101
|
Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Front Immunol 2017; 8:986. [PMID: 28928732 PMCID: PMC5591402 DOI: 10.3389/fimmu.2017.00986] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Tong Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Seth D Ludwig
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sabyasachi Sen
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
102
|
Lin JL, Zhu J, Wheeldon I. Synthetic Protein Scaffolds for Biosynthetic Pathway Colocalization on Lipid Droplet Membranes. ACS Synth Biol 2017; 6:1534-1544. [PMID: 28497697 DOI: 10.1021/acssynbio.7b00041] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eukaryotic biochemistry is organized throughout the cell in and on membrane-bound organelles. When engineering metabolic pathways this organization is often lost, resulting in flux imbalance and a loss of kinetic advantages from enzyme colocalization and substrate channeling. Here, we develop a protein-based scaffold for colocalizing multienzyme pathways on the membranes of intracellular lipid droplets. Scaffolds based on the plant lipid droplet protein oleosin and cohesin-dockerin interaction pairs recruited upstream enzymes in yeast ester biosynthesis to the native localization of the terminal reaction step, alcohol-O-acetyltransferase (Atf1). The native localization is necessary for high activity and pathway assembly in close proximity to Atf1 increased pathway flux. Screening a library of scaffold variants further showed that pathway structure can alter catalysis and revealed an optimized scaffold and pathway expression levels that produced ethyl acetate at a rate nearly 2-fold greater than unstructured pathways. This strategy should prove useful in spatially organizing other metabolic pathways with key lipid droplet-localized and membrane-bound reaction steps.
Collapse
Affiliation(s)
- Jyun-Liang Lin
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jie Zhu
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Ian Wheeldon
- Department of Chemical and
Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
103
|
Yano D, Suzuki T, Hirokawa S, Fuke K, Suzuki T. Characterization of four arginine kinases in the ciliate Paramecium tetraurelia : Investigation on the substrate inhibition mechanism. Int J Biol Macromol 2017; 101:653-659. [DOI: 10.1016/j.ijbiomac.2017.03.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
|
104
|
Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 2017; 24:743-751. [PMID: 28759049 DOI: 10.1038/nsmb.3444] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling.
Collapse
|
105
|
Wan W, Lu M, Wang D, Gao X, Hong J. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment. Sci Rep 2017; 7:6119. [PMID: 28733633 PMCID: PMC5522410 DOI: 10.1038/s41598-017-06428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022] Open
Abstract
Engineering and evaluation of synthetic routes for generating valuable compounds require accurate and cost-effective de novo synthesis of genetic pathways. Here, we present an economical and streamlined de novo DNA synthesis approach for engineering a synthetic pathway with microchip-synthesized oligonucleotides (oligo). The process integrates entire oligo pool amplification, error-removal, and assembly of long DNA molecules. We utilized this method to construct a functional lycopene biosynthetic pathway (11.9 kb encoding 10 genes) in Escherichia coli using a highly error-prone microchip-synthesized oligo pool (479 oligos) without pre-purification, and the error-frequency was reduced from 14.25/kb to 0.53/kb. This low-equipment-dependent and cost-effective method can be widely applied for rapid synthesis of biosynthetic pathways in general molecular biology laboratories.
Collapse
Affiliation(s)
- Wen Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Min Lu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaolian Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Department of Biology and Biochemistry, University of Houston, Houston, TX77004-5001, USA
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
106
|
Chao R, Mishra S, Si T, Zhao H. Engineering biological systems using automated biofoundries. Metab Eng 2017; 42:98-108. [PMID: 28602523 PMCID: PMC5544601 DOI: 10.1016/j.ymben.2017.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/22/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
Abstract
Engineered biological systems such as genetic circuits and microbial cell factories have promised to solve many challenges in the modern society. However, the artisanal processes of research and development are slow, expensive, and inconsistent, representing a major obstacle in biotechnology and bioengineering. In recent years, biological foundries or biofoundries have been developed to automate design-build-test engineering cycles in an effort to accelerate these processes. This review summarizes the enabling technologies for such biofoundries as well as their early successes and remaining challenges.
