101
|
Huang S, Li J, Xu A, Huang G, You L. Small Insertions Are More Deleterious than Small Deletions in Human Genomes. Hum Mutat 2013; 34:1642-9. [DOI: 10.1002/humu.22435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Shengfeng Huang
- State Key Laboratory of Biocontrol; Guangdong Key Laboratory of Pharmaceutical Functional Genes; College of Life Sciences, Sun Yat-sen University; Guangzhou 510275 People's Republic of China
| | - Jie Li
- State Key Laboratory of Biocontrol; Guangdong Key Laboratory of Pharmaceutical Functional Genes; College of Life Sciences, Sun Yat-sen University; Guangzhou 510275 People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol; Guangdong Key Laboratory of Pharmaceutical Functional Genes; College of Life Sciences, Sun Yat-sen University; Guangzhou 510275 People's Republic of China
- Beijing University of Chinese Medicine, Chao-yang District; Beijing 100029 People's Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol; Guangdong Key Laboratory of Pharmaceutical Functional Genes; College of Life Sciences, Sun Yat-sen University; Guangzhou 510275 People's Republic of China
| | - Leiming You
- State Key Laboratory of Biocontrol; Guangdong Key Laboratory of Pharmaceutical Functional Genes; College of Life Sciences, Sun Yat-sen University; Guangzhou 510275 People's Republic of China
| |
Collapse
|
102
|
Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro. Neuromolecular Med 2013; 16:332-49. [PMID: 24282026 DOI: 10.1007/s12017-013-8279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
Abstract
Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.
Collapse
|
103
|
Barth A, Bilkei-Gorzo A, Drews E, Otte DM, Diaz-Lacava A, Varadarajulu J, Turck CW, Wienker TF, Zimmer A. Analysis of quantitative trait loci in mice suggests a role of Enoph1 in stress reactivity. J Neurochem 2013; 128:807-17. [PMID: 24236849 DOI: 10.1111/jnc.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 01/26/2023]
Abstract
Significant progress in elucidating the genetic etiology of anxiety and depression has been made during the last decade through a combination of human and animal studies. In this study, we aimed to discover genetic loci linked with anxiety as well as depression in order to reveal new candidate genes. Therefore, we initially tested the behavioral sensitivity of 543 F2 animals derived from an intercross of C57BL/6J and C3H/HeJ mice in paradigms for anxiety and depression. Next, all animals were genotyped with 269 microsatellite markers with a mean distance of 5.56 cM. Finally, a Quantitative Trait Loci (QTL) analysis was carried out, followed by selection of candidate genes. The QTL analysis revealed several new QTL on chromosome 5 with a common core interval of 19 Mb. We further narrowed this interval by comparative genomics to a region of 15 Mb. A database search and gene prioritization revealed Enoph1 as the most significant candidate gene on the prioritization list for anxiety and also for depression fulfilling our selection criteria. The Enoph1 gene, which is involved in polyamine biosynthesis, is differently expressed in parental strains, which have different brain spermidine levels and show distinct anxiety and depression-related phenotype. Our result suggests a significant role in polyamines in anxiety and depression-related behaviors.
Collapse
|
104
|
Bysani M, Wallerman O, Bornelöv S, Zatloukal K, Komorowski J, Wadelius C. ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer. BMC Med Genomics 2013; 6:50. [PMID: 24206787 PMCID: PMC3831757 DOI: 10.1186/1755-8794-6-50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/31/2013] [Indexed: 02/06/2023] Open
Abstract
Background Steatohepatitis occurs in alcoholic liver disease and may progress to liver cirrhosis and hepatocellular carcinoma. Its molecular pathogenesis is to a large degree unknown. Histone modifications play a key role in transcriptional regulations as marks for silencing and activation of gene expression and as marks for functional elements. Many transcription factors (TFs) are crucial for the control of the genes involved in metabolism, and abnormality in their function may lead to disease. Methods We performed ChIP-seq of the histone modifications H3K4me1, H3K4me3 and H3K27ac and a candidate transcription factor (USF1) in liver tissue from patients with steatohepatitis and normal livers and correlated results to mRNA-expression and genotypes. Results We found several regions that are differentially enriched for histone modifications between disease and normal tissue, and qRT-PCR results indicated that the expression of the tested genes strongly correlated with differential enrichment of histone modifications but is independent of USF1 enrichment. By gene ontology analysis of differentially modified genes we found many disease associated genes, some of which had previously been implicated in the etiology of steatohepatitis. Importantly, the genes associated to the strongest histone peaks in the patient were over-represented in cancer specific pathways suggesting that the tissue was on a path to develop to cancer, a common complication to the disease. We also found several novel SNPs and GWAS catalogue SNPs that are candidates to be functional and therefore needs further study. Conclusion In summary we find that analysis of chromatin features in tissue samples provides insight into disease mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, BMC, Uppsala University, PO BOX 815, Uppsala, SE 751 08, Sweden.
| |
Collapse
|
105
|
Aziz A, Irfanullah, Khan S, Zimri FK, Muhammad N, Rashid S, Ahmad W. Novel homozygous mutations in the WNT10B gene underlying autosomal recessive split hand/foot malformation in three consanguineous families. Gene 2013; 534:265-71. [PMID: 24211389 DOI: 10.1016/j.gene.2013.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/22/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Split-hand/split-foot malformation (SHFM), representing variable degree of median clefts of hands and feet, is a genetically heterogeneous group of limb malformations with seven loci mapped on different human chromosomes. However, only 3 genes (TP63, WNT10B, DLX5) for the seven loci have been identified. The study, presented here, described three consanguineous Pakistani families segregating SHFM in autosomal recessive manner. Linkage in the families was searched by genotyping microsatellite markers and mutation screening of candidate gene was performed by Sanger DNA sequencing. Clinical features of affected members of these families exhibited SHFM phenotype with involvement of hands and feet. Genotyping using microsatellite markers mapped the families to WNT10B gene at SHFM6 on chromosome 12q13.11-q13. Subsequently, sequence analysis of WNT10B gene revealed a novel 4-bp deletion mutation (c.1165_1168delAAGT) in one family and 7-bp duplication (c.300_306dupAGGGCGG) in two other families. Structure-based analysis showed a significant conformational shift in the active binding site of mutated WNT10B (p.Lys388Glufs*36), influencing binding with Fzd8. The mutations identified in the WNT10B gene extend the body of evidence implicating it in the pathogenesis of SHFM.
