101
|
Han X, Li J, Li G, Zhang Z, Lian T, Zhang B, Luo T, Lv R, Cai X, Lin X, Xu C, Wu Y, Gong L, Wendel JF, Liu B. Rapid formation of stable autotetraploid rice from genome-doubled F1 hybrids of japonica-indica subspecies. NATURE PLANTS 2025; 11:743-760. [PMID: 40164786 PMCID: PMC12015120 DOI: 10.1038/s41477-025-01966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Theory predicts that in the absence of selection, a newly formed segmental allopolyploid will become 'autopolyploidized' if homoeologous exchanges (HEs) occur freely. Moreover, because selection against meiotic abnormalities is expected to be strong in the initial generations, we anticipate HEs to be uncommon in evolved segmental allopolyploids. Here we analysed the whole-genome composition of 202 phenotypically homogeneous and stable rice tetraploid recombinant inbred lines (TRILs) derived from Oryza sativa subsp. japonica subsp. indica hybridization/whole-genome doubling. We measured functional traits related to growth, development and reproductive fitness, and analysed meiotic chromosomal behaviour of the TRILs. We uncover factors that constrain the genomic composition of the TRILs, including asymmetric parental contribution and exclusive uniparental segment retention. Intriguingly, some TRILs that have high fertility and abiotic stress resilience co-occur with largely stabilized meiosis. Our findings comprise evidence supporting the evolutionary possibility of HE-catalysed 'allo-to-auto' polyploidy transitions in nature, with implications for creating new polyploid crops.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jiahao Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Taotao Lian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ting Luo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaojing Cai
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
102
|
Sertbas M, Ulgen KO. Genome-Scale Metabolic Modeling of Human Pancreas with Focus on Type 2 Diabetes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:125-138. [PMID: 40068171 DOI: 10.1089/omi.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Type 2 diabetes (T2D) is characterized by relative insulin deficiency due to pancreatic beta cell dysfunction and insulin resistance in different tissues. Not only beta cells but also other islet cells (alpha, delta, and pancreatic polypeptide [PP]) are critical for maintaining glucose homeostasis in the body. In this overarching context and given that a deeper understanding of T2D pathophysiology and novel molecular targets is much needed, studies that integrate experimental and computational biology approaches offer veritable prospects for innovation. In this study, we report on single-cell RNA sequencing data integration with a generic Human1 model to generate context-specific genome-scale metabolic models for alpha, beta, delta, and PP cells for nondiabetic and T2D states and, importantly, at single-cell resolution. Moreover, flux balance analysis was performed for the investigation of metabolic activities in nondiabetic and T2D pancreatic cells. By altering glucose and oxygen uptakes to the metabolic networks, we documented the ways in which hypoglycemia, hyperglycemia, and hypoxia led to changes in metabolic activities in various cellular subsystems. Reporter metabolite analysis revealed significant transcriptional changes around several metabolites involved in sphingolipid and keratan sulfate metabolism in alpha cells, fatty acid metabolism in beta cells, and myoinositol phosphate metabolism in delta cells. Taken together, by leveraging genome-scale metabolic modeling, this research bridges the gap between metabolic theory and clinical practice, offering a comprehensive framework to advance our understanding of pancreatic metabolism in T2D, and contributes new knowledge toward the development of targeted precision medicine interventions.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
103
|
Xu J, Shepard BD, Pluznick JL. Roles of sensory receptors in non-sensory organs: the kidney and beyond. Nat Rev Nephrol 2025; 21:253-263. [PMID: 39753689 PMCID: PMC11929601 DOI: 10.1038/s41581-024-00917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 02/02/2025]
Abstract
Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs. To date, renal ORs have been shown to have roles in blood pressure regulation (OLFR78 and OLFR558) and glucose homeostasis (OLFR1393). However, sensory receptors remain drastically understudied outside of traditional sensory systems, in part because of inherent challenges in studying these receptors. Increased knowledge of the physiological and pathophysiological roles of sensory receptors has the potential to substantially improve understanding of the function of numerous organs and systems, including the kidney. In addition, most sensory receptors are G protein-coupled receptors, which are considered to be the most druggable class of proteins, and thus could potentially be exploited as future therapeutic targets.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
104
|
de Siqueira Santos S, Yang H, Galeano A, Paccanaro A. Host centric drug repurposing for viral diseases. PLoS Comput Biol 2025; 21:e1012876. [PMID: 40173200 PMCID: PMC12052139 DOI: 10.1371/journal.pcbi.1012876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 05/05/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
Computational approaches for drug repurposing for viral diseases have mainly focused on a small number of antivirals that directly target pathogens (virus centric therapies). In this work, we combine ideas from collaborative filtering and network medicine for making predictions on a much larger set of drugs that could be repurposed for host centric therapies, that are aimed at interfering with host cell factors required by a pathogen. Our idea is to create matrices quantifying the perturbation that drugs and viruses induce on human protein interaction networks. Then, we decompose these matrices to learn embeddings of drugs, viruses, and proteins in a low dimensional space. Predictions of host-centric antivirals are obtained by taking the dot product between the corresponding drug and virus representations. Our approach is general and can be applied systematically to any compound with known targets and any virus whose host proteins are known. We show that our predictions have high accuracy and that the embeddings contain meaningful biological information that may provide insights into the underlying biology of viral infections. Our approach can integrate different types of information, does not rely on known drug-virus associations and can be applied to new viral diseases and drugs.
Collapse
Affiliation(s)
| | - Haixuan Yang
- School of Mathematical & Statistical Sciences, University of Galway, Galway, Ireland
| | - Aldo Galeano
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - Alberto Paccanaro
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
- Department of Computer Science, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham Hill, Egham, United Kingdom
| |
Collapse
|
105
|
Karadas H, Tosun H, Ceylan H. Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats. Biotechnol Appl Biochem 2025; 72:377-387. [PMID: 39318238 PMCID: PMC11975261 DOI: 10.1002/bab.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Dilated cardiomyopathy (DCM) is the most common type of myocardial dysfunction, affecting mostly young adults, but its therapeutic diagnosis and biomarkers for prognosis are lacking. This study aimed to investigate the possible effect of the common food additive monosodium glutamate (MSG) and tannic acid (TA), a phenolic compound, on the key molecular actors responsible for DCM. DCM-related publicly available microarray datasets (GSE120895, GSE17800, and GSE19303) were downloaded from the comprehensive Gene Expression Omnibus (GEO) database, and analyzed to identify differentially expressed genes (DEGs). By integrating DEGs and gene-disease validity curation results, overlapping genes were screened and identified as hub genes. Protein-protein interaction (PPI) network and ontology analysis were performed to make sense of the identified biological data. Finally, mRNA expression changes of identified hub genes in the heart tissues of rats treated with MSG and TA were measured by the qPCR method. Six upregulated (IGF1, TTN, ACTB, LMNA, EDN1, and NPPB) DEGs were identified between the DCM and healthy control samples as the hub genes. qPCR results revealed that the mRNA levels of these genes involved in DCM development increased significantly in rat heart tissues exposed to MSG. In contrast, this increase was remarkably alleviated by TA treatment. Our results provide new insights into critical molecular mechanisms that should be focused on in future DCM studies. Moreover, MSG may play a critical role in DCM formation, and TA may be used as a promising therapeutic agent in DCM.
Collapse
Affiliation(s)
- Habibe Karadas
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| | - Hilal Tosun
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| |
Collapse
|
106
|
Hindmarch CCT, Potus F, Al‐Qazazi R, Ott BP, Nichols WC, Rauh MJ, Archer SL. Tet Methylcytosine Dioxygenase 2 (TET2) Mutation Drives a Global Hypermethylation Signature in Patients With Pulmonary Arterial Hypertension (PAH): Correlation With Altered Gene Expression Relevant to a Common T Cell Phenotype. Compr Physiol 2025; 15:e70011. [PMID: 40274312 PMCID: PMC12021535 DOI: 10.1002/cph4.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Epigenetic changes in gene expression due to DNA methylation regulate pulmonary vascular structure and function. Genetic or acquired alterations in DNA methylation/demethylation can promote the development of pulmonary arterial hypertension (PAH). Here, we performed epigenome-wide mapping of DNA methylation in whole blood from 10 healthy people and 19 age/sex-matched PAH patients from the PAH Biobank. Exome sequencing confirmed the absence of known mutations in PAH-associated gene variants identifying subjects with or without mutations of TET2, a putative PAH gene encoding the demethylating enzyme, TET2. DNA of patients with PAH and no TET2 mutation was hypermethylated compared to healthy controls. Patients with PAH and a TET2 mutation had greater DNA CpG methylation than mutation-free PAH patients. Unique Differentially Methylated Regions (DMR) were more common in patients with PAH with TET2 mutations (1164) than in PAH without mutations (262). We correlated methylome findings with a public PAH transcriptomic RNA dataset, prioritizing targets that are both hypermethylated in our cohort and downregulated at the RNA level. Relative to controls, functional analysis reveals enriched functions related to T cell differentiation in PAH patients with a TET2 mutation. We identified genes with downregulated expression that were hypermethylated in PAH patients (with or without a TET2 mutation). In both cases, a conserved T cell phenotype emerged. Pan-chromosomal hypermethylation in PAH is greatest in patients with TET2 mutations. Observed hypermethylation of genes involved in the pathogenesis of PAH, such as EIF2AK4, and transcription factors that regulate T cell development, such as TCF7, merit further study and may contribute to the inflammation in PAH.
Collapse
Affiliation(s)
- Charles C. T. Hindmarch
- Department of Biomedical and Molecular Science (DBMS)Queen's UniversityKingstonOntarioCanada
- Department of MedicineQueen's UniversityKingstonOntarioCanada
- Queen's CardioPulmonary Unit, Translational Institute of Medicine (TIME), Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - François Potus
- Pulmonary Hypertension Research GroupCenter de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de QuébecQuebecCanada
| | - Ruaa Al‐Qazazi
- Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Benjamin P. Ott
- Department of MedicineQueen's UniversityKingstonOntarioCanada
- Queen's CardioPulmonary Unit, Translational Institute of Medicine (TIME), Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - William C. Nichols
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Michael J. Rauh
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Stephen L. Archer
- Department of MedicineQueen's UniversityKingstonOntarioCanada
- Queen's CardioPulmonary Unit, Translational Institute of Medicine (TIME), Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
107
|
Su Y, Han Z, Ji Y, Liu A, Zou D, Yan L, Liu D, Zhang Z, Wang QF. Patterns and variations of copy number alterations in acute myeloid leukemia: insights from the LeukAtlas database. Leukemia 2025; 39:827-836. [PMID: 39894867 DOI: 10.1038/s41375-025-02514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Recent pan-cancer analysis revealed the global pattern and potential aetiologies of copy number variation signatures in human cancers, particularly those derived from non-hematopoietic tissues. In sharp contrast, the generally low CNV burden in leukemia leaves the CNV landscape and variations largely unexplored, impeding understanding of CNV in leukemia development. Through a comprehensive compilation of public datasets, we constructed LeukAtlas ( https://ngdc.cncb.ac.cn/leukemia ), a user-friendly database encompassing 12,597 CNVs from 1446 AML samples across diverse subtypes and age groups, providing tools for multidimensional CNV analysis. Our analyses suggested the CNV levels significantly varied among AML patients. We discovered two previously unknown CNV patterns in adult AML patients, dominated by segmental LOH and/or minor gain, which have been shown to be associated with chromosomal instability in solid tumors. Additionally, we defined two potential new AML subgroups based on CNVs status, providing new stratification markers within the existing karyotype framework. Representing the most extensive CNV collection in AML, LeukAtlas is a valuable resource for exploring the role of CNVs in the pathogenesis and prognosis stratification of leukemia. Interrogation of this database uncovers novel subclasses with unique CNV profiles and reveals heterogeneous CNV patterns in AML, demonstrating the potential role of chromosomal instability in AML progression.