Collapse
Affiliation(s)
- Ran Chao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shekhar Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Tong Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Departments of Chemistry, Biochemistry, Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
107
|
Chang P, Chen GS, Chu HY, Lu KW, Shen CR. Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J Biotechnol 2017; 249:73-81. [DOI: 10.1016/j.jbiotec.2017.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
|
108
|
Reinke AW, Mak R, Troemel ER, Bennett EJ. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. SCIENCE ADVANCES 2017; 3:e1602426. [PMID: 28508060 PMCID: PMC5425238 DOI: 10.1126/sciadv.1602426] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
Multicellular organisms are composed of tissues that have distinct functions requiring specialized proteomes. To define the proteome of a live animal with tissue and subcellular resolution, we adapted a localized proteomics technology for use in the multicellular model organism Caenorhabditis elegans. This approach couples tissue- and location-specific expression of the enzyme ascorbate peroxidase (APX), which enables proximity-based protein labeling in vivo, and quantitative proteomics to identify tissue- and subcellular-restricted proteomes. We identified and localized more than 3000 proteins from strains of C. elegans expressing APX in either the nucleus or cytoplasm of the intestine, epidermis, body wall muscle, or pharyngeal muscle. We also identified several hundred proteins that were specifically localized to one of the four tissues analyzed or specifically localized to the cytoplasm or the nucleus. This approach resulted in the identification both of proteins with previously characterized localizations and of those not known to localize to the nucleus or cytoplasm. Further, we confirmed the tissue- and subcellular-specific localization of a subset of identified proteins using green fluorescent protein tagging and fluorescence microscopy, validating our in vivo proximity-based proteomics technique. Together, these results demonstrate a new approach that enables the tissue- and subcellular-specific identification and quantification of proteins within a live animal.
Collapse
Affiliation(s)
- Aaron W. Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Raymond Mak
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric J. Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
109
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
110
|
Martin JE, Edmonds KA, Bruce KE, Campanello GC, Eijkelkamp BA, Brazel EB, McDevitt CA, Winkler ME, Giedroc DP. The zinc efflux activator SczA protects Streptococcus pneumoniae serotype 2 D39 from intracellular zinc toxicity. Mol Microbiol 2017; 104:636-651. [PMID: 28249108 DOI: 10.1111/mmi.13654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Zinc is an essential trace element that serves as a catalytic cofactor in metalloenzymes and a structural element in proteins involved in general metabolism and cellular defenses of pathogenic bacteria. Despite its importance, high zinc levels can impair cellular processes, inhibiting growth of many pathogenic bacteria, including the major respiratory pathogen Streptococcus pneumoniae. Zinc intoxication is prevented in S. pneumoniae by expression of the zinc exporter CzcD, whose expression is activated by the novel TetR-family transcriptional zinc-sensing regulator SczA. How zinc bioavailability triggers activation of SczA is unknown. It is shown here through functional studies in S. pneumoniae that an unannotated homodimeric TetR from S. agalactiae (PDB 3KKC) is the bona fide zinc efflux regulator SczA, and binds two zinc ions per protomer. Mutagenesis analysis reveals two metal binding sites, termed A and B, located on opposite sides of the SczA C-terminal regulatory domain. In vivo, the A- and B-site SczA mutant variants impact S. pneumoniae resistance to zinc toxicity and survival in infected macrophages. A model is proposed for S. pneumoniae SczA function in which both A- and B-sites were required for transcriptional activation of czcD expression, with the A-site serving as the evolutionarily conserved intracellular sensing site in SczAs.
Collapse
Affiliation(s)
- Julia E Martin
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7005, USA
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7005, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University, Bloomington, IN, 47405-7005, USA
| | | | - Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, SA, 5005, Australia
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, SA, 5005, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, SA, 5005, Australia
| | - Malcolm E Winkler
- Department of Biology, Indiana University, Bloomington, IN, 47405-7005, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7005, USA
| |
Collapse
|
111
|
Tuan-Anh T, Ly LT, Viet NQ, Bao PT. Novel methods to optimize gene and statistic test for evaluation - an application for Escherichia coli. BMC Bioinformatics 2017; 18:100. [PMID: 28187713 PMCID: PMC5303253 DOI: 10.1186/s12859-017-1517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Background Since the recombinant protein was discovered, it has become more popular in many aspects of life science. The value of global pharmaceutical market was $87 billion in 2008 and the sales for industrial enzyme exceeded $4 billion in 2012. This is strong evidence showing the great potential of recombinant protein. However, native genes introduced into a host can cause incompatibility of codon usage bias, GC content, repeat region, Shine-Dalgarno sequence with host’s expression system, so the yields can fall down significantly. Hence, we propose novel methods for gene optimization based on neural network, Bayesian theory, and Euclidian distance. Result The correlation coefficients of our neural network are 0.86, 0.73, and 0.90 in training, validation, and testing process. In addition, genes optimized by our methods seem to associate with highly expressed genes and give reasonable codon adaptation index values. Furthermore, genes optimized by the proposed methods are highly matched with the previous experimental data. Conclusion The proposed methods have high potential for gene optimization and further researches in gene expression. We built a demonstrative program using Matlab R2014a under Mac OS X. The program was published in both standalone executable program and Matlab function files. The developed program can be accessed from http://www.math.hcmus.edu.vn/~ptbao/paper_soft/GeneOptProg/.