Collapse
Affiliation(s)
- Abdul Aziz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | | | - Noor Muhammad
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, KPK, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
106
|
Chindelevitch L, Ma CY, Liao CS, Berger B. Optimizing a global alignment of protein interaction networks. Bioinformatics 2013; 29:2765-73. [PMID: 24048352 PMCID: PMC3799479 DOI: 10.1093/bioinformatics/btt486] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species' evolution. RESULTS We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. AVAILABILITY Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. CONTACT bab@csail.mit.edu or csliao@ie.nthu.edu.tw. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leonid Chindelevitch
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, Department of Computer Science and Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
107
|
Tanaree D, Duringer J, Bohnert D, Craig A. Microarray evaluation of bovine hepatic gene response to fescue toxicosis. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
‘Fescue toxicosis’ is a disease in livestock caused by ingestion of ergot alkaloids produced by the fungal endophyte Neotyphodium coenophialum in tall fescue; it is estimated to cost 1 billion USD in damages per year to the beef industry alone. Clinical signs include decreased reproductive fitness, necrosis of extremities, and reduced average daily gain and milk production. Little is known about the cellular mechanisms that mediate these toxic sequelae. We evaluated the effects of ergovaline-based fescue toxicosis on gene expression via oligonucleotide microarray. Liver biopsies were obtained from steers (n=4) pre- and post-exposure (0 and 29 days) to feed containing 579 ng/g ergovaline. Analyses were performed using both ANOVA with false discovery rate correction and Storey's optimal discovery procedure. Overall, down-regulation of gene expression was observed; heart contraction and cardiac development, apoptosis, cell cycle control, and RNA processing genes represented the bulk of differentially expressed transcripts. 2 CYPs (CYP2E1 and CYP4F6) were amongst the significantly upregulated results. Thus, exposure of cattle to toxic levels of ergovaline caused widespread changes in hepatic gene expression, which can both help explain macroscopic clinical signs observed in ruminant animals, and reinforce previous findings in monogastric models.
Collapse
Affiliation(s)
- D.D. Tanaree
- Department of Microbiology, Oregon State University (OSU), 139 Oak Creek Building, Corvallis OR 97331, USA
| | - J.M. Duringer
- Department of Environmental and Molecular Toxicology, OSU, 139 Oak Creek Building, Corvallis OR 97331, USA
| | - D.W. Bohnert
- Eastern Oregon Agricultural Research Center, OSU, 67826-A Highway 205, Burns OR 97720, USA
| | - A.M. Craig
- College of Veterinary Medicine, OSU, 111 Veterinary Research Laboratory, Corvallis OR 97331, USA
| |
Collapse
|
108
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
109
|
CpGislandEVO: a database and genome browser for comparative evolutionary genomics of CpG islands. BIOMED RESEARCH INTERNATIONAL 2013; 2013:709042. [PMID: 24205506 PMCID: PMC3800598 DOI: 10.1155/2013/709042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/12/2013] [Accepted: 08/19/2013] [Indexed: 12/14/2022]
Abstract
Hypomethylated, CpG-rich DNA segments (CpG islands, CGIs) are epigenome markers involved in key biological processes. Aberrant methylation is implicated in the appearance of several disorders as cancer, immunodeficiency, or centromere instability. Furthermore, methylation differences at promoter regions between human and chimpanzee strongly associate with genes involved in neurological/psychological disorders and cancers. Therefore, the evolutionary comparative analyses of CGIs can provide insights on the functional role of these epigenome markers in both health and disease. Given the lack of specific tools, we developed CpGislandEVO. Briefly, we first compile a database of statistically significant CGIs for the best assembled mammalian genome sequences available to date. Second, by means of a coupled browser front-end, we focus on the CGIs overlapping orthologous genes extracted from OrthoDB, thus ensuring the comparison between CGIs located on truly homologous genome segments. This allows comparing the main compositional features between homologous CGIs. Finally, to facilitate nucleotide comparisons, we lifted genome coordinates between assemblies from different species, which enables the analysis of sequence divergence by direct count of nucleotide substitutions and indels occurring between homologous CGIs. The resulting CpGislandEVO database, linking together CGIs and single-cytosine DNA methylation data from several mammalian species, is freely available at our website.
Collapse
|
110
|
Karisa BK, Thomson J, Wang Z, Bruce HL, Plastow GS, Moore SS. Candidate genes and biological pathways associated with carcass quality traits in beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2013. [DOI: 10.4141/cjas2012-136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Karisa, B. K., Thomson, J., Wang, Z., Bruce, H. L., Plastow, G. S. and Moore, S. S. 2013. Candidate genes and biological pathways associated with carcass quality traits in beef cattle. Can. J. Anim. Sci. 93: 295–306. The objective of this study was to use the candidate gene approach to identify the genes associated with carcass quality traits in beef cattle steers at the University of Alberta Ranch at Kinsella, Canada. This approach involved identifying positional candidate genes and prioritizing them according to their functions into functional candidate genes before performing statistical association analysis. The positional candidate genes and single nucleotide polymorphisms (SNP) were identified from previously reported quantitative trait loci for component traits including body weight, average daily gain, metabolic weight, feed efficiency and energy balance. Positional candidate genes were then prioritized into functional candidate genes according to the associated gene ontology terms and their functions. A total of 116 genes were considered functional candidate genes and 117 functional SNPs were genotyped and used for multiple marker association analysis using ASReml®. Seven SNPs were significantly associated with various carcass quality traits (P≤0.005). The significant genes were associated with biological processes such as fat, glucose, protein and steroid metabolism, growth, energy utilization and DNA transcription and translation as inferred from the protein knowledgebase (UniprotKB). Gene network analysis indicated significant involvement of biological processes related to fat and steroid metabolism and regulation of transcription and translation of DNA.