Collapse
Affiliation(s)
- Yanxun Su
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenxian Han
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China
| | - Yutong Ji
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Anqi Liu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Zou
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China
| | - Lina Yan
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dan Liu
- China National Center for Bioinformation, 100101, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhang Zhang
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Genomics Data Center, China National Center for Bioinformation, 100101, Beijing, China.
| | - Qian-Fei Wang
- China National Center for Bioinformation, 100101, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
108
|
Guo F, Guan R, Li Y, Liu Q, Wang X, Yang C, Wang J. Foundation models in bioinformatics. Natl Sci Rev 2025; 12:nwaf028. [PMID: 40078374 PMCID: PMC11900445 DOI: 10.1093/nsr/nwaf028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025] Open
Abstract
With the adoption of foundation models (FMs), artificial intelligence (AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges, such as pre-training frameworks, model evaluation and interpretability. FMs demonstrate notable proficiency in managing large-scale, unlabeled datasets, because experimental procedures are costly and labor intensive. In various downstream tasks, FMs have consistently achieved noteworthy results, demonstrating high levels of accuracy in representing biological entities. A new era in computational biology has been ushered in by the application of FMs, focusing on both general and specific biological issues. In this review, we introduce recent advancements in bioinformatics FMs employed in a variety of downstream tasks, including genomics, transcriptomics, proteomics, drug discovery and single-cell analysis. Our aim is to assist scientists in selecting appropriate FMs in bioinformatics, according to four model types: language FMs, vision FMs, graph FMs and multimodal FMs. In addition to understanding molecular landscapes, AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.
Collapse
Affiliation(s)
- Fei Guo
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410083, China
| | - Renchu Guan
- Key Laboratory for Symbol Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk 23529, USA
| | - Qi Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaowo Wang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Can Yang
- Department of Mathematics, State Key Laboratory of Molecular Neuroscience, and Big Data Bio-Intelligence Lab, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410083, China
| |
Collapse
|
109
|
Liu J, Feng L, Jia Q, Meng J, Zhao Y, Ren L, Yan Z, Wang M, Qin J. A comprehensive bioinformatics analysis identifies mitophagy biomarkers and potential Molecular mechanisms in hypertensive nephropathy. J Biomol Struct Dyn 2025; 43:3204-3223. [PMID: 38334110 DOI: 10.1080/07391102.2024.2311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024]
Abstract
Mitophagy, the selective removal of damaged mitochondria, plays a critical role in kidney diseases, but its involvement in hypertensive nephropathy (HTN) is not well understood. To address this gap, we investigated mitophagy-related genes in HTN, identifying potential biomarkers for diagnosis and treatment. Transcriptome datasets from the Gene Expression Omnibus database were analyzed, resulting in the identification of seven mitophagy related differentially expressed genes (MR-DEGs), namely PINK1, ULK1, SQSTM1, ATG5, ATG12, MFN2, and UBA52. Further, we explored the correlation between MR-DEGs, immune cells, and inflammatory factors. The identified genes demonstrated a strong correlation with Mast cells, T-cells, TGFβ3, IL13, and CSF3. Machine learning techniques were employed to screen important genes, construct diagnostic models, and evaluate their accuracy. Consensus clustering divided the HTN patients into two mitophagy subgroups, with Subgroup 2 showing higher levels of immune cell infiltration and inflammatory factors. The functions of their proteins primarily involve complement, coagulation, lipids, and vascular smooth muscle contraction. Single-cell RNA sequencing revealed that mitophagy was most significant in proximal tubule cells (PTC) in HTN patients. Pseudotime analysis of PTC confirmed the expression changes observed in the transcriptome. Intercellular communication analysis suggested that mitophagy might regulate PTC's participation in intercellular crosstalk. Notably, specific transcription factors such as HNF4A, PPARA, and STAT3 showed strong correlations with mitophagy-related genes in PTC, indicating their potential role in modulating PTC function and influencing the onset and progression of HTN. This study offers a comprehensive analysis of mitophagy in HTN, enhancing our understanding of the pathogenesis, diagnosis, and treatment of HTN.
Collapse
Affiliation(s)
- Jiayou Liu
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Meng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ren
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Manrui Wang
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
110
|
Chen J, Li B, Zuo S, Zhang K, Dai J, Chen L, Zhao Y. Pattern Recognition-Driven Detection of Circadian-Disruptive Compounds from Gene Expressions: High-Throughput Screening and Experimental Verification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5960-5972. [PMID: 40120133 DOI: 10.1021/acs.est.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Circadian rhythms regulate the timing of numerous biological functions in organisms. Besides well-known external stimuli like the light-dark cycle and temperature, circadian rhythms can also be modulated by environmental substances. However, this area remains largely underexplored. Here, we developed a robust Pattern Recognition-Driven Prediction Approach (PRD-PA) that enables the identification of circadian-disruptive compounds from large-scale zebrafish transcriptomic profiling. The approach utilizes a circadian gene panel consisting of over 270 Circadian-Indicating Genes (CIGs) with stable and robust periodicity and combines it with a predictive model, known as the Differential Gene Expression Values of an Individual Comparison Model (DGVICM), that can effectively predict internal circadian phases from transcriptomic samples. By analyzing 692 aggregated gene expression profiles across 40 environmental substances, several were identified as having significant circadian-disruptive potential. These include glucocorticoids (e.g., prednisone (PRE) and triamcinolone (TRI)), the antithyroid agent propylthiouracil (PTU), and the widely used UV filter benzophenone-3 (BP-3). Both glucocorticoids and PTU are well-documented disruptors of circadian rhythms, and BP-3's circadian-disrupting properties were validated through experimental exposures. Moreover, BP-3 analogs, including 2,4-dihydroxybenzophenone (BP-1) and 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), were also found to exhibit similar circadian-disruptive effects. Overall, the present findings demonstrated the reliability of the PRD-PA approach for circadian disruption screening and highlighted the presence of diverse circadian-disruptive substances in our environment.
Collapse
Affiliation(s)
- Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Boyang Li
- Department of Industrial Engineering and Management, College of Engineering, Peking University, Beijing 100080, China
| | - Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lili Chen
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
111
|
Murcia-Belmonte V, Liu Y, Shamsi S, Shaw S, Collie-Duguid E, Herrera E, Collinson JM, Vargesson N, Erskine L. Identification of lens-regulated genes driving anterior eye development. Dev Biol 2025; 520:91-107. [PMID: 39814158 DOI: 10.1016/j.ydbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal. Lens-regulated genes implicated in periocular mesenchyme, cornea and anterior optic cup development were identified, including factors not previously implicated in eye development. Unexpectedly, transcriptomic differences were identified in retinas from male versus female chicken embryos, suggesting sexual dimorphism from early stages. In situ hybridisation of embryonic chicken eyes and analyses of datasets from embryonic mouse and adult human eyes confirmed expression of candidate genes, including multiple WNT genes, in tissues important for anterior eye development and function. Remarkably, pharmacological activation of canonical WNT signalling restored eye development and size in the absence of the lens. These analyses have identified candidate genes and biological pathways involved in eye development, providing avenues for new research in this area.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - Yanlin Liu
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sadia Shamsi
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: All Wales Medical Genomics Service, Cardiff and Vale University Health Board, University Hospital of Wales, CF14 4XW, UK
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - J Martin Collinson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lynda Erskine
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
112
|
Zhang H, Jiao J, Long Y, Zhou L, Lv Y, Wei W, Sun Y, Han H, Chen C, Zhu Y, Zhang W. Targeting capture and eradicate circulating tumor cells by activated platelet derived vehicle for inhibiting triple-negative breast cancer metastasis. Mater Today Bio 2025; 31:101597. [PMID: 40092226 PMCID: PMC11910114 DOI: 10.1016/j.mtbio.2025.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Circulating tumor cells (CTCs) are cardinal intermediaries in the metastatic cascade, particularly in triple-negative breast cancer (TNBC), owing to their high-affinity interactions that bolster survival and dissemination. Addressing this pivotal mechanism, we have developed APEVs@DOX, a pioneering biomimetic delivery system. Utilizing activated platelet membranes as a scaffold, APEVs@DOX recapitulates the natural affinity between platelets and CTCs, enabling targeted delivery of doxorubicin. Our results, substantiated by meticulous in vitro and in vivo experimentation, revealed 78 % reduction in lung metastasis nodules in murine models relative to controls, affirming APEVs@DOX's proficiency in CTCs capture and eradication. This study not only illuminates the potential of CTCs-targeted therapies in the precision medicine armamentarium for TNBC but also contributes empirical data to guide the strategic design of anti-metastatic interventions. The therapeutic impact of APEVs@DOX in curtailing metastatic spread offers a beacon of hope for advancing TNBC treatment paradigms.
Collapse
Affiliation(s)
- Hongmei Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University , Nanjing, 210000, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Gansu Wuwei Institute of Medical Sciences, Gansu, 733000, China
| | - Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University , Nanjing, 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University , Nanjing, 210000, China
| | - Lina Zhou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yuxiang Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of NanJing University Medical School, Nanjing, 210000, China
| | - Changrong Chen
- Department of Emergency Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Yun Zhu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University , Nanjing, 210000, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu, 210000, China
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University , Nanjing, 210000, China
| |
Collapse
|
113
|
Schmunk LJ, Call TP, McCartney DL, Javaid H, Hastings WJ, Jovicevic V, Kojadinović D, Tomkinson N, Zlamalova E, McGee KC, Sullivan J, Campbell A, McIntosh AM, Óvári V, Wishart K, Behrens CE, Stone E, Gavrilov M, Thompson R, Jackson T, Lord JM, Stubbs TM, Marioni RE, Martin‐Herranz DE. A novel framework to build saliva-based DNA methylation biomarkers: Quantifying systemic chronic inflammation as a case study. Aging Cell 2025; 24:e14444. [PMID: 39888134 PMCID: PMC11984670 DOI: 10.1111/acel.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 02/01/2025] Open
Abstract
Accessible and non-invasive biomarkers that measure human ageing processes and the risk of developing age-related disease are paramount in preventative healthcare. Here, we describe a novel framework to train saliva-based DNA methylation (DNAm) biomarkers that are reproducible and biologically interpretable. By leveraging a reliability dataset with replicates across tissues, we demonstrate that it is possible to transfer knowledge from blood DNAm to saliva DNAm data using DNAm proxies of blood proteins (EpiScores). We apply these methods to create a new saliva-based epigenetic clock (InflammAge) that quantifies systemic chronic inflammation (SCI) in humans. Using a large blood DNAm human cohort with linked electronic health records and over 18,000 individuals (Generation Scotland), we demonstrate that InflammAge significantly associates with all-cause mortality, disease outcomes, lifestyle factors, and immunosenescence; in many cases outperforming the widely used SCI biomarker C-reactive protein (CRP). We propose that our biomarker discovery framework and InflammAge will be useful to improve understanding of the molecular mechanisms underpinning human ageing and to assess the impact of gero-protective interventions.
