation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcriptional factor that plays a key role in regulating genes involved in energy metabolism; recent studies demonstrated that PPAR-γ activation prevented mitochondrial depolarization in cells expressing mutant HTT and attenuated neurodegeneration in various models of neurodegenerative diseases. PPAR-γ-coactivator 1α (PGC-1 α) transcription activity is also impaired by mutant HTT. We now report that the PPAR-γ agonist, rosiglitazone (RSG), significantly attenuated mutant HTT-induced toxicity in striatal cells and that the protective effect of RSG is mediated by activation of PPAR-γ. Moreover, chronic administration of RSG (10 mg/kg/day, i.p) significantly improved motor function and attenuated hyperglycemia in N171-82Q HD mice. RSG administration rescued brain derived neurotrophic factor(BDNF) deficiency in the cerebral cortex, and prevented loss of orexin-A-immunopositive neurons in the hypothalamus of N171-82Q HD mice. RSG also prevented PGC-1α reduction and increased Sirt6 protein levels in HD mouse brain. Our results suggest that modifying the PPAR-γ pathway plays a beneficial role in rescuing motor function as well as glucose metabolic abnormalities in HD.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Wenz T. Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 2013; 13:134-42. [DOI: 10.1016/j.mito.2013.01.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/09/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
|
120
|
Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts. Biosci Rep 2013; 33:e00023. [PMID: 23249249 PMCID: PMC3566540 DOI: 10.1042/bsr20120104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology.
Collapse
|
121
|
Mrzljak L, Munoz-Sanjuan I. Therapeutic Strategies for Huntington's Disease. Curr Top Behav Neurosci 2013; 22:161-201. [PMID: 24277342 DOI: 10.1007/7854_2013_250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease, caused by expansion of the CAG repeat in the huntingtin (HTT) gene and characterized pathologically by the loss of pyramidal neurons in several cortical areas, of striatal medium spiny neurons, and of hypothalamic neurons. Clinically, a distinguishing feature of the disease is uncontrolled involuntary movements (chorea, dyskensias) accompanied by progressive cognitive, motor, and psychiatric impairment. This review focuses on the current state of therapeutic development for the treatment of HD, including the preclinical and clinical development of small molecules and molecular therapies.
Collapse
|
122
|
Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol Cell Neurosci 2012; 55:101-14. [PMID: 23220289 DOI: 10.1016/j.mcn.2012.11.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence from both genetic and toxin induced animal and cellular models and postmortem human brain tissue indicates that mitochondrial dysfunction plays a central role in pathophysiology of the neurodegenerative disorders including Parkinson's disease (PD), and Huntington's disease (HD). This review discusses the emerging understanding of the role of mitochondrial dysfunction including bioenergetics defects, mitochondrial DNA mutations, familial nuclear DNA mutations, altered mitochondrial fusion/fission and morphology, mitochondrial transport/trafficking, altered transcription and increased interaction of pathogenic proteins with mitochondria in the pathogenesis of PD and HD. This review recapitulates some of the key therapeutic strategies applied to surmount mitochondrial dysfunction in these debilitating disorders. We discuss the therapeutic role of mitochondrial bioenergetic agents such as creatine, Coenzyme-Q10, mitochondrial targeted antioxidants and peptides, the SIRT1 activator resveratrol, and the pan-PPAR agonist bezafibrate in toxin and genetic cellular and animal models of PD and HD. We also summarize the phase II-III clinical trials conducted using some of these agents. Lastly, we discuss PGC-1α, TORC and Sirtuins as potential therapeutic targets for mitochondrial dysfunction in neurodegenerative disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
123
|
Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova N, Calingasan NY, Yang L, Tampellini D, Starkov AA, Chan RB, Di Paolo G, Pujol A, Beal MF. Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice. Hum Mol Genet 2012; 21:5091-105. [PMID: 22922230 PMCID: PMC3490516 DOI: 10.1093/hmg/dds355] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPARγ agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.
Collapse
Affiliation(s)
- Magali Dumont
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Xun Z, Rivera-Sánchez S, Ayala-Peña S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ, Wipf P, McMurray CT. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep 2012; 2:1137-42. [PMID: 23122961 PMCID: PMC3513647 DOI: 10.1016/j.celrep.2012.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/28/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
Oxidative damage and mitochondrial dysfunction are implicated in aging and age-related neurodegenerative diseases, including Huntington's disease (HD). Many naturally occurring antioxidants have been tested for their ability to correct for deleterious effects of reactive oxygen species, but often they lack specificity, are tissue variable, and have marginal efficacy in human clinical trials. To increase specificity and efficacy, we have designed a synthetic antioxidant, XJB-5-131, to target mitochondria. We demonstrate in a mouse model of HD that XJB-5-131 has remarkably beneficial effects. XJB-5-131 reduces oxidative damage to mitochondrial DNA, maintains mitochondrial DNA copy number, suppresses motor decline and weight loss, enhances neuronal survival, and improves mitochondrial function. The findings poise XJB-5-131 as a promising therapeutic compound.