Collapse
Affiliation(s)
- Tran Tuan-Anh
- Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Le Thi Ly
- School of Biotechnology, VNUHCM-International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Ngo Quoc Viet
- Faculty of Information Technology, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
| | - Pham The Bao
- Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam.
| |
Collapse
|
112
|
Reinke AW, Balla KM, Bennett EJ, Troemel ER. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat Commun 2017; 8:14023. [PMID: 28067236 PMCID: PMC5423893 DOI: 10.1038/ncomms14023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these ‘host-exposed' proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of Caenorhabditis elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving and belong to large Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for microsporidia to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach to study a broad range of pathogens. Unbiased identification of proteins from pathogens that are exposed to a host can provide insight into host–pathogen interaction. Here, the authors use an enzymatic tagging method and mass spectrometry to identify rapidly evolving Nematocida microsporidia proteins when infecting C. elegans.
Collapse
Affiliation(s)
- Aaron W Reinke
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Keir M Balla
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Eric J Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Emily R Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
113
|
Wan W, Wang D, Gao X, Hong J. Immobilized MutS-Mediated Error Removal of Microchip-Synthesized DNA. Methods Mol Biol 2017; 1472:217-235. [PMID: 27671944 DOI: 10.1007/978-1-4939-6343-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Applications of microchip-synthesized oligonucleotides for de novo gene synthesis are limited primarily by their high error rates. The mismatch binding protein MutS, which can specifically recognize and bind to mismatches, is one of the cheapest tools for error correction of synthetic DNA. Here, we describe a protocol for removing errors in microchip-synthesized oligonucleotides and for the assembly of DNA segments using these oligonucleotides. This protocol can also be used in traditional de novo gene DNA synthesis.
Collapse
Affiliation(s)
- Wen Wan
- School of Life Science, University of Science and Technology of China, No 443 Huangshan Road, Hefei, Anhui, 230026, People's Republic of China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, No 443 Huangshan Road, Hefei, Anhui, 230026, People's Republic of China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, No 443 Huangshan Road, Hefei, Anhui, 230026, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, No 443 Huangshan Road, Hefei, Anhui, 230026, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
114
|
Zhang X, Nguyen N, Breen S, Outram MA, Dodds PN, Kobe B, Solomon PS, Williams SJ. Production of small cysteine-rich effector proteins in Escherichia coli for structural and functional studies. MOLECULAR PLANT PATHOLOGY 2017; 18:141-151. [PMID: 26915457 PMCID: PMC6638209 DOI: 10.1111/mpp.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 05/22/2023]
Abstract
Although the lifestyles and infection strategies of plant pathogens are diverse, a prevailing feature is the use of an arsenal of secreted proteins, known as effectors, which aid in microbial infection. In the case of eukaryotic filamentous pathogens, such as fungi and oomycetes, effector proteins are typically dissimilar, at the protein sequence level, to known protein families and functional domains. Consequently, we currently have a limited understanding of how fungal and oomycete effectors promote disease. Protein biochemistry and structural biology are two methods that can contribute greatly to the understanding of protein function. Both techniques are dependent on obtaining proteins that are pure and functional, and generally require the use of heterologous recombinant protein expression systems. Here, we present a general scheme and methodology for the production and characterization of small cysteine-rich (SCR) effectors utilizing Escherichia coli expression systems. Using this approach, we successfully produced cysteine-rich effectors derived from the biotrophic fungal pathogen Melampsora lini and the necrotrophic fungal pathogen Parastagonospora nodorum. Access to functional recombinant proteins facilitated crystallization and functional experiments. These results are discussed in the context of a general workflow that may serve as a template for others interested in understanding the function of SCR effector(s) from their plant pathogen(s) of interest.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Neal Nguyen
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Susan Breen
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Megan A. Outram
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | | | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Peter S. Solomon
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
115
|
Ghosh IN, Landick R. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. ACS Synth Biol 2016; 5:1519-1534. [PMID: 27404024 DOI: 10.1021/acssynbio.6b00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosome-binding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate to ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe2+-dependent AdhB and Zn2+-dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.
Collapse
Affiliation(s)
- Indro Neil Ghosh
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| | - Robert Landick
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
116
|
Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. Proc Natl Acad Sci U S A 2016; 113:15012-15017. [PMID: 27940918 DOI: 10.1073/pnas.1600188113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)3]2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.
Collapse
|
117
|
Production of Computationally Designed Small Soluble- and Membrane-Proteins: Cloning, Expression, and Purification. Methods Mol Biol 2016. [PMID: 27914046 DOI: 10.1007/978-1-4939-6637-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This book chapter focuses on expression and purification of computationally designed small soluble proteins and membrane proteins that are ordinarily difficult to express in good amounts for experiments. Over-expression of such proteins can be achieved by using the solubility tag such as maltose binding protein (MBP), Thioredoxin (Trx), and Gultathione-S-transferase (GST) fused to the protein of interest. Here, we describe and provide the protocols for cloning, expression and purification of such proteins using the solubility tag.