Collapse
Affiliation(s)
- B. K. Karisa
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - J. Thomson
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
- Montana State University, Department of Animal and Range Sciences, Bozeman MT 59717, USA
| | - Z. Wang
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - H. L. Bruce
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - G. S. Plastow
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - S. S. Moore
- Livestock Gentec and the Department of Agricultural, Food and Nutritional Science, 4.10 Agriculture Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
- The University of Queensland, Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, 4072, Queensland, Australia
| |
Collapse
|
111
|
Kasaian K, Wiseman SM, Thiessen N, Mungall KL, Corbett RD, Qian JQ, Nip KM, He A, Tse K, Chuah E, Varhol RJ, Pandoh P, McDonald H, Zeng T, Tam A, Schein J, Birol I, Mungall AJ, Moore RA, Zhao Y, Hirst M, Marra MA, Walker BA, Jones SJM. Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol 2013; 230:249-60. [PMID: 23616356 DOI: 10.1002/path.4203] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
Parathyroid carcinoma is a rare endocrine malignancy with an estimated incidence of less than 1 per million population. Excessive secretion of parathyroid hormone, extremely high serum calcium level, and the deleterious effects of hypercalcaemia are the clinical manifestations of the disease. Up to 60% of patients develop multiple disease recurrences and although long-term survival is possible with palliative surgery, permanent remission is rarely achieved. Molecular drivers of sporadic parathyroid carcinoma have remained largely unknown. Previous studies, mostly based on familial cases of the disease, suggested potential roles for the tumour suppressor MEN1 and proto-oncogene RET in benign parathyroid tumourigenesis, while the tumour suppressor HRPT2 and proto-oncogene CCND1 may also act as drivers in parathyroid cancer. Here, we report the complete genomic analysis of a sporadic and recurring parathyroid carcinoma. Mutational landscapes of the primary and recurrent tumour specimens were analysed using high-throughput sequencing technologies. Such molecular profiling allowed for identification of somatic mutations never previously identified in this malignancy. These included single nucleotide point mutations in well-characterized cancer genes such as mTOR, MLL2, CDKN2C, and PIK3CA. Comparison of acquired mutations in patient-matched primary and recurrent tumours revealed loss of PIK3CA activating mutation during the evolution of the tumour from the primary to the recurrence. Structural variations leading to gene fusions and regions of copy loss and gain were identified at a single-base resolution. Loss of the short arm of chromosome 1, along with somatic missense and truncating mutations in CDKN2C and THRAP3, respectively, provides new evidence for the potential role of these genes as tumour suppressors in parathyroid cancer. The key somatic mutations identified in this study can serve as novel diagnostic markers as well as therapeutic targets.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Bibi N, Parveen Z, Rashid S. Identification of potential Plk1 targets in a cell-cycle specific proteome through structural dynamics of kinase and Polo box-mediated interactions. PLoS One 2013; 8:e70843. [PMID: 23967120 PMCID: PMC3744538 DOI: 10.1371/journal.pone.0070843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/23/2013] [Indexed: 01/15/2023] Open
Abstract
Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets.
Collapse
Affiliation(s)
- Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zahida Parveen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
113
|
Li N, Stein RSL, He W, Komives E, Wang W. Identification of methyllysine peptides binding to chromobox protein homolog 6 chromodomain in the human proteome. Mol Cell Proteomics 2013; 12:2750-60. [PMID: 23842000 DOI: 10.1074/mcp.o112.025015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylation is one of the important post-translational modifications that play critical roles in regulating protein functions. Proteomic identification of this post-translational modification and understanding how it affects protein activity remain great challenges. We tackled this problem from the aspect of methylation mediating protein-protein interaction. Using the chromodomain of human chromobox protein homolog 6 as a model system, we developed a systematic approach that integrates structure modeling, bioinformatics analysis, and peptide microarray experiments to identify lysine residues that are methylated and recognized by the chromodomain in the human proteome. Given the important role of chromobox protein homolog 6 as a reader of histone modifications, it was interesting to find that the majority of its interacting partners identified via this approach function in chromatin remodeling and transcriptional regulation. Our study not only illustrates a novel angle for identifying methyllysines on a proteome-wide scale and elucidating their potential roles in regulating protein function, but also suggests possible strategies for engineering the chromodomain-peptide interface to enhance the recognition of and manipulate the signal transduction mediated by such interactions.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry and Biochemistry, 9500 Gilman Drive, University of California, San Diego, La Jolla, California 92093-0359
| | | | | | | | | |
Collapse
|
114
|
Liddelow SA, Dziegielewska KM, Ek CJ, Habgood MD, Bauer H, Bauer HC, Lindsay H, Wakefield MJ, Strazielle N, Kratzer I, Møllgård K, Ghersi-Egea JF, Saunders NR. Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One 2013; 8:e65629. [PMID: 23843944 PMCID: PMC3699566 DOI: 10.1371/journal.pone.0065629] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/25/2013] [Indexed: 01/04/2023] Open
Abstract
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
Collapse
Affiliation(s)
- Shane A Liddelow
- Department of Pharmacology, the University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Manoharan M, Ng Fuk Chong M, Vaïtinadapoulé A, Frumence E, Sowdhamini R, Offmann B. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome Biol Evol 2013; 5:163-80. [PMID: 23292137 PMCID: PMC3595023 DOI: 10.1093/gbe/evs131] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
About 1 million people in the world die each year from diseases spread by mosquitoes, and understanding the mechanism of host identification by the mosquitoes through olfaction is at stake. The role of odorant binding proteins (OBPs) in the primary molecular events of olfaction in mosquitoes is becoming an important focus of biological research in this area. Here, we present a comprehensive comparative genomics study of OBPs in the three disease-transmitting mosquito species Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus starting with the identification of 110 new OBPs in these three genomes. We have characterized their genomic distribution and orthologous and phylogenetic relationships. The diversity and expansion observed with respect to the Aedes and Culex genomes suggests that the OBP gene family acquired functional diversity concurrently with functional constraints posed on these two species. Sequences with unique features have been characterized such as the "two-domain OBPs" (previously known as Atypical OBPs) and "MinusC OBPs" in mosquito genomes. The extensive comparative genomics featured in this work hence provides useful primary insights into the role of OBPs in the molecular adaptations of mosquito olfactory system and could provide more clues for the identification of potential targets for insect repellants and attractants.
Collapse
Affiliation(s)
- Malini Manoharan
- Université de La Reunion, DSIMB, INSERM UMR-S 665, La Reunion, France
| | | | | | | | | | | |
Collapse
|
116
|
Higareda-Almaraz JC, Valtierra-Gutiérrez IA, Hernandez-Ortiz M, Contreras S, Hernandez E, Encarnacion S. Analysis and prediction of pathways in HeLa cells by integrating biological levels of organization with systems-biology approaches. PLoS One 2013; 8:e65433. [PMID: 23785426 PMCID: PMC3680226 DOI: 10.1371/journal.pone.0065433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
It has recently begun to be considered that cancer is a systemic disease and that it must be studied at every level of complexity using many of the currently available approaches, including high-throughput technologies and bioinformatics. To achieve such understanding in cervical cancer, we collected information on gene, protein and phosphoprotein expression of the HeLa cell line and performed a comprehensive analysis of the different signaling pathways, transcription networks and metabolic events in which they participate. A total expression analysis by RNA-Seq of the HeLa cell line showed that 19,974 genes were transcribed. Of these, 3,360 were over-expressed, and 2,129 under-expressed when compared to the NHEK cell line. A protein-protein interaction network was derived from the over-expressed genes and used to identify central elements and, together with the analysis of over-represented transcription factor motifs, to predict active signaling and regulatory pathways. This was further validated by Metal-Oxide Affinity Chromatography (MOAC) and Tandem Mass Spectrometry (MS/MS) assays which retrieved phosphorylated proteins. The 14-3-3 family members emerge as important regulators in carcinogenesis and as possible clinical targets. We observed that the different over- and under-regulated pathways in cervical cancer could be interrelated through elements that participate in crosstalks, therefore belong to what we term "meta-pathways". Additionally, we highlighted the relations of each one of the differentially represented pathways to one or more of the ten hallmarks of cancer. These features could be maintained in many other types of cancer, regardless of mutations or genomic rearrangements, and favor their robustness, adaptations and the evasion of tissue control. Probably, this could explain why cancer cells are not eliminated by selective pressure and why therapy trials directed against molecular targets are not as effective as expected.