Collapse
Affiliation(s)
| | | | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | | - Waylon J. Hastings
- Department of Psychiatry and Behavioral SciencesTulane University School of MedicineNew OrleansLouisianaUSA
| | | | | | | | - Eliska Zlamalova
- Hurdle.Bio/Chronomics Ltd.LondonUK
- Present address:
Pale Fire Capital SEPragueCzech Republic
| | - Kirsty C. McGee
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Jack Sullivan
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Andrew M. McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | | | | | | | | | | | | - Thomas Jackson
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
| | - Janet M. Lord
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research CentreUniversity Hospitals BirminghamBirminghamUK
| | | | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | | |
Collapse
|
114
|
Brutscher F, Germani F, Hausmann G, Jutz L, Basler K. Activation of the Drosophila innate immune system accelerates growth in cooperation with oncogenic Ras. PLoS Biol 2025; 23:e3003068. [PMID: 40294154 PMCID: PMC12036928 DOI: 10.1371/journal.pbio.3003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Innate immunity in Drosophila acts as an organismal surveillance system for external stimuli or cellular fitness and triggers context-specific responses to fight infections and maintain tissue homeostasis. However, uncontrolled activation of innate immune pathways can be detrimental. In mammals, innate immune signaling is often overactivated in malignant cells and contributes to tumor progression. Drosophila tumor models have been instrumental in the discovery of interactions between pathways that promote tumorigenesis, but little is known about whether and how the Toll innate immune pathway interacts with oncogenes. Here we use a Drosophila epithelial in vivo model to investigate the interplay between Toll signaling and oncogenic Ras. In the absence of oncogenic Ras (RasV12), Toll signaling suppresses differentiation and induces apoptosis. In contrast, in the context of RasV12, cells are protected from cell death and Dorsal promotes cell survival and proliferation to drive hyperplasia. Taken together, we show that the tissue-protective functions of innate immune activity can be hijacked by pre-malignant cells to induce tumorous overgrowth.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Federico Germani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lena Jutz
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
115
|
Ma Y, Qin LY, Ding X, Wu AP. Diversity, Complexity, and Challenges of Viral Infectious Disease Data in the Big Data Era: A Comprehensive Review. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2025; 40:29-44. [PMID: 40165755 DOI: 10.24920/004461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Viral infectious diseases, characterized by their intricate nature and wide-ranging diversity, pose substantial challenges in the domain of data management. The vast volume of data generated by these diseases, spanning from the molecular mechanisms within cells to large-scale epidemiological patterns, has surpassed the capabilities of traditional analytical methods. In the era of artificial intelligence (AI) and big data, there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information. Despite the rapid accumulation of data associated with viral infections, the lack of a comprehensive framework for integrating, selecting, and analyzing these datasets has left numerous researchers uncertain about which data to select, how to access it, and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels, from the molecular details of pathogens to broad epidemiological trends. The scope extends from the micro-scale to the macro-scale, encompassing pathogens, hosts, and vectors. In addition to data summarization, this review thoroughly investigates various dataset sources. It also traces the historical evolution of data collection in the field of viral infectious diseases, highlighting the progress achieved over time. Simultaneously, it evaluates the current limitations that impede data utilization.Furthermore, we propose strategies to surmount these challenges, focusing on the development and application of advanced computational techniques, AI-driven models, and enhanced data integration practices. By providing a comprehensive synthesis of existing knowledge, this review is designed to guide future research and contribute to more informed approaches in the surveillance, prevention, and control of viral infectious diseases, particularly within the context of the expanding big-data landscape.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China
| | - Lu-Yao Qin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China
| | - Xiao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China.
| | - Ai-Ping Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China.
| |
Collapse
|
116
|
Zehr S, Wolf S, Oellerich T, Leisegang MS, Brandes RP, Schulz MH, Warwick T. GeneCOCOA: Detecting context-specific functions of individual genes using co-expression data. PLoS Comput Biol 2025; 21:e1012278. [PMID: 40163580 PMCID: PMC11964461 DOI: 10.1371/journal.pcbi.1012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/02/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Extraction of meaningful biological insight from gene expression profiling often focuses on the identification of statistically enriched terms or pathways. These methods typically use gene sets as input data, and subsequently return overrepresented terms along with associated statistics describing their enrichment. This approach does not cater to analyses focused on a single gene-of-interest, particularly when the gene lacks prior functional characterization. To address this, we formulated GeneCOCOA, a method which utilizes context-specific gene co-expression and curated functional gene sets, but focuses on a user-supplied gene-of-interest (GOI). The co-expression between the GOI and subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear regression, and resulting root-mean-square error values are compared against background values obtained from randomly selected genes. The resulting p values provide a statistical ranking of functional gene sets from any collection, along with their associated terms, based on their co-expression with the gene of interest in a manner specific to the context and experiment. GeneCOCOA thereby provides biological insight into both gene function, and putative regulatory mechanisms by which the expression of the GOI is controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in the accurate recall of known gene-disease associations. We furthermore include a differential GeneCOCOA mode, thus presenting the first implementation of a gene-focused approach to experiment-specific gene set enrichment analysis. GeneCOCOA is formulated as an R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.
Collapse
Affiliation(s)
- Simonida Zehr
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt am Main, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
117
|
Yu J, Moon J, Kim M, Han G, Jang I, Lim J, Lee S, Yoon SH, Park WY, Lee B, Lee S. HISSTA: a human in situ single-cell transcriptome atlas. Bioinformatics 2025; 41:btaf142. [PMID: 40163697 PMCID: PMC12002909 DOI: 10.1093/bioinformatics/btaf142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025] Open
Abstract
MOTIVATION Spatial transcriptomics holds great promise for revolutionizing biology and medicine by providing gene expression profiles with spatial information. Until recently, spatial resolution has been limited, but advances in high-throughput in situ imaging technologies now offer new opportunities by covering thousands of genes at a single-cell or even subcellular resolution, necessitating databases dedicated to comprehensive coverage and analysis with user-friendly intefaces. RESULTS We introduce the HISSTA database, which facilitates the archival and analysis of in situ transcriptome data at single-cell resolution from various human tissues. We have collected and annotated spatial transcriptome data generated by MERFISH, CosMx SMI, and Xenium techniques, encompassing 112 samples and 28 million cells across 16 tissue types from 63 studies. To decipher spatial contexts, we have implemented advanced tools for cell type annotation, spatial colocalization, spatial cellular communication, and niche analyses. Notably, all datasets and annotations are interactively accessible through Vitessce, allowing users to focus on regions of interest and examine gene expression in detail. HISSTA is a unique database designed to manage the rapidly growing dataset of in situ transcriptomes at single-cell resolution. Given its comprehensive data content and advanced analysis tools with interactive visualizations, HISSTA is poised to significantly impact cancer diagnosis, precision medicine, and digital pathology. AVAILABILITY AND IMPLEMENTATION HISSTA is freely accessible at https://kbds.re.kr/hissta/. The source code is available at https://doi.org/10.5281/zenodo.14904523.
Collapse
Affiliation(s)
- Jiwon Yu
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jiwoo Moon
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minseo Kim
- Korean Bioinformation Center (KOBIC), Korean Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Gyeol Han
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insu Jang
- Korean Bioinformation Center (KOBIC), Korean Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinyoung Lim
- R&D Division, Geninus Inc., Seoul 05836, Republic of Korea
| | - Seungmook Lee
- R&D Division, Geninus Inc., Seoul 05836, Republic of Korea
| | - Seok-Hwan Yoon
- R&D Division, Geninus Inc., Seoul 05836, Republic of Korea
| | - Woong-Yang Park
- R&D Division, Geninus Inc., Seoul 05836, Republic of Korea
- GxD Inc., Kashiwa, Chiba 277-0882, Japan
| | - Byungwook Lee
- Korean Bioinformation Center (KOBIC), Korean Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
118
|
Dewar S, Grasegger G, Kubjas K, Mohammadi F, Nixon A. Single-cell 3D genome reconstruction in the haploid setting using rigidity theory. J Math Biol 2025; 90:45. [PMID: 40156641 PMCID: PMC11954715 DOI: 10.1007/s00285-025-02203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 04/01/2025]
Abstract
This article considers the problem of 3-dimensional genome reconstruction for single-cell data, and the uniqueness of such reconstructions in the setting of haploid organisms. We consider multiple graph models as representations of this problem, and use techniques from graph rigidity theory to determine identifiability. Biologically, our models come from Hi-C data, microscopy data, and combinations thereof. Mathematically, we use unit ball and sphere packing models, as well as models consisting of distance and inequality constraints. In each setting, we describe and/or derive new results on realisability and uniqueness. We then propose a 3D reconstruction method based on semidefinite programming and apply it to synthetic and real data sets using our models.
Collapse
Affiliation(s)
- Sean Dewar
- School of Mathematics, University of Bristol, Bristol, UK
| | - Georg Grasegger
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Kaie Kubjas
- Department of Mathematics and Systems Analysis, Aalto University, Espoo, Finland.
| | - Fatemeh Mohammadi
- Departments of Mathematics and Computer Science, KU Leuven, Leuven, Belgium
| | - Anthony Nixon
- Mathematics and Statistics, Lancaster University, Lancaster, UK
| |
Collapse
|
119
|
Guo W, Apte SS, Dickinson MS, Kim SY, Kutsch M, Coers J. Human giant GTPase GVIN1 forms an antimicrobial coatomer around the intracellular bacterial pathogen Burkholderia thailandensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645074. [PMID: 40196472 PMCID: PMC11974893 DOI: 10.1101/2025.03.24.645074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Several human pathogens exploit the kinetic forces generated by polymerizing actin to power their intracellular motility. Human cell-autonomous immune responses activated by the cytokine interferon-gamma (IFNγ) interfere with such microbial actin-based motility, yet the underlying molecular mechanisms are poorly defined. Here, we identify the IFNγ-inducible human giant GTPases GVIN1 as a novel host defense protein that blocks the bacterial pathogen Burkholderia thailandensis from high-jacking the host's actin polymerization machinery. We found that GVIN1 proteins form a coatomer around cytosolic bacteria and prevent Burkholderia from establishing force-generating actin comet tails. Coatomers formed by a second IFNγ-inducible GTPase, human guanylate binding protein 1 (GBP1), constitute a GVIN1-independent but mechanistically related anti-motility pathway. We show that coating with either GVIN1 or GBP1 displaces the Burkholderia outer membrane protein BimA, an actin nucleator that is essential for actin tail formation. Both GVIN1 and GBP1 coatomers require additional IFNγ-inducible co-factors to disrupt the membrane localization of BimA, demonstrating the existence of two parallel-acting IFNγ-inducible defense modules that evolved to target a virulence trait critical for the pathogenesis of numerous bacterial infectious agents.