Collapse
|
118
|
Sequeira AF, Brás JLA, Guerreiro CIPD, Vincentelli R, Fontes CMGA. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins. BMC Biotechnol 2016; 16:86. [PMID: 27905914 PMCID: PMC5131498 DOI: 10.1186/s12896-016-0316-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
Background Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Results Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. Conclusions An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0316-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Filipa Sequeira
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA) - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal.,NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, Edifício E, r/c, Lisboa, 1649-038, Portugal
| | - Joana L A Brás
- NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, Edifício E, r/c, Lisboa, 1649-038, Portugal
| | - Catarina I P D Guerreiro
- NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, Edifício E, r/c, Lisboa, 1649-038, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Campus de Luminy, 163 Avenue de Luminy, Marseille, CEDEX 09, 13288, France
| | - Carlos M G A Fontes
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA) - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, 1300-477, Portugal. .,NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, Edifício E, r/c, Lisboa, 1649-038, Portugal.
| |
Collapse
|
119
|
Quintero D, Carrafa J, Vincent L, Bermudes D. EGFR-targeted Chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnol Bioeng 2016; 113:2698-2711. [PMID: 27260220 PMCID: PMC5083144 DOI: 10.1002/bit.26026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023]
Abstract
Tumor-targeted Salmonella VNP20009 preferentially replicate within tumor tissue and partially suppress tumor growth in murine tumor models. These Salmonella have the ability to locally induce apoptosis when they are in direct contact with cancer cells but they lack significant bystander killing, which may correlate with their overall lack of antitumor activity in human clinical studies. In order to compensate for this deficiency without enhancing overall toxicity, we engineered the bacteria to express epidermal growth factor receptor (EGFR)-targeted cytotoxic proteins that are released into the extracellular milieu. In this study, we demonstrate the ability of the Salmonella strain VNP20009 to produce three different forms of the Pseudomonas exotoxin A (ToxA) chimeric with a tumor growth factor alpha (TGFα) which results in its producing culture supernatants that are cytotoxic and induce apoptosis in EGFR positive cancer cells as measured by the tetrazolium dye reduction, and Rhodamine 123 and JC-10 mitochondrial depolarization assays. In addition, exchange of the ToxA REDLK endoplasmic reticulum retention signal for KDEL and co-expression of the ColE3 lysis protein resulted in an overall increased cytotoxicity compared to the wild type toxin. This approach has the potential to significantly enhance the antitumor activity of VNP20009 while maintaining its previously established safety profile. Biotechnol. Bioeng. 2016;113: 2698-2711. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Quintero
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, California, 91330-8303
| | - Jamie Carrafa
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
| | - Lena Vincent
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303
| | - David Bermudes
- Department of Biology, California State University Northridge, Northridge, California, 91330-8303.
- Interdisciplinary Research Institute for the Sciences (IRIS), California State University Northridge, Northridge, California, 91330-8303.
| |
Collapse
|
120
|
Abstract
Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.
Collapse
|
121
|
Chen Q, Liang W, Qian F, Qian B, Cao J, Zhang D, Xu Y, Tang L. Rice-produced MSP142ofPlasmodium falciparumelicits antibodies that inhibit parasite growth in vitro. Parasite Immunol 2016; 38:635-41. [DOI: 10.1111/pim.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Q. Chen
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - W. Liang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - F. Qian
- Department of Rheumatology and Immunology; Changzheng Hospital; Second Military Medical University; Shanghai China
| | - B. Qian
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - J. Cao
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - D. Zhang
- State Key Laboratory of Hybrid Rice; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Y. Xu
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| | - L. Tang
- National Institute of Parasitic Diseases; Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite and Vector Biology; Ministry of Health; Shanghai China
| |
Collapse
|
122
|
Schmidt T, Ye F, Situ AJ, An W, Ginsberg MH, Ulmer TS. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors. J Biol Chem 2016; 291:17536-46. [PMID: 27365391 PMCID: PMC5016151 DOI: 10.1074/jbc.m116.733683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Indexed: 11/06/2022] Open
Abstract
In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors.
Collapse
Affiliation(s)
- Thomas Schmidt
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Feng Ye
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Alan J Situ
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Woojin An
- the Department of Biochemistry & Molecular Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033
| | - Mark H Ginsberg
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Tobias S Ulmer
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
123
|
Deis SM, Doshi A, Hou Z, Matherly LH, Gangjee A, Dann CE. Structural and Enzymatic Analysis of Tumor-Targeted Antifolates That Inhibit Glycinamide Ribonucleotide Formyltransferase. Biochemistry 2016; 55:4574-82. [PMID: 27439469 PMCID: PMC5238714 DOI: 10.1021/acs.biochem.6b00412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, β-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition.