Collapse
Affiliation(s)
- Juan Carlos Higareda-Almaraz
- Functional Genomics of Prokaryotes Research Program, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Ilse A. Valtierra-Gutiérrez
- Functional Genomics of Prokaryotes Research Program, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
- Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Magdalena Hernandez-Ortiz
- Functional Genomics of Prokaryotes Research Program, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Sandra Contreras
- Functional Genomics of Prokaryotes Research Program, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Erika Hernandez
- Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnacion
- Functional Genomics of Prokaryotes Research Program, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
117
|
Noh HJ, Ponting CP, Boulding HC, Meader S, Betancur C, Buxbaum JD, Pinto D, Marshall CR, Lionel AC, Scherer SW, Webber C. Network topologies and convergent aetiologies arising from deletions and duplications observed in individuals with autism. PLoS Genet 2013; 9:e1003523. [PMID: 23754953 PMCID: PMC3675007 DOI: 10.1371/journal.pgen.1003523] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/06/2013] [Indexed: 12/24/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are highly heritable and characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. Considering four sets of de novo copy number variants (CNVs) identified in 181 individuals with autism and exploiting mouse functional genomics and known protein-protein interactions, we identified a large and significantly interconnected interaction network. This network contains 187 genes affected by CNVs drawn from 45% of the patients we considered and 22 genes previously implicated in ASD, of which 192 form a single interconnected cluster. On average, those patients with copy number changed genes from this network possess changes in 3 network genes, suggesting that epistasis mediated through the network is extensive. Correspondingly, genes that are highly connected within the network, and thus whose copy number change is predicted by the network to be more phenotypically consequential, are significantly enriched among patients that possess only a single ASD-associated network copy number changed gene (p = 0.002). Strikingly, deleted or disrupted genes from the network are significantly enriched in GO-annotated positive regulators (2.3-fold enrichment, corrected p = 2×10−5), whereas duplicated genes are significantly enriched in GO-annotated negative regulators (2.2-fold enrichment, corrected p = 0.005). The direction of copy change is highly informative in the context of the network, providing the means through which perturbations arising from distinct deletions or duplications can yield a common outcome. These findings reveal an extensive ASD-associated molecular network, whose topology indicates ASD-relevant mutational deleteriousness and that mechanistically details how convergent aetiologies can result extensively from CNVs affecting pathways causally implicated in ASD. Autism Spectrum Disorders (ASD) are characterised by impairments in social interaction and communication, and restricted and repetitive behaviours. ASD are highly heritable and many different stretches of DNA have been found to be duplicated or deleted in individuals with ASD. We found that an unusually high number of genes affected by these DNA deletions/duplications are associated with the functioning of synaptic transmission between nerve cells. The proteins made by many of these genes are known to interact with each other and, together with proteins from other deleted/duplicated genes, form a large interlinked biological network. This network was affected by almost 50% of the deletions/duplications in the ASD patients considered. Many individual ASD patients had deletions or duplications of multiple genes within this network, but for those patients with just a single gene from the network changed, that single gene appeared to play an important role. Furthermore, the network predicts that the effects arising from the genes in the deletions are similar to the effects arising from the genes in the duplications. Thus, the way that this ASD-associated network is wired together contributes to the understanding of the impact of these DNA deletions and duplications.
Collapse
Affiliation(s)
- Hyun Ji Noh
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Chris P. Ponting
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Hannah C. Boulding
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Stephen Meader
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
| | - Catalina Betancur
- INSERM U952, Paris, France
- CNRS UMR 7224, Paris, France
- UPMC Université Paris 06, Paris, France
| | - Joseph D. Buxbaum
- The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dalila Pinto
- Departments of Psychiatry, and Genetics and Genomic Sciences, Seaver Autism Center, The Mindich Child Health & Development Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Christian R. Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children and the McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anath C. Lionel
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children and the McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children and the McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Caleb Webber
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
118
|
Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech 2013; 3:225-234. [PMID: 28324374 PMCID: PMC3646108 DOI: 10.1007/s13205-012-0088-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022] Open
Abstract
To understand the role of CASP9 (Caspase-9) gene products in relation to
neuroblastoma disease, we have analyzed the single nucleotide polymorphisms (SNPs)
associated with this gene. This can help us understand the genetic variations that
can alter the function of the gene products. A total of 941 SNPs are investigated
for CASP9 gene. To determine whether a non-synonymous SNP (nsSNP) in this gene
affects its protein product, we used certain computational tools which predicted one
nsSNP, rs1052574, to have deleterious phenotypic effect. This polymorphic variant
results in amino acid substitution from leucine to proline at 197 position, i.e.,
from acyclic amino acid to a 5-membered amino acid which resides in the buried area
of the protein with a high level of conservation. This amino acid substitution shows
a transition from helix to coil in the mutant protein. Hence, due to the complete
alteration in the structural property of the amino acid side chain, the stability of
the protein is reduced which may affect the function of CASP9 protein, leading to
deregulation of apoptosis and neuroblastoma development.