Collapse
Affiliation(s)
- Weilun Guo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shruti S Apte
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam Kutsch
- Institute of Molecular Pathogenicity, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
120
|
Tan CY, Ong HF, Lim CH, Tan MS, Ooi EH, Wong K. Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification. BMC Bioinformatics 2025; 26:94. [PMID: 40155814 PMCID: PMC11954243 DOI: 10.1186/s12859-025-06111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
The advent of high-throughput sequencing technologies, such as DNA microarray and DNA sequencing, has enabled effective analysis of cancer subtypes and targeted treatment. Furthermore, numerous studies have highlighted the capability of graph neural networks (GNN) to model complex biological systems and capture non-linear interactions in high-throughput data. GNN has proven to be useful in leveraging multiple types of omics data, including prior biological knowledge from various sources, such as transcriptomics, genomics, proteomics, and metabolomics, to improve cancer classification. However, current works do not fully utilize the non-linear learning potential of GNN and lack of the integration ability to analyse high-throughput multi-omics data simultaneously with prior biological knowledge. Nevertheless, relying on limited prior knowledge in generating gene graphs might lead to less accurate classification due to undiscovered significant gene-gene interactions, which may require expert intervention and can be time-consuming. Hence, this study proposes a graph classification model called associative multi-omics graph embedding learning (AMOGEL) to effectively integrate multi-omics datasets and prior knowledge through GNN coupled with association rule mining (ARM). AMOGEL employs an early fusion technique using ARM to mine intra-omics and inter-omics relationships, forming a multi-omics synthetic information graph before the model training. Moreover, AMOGEL introduces multi-dimensional edges, with multi-omics gene associations or edges as the main contributors and prior knowledge edges as auxiliary contributors. Additionally, it uses a gene ranking technique based on attention scores, considering the relationships between neighbouring genes. Several experiments were performed on BRCA and KIPAN cancer subtypes to demonstrate the integration of multi-omics datasets (miRNA, mRNA, and DNA methylation) with prior biological knowledge of protein-protein interactions, KEGG pathways and Gene Ontology. The experimental results showed that the AMOGEL outperformed the current state-of-the-art models in terms of classification accuracy, F1 score and AUC score. The findings of this study represent a crucial step forward in advancing the effective integration of multi-omics data and prior knowledge to improve cancer subtype classification.
Collapse
Affiliation(s)
- Chia Yan Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Huey Fang Ong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Chern Hong Lim
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Mei Sze Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ean Hin Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - KokSheik Wong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
121
|
Shen X, Zeng Z, Xie L, Yue X, Wang Z. Using weighted gene co-expression network analysis to identify key genes related to preeclampsia. Front Immunol 2025; 16:1569591. [PMID: 40207223 PMCID: PMC11979283 DOI: 10.3389/fimmu.2025.1569591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The pathogenesis of preeclampsia remains unclear, highlighting the need for the creation of dependable biomarkers. This study aimed to pinpoint genetic risk factors linked to preeclampsia through the utilization of weighted gene co-expression network analysis (WGCNA). Methods A gene expression profile dataset from the placentas of patients with preeclampsia was acquired from the Gene Expression Omnibus (GEO) database and employed as a discovery cohort to construct a WGCNA network. Functional enrichment analysis, pathway analysis, and the construction of protein-protein interaction (PPI) networks were performed on core genes within these modules to pinpoint hub genes. The GSE25906 dataset was utilized as a validation cohort to evaluate the diagnostic significance of the hub genes. Immunohistochemistry assays were employed to validate the protein expression levels of these genes in placental tissues from both preeclampsia and control groups. Results Through WGCNA, 33 co-expression modules were identified, with 4 modules significantly associated with multiple clinical traits (≥3). Among these, 75 core genes were highlighted, predominantly enriched in pathways related to the adaptive immune response and platelet activation. Notably, TYROBP, PLEK, LCP2, HCK, and ITGAM emerged as hub genes with high PPI network scores and strong diagnostic potential, all prominently associated with immunity-related pathways. Protein expression analysis revealed that these genes were downregulated in placental tissues from preeclampsia patients compared to healthy controls. Discussions TYROBP, PLEK, LCP2, HCK, and ITGAM are closely linked to preeclampsia and hold promise as potential biomarkers for its diagnosis and for advancing the understanding of its pathogenesis.
Collapse
Affiliation(s)
- Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical Universityu, Guiyang, Guizho, China
| | - Lijia Xie
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Guizhou, China
| | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
122
|
Chadwick BJ, Ristow LC, Blackburn EE, Xie X, Krysan DJ, Lin X. Microevolution of Cryptococcus neoformans in high CO 2 converges on mutations isolated from patients with relapsed cryptococcosis. Cell Rep 2025; 44:115349. [PMID: 39998950 DOI: 10.1016/j.celrep.2025.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Cryptococcus neoformans is an environmental fungus that causes an estimated 180,000 deaths annually and transitions from the external environment to the host environment to cause disease. CO2 concentrations in the atmosphere (0.04%) are dramatically lower than in mammalian tissues (5%). Environmental C. neoformans strains that cannot tolerate 5% CO2 are less virulent than CO2-tolerant strains. Microevolution at elevated CO2 generates loss-of-function mutations in the nucleotide binding protein Avc1 that confer CO2 tolerance to CO2-intolerant strains. Mechanistically, Avc1 positively regulates the expression of plasma membrane transporters, including PDR9, a phospholipid floppase that negatively modulates CO2 fitness. Deletion of AVC1 in five CO2-intolerant environmental strains increases competitive fitness in host CO2 and in a mouse infection model. Importantly, strains with similar AVC1 mutations emerge in patients with relapsed cryptococcosis. Therefore, this microevolutionary convergence strongly suggests that adaptation to host CO2 is a significant driver of C. neoformans fitness during infection.
Collapse
Affiliation(s)
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Emma E Blackburn
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
123
|
Xin Y, Amanullah M, Qian C, Zhou C, Qian J. Lignature: A Comprehensive Database of Ligand Signatures to Predict Cell-Cell Communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644770. [PMID: 40196598 PMCID: PMC11974740 DOI: 10.1101/2025.03.22.644770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Ligand-receptor interactions mediate intercellular communication, inducing transcriptional changes that regulate physiological and pathological processes. Ligand-induced transcriptomic signatures can be used to predict active ligands; however, the absence of a comprehensive set of ligand-response signatures has limited their practical application in predicting ligand-receptor interactions. To bridge this gap, we developed Lignature, a curated database encompassing intracellular transcriptomic signatures for 362 human ligands, significantly expanding the repertoire of ligands with available intracellular response signatures. Lignature compiles signatures from published transcriptomic datasets and established resources such as CytoSig and ImmuneDictionary, generating both gene- and pathway-based signatures for each ligand. We applied Lignature to predict active ligands driving transcriptomic changes in controlled in vitro experiments and real-world single-cell sequencing datasets. Lignature outperformed existing methods such as NicheNet, achieving higher accuracy in identifying active ligands at both the gene and pathway levels. These results establish Lignature as a robust platform for ligand signaling inference, providing a powerful tool to explore ligand-receptor interactions across diverse experimental and physiological contexts.
Collapse
|
124
|
Baptissart M, Gupta A, Poirot AC, Papas BN, Morgan M. TENT5C extends Odf1 poly(A) tail to sustain sperm morphogenesis and fertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644152. [PMID: 40196629 PMCID: PMC11974682 DOI: 10.1101/2025.03.20.644152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Changes in the poly(A) tail length of Odf1 and other transcripts critical for male fertility have been linked to translational activation during sperm formation 1-3. The mRNA poly(A) polymerase TENT5C is required for fastening the flagellum to the sperm head, but its role in shaping the poly(A) tail profile of the spermatid transcriptome remains limited 4,5. Here, we comprehensively document how changes in mRNA poly(A) tail length across the transcriptome reflect transcript metabolism in spermatids. In the absence of TENT5C polymerase activity, the poly(A) tail length of Odf1 transcripts is reduced, and the local distribution of ODF1 proteins in spermatids is disrupted. We show that mice expressing a catalytically inactive TENT5C produce headless spermatozoa with outer dense fibers detached from the axoneme, and other flagellar abnormalities associated with ODF1 deficiency 6. We propose that TENT5C poly(A) polymerase activity regulates the spatial translation of Odf1 mRNAs during spermiogenesis, a process critical for sperm morphogenesis and fertility. These findings highlight the power of poly(A) tail profiling to identify abnormal mRNA processing causative of infertility.
Collapse
Affiliation(s)
- Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Alexander C Poirot
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Brian N Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
- Corresponding and lead author
| |
Collapse
|
125
|
La Fortezza M, Verwilt J, Cossey SM, Eisner SA, Velicer GJ, Yu YTN. Deletion of an sRNA primes development in a multicellular bacterium. iScience 2025; 28:111980. [PMID: 40124474 PMCID: PMC11928866 DOI: 10.1016/j.isci.2025.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Small non-coding RNAs (sRNAs) regulate gene expression of many biological processes. During growth, some myxobacteria produce an sRNA-Pxr-that blocks fruiting-body development, an aggregative multicellular process typically triggered by starvation. Deleting the pxr gene allows Myxococcus xanthus to develop despite nutrient availability, but Pxr binding targets and the genes regulated by Pxr remain unknown. Here, after showing that Pxr controls the temporal dynamics of development, we compare the transcriptomes of vegetative M. xanthus cells possessing vs. lacking pxr. Over half of the genes impacted by pxr deletion are linked to development, including known and previously undiscovered critical regulators. Pxr also positively regulates genes associated with general metabolic processes. Our study discovers phenotypic effects of Pxr regulation with ecological importance, identifies the suite of genes this sRNA controls during vegetative growth and reveals a previously unknown developmental regulator. These findings provide insights into the molecular mechanism controlling myxobacterial development.
Collapse
Affiliation(s)
| | - Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Sarah M. Cossey
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| | | | | | - Yuen-Tsu N. Yu
- Institute of Integrative System Biology, ETH, Zürich, Switzerland
| |
Collapse
|
126
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
127
|
Bryant EE, Gong D, Guo C, Garces F, Hubert R, Chen I. An Arrayed CRISPR Screen Identifies Knockout Combinations Improving Antibody Productivity in HEK293 Cells. ACS Synth Biol 2025; 14:855-866. [PMID: 40014422 DOI: 10.1021/acssynbio.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Mammalian cells are used to express complex biologics, such as multispecific antibodies. While multispecifics enable promising new strategies for treating human disease, their production at high expression titer and purity can be challenging. To understand how cells respond to antibody and multispecific expression, five molecules were selected for bulk RNA sequencing (RNA-seq) early after the transfection of a human embryonic kidney 293 (HEK293) host. All five molecules shared a differential expression signature of secretory and protein folding stresses, but this signature was stronger for molecules with low titer. We then designed an arrayed CRISPR knockout screen of 206 differentially expressed target genes and 223 literature-motivated targets to identify knockouts that affect antibody productivity. Eight novel knockout targets were identified that increased expression titers by 20-80%. Notably, seven of these top eight hits were from the differentially expressed set of candidate-gene knockouts. The top knockout target, HIST2H3C, showed evidence for additivity with five other hits, including a knockout combination that increased the titer of a difficult-to-express antibody by up to 100%. Findings for both HIST2H3C and INHBE knockout targets generalized to an alternate HEK293 host expressing an additional antibody and a multispecific host with no meaningful impact on product purity. Thus, we propose HIST2H3C and INHBE disruption as a promising and novel strategy for host-cell engineering to improve antibody and multispecific productivity.