Collapse
Affiliation(s)
- Siobhan M. Deis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Charles E. Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
124
|
Critical reflections on synthetic gene design for recombinant protein expression. Curr Opin Struct Biol 2016; 38:155-62. [DOI: 10.1016/j.sbi.2016.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/17/2022]
|
125
|
Lyon AS, Morin G, Moritz M, Yabut KCB, Vojnar T, Zelter A, Muller E, Davis TN, Agard DA. Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly. Mol Biol Cell 2016; 27:2245-58. [PMID: 27226487 PMCID: PMC4945142 DOI: 10.1091/mbc.e16-02-0072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/19/2016] [Indexed: 02/01/2023] Open
Abstract
Assembly of the microtubule-nucleating γ-tubulin ring complex (γTuRC) requires higher-order oligomerization of Spc110p, which connects γTuRC to the yeast spindle pole body (SPB). Because Spc110p is highly concentrated at the SPB, spatial regulation of microtubule nucleation is thus achieved by exclusive assembly of γTuRCs proximal to the SPB. The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1-MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast, the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body. Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC.
Collapse
Affiliation(s)
- Andrew S Lyon
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Geneviève Morin
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Michelle Moritz
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| | | | - Tamira Vojnar
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Eric Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - David A Agard
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
126
|
Shi Z, Vickers CE. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects. Metab Eng Commun 2016; 3:173-186. [PMID: 29468123 PMCID: PMC5779711 DOI: 10.1016/j.meteno.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023] Open
Abstract
Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. MCDS is an all-in-one in silico design, simulation and management platform. MCDS supports the design, simulation management of most cloning and recombineering technologies. MCDS has a novel interactive flowchart that allows simpler and more precise transactions. MCDS enables complete information integrity and consistency by keeping all details in one file.
Collapse
Affiliation(s)
- Zhenyu Shi
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
127
|
Abstract
Riboswitches are RNA elements that control the expression of genes through a variety of mechanisms in response to the specific binding of small-molecule ligands. Since their discovery, riboswitches have shown promise for the artificial control of transcription or translation of target genes, be it for industrial biotechnology, protein expression, metabolic engineering, antimicrobial target validation, or gene function discovery. However, natural riboswitches are often unsuitable for these purposes due to their regulation by small molecules which are already present within the cell. For this reason, research has focused on creating riboswitches that respond to alternative biologically inert ligands or to molecules which are of interest for biosensing. Here we present methods for the development of artificial riboswitches in Gram-negative and Gram-positive bacteria. These methods are based on reengineering natural aptamers to change their ligand specificity toward molecules which do not bind the original aptamer (ie, that are orthogonal to the original). The first approach involves targeted mutagenesis of native riboswitches to change their specificity toward rationally designed synthetic ligand analogs. The second approach involves the fusion of previously validated orthogonal aptamers with native expression platforms to create novel chimeric riboswitches for the microbial target. We establish the applicability of these methods both for the control of exogenous genes as well as for the control of native genes.
Collapse
|
128
|
Xiao X, Liu Z, Chen Y, Wang G, Li X, Fang Z, Huang S, Liu Z, Yan Y, Xu L. Over-expression of activeCandida rugosa lip1inPichia pastorisvia high cell-density fermentation and its application to resolve racemic ibuprofen. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.3109/10242422.2016.1168815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
129
|
Flamm AG, Żerko S, Zawadzka-Kazimierczuk A, Koźmiński W, Konrat R, Coudevylle N. 1H, 15N, 13C resonance assignment of human GAP-43. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:171-174. [PMID: 26748655 PMCID: PMC4788685 DOI: 10.1007/s12104-015-9660-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/28/2015] [Indexed: 05/31/2023]
Abstract
GAP-43 is a 25 kDa neuronal intrinsically disordered protein, highly abundant in the neuronal growth cone during development and regeneration. The exact molecular function(s) of GAP-43 remains unclear but it appears to be involved in growth cone guidance and actin cytoskeleton organization. Therefore, GAP-43 seems to play an important role in neurotransmitter vesicle fusion and recycling, long-term potentiation, spatial memory formation and learning. Here we report the nearly complete assignment of recombinant human GAP-43.
Collapse
Affiliation(s)
- Andrea Gabriele Flamm
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Nicolas Coudevylle
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
130
|
Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal. PLoS One 2016; 11:e0152148. [PMID: 27023768 PMCID: PMC4811560 DOI: 10.1371/journal.pone.0152148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA.
Collapse
|
131
|
Zhao N, Schmitt MA, Fisk JD. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. FEBS J 2016; 283:1351-67. [DOI: 10.1111/febs.13674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhao
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - Margaret A. Schmitt
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - John D. Fisk
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
- Department of Chemistry; Colorado State University; Fort Collins CO USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO USA
| |
Collapse
|
132
|
Crysalis: an integrated server for computational analysis and design of protein crystallization. Sci Rep 2016; 6:21383. [PMID: 26906024 PMCID: PMC4764925 DOI: 10.1038/srep21383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/22/2016] [Indexed: 11/08/2022] Open
Abstract
The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/.