Collapse
|
119
|
Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon KR, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, Menoni H, Hoeijmakers J, Vermeulen W, Ge H, Przytycka TM, Levens D, Casellas R. Global regulation of promoter melting in naive lymphocytes. Cell 2013; 153:988-99. [PMID: 23706737 PMCID: PMC3684982 DOI: 10.1016/j.cell.2013.04.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/31/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
- Institute of Informatics, University of Warsaw, 02-098 Warsaw, Poland
| | - Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Resch
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Lionel Feigenbaum
- Science Applications International Corporation, NCI, Frederick, MD 21702, USA
| | - Herve Menoni
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan Hoeijmakers
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Wim Vermeulen
- Department of Genetics, Biomedical Science, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hui Ge
- Ascentgene, Inc., Rockville, MD 20850, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
- Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
120
|
Iacucci E, Tranchevent LC, Popovic D, Pavlopoulos GA, De Moor B, Schneider R, Moreau Y. ReLiance: a machine learning and literature-based prioritization of receptor--ligand pairings. ACTA ACUST UNITED AC 2013; 28:i569-i574. [PMID: 22962483 PMCID: PMC3436818 DOI: 10.1093/bioinformatics/bts391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motivation: The prediction of receptor—ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptor—ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text mining approach in conjunction with a state of the art prediction method, as well as a widely accessible and comprehensive dataset. Among several modern classifiers, random forests have been found to be the best at this prediction task. The training of this classifier was carried out using an experimentally validated dataset of Database of Ligand-Receptor Partners (DLRP) receptor—ligand pairs. New examples, co-cited with the training receptors and ligands, are then classified using the trained classifier. After applying our method, we find that we are able to successfully predict receptor—ligand pairs within the GPCR family with a balanced accuracy of 0.96. Upon further inspection, we find several supported interactions that were not present in the Database of Interacting Proteins (DIPdatabase). We have measured the balanced accuracy of our method resulting in high quality predictions stored in the available database ReLiance. Availability:http://homes.esat.kuleuven.be/~bioiuser/ReLianceDB/index.php Contact:yves.moreau@esat.kuleuven.be; ernesto.iacucci@gmail.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ernesto Iacucci
- IBBT Future Health Department/ESAT-SCD, KU Leuven, Kasteelpark Arenberg 10, 3001, Heverlee-Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
121
|
Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 2013; 14:39. [PMID: 23656885 PMCID: PMC3655892 DOI: 10.1186/1471-2156-14-39] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Radhika Patnala
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | | |
Collapse
|
122
|
Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M. The hourglass and the early conservation models--co-existing patterns of developmental constraints in vertebrates. PLoS Genet 2013; 9:e1003476. [PMID: 23637639 PMCID: PMC3636041 DOI: 10.1371/journal.pgen.1003476] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Developmental constraints have been postulated to limit the space of feasible phenotypes and thus shape animal evolution. These constraints have been suggested to be the strongest during either early or mid-embryogenesis, which corresponds to the early conservation model or the hourglass model, respectively. Conflicting results have been reported, but in recent studies of animal transcriptomes the hourglass model has been favored. Studies usually report descriptive statistics calculated for all genes over all developmental time points. This introduces dependencies between the sets of compared genes and may lead to biased results. Here we overcome this problem using an alternative modular analysis. We used the Iterative Signature Algorithm to identify distinct modules of genes co-expressed specifically in consecutive stages of zebrafish development. We then performed a detailed comparison of several gene properties between modules, allowing for a less biased and more powerful analysis. Notably, our analysis corroborated the hourglass pattern at the regulatory level, with sequences of regulatory regions being most conserved for genes expressed in mid-development but not at the level of gene sequence, age, or expression, in contrast to some previous studies. The early conservation model was supported with gene duplication and birth that were the most rare for genes expressed in early development. Finally, for all gene properties, we observed the least conservation for genes expressed in late development or adult, consistent with both models. Overall, with the modular approach, we showed that different levels of molecular evolution follow different patterns of developmental constraints. Thus both models are valid, but with respect to different genomic features. During development, vertebrate embryos pass through a “phylotypic” stage, during which their morphology is most similar between different species. This gave rise to the hourglass model, which predicts the highest developmental constraints during mid-embryogenesis. In the last decade, a large effort has been made to uncover the relation between developmental constraints and the evolution of genome. Several studies reported gene characteristics that change according to the hourglass model, e.g. sequence conservation, age, or expression. Here, we first show that some of the previous conclusions do not hold out under detailed analysis of the data. Then, we discuss the disadvantages of the standard evo-devo approach, i.e. comparing descriptive statistics of all genes across development. Results of such analysis are biased by genes expressed constantly during development (housekeeping genes). To overcome this limitation, we use a modularization approach, which reduces the complexity of the data and assures independency between the sets of genes which are compared. We identified distinct sets of genes (modules) with time-specific expression in zebrafish development and analyzed their conservation of sequence, gene expression, and regulatory elements, as well as their age and orthology relationships. Interestingly, we found different patterns of developmental constraints for different gene properties. Only conserved regulatory regions follow an hourglass pattern.
Collapse
Affiliation(s)
- Barbara Piasecka
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paweł Lichocki
- Laboratory of Intelligent Systems, EPFL, Lausanne, Switzerland
| | - Sébastien Moretti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Laboratory of Intelligent Systems, EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
123
|
Pavlopoulos GA, Kumar P, Sifrim A, Sakai R, Lin ML, Voet T, Moreau Y, Aerts J. Meander: visually exploring the structural variome using space-filling curves. Nucleic Acids Res 2013; 41:e118. [PMID: 23605045 PMCID: PMC3675473 DOI: 10.1093/nar/gkt254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of next generation sequencing methods in genome studies has made it possible to shift research from a gene-centric approach to a genome wide view. Although methods and tools to detect single nucleotide polymorphisms are becoming more mature, methods to identify and visualize structural variation (SV) are still in their infancy. Most genome browsers can only compare a given sequence to a reference genome; therefore, direct comparison of multiple individuals still remains a challenge. Therefore, the implementation of efficient approaches to explore and visualize SVs and directly compare two or more individuals is desirable. In this article, we present a visualization approach that uses space-filling Hilbert curves to explore SVs based on both read-depth and pair-end information. An interactive open-source Java application, called Meander, implements the proposed methodology, and its functionality is demonstrated using two cases. With Meander, users can explore variations at different levels of resolution and simultaneously compare up to four different individuals against a common reference. The application was developed using Java version 1.6 and Processing.org and can be run on any platform. It can be found at http://homes.esat.kuleuven.be/~bioiuser/meander.
Collapse
Affiliation(s)
- Georgios A Pavlopoulos
- Department of Electrical Engineering (ESAT/SCD), University of Leuven, Kasteelpark Arenberg 10, Box 2446, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Zhang B, Shi Z. Modules in Biological Networks. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
One of the most prominent properties of networks representing complex systems is modularity. Network-based module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems.
Collapse
Affiliation(s)
- Bing Zhang
- Vanderbilt University School of Medicine, USA
| | | |
Collapse
|
125
|
Jiang WK, Liu YL, Xia EH, Gao LZ. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. PLANT PHYSIOLOGY 2013; 161:1844-61. [PMID: 23396833 PMCID: PMC3613460 DOI: 10.1104/pp.112.200147] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.
Collapse
|
126
|
Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SMJ, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson YW, Nanlohy KG, Libants SV, Yeh CY, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu B, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li W. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 2013; 45:415-21, 421e1-2. [PMID: 23435085 PMCID: PMC3709584 DOI: 10.1038/ng.2568] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/31/2013] [Indexed: 12/19/2022]
Abstract
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sanges R, Hadzhiev Y, Gueroult-Bellone M, Roure A, Ferg M, Meola N, Amore G, Basu S, Brown ER, De Simone M, Petrera F, Licastro D, Strähle U, Banfi S, Lemaire P, Birney E, Müller F, Stupka E. Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development. Nucleic Acids Res 2013; 41:3600-18. [PMID: 23393190 PMCID: PMC3616699 DOI: 10.1093/nar/gkt030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 01/17/2023] Open
Abstract
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.