Collapse
Affiliation(s)
- Eric Edward Bryant
- Amgen R&D Postdoctoral Fellows Program, Thousand Oaks, California 91320, United States
- Large Molecule Discovery & Research Data Science, Amgen Research, Thousand Oaks, California 91320, United States
| | - Danyang Gong
- Large Molecule Discovery & Research Data Science, Amgen Research, Thousand Oaks, California 91320, United States
| | - Cai Guo
- Large Molecule Discovery & Research Data Science, Amgen Research, Thousand Oaks, California 91320, United States
| | - Fernando Garces
- Large Molecule Discovery & Research Data Science, Amgen Research, Thousand Oaks, California 91320, United States
| | - René Hubert
- Large Molecule Discovery & Research Data Science, Amgen Research, Thousand Oaks, California 91320, United States
| | - Irwin Chen
- Large Molecule Discovery & Research Data Science, Amgen Research, South San Francisco, California 94080, United States
| |
Collapse
|
128
|
Becker M, Kälin S, Neubig AH, Lauber M, Opaleva D, Hipp H, Salb VK, Ott VB, Legutko B, Kälin RE, Hippich M, Scherm MG, Nascimento LFR, Serr I, Hosp F, Nikolaev A, Mohebiany A, Krueger M, Flachmeyer B, Pfaffl MW, Haase B, Yi CX, Dietzen S, Bopp T, Woods SC, Waisman A, Weigmann B, Mann M, Tschöp MH, Daniel C. Regulatory T cells in the mouse hypothalamus control immune activation and ameliorate metabolic impairments in high-calorie environments. Nat Commun 2025; 16:2744. [PMID: 40113758 PMCID: PMC11926360 DOI: 10.1038/s41467-025-57918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The hypothalamus in the central nervous system (CNS) has important functions in controlling systemic metabolism. A calorie-rich diet triggers CNS immune activation, impairing metabolic control and promoting obesity and Type 2 Diabetes (T2D), but the mechanisms driving hypothalamic immune activation remain unclear. Here we identify regulatory T cells (Tregs) as key modulators of hypothalamic immune responses. In mice, calorie-rich environments activate hypothalamic CD4+ T cells, infiltrating macrophages and microglia while reducing hypothalamic Tregs. mRNA profiling of hypothalamic CD4+ T cells reveals a Th1-like activation state, with increased Tbx21, Cxcr3 and Cd226 but decreased Ccr7 and S1pr1. Importantly, results from Treg loss-of function and gain-of-function experiments show that Tregs limit hypothalamic immune activation and reverse metabolic impairments induced by hyper-caloric feeding. Our findings thus help refine the current model of Treg-centered immune-metabolic crosstalk in the brain and may contribute to the development of precision immune modulation for obesity and diabetes.
Collapse
Affiliation(s)
- Maike Becker
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefanie Kälin
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Anne H Neubig
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Michael Lauber
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Daria Opaleva
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Hannah Hipp
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Victoria K Salb
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Verena B Ott
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Roland E Kälin
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neurosciences, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Hippich
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Munich, 80939 Munich, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin G Scherm
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Lucas F R Nascimento
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Alma Mohebiany
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Martin Krueger
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | | | - Michael W Pfaffl
- Animal Physiology and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Dietzen
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephen C Woods
- Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
129
|
Huynh HTLK, Lim HGM, Lee YCG, Phan TV, Vo TH, Chen CH, Wu ATH. In Silico Identification of ANKRD22 as a Theragnostic Target for Pancreatic Cancer and Fostamatinib's Therapeutic Potential. Int J Med Sci 2025; 22:1885-1904. [PMID: 40225855 PMCID: PMC11983316 DOI: 10.7150/ijms.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Pancreatic cancer (PC) is one of the most tremendously malignant cancers with a poor prognosis, especially when it advances to metastasis. Besides, PC patients have encountered resistance to recent therapeutic approaches. In recent work, we effectively determined ANKRD22 by re-analyzing RNA-seq datasets from cell lines and human tissues deriving from PC. We demonstrated that ANKRD22 expression was remarkably high in the PC group compared to the normal group at both gene expression and protein levels. ANKRD22 resulted in a worse overall survival (OS) rate of PC patients (HR = 1.7, p = 0.0082). Intriguingly, ANKRD22 was statistically highly expressed in the mutated KRAS group relative to the wildtype group (p < 0.05). Similarly, compared to the wildtype TP53, in the mutated TP53, ANKRD22 also significantly expressed (p < 0.05); their concurrent expression, ANKRD22 and KRAS; ANKRD22 and TP53 exacerbated the survival outcome relative to the co-expression of low ANKRD22 and unaltered genes (p < 0.001; HR > 2.6). We explored the potential pathways and biological processes ANKRD22 might not only contribute to promoting PC, including cell-cycle regulation, E2F1 targets, and apoptosis but also foster the dissemination of PC by involve in invasion and migration processes. In the investigation of drugs that might target ANKRD22, we figured out fostamatinib. Molecular docking and molecular dynamic simulation (MDs) techniques provided extensive insights into the binding mode of ANKRD22 and fostamatinib. ANKRD22 exhibited strong binding affinity (ΔG = -7.0 kcal/mol in molecular docking and ∆Gbind = -38.66 ± 6.09 kcal/mol in MDs). Taken together, ANKRD22 could be a promising theragnostic target that might be inhibited by fostamatinib, thereby suppressing PC growth.
Collapse
Affiliation(s)
- Huong Thi Luu Kim Huynh
- International PhD Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hendrick Gao-Min Lim
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Tzu Chi Hospital Indonesia, Pantai Indah Kapuk, Greater Jakarta, Indonesia 14470
| | - Yuan-Chii Gladys Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Thien-Vy Phan
- Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Hoa Vo
- University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Chien-Hsin Chen
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Colorectal Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T H Wu
- International PhD Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Taipei Heart Institute (THI), Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
130
|
Szachnowski U, Becker E, Stuparević I, Wery M, Sallou O, Boudet M, Bretaudeau A, Morillon A, Primig M. Pervasive formation of double-stranded RNAs by overlapping sense/antisense transcripts in budding yeast mitosis and meiosis. RNA (NEW YORK, N.Y.) 2025; 31:497-513. [PMID: 39848697 PMCID: PMC11912912 DOI: 10.1261/rna.080290.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/04/2025] [Indexed: 01/25/2025]
Abstract
Previous RNA profiling studies revealed coexpression of overlapping sense/antisense (s/a) transcripts in pro- and eukaryotic organisms. Functional analyses in yeast have shown that certain s/a mRNA/mRNA and mRNA/lncRNA pairs form stable double-stranded RNAs (dsRNAs) that affect transcript stability. Little is known, however, about the genome-wide prevalence of dsRNA formation and its potential functional implications during growth and development in diploid budding yeast. To address this question, we monitored dsRNAs in a Saccharomyces cerevisiae strain expressing the ribonuclease DCR1 and the RNA-binding protein AGO1 from Naumovozyma castellii We identify dsRNAs at 347 s/a loci that express partially or completely overlapping transcripts during mitosis, meiosis, or both stages of the diploid life cycle. We associate dsRNAs with s/a loci previously thought to be exclusively regulated by antisense interference, and others that encode antisense RNAs, which down-regulate sense mRNA-encoded protein levels. To facilitate hypothesis building, we developed the sense/antisense double-stranded RNA (SensR) expression viewer. Users are able to retrieve different graphical displays of dsRNA and RNA expression data using genome coordinates and systematic or standard names for mRNAs and different types of stable or cryptic long noncoding RNAs (lncRNAs). Our data are a useful resource for improving yeast genome annotation and for work on RNA-based regulatory mechanisms controlling transcript and protein levels. The data are also interesting from an evolutionary perspective, since natural antisense transcripts that form stable dsRNAs have been detected in many species from bacteria to humans. The SensR viewer is freely accessible at https://sensr.genouest.org.
Collapse
Affiliation(s)
- Ugo Szachnowski
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Igor Stuparević
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| | - Maxime Wery
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Olivier Sallou
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | - Mateo Boudet
- GenOuest, IRISA, Campus de Beaulieu, F-35000 Rennes, France
| | | | - Antonin Morillon
- Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35042 Rennes, France
| |
Collapse
|
131
|
Long J, Sliger S, Luo ZW, Pascuzzi PE, Chapple C, Ogas J. A semidominant point mutation of Mediator tail subunit MED5b in Arabidopsis leads to altered enrichment of H3K27me3 and reduced expression of targets of MYC2. G3 (BETHESDA, MD.) 2025; 15:jkae301. [PMID: 39950577 PMCID: PMC11917473 DOI: 10.1093/g3journal/jkae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 03/20/2025]
Abstract
The Mediator complex coordinates regulatory input for transcription driven by RNA polymerase II in eukaryotes. reduced epidermal fluorescence4-3 (ref4-3) is a semidominant mutation that results in a single amino acid substitution in the Mediator tail subunit Med5b. Previous characterization of ref4-3 revealed altered expression of a variety of loci in Arabidopsis, including those contributing to phenylpropanoid biosynthesis. Examination of existing RNA-seq data indicated that loci enriched for the transcriptionally repressive chromatin modification H3K27me3 are overrepresented among genes that are misregulated in ref4-3. We used ChIP-seq and RNA-seq to examine the possibility that perturbation of H3K27me3 homeostasis in ref4-3 plants contributed to altered transcript levels. We observed that ref4-3 results in a modest global reduction of H3K27me3 at enriched loci and that this reduction is not dependent on gene expression; however, altered H3K27me3 was not strongly predictive of altered expression in ref4-3 plants. Instead, our analyses revealed a substantial enrichment of targets of the MYC2 transcriptional regulator among genes that exhibit decreased expression in ref4-3. Consistent with previous characterization of ref4-3, we observed that ref4-3-dependent decreased expression of MYC2 targets can be suppressed by loss of another Mediator tail subunit, MED25. This observation is consistent with previous biochemical characterization of MYC2. Our data highlight the diverse and distinct impacts that a single amino acid change in the tail subunit of Mediator can have on transcriptional circuits and raise the prospect that Mediator directly contributes to H3K27me3 homeostasis in plants.