Collapse
|
133
|
Schoene C, Bennett SP, Howarth M. SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Sci Rep 2016; 6:21151. [PMID: 26861173 PMCID: PMC4748275 DOI: 10.1038/srep21151] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/18/2016] [Indexed: 12/23/2022] Open
Abstract
Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes.
Collapse
Affiliation(s)
- Christopher Schoene
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - S Paul Bennett
- Sekisui Diagnostics UK Ltd., Operations Building, Liphook Way, Allington, Maidstone, Kent, ME16 0LQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
134
|
Vectors for Genetically-Encoded Tags for Electron Microscopy Contrast in Drosophila. Biol Proced Online 2016; 18:5. [PMID: 26839516 PMCID: PMC4736618 DOI: 10.1186/s12575-016-0034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most notable recent advances in electron microscopy (EM) was the development of genetically-encoded EM tags, including the fluorescent flavoprotein Mini-SOG (Mini-Singlet Oxygen Generator). Mini-SOG generates good EM contrast, thus providing a viable alternative to technically-demanding methods such as immuno-electron microcopy (immuno-EM). Based on the Mini-SOG technology, in this paper, we describe the construction, validation and optimization of a series of vectors which allow expression of Mini-SOG in the Drosophila melanogaster genetic model system. FINDINGS We constructed a Mini-SOG tag that has been codon-optimized for expression in Drosophila (DMS tag) using PCR-mediated gene assembly. The photo-oxidation reaction triggered by DMS was then tested using these vectors in Drosophila cell lines. DMS tag did not affect the subcellular localization of the proteins we tested. More importantly, we demonstrated the utility of the DMS tag for EM in Drosophila by showing that it can produce robust photo-oxidation reactions in the presence of blue light and the substrate DAB; the resultant electron micrographs contain electron-dense regions corresponding to the protein of interest. The vectors we generated allow protein tagging at both termini, for constitutive and inducible protein expression, as well as the generation of transgenic lines by P-element transformation. CONCLUSIONS We demonstrated the feasibility of Mini-SOG tagging in Drosophila. The constructed vectors will no doubt be a useful molecular tool for genetic tagging to facilitate high-resolution localization of proteins in Drosophila by electron microscopy.
Collapse
|
135
|
Ruwona TB, Xu H, Li J, Diaz-Arévalo D, Kumar A, Zeng M, Cui Z. Induction of protective neutralizing antibody responses against botulinum neurotoxin serotype C using plasmid carried by PLGA nanoparticles. Hum Vaccin Immunother 2016; 12:1188-92. [PMID: 26837242 DOI: 10.1080/21645515.2015.1122147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Haiyue Xu
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Junwei Li
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Diana Diaz-Arévalo
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Amit Kumar
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Mingtao Zeng
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Zhengrong Cui
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
136
|
Koday MT, Nelson J, Chevalier A, Koday M, Kalinoski H, Stewart L, Carter L, Nieusma T, Lee PS, Ward AB, Wilson IA, Dagley A, Smee DF, Baker D, Fuller DH. A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathog 2016; 12:e1005409. [PMID: 26845438 PMCID: PMC4742065 DOI: 10.1371/journal.ppat.1005409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.
Collapse
Affiliation(s)
- Merika Treants Koday
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jorgen Nelson
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron Chevalier
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Michael Koday
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Hannah Kalinoski
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lance Stewart
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Lauren Carter
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Travis Nieusma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter S. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ashley Dagley
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Donald F. Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
137
|
Podlevsky JD, Li Y, Chen JJL. Structure and function of echinoderm telomerase RNA. RNA (NEW YORK, N.Y.) 2016; 22:204-215. [PMID: 26598712 PMCID: PMC4712671 DOI: 10.1261/rna.053280.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms-marine invertebrates closely related to vertebrates-determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
138
|
The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
139
|
Birla BS, Chou HH. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction. PLoS One 2015; 10:e0145682. [PMID: 26716828 PMCID: PMC4696799 DOI: 10.1371/journal.pone.0145682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.
Collapse
Affiliation(s)
- Bhagyashree S. Birla
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
140
|
Carson S, Wick ST, Carr PA, Wanunu M, Aguilar CA. Direct Analysis of Gene Synthesis Reactions Using Solid-State Nanopores. ACS NANO 2015; 9:12417-24. [PMID: 26580227 PMCID: PMC5154552 DOI: 10.1021/acsnano.5b05782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Synthetic nucleic acids offer rich potential to understand and engineer new cellular functions, yet an unresolved limitation in their production and usage is deleterious products, which restrict design complexity and add cost. Herein, we employ a solid-state nanopore to differentiate molecules of a gene synthesis reaction into categories of correct and incorrect assemblies. This new method offers a solution that provides information on gene synthesis reactions in near-real time with higher complexity and lower costs. This advance can permit insights into gene synthesis reactions such as kinetics monitoring, real-time tuning, and optimization of factors that drive reaction-to-reaction variations as well as open venues between nanopore-sensing, synthetic biology, and DNA nanotechnology.