Collapse
Affiliation(s)
- Zhiyin Xun
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Siddiqui A, Rivera-Sánchez S, del R. Castro M, Acevedo-Torres K, Rane A, Torres-Ramos CA, Nicholls DG, Andersen JK, Ayala-Torres S. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radic Biol Med 2012; 53:1478-88. [PMID: 22709585 PMCID: PMC3846402 DOI: 10.1016/j.freeradbiomed.2012.06.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.
Collapse
Affiliation(s)
| | - Sulay Rivera-Sánchez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - María del R. Castro
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Karina Acevedo-Torres
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Anand Rane
- Buck Institute for Age Research, Novato, CA
| | - Carlos A. Torres-Ramos
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | | | | | - Sylvette Ayala-Torres
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| |
Collapse
|
126
|
Dillon LM, Hida A, Garcia S, Prolla TA, Moraes CT. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One 2012; 7:e44335. [PMID: 22962610 PMCID: PMC3433471 DOI: 10.1371/journal.pone.0044335] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/01/2012] [Indexed: 01/14/2023] Open
Abstract
Pharmacological agents, such as bezafibrate, that activate peroxisome proliferator-activated receptors (PPARs) and PPAR γ coactivator-1α (PGC-1α) pathways have been shown to improve mitochondrial function and energy metabolism. The mitochondrial DNA (mtDNA) mutator mouse is a mouse model of aging that harbors a proofreading-deficient mtDNA polymerase γ. These mice develop many features of premature aging including hair loss, anemia, osteoporosis, sarcopenia and decreased lifespan. They also have increased mtDNA mutations and marked mitochondrial dysfunction. We found that mutator mice treated with bezafibrate for 8-months had delayed hair loss and improved skin and spleen aging-like phenotypes. Although we observed an increase in markers of fatty acid oxidation in these tissues, we did not detect a generalized increase in mitochondrial markers. On the other hand, there were no improvements in muscle function or lifespan of the mutator mouse, which we attributed to the rodent-specific hepatomegaly associated with fibrate treatment. These results showed that despite its secondary effects in rodent’s liver, bezafibrate was able to improve some of the aging phenotypes in the mutator mouse. Because the associated hepatomegaly is not observed in primates, long-term bezafibrate treatment in humans could have beneficial effects on tissues undergoing chronic bioenergetic-related degeneration.
Collapse
Affiliation(s)
- Lloye M. Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Aline Hida
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Tomas A. Prolla
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carlos T. Moraes
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
127
|
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012; 342:619-30. [PMID: 22700435 PMCID: PMC3422529 DOI: 10.1124/jpet.112.192138] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 06/01/2012] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
128
|
Diaz F, Garcia S, Padgett KR, Moraes CT. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum Mol Genet 2012; 21:5066-77. [PMID: 22914734 DOI: 10.1093/hmg/dds350] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have created two neuron-specific mouse models of mitochondrial electron transport chain deficiencies involving defects in complex III (CIII) or complex IV (CIV). These conditional knockouts (cKOs) were created by ablation of the genes coding for the Rieske iron-sulfur protein (RISP) and COX10, respectively. RISP is one of the catalytic subunits of CIII and COX10 is an assembly factor indispensable for the maturation of Cox1, one of the catalytic subunits of CIV. Although the rates of gene deletion, protein loss and complex dysfunction were similar, the RISP cKO survived 3.5 months of age, whereas the COX10 cKO survived for 10-12 months. The RISP cKO had a sudden death, with minimal behavioral changes. In contrast, the COX10 cKO showed a distinctive behavioral phenotype with onset at 4 months of age followed by a slower but progressive neurodegeneration. Curiously, the piriform and somatosensory cortices were more vulnerable to the CIII defect whereas cingulate cortex and to a less extent piriform cortex were affected preferentially by the CIV defect. In addition, the CIII model showed severe and early reactive oxygen species damage, a feature not observed until very late in the pathology of the CIV model. These findings illustrate how specific respiratory chain defects have distinct molecular mechanisms, leading to distinct pathologies, akin to the clinical heterogeneity observed in patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
129
|
Abstract
Impaired activity of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α has been implicated in the pathophysiology of several neurodegenerative disorders. In this issue, Da Cruz et al. (2012) show improved muscle function, but not survival, with increased PGC-1α activity in muscle in a mouse model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA.
| | | |
Collapse
|
130
|
Costa V, Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J 2012; 31:1853-64. [PMID: 22446390 DOI: 10.1038/emboj.2012.65] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/20/2012] [Indexed: 12/28/2022] Open
Abstract
Intense research on the pathogenesis of Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, revealed multiple potential mechanisms, among which mitochondrial alterations had emerged as key determinants of the natural history of the disease. Pharmacological and genetic animal models of mitochondrial dysfunction in the striatum, which is mostly affected in HD corroborated a key role for these organelles in the pathogenesis of the disease. Here, we will give an account of the recent evidence indicating that the mitochondria-shaping machinery is altered in HD models and patients. Since its correction can counteract HD mitochondrial dysfunction and cellular damage, drugs impacting on mitochondrial shape are emerging as a new possibility of treatment for this devastating condition.
Collapse
Affiliation(s)
- Veronica Costa
- Department of Cell Physiology and Medicine, University of Geneva, Genève, Switzerland
| | | |
Collapse
|