Collapse
Affiliation(s)
- Jiaxin Long
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Shelby Sliger
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Zhi-Wei Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Pete E Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Libraries and School of Information Studies, Purdue University, West Lafayette, IN 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
132
|
Yu S, Wang C, Ouyang J, Luo T, Zeng F, Zhang Y, Gao L, Huang S, Wang X. Identification of candidate biomarkers correlated with the pathogenesis of breast cancer patients. Sci Rep 2025; 15:8770. [PMID: 40082607 PMCID: PMC11906855 DOI: 10.1038/s41598-025-93208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer-related death in females, followed by lung cancer. Disadvantages exist in conventional diagnostic techniques of BC, such as radiation risk. The present study integrated bioinformatics analysis with machine learning to elucidate potential key candidate genes associated with the tumorigenesis of BC. Eleven datasets were downloaded from the Gene Expression Omnibus (GEO) database and were consolidated into two independent cohorts (training cohort and validation cohort) after batch-effect removal. We employed "limma" package to screen differentially expressed genes (DEGs) between BC and adjacent normal breast samples. Subsequently, the most reliable diagnostic indicators were identified utilizing LASSO-Logistic regression, SVM-RFE and multivariate stepwise Logistic regression analysis. Logistic model and nomogram were created based on these hub genes and applied in external validation cohort to verify the robustness of the model. As a result, a total of six hub genes connected with BC pathogenesis were identified, including CD300LG, IGSF10, FAM83D, MAMDC2, COMP and SEMA3G. Then, a diagnostic model of BC on the basis of these genes was established. ROC analysis of the diagnostic model illustrated that AUC of the training cohort was 0.978 (0.962, 0.995). In the validation cohort, AUC of training set and validation set were 0.936 (0.910, 0.961) and 0.921 (0.870, 0.972), respectively. This indicated that the model was reliable in separating BC patients from healthy individuals. The model may assist in early diagnosis of BC with implications for improving the prognosis of BC patients.
Collapse
Affiliation(s)
- Shiqun Yu
- Yunfu Center for Disease Control and Prevention, Yunfu, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Chengman Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Jin Ouyang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Ting Luo
- Infection Control Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Fanfan Zeng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Yu Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, China
| | - Liyun Gao
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Shaoxin Huang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Xin Wang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences , Jiujiang University, Jiujiang, 332005, Jiangxi, China.
| |
Collapse
|
133
|
Cevallos CA, White AL, Fazio BA, Wendt LS, Feng JW, Posfai D, Horton AL, Warrick JM, Quintero-Carmona OA. Transcriptomic Analysis of CAD Cell Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642086. [PMID: 40161715 PMCID: PMC11952321 DOI: 10.1101/2025.03.09.642086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CAD cells were derived from Cath.a cells, a mouse central nervous system catecholaminergic cell line. Serum-starved CAD cells undergo morphological changes and resemble isolated neurons when observed by microscopy. We carried out an RNAseq transcriptomic analysis to examine differentiated CAD cells for expression signatures related to neuronal functions, identifying ~1900 transcripts whose expression changed with differentiation. Pathview analysis identified ~80 KEGG pathway gene sets that were differentially expressed, including upregulation of at least 13 neuron-related pathways. This dataset can be explored more deeply, allowing further investigation into expression changes relevant to studying neuronal functions in this easy-to-culture model system.
Collapse
Affiliation(s)
| | | | - Brooke A Fazio
- Department of Biology, University of Richmond, VA, 23173
| | | | - Jasmine W Feng
- Department of Biology, University of Richmond, VA, 23173
| | - Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27708
| | - April L Horton
- Department of Biology, University of Richmond, VA, 23173
- Department of Biology, Bates College, Lewiston, ME, 04240
| | - John M Warrick
- Department of Biology, University of Richmond, VA, 23173
| | | |
Collapse
|
134
|
Marcantonio E, Burger AD, Chang KH, Hoffmann FW, Fu Y, Khadka VS, Smagghe BJ, Deng Y, Hoffmann PR, Prisic S. Zinc-limited Mycobacterium tuberculosis stimulate distinct responses in macrophages compared with standard zinc-replete bacteria. Infect Immun 2025; 93:e0057824. [PMID: 39903447 PMCID: PMC11895486 DOI: 10.1128/iai.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses to Mycobacterium tuberculosis bacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb's access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments.
Collapse
Affiliation(s)
- Endrei Marcantonio
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Allexa D. Burger
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Kelly H. Chang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Fukun W. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Benoit J. Smagghe
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
135
|
Jones BA, Gisch DL, Myakala K, Sadiq A, Cheng YH, Taranenko E, Panov J, Korolowicz K, Melo Ferreira R, Yang X, Santo BA, Allen KC, Yoshida T, Wang XX, Rosenberg AZ, Jain S, Eadon MT, Levi M. NAD+ prevents chronic kidney disease by activating renal tubular metabolism. JCI Insight 2025; 10:e181443. [PMID: 40059824 PMCID: PMC11949063 DOI: 10.1172/jci.insight.181443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD+) is a small molecule that participates in hundreds of metabolism-related reactions. NAD+ levels are decreased in CKD, and NAD+ supplementation is protective. However, both the mechanism of how NAD+ supplementation protects from CKD, as well as the cell types involved, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD+ precursor, stimulated renal PPARα signaling and restored FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing showed that renal metabolic pathways were impaired in Alport mice and activated by NR in both sexes. These transcriptional changes were confirmed by orthogonal imaging techniques and biochemical assays. Single-nuclei RNA sequencing and spatial transcriptomics, both the first of their kind to our knowledge from Alport mice, showed that NAD+ supplementation restored FAO in proximal tubule cells. Finally, we also report, for the first time to our knowledge, sex differences at the transcriptional level in this Alport model. In summary, the data herein identify a nephroprotective mechanism of NAD+ supplementation in CKD, and they demonstrate that this benefit localizes to the proximal tubule cells.
Collapse
Affiliation(s)
- Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Debora L. Gisch
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Amber Sadiq
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Ying-Hua Cheng
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, California, USA
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Kyle Korolowicz
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A. Santo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine C. Allen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Teruhiko Yoshida
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael T. Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, USA
| |
Collapse
|
136
|
Cai D, Hu W, Cai Y, Fang T, Chen X. Integrated Analysis of Ferroptosis and Immune Infiltration in Ulcerative Colitis Based on Bioinformatics. J Inflamm Res 2025; 18:3535-3549. [PMID: 40093944 PMCID: PMC11908401 DOI: 10.2147/jir.s501651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory bowel disease influenced by genetic, immune, and environmental factors. This study investigates the link between ferroptosis, a cell death process related to oxidative stress and iron metabolism, and immune infiltration in UC. Materials and Methods We analyzed UC patient transcription data from the Gene Expression Omnibus (GEO) and identified ferroptosis-related genes using FerrDB. Using STRING and Cytoscape, we analyzed protein-protein interactions to identify hub UC Differentially Expressed Genes (UCDEGs) and performed functional enrichment with GO and KEGG pathways. Machine learning helped further identify key UC Differentially Expressed Ferroptosis-related genes (UCDE-FRGs), which were validated using additional GEO datasets and immunohistochemical staining. Results A total of 11 hub UCDEGs (CCL2, ICAM1, TLR2, CXCL9, MMP9, CXCL10, IL1B, CXCL8, PTPRC, FCGR3A, and IL1A) and 3 key UCDE-FRGs (DUOX2, LCN2 and IDO1) were identified. GO and KEGG functional enrichment indicates that these genes play a role in immunity and ferroptosis. Analysis of immune cell infiltration showed that there were a large number of Plasma cells, Monocytes, M0/M1 Macrophages and Neutrophils in the UC. Correlation analysis revealed 3 key UCDE-FRGs associated with immune-infiltrated cells in UC. IHC results showed that the expression levels of 3 key UCDE-FRGs in UC were all higher than that in the healthy controls. Conclusion In summary, this study identified three key genes related to UC ferroptosis and immunity, namely DUOX2, IDO1 and LCN2. These findings suggest that immune infiltration plays an important role in UC caused by ferroptosis, and that there is mutual regulation between UC and immune-infiltrated cells. Our research revealed the potential application of immune and ferroptosis in the diagnosis, treatment and prognosis of UC, providing new strategies for clinical management.
Collapse
Affiliation(s)
- Daxing Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Yanliang Cai
- Department of Pediatrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| |
Collapse
|
137
|
Thurow C, Pelizaeus AM, Mrozek P, Hoßbach BM, Budimir J, Schmitt K, Valerius O, Braus G, Gatz C. Redox-inactive CC-type glutaredoxins interfere with TGA transcription factor-dependent repression of target promoters in roots. THE PLANT CELL 2025; 37:koaf038. [PMID: 40053521 PMCID: PMC11887855 DOI: 10.1093/plcell/koaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
Changes in nitrogen (N) availability in the soil trigger transcriptional responses in plants to optimize N acquisition, allocation, and remobilization. In roots of N-starved Arabidopsis (Arabidopsis thaliana) plants, transcriptional activation of genes encoding, for example, low-affinity nitrate transporters, depends on 4 related C-TERMINALLY ENCODED PEPTIDE DOWNSTREAM (CEPD) proteins, also known as ROXY6, ROXY7, ROXY8, and ROXY9. All 21 ROXYs found in A. thaliana interact with members of the TGACG-binding (TGA) family of transcription factors. Here, we demonstrate that 2 Clade I TGAs (TGA1, TGA4) serve as molecular links between CEPDs and their target promoters in roots. In the roxy6 roxy7 roxy8 roxy9 quadruple mutant (named cepd in this manuscript), transcriptional activation of N-starvation-inducible genes is impaired, most likely due to the association of Clade I TGAs with a repressive complex at their target promoters. In wild-type plants, this repressive complex is nonfunctional, and gene expression may be regulated by the N supply-regulated ratio of CEPDs over opposing ROXYs containing the TOPLESS-interacting ALWL motif. Although CEPDs resemble glutaredoxins with glutathione-dependent oxidoreductase activity, a ROXY9 variant with a mutation in the catalytic cysteine in its putative active site can confer wild-type-like regulation of target genes. This finding demonstrates that ROXY9 does not function through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Corinna Thurow
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Anja Maren Pelizaeus
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Pascal Mrozek
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Ben Moritz Hoßbach
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Jelena Budimir
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Kerstin Schmitt
- Institut für Mikrobiologie und Genetik, Serviceeinheit LCMS Proteinanalytik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077 Göttingen, Germany
| | - Oliver Valerius
- Institut für Mikrobiologie und Genetik, Serviceeinheit LCMS Proteinanalytik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077 Göttingen, Germany
| | - Gerhard Braus
- Institut für Mikrobiologie und Genetik, Serviceeinheit LCMS Proteinanalytik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077 Göttingen, Germany
| | - Christiane Gatz
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| |
Collapse
|
138
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
139
|
Saxe R, Stuart H, Marshall A, Abdullahi F, Chen Z, Emiliani F, McKenna A. Hierarchical Lineage Tracing Reveals Diverse Pathways of AML Treatment Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640600. [PMID: 40093111 PMCID: PMC11908168 DOI: 10.1101/2025.02.27.640600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cancer cells adapt to treatment, leading to the emergence of clones that are more aggressive and resistant to anti-cancer therapies. We have a limited understanding of the development of treatment resistance as we lack technologies to map the evolution of cancer under the selective pressure of treatment. To address this, we developed a hierarchical, dynamic lineage tracing method called FLARE (Following Lineage Adaptation and Resistance Evolution). We use this technique to track the progression of acute myeloid leukemia (AML) cell lines through exposure to Cytarabine (AraC), a front-line treatment in AML, in vitro and in vivo. We map distinct cellular lineages in murine and human AML cell lines predisposed to AraC persistence and/or resistance via the upregulation of cell adhesion and motility pathways. Additionally, we highlight the heritable expression of immunoproteasome 11S regulatory cap subunits as a potential mechanism aiding AML cell survival, proliferation, and immune escape in vivo. Finally, we validate the clinical relevance of these signatures in the TARGET-AML cohort, with a bisected response in blood and bone marrow. Our findings reveal a broad spectrum of resistance signatures attributed to significant cell transcriptional changes. To our knowledge, this is the first application of dynamic lineage tracing to unravel treatment response and resistance in cancer, and we expect FLARE to be a valuable tool in dissecting the evolution of resistance in a wide range of tumor types.