Collapse
Affiliation(s)
- Spencer Carson
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Scott T. Wick
- Massachusetts Institute of Technology Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, United States
| | - Peter A. Carr
- Massachusetts Institute of Technology Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Carlos A. Aguilar
- Massachusetts Institute of Technology Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, United States
| |
Collapse
|
141
|
Lee CC, Julian MC, Tiller KE, Meng F, DuConge SE, Akter R, Raleigh DP, Tessier PM. Design and Optimization of Anti-amyloid Domain Antibodies Specific for β-Amyloid and Islet Amyloid Polypeptide. J Biol Chem 2015; 291:2858-73. [PMID: 26601942 DOI: 10.1074/jbc.m115.682336] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 12/25/2022] Open
Abstract
Antibodies with conformational specificity are important for detecting and interfering with polypeptide aggregation linked to several human disorders. We are developing a motif-grafting approach for designing lead antibody candidates specific for amyloid-forming polypeptides such as the Alzheimer peptide (Aβ). This approach involves grafting amyloidogenic peptide segments into the complementarity-determining regions (CDRs) of single-domain (VH) antibodies. Here we have investigated the impact of polar mutations inserted at the edges of a large hydrophobic Aβ42 peptide segment (Aβ residues 17-42) in CDR3 on the solubility and conformational specificity of the corresponding VH domains. We find that VH expression and solubility are strongly enhanced by introducing multiple negatively charged or asparagine residues at the edges of CDR3, whereas other polar mutations are less effective (glutamine and serine) or ineffective (threonine, lysine, and arginine). Moreover, Aβ VH domains with negatively charged CDR3 mutations show significant preference for recognizing Aβ fibrils relative to Aβ monomers, whereas the same VH domains with other polar CDR3 mutations recognize both Aβ conformers. We observe similar behavior for a VH domain grafted with a large hydrophobic peptide from islet amyloid polypeptide (residues 8-37) that contains negatively charged mutations at the edges of CDR3. These findings highlight the sensitivity of antibody binding and solubility to residues at the edges of CDRs, and provide guidelines for designing other grafted antibody fragments with hydrophobic binding loops.
Collapse
Affiliation(s)
- Christine C Lee
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Mark C Julian
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Kathryn E Tiller
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Fanling Meng
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Sarah E DuConge
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Rehana Akter
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Daniel P Raleigh
- the Department of Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Peter M Tessier
- From the Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| |
Collapse
|
142
|
Huang YM, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ, Buck PM, Bystroff C. Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein. Biochemistry 2015; 54:6263-73. [PMID: 26397806 DOI: 10.1021/acs.biochem.5b00786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leave-one-out green fluorescent protein (LOOn-GFP) is a circularly permuted and truncated GFP lacking the nth β-strand element. LOO7-GFP derived from the wild-type sequence (LOO7-WT) folds and reconstitutes fluorescence upon addition of β-strand 7 (S7) as an exogenous peptide. Computational protein design may be used to modify the sequence of LOO7-GFP to fit a different peptide sequence, while retaining the reconstitution activity. Here we present a computationally designed leave-one-out GFP in which wild-type strand 7 has been replaced by a 12-residue peptide (HA) from the H5 antigenic region of the Thailand strain of H5N1 influenza virus hemagglutinin. The DEEdesign software was used to generate a sequence library with mutations at 13 positions around the peptide, coding for approximately 3 × 10(5) sequence combinations. The library was coexpressed with the HA peptide in E. coli and colonies were screened for in vivo fluorescence. Glowing colonies were sequenced, and one (LOO7-HA4) with 7 mutations was purified and characterized. LOO7-HA4 folds, fluoresces in vivo and in vitro, and binds HA. However, binding results in a decrease in fluorescence instead of the expected increase, caused by the peptide-induced dissociation of a novel, glowing oligomeric complex instead of the reconstitution of the native structure. Efforts to improve binding and recover reconstitution using in vitro evolution produced colonies that glowed brighter and matured faster. Two of these were characterized. One lost all affinity for the HA peptide but glowed more brightly in the unbound oligomeric state. The other increased in affinity to the HA peptide but still did not reconstitute the fully folded state. Despite failing to fold completely, peptide binding by computational design was observed and was improved by directed evolution. The ratio of HA to S7 binding increased from 0.0 for the wild-type sequence (no binding) to 0.01 after computational design (weak binding) and to 0.48 (comparable binding) after in vitro evolution. The novel oligomeric state is composed of an open barrel.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco , San Francisco, California 94158, United States
| | | | | | | | | | | | | |
Collapse
|
143
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
144
|
Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci Rep 2015; 5:13670. [PMID: 26329726 PMCID: PMC4557066 DOI: 10.1038/srep13670] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022] Open
Abstract
Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.