Collapse
Affiliation(s)
- Remo Sanges
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Yavor Hadzhiev
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marion Gueroult-Bellone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Agnes Roure
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco Ferg
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Nicola Meola
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Gabriele Amore
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Swaraj Basu
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Euan R. Brown
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco De Simone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Francesca Petrera
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Danilo Licastro
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Uwe Strähle
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Sandro Banfi
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Patrick Lemaire
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ewan Birney
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ferenc Müller
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Elia Stupka
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
128
|
Kirwan JD, Bekaert M, Commins JM, Davies KTJ, Rossiter SJ, Teeling EC. A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals. Evol Appl 2013; 6:412-22. [PMID: 23745134 PMCID: PMC3673470 DOI: 10.1111/eva.12047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/21/2012] [Indexed: 01/31/2023] Open
Abstract
Hereditary deafness affects 0.1% of individuals globally and is considered as one of the most debilitating diseases of man. Despite recent advances, the molecular basis of normal auditory function is not fully understood and little is known about the contribution of single-nucleotide variations to the disease. Using cross-species comparisons of 11 ‘deafness’ genes (Myo15, Ush1 g, Strc, Tecta, Tectb, Otog, Col11a2, Gjb2, Cldn14, Kcnq4, Pou3f4) across 69 evolutionary and ecologically divergent mammals, we elucidated whether there was evidence for: (i) adaptive evolution acting on these genes across mammals with similar hearing capabilities; and, (ii) regions of long-term evolutionary conservation within which we predict disease-associated mutations should occur. We find evidence of adaptive evolution acting on the eutherian mammals in Myo15, Otog and Tecta. Examination of selection pressures in Tecta and Pou3f4 across a taxonomic sample that included a wide representation of auditory specialists, the bats, did not uncover any evidence for a role in echolocation. We generated ‘conservation indices’ based on selection estimates at nucleotide sites and found that known disease mutations fall within sites of high evolutionary conservation. We suggest that methods such as this, derived from estimates of evolutionary conservation using phylogenetically divergent taxa, will help to differentiate between deleterious and benign mutations.
Collapse
Affiliation(s)
- John D Kirwan
- UCD School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
129
|
Kala R, Peek GW, Hardy TM, Tollefsbol TO. MicroRNAs: an emerging science in cancer epigenetics. J Clin Bioinforma 2013; 3:6. [PMID: 23497588 PMCID: PMC3608239 DOI: 10.1186/2043-9113-3-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/04/2013] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are remarkable molecules that appear to have a fundamental role in the biology of the cell. They constitute a class of non-protein encoding RNA molecules which have now emerged as key players in regulating the activity of mRNA. miRNAs are small RNAmolecules around 22 nucleotides in length, which affect the activity of specific mRNA, directly degrading it and/or preventing its translation into protein. The science of miRNAs holds them as candidate biomarkers for the early detection and management of cancer. There is also considerable excitement for the use of miRNAs as a novel class of therapeutic targets and as a new class of therapeutic agents for the treatment of cancers. From a clinical perspective, miRNAs can induce a number of effects and may have a diverse application in biomedical research. This review highlights the general mode of action of miRNAs, their biogenesis, the effect of diet on miRNA expression and the impact of miRNAs on cancer epigenetics and drug resistance in various cancers. Further we also provide emphasis on bioinformatics software which can be used to determine potential targets of miRNAs.
Collapse
Affiliation(s)
- Rishabh Kala
- Department of Biology, University of Alabama Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
130
|
Bonin CP, Baccarin RYA, Nostell K, Nahum LA, Fossum C, de Camargo MM. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites. Biochem Biophys Res Commun 2013; 432:256-61. [PMID: 23402753 PMCID: PMC3695733 DOI: 10.1016/j.bbrc.2013.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/03/2013] [Indexed: 02/09/2023]
Abstract
Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.
Collapse
Affiliation(s)
- Camila P Bonin
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil.
| | | | | | | | | | | |
Collapse
|
131
|
Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection. PLoS One 2013; 8:e57543. [PMID: 23472090 PMCID: PMC3589390 DOI: 10.1371/journal.pone.0057543] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/25/2013] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs, which post-transcriptionally regulate gene expression and are proposed to play a key role in the regulation of innate and adaptive immunity. Here, we report a next generation sequencing (NGS) approach profiling the expression of miRNAs in primary bovine mammary epithelial cells (BMEs) at 1, 2, 4 and 6 hours post-infection with Streptococcus uberis, a causative agent of bovine mastitis. Analysing over 450 million sequencing reads, we found that 20% of the approximately 1,300 currently known bovine miRNAs are expressed in unchallenged BMEs. We also identified the expression of more than 20 potentially novel bovine miRNAs. There is, however, a significant dynamic range in the expression of known miRNAs. The top 10 highly expressed miRNAs account for >80% of all aligned reads, with the remaining miRNAs showing much lower expression. Twenty-one miRNAs were identified as significantly differentially expressed post-infection with S. uberis. Several of these miRNAs have characterised roles in the immune systems of other species. This miRNA response to the Gram-positive S. uberis is markedly different, however, to lipopolysaccharide (LPS) induced miRNA expression. Of 145 miRNAs identified in the literature as being LPS responsive, only 9 were also differentially expressed in response to S. uberis. Computational analysis has also revealed that the predicted target genes of miRNAs, which are down-regulated in BMEs following S. uberis infection, are statistically enriched for roles in innate immunity. This suggests that miRNAs, which potentially act as central regulators of gene expression responses to a Gram-positive bacterial infection, may significantly regulate the sentinel capacity of mammary epithelial cells to mobilise the innate immune system.