Collapse
Affiliation(s)
- Rachel Saxe
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Hannah Stuart
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Quantitative Biomedical Science Program, Dartmouth College, Lebanon, NH
| | - Abigail Marshall
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Fahiima Abdullahi
- The Dartmouth MD-PhD Undergraduate Summer Fellowship Program, Lebanon, NH
| | - Zoë Chen
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| | - Francesco Emiliani
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Aaron McKenna
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| |
Collapse
|
140
|
Shi M, Zhou R, Shen W, Liang Y, Zhang Y, Liu L, Shao R, Fang Y, Zhao C, Wu L. LncRNA ENST00000581911 Regulates Extraocular Muscle Remodeling by Interacting With KHSRP in Thyroid Eye Disease. Invest Ophthalmol Vis Sci 2025; 66:46. [PMID: 40116677 PMCID: PMC11935560 DOI: 10.1167/iovs.66.3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Thyroid eye disease (TED) is a visually debilitating and cosmetically disfiguring orbital disorder, characterized by the remodeling of extraocular muscles (EOMs). This study aimed to investigate the role of long non-coding RNA (lncRNA) ENST00000581911 in the EOMs of TED. Methods LncRNA microarray analysis was performed on EOM tissues sampled from patients with TED and patients with concomitant esotropia. LncRNA ENST00000581911 was identified and subjected to bioinformatics analysis. High-throughput RNA sequencing, CCK-8 assay, CFSE staining, and ELISA were used to investigate the regulatory function of ENST00000581911 in vitro. Furthermore, RNA pull-down, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and western blot (WB) analyses were applied to identify the RNA-binding protein (RBP) interacting with ENST00000581911. Results A total of 1261 lncRNAs were found to be differentially expressed in the EOMs of TED, with 648 upregulated and 613 downregulated lncRNAs. Among these, the upregulated lncRNA ENST00000581911 exhibited the highest expression level, as validated by quantitative real-time PCR (qRT-PCR). Functional analysis demonstrated that ENST00000581911 might be involved in inflammatory response, regulation of muscle contraction, and amino sugar and nucleotide sugar metabolism. RNA sequencing of ENST00000581911-overexpressing and control orbital fibroblasts (OFs) showed that ENST00000581911 might play a regulatory role in DNA replication, extracellular matrix, and cell cycle. Furthermore, KHSRP was identified as the RBP of ENST00000581911. Overexpression of ENST00000581911 promoted cell proliferation and hyaluronic acid secretion in OFs, whereas silencing KHSRP attenuated these effects. Conclusions This study provides novel insights into the role of lncRNA ENST00000581911 in the pathogenesis of EOM remodeling in TED. ENST00000581911 may serve as a potential therapeutic target of TED.
Collapse
Affiliation(s)
- Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rongmei Zhou
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiai Shen
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lingyun Liu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Runyi Shao
- School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yanxi Fang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, National Health Commission (NHC), Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
141
|
Gao Y, Hui L, Dou G, Chang X, Tang Y, Liu H, Xu Z, Xu B. Establishment of a prediction model and immune infiltration characteristics of atherosclerosis progression based on neutrophil extracellular traps-related genes. Braz J Med Biol Res 2025; 58:e13639. [PMID: 40053030 PMCID: PMC11884769 DOI: 10.1590/1414-431x2024e13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/18/2024] [Indexed: 03/10/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are a novel regulatory mechanism of neutrophils, which can promote endothelial cell inflammation through direct or indirect pathways and play a crucial role in the occurrence and development of atherosclerosis (AS). This study aimed to explore the mechanism of NETs in AS progression using bioinformatics methods. We acquired datasets from Gene Expression Omnibus (GEO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and used Weighted Gene Co-expression Network Analysis (WGCNA) to identify communal genes shared by NET-related genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted. Machine learning algorithms were used to identify hub genes, then protein-protein interaction (PPI), CO-expression network construction, nomogram model building and validation, and immune infiltration analysis were performed. Data were verified by qPCR. Four datasets related to AS progression were included. Module genes shared 27 genes with NRGs. Pathways related to immune regulation, leukocyte migration, and others were identified. Machine learning revealed SLC25A4 and C5AR1 as hub genes. SLC25A4 and C5AR1 were confirmed to have predictive value for intraplaque hemorrhage (IPH), advanced AS plaques, ruptured plaques, and unstable plaques. These pathologic changes are closely related to AS progression and are the main contents of AS progression. Immune infiltration analysis revealed 4 immune cells associated with IPH, among them resting dendritic cells, which were closely related to SLC25A4. In qPCR validation, SLC25A4 and C5AR1 were shown to be consistent with the bioinformatic analysis results. These findings provided novel insights into the molecular characteristics of NRGs and potential therapies for AS progression.
Collapse
Affiliation(s)
- Yuan Gao
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Lele Hui
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Gang Dou
- No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| | - Xiaoying Chang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Tang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hao Liu
- Chenggu County Hospital of Traditional Chinese Medicine, Hanzhong, China
| | - Zebiao Xu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bing Xu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
142
|
Dragland JS, Liu G, Nilsen HL, Böttcher Y, Wang J. EpiMapper: A new tool for analyzing high-throughput sequencing from CUT&Tag. Comput Biol Med 2025; 186:109692. [PMID: 39832438 DOI: 10.1016/j.compbiomed.2025.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Since the invention of next-generation sequencing, new methods have been developed to understand the regulation of gene expression through epigenetic markers. Among these, CUT&Tag (Cleavage Under Targets and Tagmentation) analysis has emerged as an efficient epigenomic profiling technique with low input requirements, high sensitivity, and low background signals. Although wet-lab techniques are available, data analysis remains challenging for scientists without expert-level computational skills. Therefore, we developed EpiMapper, a new Python package that simplifies the data analysis of CUT&Tag sequencing and similar techniques, such as ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) or ChIP-seq (chromatin immunoprecipitation [ChIP] assays with sequencing), and allows biomedical scientists to easily interpret the results. This new package includes every necessary step, from quality control to annotation and differential peak analysis. In particular, EpiMapper has improved functionality (e.g., reproducibility assessment) compared to previous analysis protocols and visualization plots and provides new features, such as genome annotation and differential peak analysis. Using three case studies, two on CUT&Tag and one on ATAC-seq data, the EpiMapper Python package successfully reproduced previous results.
Collapse
Affiliation(s)
- Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Gege Liu
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yvonne Böttcher
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway; Medical Division (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Junbai Wang
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway; Medical Division (EpiGen), Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
143
|
Ehrenberg AJ, Sant C, Pereira FL, Li SH, Buxton J, Langlois S, Trinidad M, Oh I, Leite REP, Rodriguez RD, Paes VR, Pasqualucci CA, Seeley WW, Spina S, Suemoto CK, Temple S, Kaufer D, Grinberg LT. Pathways underlying selective neuronal vulnerability in Alzheimer's disease: Contrasting the vulnerable locus coeruleus to the resilient substantia nigra. Alzheimers Dement 2025; 21:e70087. [PMID: 40135662 PMCID: PMC11938114 DOI: 10.1002/alz.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) selectively affects certain brain regions, yet the mechanisms of selective vulnerability remain poorly understood. The neuromodulatory subcortical system, which includes nuclei exhibiting a range of vulnerability and resilience to AD-type degeneration, presents a framework for uncovering these mechanisms. METHODS We leveraged transcriptomics and immunohistochemistry in paired samples from human post mortem tissue representing a vulnerable and resilient region-the locus coeruleus (LC) and substantia nigra (SN). These regions have comparable anatomical features but distinct vulnerability to AD. RESULTS We identified significant differences in cholesterol homeostasis, antioxidant pathways, KRAS signaling, and estrogen signaling at a bulk transcriptomic level. Notably, evidence of sigma-2 receptor upregulation was detected in the LC. DISCUSSION Our findings highlight pathways differentiating the LC and SN, potentially explaining the LC's selective vulnerability in AD. Such pathways offer potential targets of disease-modifying therapies for AD. HIGHLIGHTS Intraindividual comparative RNAseq was used to study selective vulnerability. Metallothionein genes are significantly enriched in the substantia nigra. Cholesterol homeostatic genes are significantly enriched in the locus coeruleus. The locus coeruleus is likely more susceptible to toxic amyloid beta oligomers.
Collapse
Affiliation(s)
- Alexander J. Ehrenberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cathrine Sant
- Gladstone Institute for Neurological DiseasesGladstone InstitutesSan FranciscoCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Felipe L. Pereira
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Song Hua Li
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Jessica Buxton
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sonali Langlois
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Marena Trinidad
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Ian Oh
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | | | | | | | | | - William W. Seeley
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Claudia K. Suemoto
- Division of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | - Daniela Kaufer
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Dept. of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
144
|
Soltanieh SK, Khastar S, Kaur I, Kumar A, Bansal J, Fateh A, Nathiya D, Husseen B, Rajabivahid M, Dehghani-Ghorbi M, Akhavan-Sigari R. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys 2025; 83:279-294. [PMID: 39377981 DOI: 10.1007/s12013-024-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 01/03/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.
Collapse
Affiliation(s)
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Jaya Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Ata Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
145
|
Qiu W, Dincer AB, Janizek JD, Celik S, Pittet MJ, Naxerova K, Lee SI. Deep profiling of gene expression across 18 human cancers. Nat Biomed Eng 2025; 9:333-355. [PMID: 39690287 DOI: 10.1038/s41551-024-01290-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/23/2024] [Indexed: 12/19/2024]
Abstract
Clinical and biological information in large datasets of gene expression across cancers could be tapped with unsupervised deep learning. However, difficulties associated with biological interpretability and methodological robustness have made this impractical. Here we describe an unsupervised deep-learning framework for the generation of low-dimensional latent spaces for gene-expression data from 50,211 transcriptomes across 18 human cancers. The framework, which we named DeepProfile, outperformed dimensionality-reduction methods with respect to biological interpretability and allowed us to unveil that genes that are universally important in defining latent spaces across cancer types control immune cell activation, whereas cancer-type-specific genes and pathways define molecular disease subtypes. By linking latent variables in DeepProfile to secondary characteristics of tumours, we discovered that mutation burden is closely associated with the expression of cell-cycle-related genes, and that the activity of biological pathways for DNA-mismatch repair and MHC class II antigen presentation are consistently associated with patient survival. We also found that tumour-associated macrophages are a source of survival-correlated MHC class II transcripts. Unsupervised learning can facilitate the discovery of biological insight from gene-expression data.