Collapse
|
145
|
Christen M, Deutsch S, Christen B. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis. ACS Synth Biol 2015; 4:927-34. [PMID: 26107775 DOI: 10.1021/acssynbio.5b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher .
Collapse
Affiliation(s)
- Matthias Christen
- Institute
of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland
| | - Samuel Deutsch
- Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Beat Christen
- Institute
of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
146
|
Heimer BW, Shatova TA, Lee JK, Kaastrup K, Sikes HD. Evaluating the sensitivity of hybridization-based epigenotyping using a methyl binding domain protein. Analyst 2015; 139:3695-701. [PMID: 24824477 DOI: 10.1039/c4an00667d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypermethylation of CpG islands in gene promoter regions has been shown to be a predictive biomarker for certain diseases. Most current methods for methylation profiling are not well-suited for clinical analysis. Here, we report the development of an inexpensive device and an epigenotyping assay with a format conducive to multiplexed analysis.
Collapse
Affiliation(s)
- Brandon W Heimer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02129, USA.
| | | | | | | | | |
Collapse
|
147
|
Wang Y, Chen L, Li Y, Li Y, Yan M, Chen K, Hao N, Xu L. Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem 2015; 80:67-73. [PMID: 26264414 DOI: 10.1080/09168451.2015.1072457] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30 h with 2.4 mM stevioside, 7.2 mM sucrose, and 0.006 mM UDP was 78%.
Collapse
Affiliation(s)
- Yu Wang
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Liangliang Chen
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Yan Li
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Yangyang Li
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Ming Yan
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Kequan Chen
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Ning Hao
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| | - Lin Xu
- a College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , China
| |
Collapse
|
148
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
149
|
Huang X, Li Z, Du C, Wang J, Li S. Improved Expression and Characterization of a Multidomain Xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6430-9. [PMID: 26132889 DOI: 10.1021/acs.jafc.5b01259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A xylanase gene was cloned and characterized from Thermoanerobacterium aotearoense SCUT27, which was attested to consist of a signal peptide, one glycoside hydrolase family 10 domain, four carbohydrate binding modules, and three surface layer homology domains. The change of expression host from Escherichia coli to Bacillus subtilis resulted in a 4.1-fold increase of specific activity for the truncated XynAΔSLH. Five different versions of secretion signals in B. subtilis indicated that it was preferably routed via a Sec-dependent pathway. Purified XynAΔSLH showed a high activity of 379.8 U/mg on beechwood xylan. XynAΔSLH was optimally active at 80 °C, pH 6.5. Thin layer chromatography results showed that xylobiose and the presumed methylglucuronoxylotriose (MeGlcAXyl3) were the main products liberated from beechwood xylan catalyzed by the recombinant xylanase. All of the results suggest that XynAΔSLH is a suitable candidate for generating xylooligosaccharides from cellulosic materials for industrial uses.
Collapse
Affiliation(s)
- Xiongliang Huang
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhe Li
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chenyu Du
- §School of Applied Sciences, The University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Jufang Wang
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- †Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
150
|
Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 2015; 31:74-83. [PMID: 26166409 DOI: 10.1016/j.ymben.2015.06.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022]
Abstract
Microbial biosynthesis for plant-based natural products, such as the benzylisoquinoline alkaloids (BIAs), has the potential to address limitations in plant-based supply of established drugs and make new molecules available for drug discovery. While yeast strains have been engineered to produce a variety of downstream BIAs including the opioids, these strains have relied on feeding an early BIA substrate. We describe the de novo synthesis of the major BIA branch point intermediate reticuline via norcoclaurine in Saccharomyces cerevisiae. Modifications were introduced into yeast central metabolism to increase supply of the BIA precursor tyrosine, allowing us to achieve a 60-fold increase in production of the early benzylisoquinoline scaffold from fed dopamine with no supply of exogenous tyrosine. Yeast strains further engineered to express a mammalian tyrosine hydroxylase, four mammalian tetrahydrobiopterin biosynthesis and recycling enzymes, and a bacterial DOPA decarboxylase produced norcoclaurine de novo. We further increased production of early benzylisoquinoline scaffolds by 160-fold through introducing mutant tyrosine hydroxylase enzymes, an optimized plant norcoclaurine synthase variant, and optimizing culture conditions. Finally, we incorporated five additional plant enzymes--three methyltransferases, a cytochrome P450, and its reductase partner--to achieve de novo production of the key branch point molecule reticuline with a titer of 19.2 μg/L. These strains and reconstructed pathways will serve as a platform for the biosynthesis of diverse natural and novel BIAs.
Collapse
Affiliation(s)
- Isis J Trenchard
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States
| | - Michael S Siddiqui
- Department of Chemical Engineering; Stanford University, Stanford, CA 94305, United States
| | - Kate Thodey
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States.
| |
Collapse
|