Collapse
|
132
|
Lim SH, Tran-Viet KN, Yanovitch TL, Freedman SF, Klemm T, Call W, Powell C, Ravichandran A, Metlapally R, Nading EB, Rozen S, Young TL. CYP1B1, MYOC, and LTBP2 mutations in primary congenital glaucoma patients in the United States. Am J Ophthalmol 2013; 155:508-517.e5. [PMID: 23218701 DOI: 10.1016/j.ajo.2012.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 01/07/2023]
Abstract
PURPOSE To screen primary congenital glaucoma patients in the United States for sequence variants within the CYP1B1, LTBP2, and MYOC genes using Sanger and whole exome sequencing. DESIGN Retrospective case-control study. METHODS Fifty-seven primary congenital glaucoma patients (47 families), 71 unaffected family members of the primary congenital glaucoma probands, and 101 healthy unrelated individuals were recruited from a single institution. Sanger sequencing of the primary congenital glaucoma gene, CYP1B1, was performed on 47 proband deoxyribonucleic acid samples. Simultaneously, whole exome sequencing was conducted on 3 families, each including more than 1 affected individual. Concurrently, 33 of 47 primary congenital glaucoma probands with extended family deoxyribonucleic acid samples were screened for LTBP2 and MYOC gene mutations. Exome-sequenced variations were validated by additional Sanger sequencing to confirm segregation of filtered disease-causing single nucleotide variations. RESULTS Seven primary congenital glaucoma families (14.9%) manifested disease phenotypes attributable to CYP1B1 mutations. One primary congenital glaucoma family possessed homozygous mutant alleles, whereas 6 families carried compound heterozygous mutations. Five novel combinations of compound heterozygous mutations were identified, of which 2 combinations were found with whole exome sequencing. No disease-causing mutations within the LTBP2 and MYOC genes were discovered. CONCLUSIONS This study analyzed CYP1B1, LTBP2, and MYOC mutations in a cohort of primary congenital glaucoma patients from the United States, applying whole exome sequencing as a complementary tool to Sanger sequencing. Whole exome sequencing, coupled with Sanger sequencing, may identify novel genes in primary congenital glaucoma patients who have no mutations in known primary congenital glaucoma genes.
Collapse
|
133
|
Pendse J, Ramachandran PV, Na J, Narisu N, Fink JL, Cagan RL, Collins FS, Baranski TJ. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics 2013; 14:136. [PMID: 23445342 PMCID: PMC3608171 DOI: 10.1186/1471-2164-14-136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 02/14/2013] [Indexed: 12/30/2022] Open
Abstract
Background Genome-wide association studies (GWAS) identify regions of the genome that are associated with particular traits, but do not typically identify specific causative genetic elements. For example, while a large number of single nucleotide polymorphisms associated with type 2 diabetes (T2D) and related traits have been identified by human GWAS, only a few genes have functional evidence to support or to rule out a role in cellular metabolism or dietary interactions. Here, we use a recently developed Drosophila model in which high-sucrose feeding induces phenotypes similar to T2D to assess orthologs of human GWAS-identified candidate genes for risk of T2D and related traits. Results Disrupting orthologs of certain T2D candidate genes (HHEX, THADA, PPARG, KCNJ11) led to sucrose-dependent toxicity. Tissue-specific knockdown of the HHEX ortholog dHHEX (CG7056) directed metabolic defects and enhanced lethality; for example, fat-body-specific loss of dHHEX led to increased hemolymph glucose and reduced insulin sensitivity. Conclusion Candidate genes identified in human genetic studies of metabolic traits can be prioritized and functionally characterized using a simple Drosophila approach. To our knowledge, this is the first large-scale effort to study the functional interaction between GWAS-identified candidate genes and an environmental risk factor such as diet in a model organism system.
Collapse
Affiliation(s)
- Jay Pendse
- Department of Developmental and Regenerative Biology, Mount SinaiSchool of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Manousaki T, Feiner N, Begemann G, Meyer A, Kuraku S. Co-orthology of Pax4 and Pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evol Dev 2013; 13:448-59. [PMID: 23016906 DOI: 10.1111/j.1525-142x.2011.00502.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional equivalence of Pax6/eyeless genes across distantly related animal phyla has been one of central findings on which evo-devo studies is based. In this study, we show that Pax4, in addition to Pax6, is a vertebrate ortholog of the fly eyeless gene (and its duplicate, twin of eyeless [toy] gene, unique to Insecta). Molecular phylogenetic trees published to date placed the Pax4 gene outside the Pax6/eyeless subgroup as if the Pax4 gene originated from a gene duplication before the origin of bilaterians. However, Pax4 genes had only been reported for mammals. Our molecular phylogenetic analysis, including previously unidentified teleost fish pax4 genes, equally supported two scenarios: one with the Pax4-Pax6 duplication early in vertebrate evolution and the other with this duplication before the bilaterian radiation. We then investigated gene compositions in the genomic regions containing Pax4 and Pax6, and identified (1) conserved synteny between these two regions, suggesting that the Pax4-Pax6 split was caused by a large-scale duplication and (2) its timing within early vertebrate evolution based on the duplication timing of the members of neighboring gene families. Our results are consistent with the so-called two-round genome duplications in early vertebrates. Overall, the Pax6/eyeless ortholog is merely part of a 2:2 orthology relationship between vertebrates (with Pax4 and Pax6) and the fly (with eyeless and toy). In this context, evolution of transcriptional regulation associated with the Pax4-Pax6 split is also discussed in light of the zebrafish pax4 expression pattern that is analyzed here for the first time.
Collapse
Affiliation(s)
- Tereza Manousaki
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | | | | | | | | |
Collapse
|
135
|
Toll-Riera M, Albà MM. Emergence of novel domains in proteins. BMC Evol Biol 2013; 13:47. [PMID: 23425224 PMCID: PMC3599535 DOI: 10.1186/1471-2148-13-47] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022] Open
Abstract
Background Proteins are composed of a combination of discrete, well-defined, sequence domains, associated with specific functions that have arisen at different times during evolutionary history. The emergence of novel domains is related to protein functional diversification and adaptation. But currently little is known about how novel domains arise and how they subsequently evolve. Results To gain insights into the impact of recently emerged domains in protein evolution we have identified all human young protein domains that have emerged in approximately the past 550 million years. We have classified them into vertebrate-specific and mammalian-specific groups, and compared them to older domains. We have found 426 different annotated young domains, totalling 995 domain occurrences, which represent about 12.3% of all human domains. We have observed that 61.3% of them arose in newly formed genes, while the remaining 38.7% are found combined with older domains, and have very likely emerged in the context of a previously existing protein. Young domains are preferentially located at the N-terminus of the protein, indicating that, at least in vertebrates, novel functional sequences often emerge there. Furthermore, young domains show significantly higher non-synonymous to synonymous substitution rates than older domains using human and mouse orthologous sequence comparisons. This is also true when we compare young and old domains located in the same protein, suggesting that recently arisen domains tend to evolve in a less constrained manner than older domains. Conclusions We conclude that proteins tend to gain domains over time, becoming progressively longer. We show that many proteins are made of domains of different age, and that the fastest evolving parts correspond to the domains that have been acquired more recently.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | |
Collapse
|
136
|
Patrick E, Buckley M, Yang YH. Estimation of data-specific constitutive exons with RNA-Seq data. BMC Bioinformatics 2013; 14:31. [PMID: 23360225 PMCID: PMC3656776 DOI: 10.1186/1471-2105-14-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-Seq has the potential to answer many diverse and interesting questions about the inner workings of cells. Estimating changes in the overall transcription of a gene is not straightforward. Changes in overall gene transcription can easily be confounded with changes in exon usage which alter the lengths of transcripts produced by a gene. Measuring the expression of constitutive exons--xons which are consistently conserved after splicing--ffers an unbiased estimation of the overall transcription of a gene. RESULTS We propose a clustering-based method, exClust, for estimating the exons that are consistently conserved after splicing in a given data set. These are considered as the exons which are "constitutive" in this data. The method utilises information from both annotation and the dataset of interest. The method is implemented in an openly available R function package, sydSeq. CONCLUSION When used on two real datasets exClust includes more than three times as many reads as the standard UI method, and improves concordance with qRT-PCR data. When compared to other methods, our method is shown to produce robust estimates of overall gene transcription.