Collapse
Affiliation(s)
- Wei Qiu
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Ayse B Dincer
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Joseph D Janizek
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Safiye Celik
- Recursion Pharmaceuticals, Salt Lake City, UT, USA
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- AGORA Cancer Research Center and Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Su-In Lee
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
146
|
Zhan P, Feng Z, Huang X, Xu H, Xu S, Wang S. Shared pyroptosis pathways and crosstalk genes underpin inflammatory links between periodontitis and atherosclerosis. Immunobiology 2025; 230:152880. [PMID: 39978305 DOI: 10.1016/j.imbio.2025.152880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE This study aimed to identify crosstalk genes shared between periodontitis (PD) and atherosclerosis (AS) and to investigate their potential connections with pyroptosis-related genes. The goal was to uncover common regulatory mechanisms underlying these two inflammatory conditions. METHODS Gene expression datasets for PD (GSE10334) and AS (GSE43292) were retrieved from public databases. Following batch effect correction and normalization, differential expression analysis was conducted using the limma package in R. Functional enrichment analysis was performed with the clusterProfiler package to identify key pathways, while heatmaps and pathway networks were constructed to visualize the relationships among pyroptosis genes and crosstalk genes. Weighted gene co-expression network analysis (WGCNA) was applied to identify critical modules, and the diagnostic potential of core genes was evaluated via receiver operating characteristic (ROC) analysis. Protein-protein interaction (PPI) networks were also constructed to explore molecular interactions. RESULTS A total of 28 downregulated and 105 upregulated genes were identified in the PD dataset, while the AS dataset revealed 55 downregulated and 56 upregulated genes. Thirteen crosstalk genes were identified between the two datasets. Enrichment analyses of these crosstalk genes highlighted their involvement in inflammation- and immune-related pathways. The observed association of pyrototic phenotypes with PD and AS indicated significant overexpression of pyroptosis-related genes such as CASP1, NLRP3, and GSDMD, suggesting the participation of pyroptosis in the progression of disease. The WGCNA suggested that pyroptosis genes are closely relevant to immune responses and cell death processes. Data up to October 2023 were used to perform receiver operating characteristics (ROC) curves to confirm the diagnostic value of the enriched core genes, and all of them presented AUC values >0.8, which meant that they were key genes with effective diagnostic power. CONCLUSION We report a novel study that identifies differentially expressed genes and pyroptosis-related pathways in PD and AS with shared inflammatory mechanisms. These results underscore the crucial role of pyroptosis in disease progression, suggesting its potential as a focus of diagnostic and therapeutic strategies. These findings provide insights for dissecting the molecular basis of inflammatory diseases.
Collapse
Affiliation(s)
- Pinxin Zhan
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China
| | - Zhiying Feng
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China
| | - Xinqi Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China
| | - Haoyang Xu
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China
| | - Shijun Xu
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
147
|
Ceccarelli S, Pasqua Marzolesi V, Vannucci J, Bellezza G, Floridi C, Nocentini G, Cari L, Traina G, Petri D, Puma F, Conte C. Toll-Like Receptor 4 and 8 are Overexpressed in Lung Biopsies of Human Non-small Cell Lung Carcinoma. Lung 2025; 203:38. [PMID: 40025339 PMCID: PMC11872755 DOI: 10.1007/s00408-025-00793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Lung cancer is the leading cause of cancer death worldwide which includes two main types of carcinoma distinguished in non-small cell lung cancer (NSCLC) involving epithelial cells, and small cell lung cancer (SCLC) affecting neuronal cells and hormone secreting cells. Studies have shown a causal link between inflammation/innate immunity and onset of NSCLC. The present study aimed to evaluate the expression of Toll-like receptors (TLRs) 4 and TLR8 in peripheral blood mononuclear cells (PBMC) and in lung tissues of patients with NSCLC, useful for future prognostic tools for NSCLC. METHODS Patients surgically treated for NSCLC with anatomical resections and patients with benign disease were enrolled. The expression levels of TLR4 and TLR8 were determined by real time PCR and by immunohistochemical analysis in PBMC and in lung tissues, respectively. A preliminary in silico analysis including 1194 arrays from healthy and cancer tissues were extracted by Genevestigator database. The association between TLRs gene expression and survival outcome was also investigated. RESULTS Bioinformatics analysis revealed that downregulation of TLR4 and TLR8 positively impacts the survival in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). However, no significant differences in TLR4 and TLR8 gene expression between case and control groups were observed in PBMC. A positive correlation was found in their expression levels. Interestingly, immunohistochemical analysis showed that the levels of TLR4 and TLR8 were higher in the lung tissues of patients with NSCLC than in the control group in terms of staining intensity and positive cells. CONCLUSION Albeit the precise role of TLRs is not fully defined, this study identified the potential involvement of TLR4 and TLR8 in the pathogenesis of NSCLC. Our data led us to hypothesize their potential role in overall survival which deserves to be explored further to establish whether TLR4 and TLR8 can represent positive prognostic indicators of disease in NSCLC.
Collapse
MESH Headings
- Humans
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/surgery
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/surgery
- Male
- Female
- Middle Aged
- Aged
- Toll-Like Receptor 8/genetics
- Toll-Like Receptor 8/metabolism
- Biopsy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Leukocytes, Mononuclear/metabolism
- Prognosis
- Lung/pathology
- Lung/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adenocarcinoma of Lung/genetics
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/metabolism
Collapse
Affiliation(s)
- Silvia Ceccarelli
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | | | - Jacopo Vannucci
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Floridi
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Davide Petri
- Department of Environment and Health, National Institute of Health, Rome, Italy
| | - Francesco Puma
- Department of Surgical and Biomedical Sciences, Thoracic Surgery Unit, Medical School, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
148
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2025; 14:e2403712. [PMID: 39523700 PMCID: PMC11874633 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ferdows Afghah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Nicolas Castro
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Maheera Bawa
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sonika Kohli
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Karina Shah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Brandon Rios
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ritu Raman
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
149
|
He W, Liu P, Lei Q, Xu J, Liu L. DUSP1 Promotes Osimertinib Drug-Tolerant Persistence by Inhibiting MAPK/ERK Signaling in Non-small Cell Lung Cancer. Mol Biotechnol 2025; 67:1256-1268. [PMID: 38551790 DOI: 10.1007/s12033-024-01127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/27/2024] [Indexed: 02/08/2025]
Abstract
EGFR tyrosine kinase inhibitors (EGFR-TKIs) are the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC) patients, which remarkably improve the clinical outcomes. However, drug resistance has greatly impaired the efficacy of EGFR-TKIs and contributes to cancer treatment failure. DUSP1, a negative regulator of MAPK signaling pathway, was discovered to mediate drug resistance in multiple types of cancers. Our study aimed to explore the role of DUSP1 in NSCLC cell resistance to osimertinib, a third-generation EGFR-TKI. Human NSCLC cell lines PC-9 and HCC827 were exposed to increasing concentrations of osimertinib for over 6 months to generate osimertinib resistant cells (PC-9-OR and HCC827-OR). The viabilities of osimertinib-resistant and parental sensitive NSCLC cells in response to osimertinib stimulation were detected by MTS assay and the IC50 values for osimertinib were obtained. The differentially expressed genes in osimertinib-resistant and sensitive NSCLC cells were identified by analyzing the GEO dataset GSE106765 using bioinformatic tools. DUSP1 expression was knocked down by using the short hairpin RNAs (shRNAs). Then, the effects of DUSP1 silencing on osimertinib-resistant and sensitive NSCLC cell resistance to osimertinib, viability, proliferation and apoptosis were assessed through loss-of-function experiments. The expression of key molecules (JNK, ERK, and p38 MAPK) in the MAPK signaling pathway was detected through western blotting analysis. DUSP1 was overexpressed in osimertinib-resistant NSCLC cells versus parental sensitive cells. DUSP1 silencing attenuated the resistance of NSCLC cells to osimertinib. DUSP1 silencing markedly inhibited osimertinib-resistant and sensitive NSCLC cell proliferation but enhanced cell apoptosis. Mechanically, DUSP1 knockdown increased phosphorylated-JNK, ERK, and p38 MAPK levels in NSCLC cells. Treatment with SB203580, the p38 MAPK inhibitor, reversed the effects of DUSP1 silencing on osimertinib-resistant NSCLC cell resistance to osimertinib, cell proliferation and apoptosis. DUSP1 downregulation restores the sensitivity of NSCLC cells to osimertinib via activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Wenjuan He
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Ping Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Quan Lei
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Jun Xu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China
| | - Li Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, 430030, China.
- Wuhan Fourth Hospital, No.473, Hanzheng Street, Qiaokou District, Wuhan, Hubei Province, China.
| |
Collapse
|
150
|
Tümmler B, Bürger C, Kubesch P. Monitoring cystic fibrosis airway infections with Pseudomonas aeruginosa with anti-OprF serum antibodies. J Cyst Fibros 2025; 24:353-358. [PMID: 38845269 DOI: 10.1016/j.jcf.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 03/30/2025]
Abstract
BACKGROUND The management of cystic fibrosis (CF) requires knowledge of the patient's microbiological status. The serology of anti-Pseudomonas aeruginosa antibodies against exoenzymes or water-soluble antigens has gained diagnostic value, particularly to detect the onset of colonization with P. aeruginosa. However, the diversity and variable expression of these antigens, which was unknown when the ELISAs became common diagnostic procedures at CF clinics, prohibits the quantitative evaluation of bacterial antigen load during intermittent and chronic infection. METHODS An ELISA was developed to measure the serum IgG antibody levels against P. aeruginosa porin OprF, a species-specific, conserved, immunogenic and constitutively expressed protein present in the outer membrane and extracellular vesicles. RESULTS Serial serum samples were collected from 310 people with CF (pwCF) over a period of up to 15 years. Compared to a reference of P. aeruginosa - negative CF sera set to 1, OprF antibody titers ranged from 0.3 to 13.2 (median: 1.7) in 56 intermittently colonized patients and from 0.5 to 51.2 (median: 11.8) in 176 chronically colonized pwCF showing higher anti-OprF antibody levels during chronic than during intermittent colonization with P. aeruginosa (P = 0, Z = - 21.7, effect size 0.62). Inhalation with twice daily 80 mg tobramycin decreased OprF antibody titers (P = 5 × 10-5), particularly during the third and fourth year of chronic colonization. CONCLUSION The OprF ELISA should be an appropriate tool to monitor Pseudomonas serology at all stages of infection and disease severity and to study the impact of short- and long-term therapeutic interventions.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany.
| | - Christiane Bürger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Institute for Biophysical Chemistry and Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Peter Kubesch
- Institute for Biophysical Chemistry and Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|