Collapse
Affiliation(s)
- Ellis Patrick
- School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia
| | | | | |
Collapse
|
137
|
Soler VJ, Tran-Viet KN, Galiacy SD, Limviphuvadh V, Klemm TP, St Germain E, Fournié PR, Guillaud C, Maurer-Stroh S, Hawthorne F, Suarez C, Kantelip B, Afshari NA, Creveaux I, Luo X, Meng W, Calvas P, Cassagne M, Arné JL, Rozen SG, Malecaze F, Young TL. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet 2013; 50:246-54. [PMID: 23349227 DOI: 10.1136/jmedgenet-2012-101325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. METHODS AND RESULTS A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband's mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. CONCLUSIONS We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases.
Collapse
Affiliation(s)
- Vincent José Soler
- Ophthalmology Department, Pavillon Dieulafoy, Place Baylac, 31057 Toulouse Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Predicting PDZ domain mediated protein interactions from structure. BMC Bioinformatics 2013; 14:27. [PMID: 23336252 PMCID: PMC3602153 DOI: 10.1186/1471-2105-14-27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 12/19/2012] [Indexed: 12/03/2022] Open
Abstract
Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on training–testing domain sequence similarity. Using both predictors, we defined a functional map of human PDZ domain biology and predict novel PDZ domain function. Users may access our structure-based and previous sequence-based predictors at
http://webservice.baderlab.org/domains/POW.
Collapse
|
139
|
Feiner N, Murakami Y, Breithut L, Mazan S, Meyer A, Kuraku S. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin. Genome Biol Evol 2013; 5:1485-502. [PMID: 23843192 PMCID: PMC3762194 DOI: 10.1093/gbe/evt104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates.
Collapse
Affiliation(s)
- Nathalie Feiner
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Yasunori Murakami
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Lisa Breithut
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
| | - Sylvie Mazan
- Développement et Evolution des Vertébrés, UMR7150 CNRS and Université Paris 6, Station Biologique, Roscoff, France
| | - Axel Meyer
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
| | - Shigehiro Kuraku
- Chair for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany
- International Max-Planck Research School (IMPRS) for Organismal Biology, University of Konstanz, Germany
- Present address: Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| |
Collapse
|
140
|
Schmitz U, Wolkenhauer O. Web resources for microRNA research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 774:225-50. [PMID: 23377976 DOI: 10.1007/978-94-007-5590-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.
Collapse
Affiliation(s)
- Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
141
|
Xin X, Gfeller D, Cheng J, Tonikian R, Sun L, Guo A, Lopez L, Pavlenco A, Akintobi A, Zhang Y, Rual JF, Currell B, Seshagiri S, Hao T, Yang X, Shen YA, Salehi-Ashtiani K, Li J, Cheng AT, Bouamalay D, Lugari A, Hill DE, Grimes ML, Drubin DG, Grant BD, Vidal M, Boone C, Sidhu SS, Bader GD. SH3 interactome conserves general function over specific form. Mol Syst Biol 2013; 9:652. [PMID: 23549480 PMCID: PMC3658277 DOI: 10.1038/msb.2013.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/20/2022] Open
Abstract
Src homology 3 (SH3) domains bind peptides to mediate protein-protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form.
Collapse
Affiliation(s)
- Xiaofeng Xin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Gfeller
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jackie Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Raffi Tonikian
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lin Sun
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA, USA
| | - Lianet Lopez
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alevtina Pavlenco
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adenrele Akintobi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Jean-François Rual
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | | | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yun A Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingjing Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron T Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Dryden Bouamalay
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Adrien Lugari
- IMR Laboratory, UPR 3243, Institut de Microbiologie de la Méditérannée, CNRS and Aix-Marseille Université, Marseille Cedex 20, France
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
142
|
Froschauer A, Khatun MM, Sprott D, Franz A, Rieger C, Pfennig F, Gutzeit HO. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka. Mol Reprod Dev 2012; 80:48-58. [PMID: 23139203 DOI: 10.1002/mrd.22135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/12/2022]
Abstract
Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4-EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4-EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4-EGFP transgenic medaka in reproductive and stem cell biology.
Collapse
|
143
|
Pluta K, McGettigan PA, Reid CJ, Browne JA, Irwin JA, Tharmalingam T, Corfield A, Baird A, Loftus BJ, Evans ACO, Carrington SD. Molecular aspects of mucin biosynthesis and mucus formation in the bovine cervix during the periestrous period. Physiol Genomics 2012; 44:1165-78. [DOI: 10.1152/physiolgenomics.00088.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucus within the cervical canal represents a hormonally regulated barrier that reconciles the need to exclude the vaginal microflora from the uterus during progesterone dominance, while permitting sperm transport at estrus. Its characteristics change during the estrous cycle to facilitate these competing functional requirements. Hydrated mucin glycoproteins synthesized by the endocervical epithelium form the molecular scaffold of this mucus. This study uses the bovine cervix as a model to examine functional groups of genes related to mucin biosynthesis and mucus production over the periestrous period when functional changes in cervical barrier function are most prominent. Cervical tissue samples were collected from 30 estrus synchronized beef heifers. Animals were slaughtered in groups starting 12 h after the withdrawal of intravaginal progesterone releasing devices (controlled internal drug releases) until 7 days postonset of estrus (luteal phase). Subsequent groupings represented proestrus, early estrus, late estrus, metestrus, and finally the early luteal phase. Tissues were submitted to next generation RNA-seq transcriptome analysis. We identified 114 genes associated with biosynthesis and intracellular transport of mucins, and postsecretory modifications of cervical; 53 of these genes showed at least a twofold change in one or more experimental group in relation to onset of estrus, and the differences between groups were significant ( P < 0.05). The majority of these genes showed the greatest alteration in their expression in the 48 h postestrus and luteal phase groups.
Collapse
Affiliation(s)
- Katarzyna Pluta
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Paul A. McGettigan
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Colm J. Reid
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - John A. Browne
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Jane A. Irwin
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Tharmala Tharmalingam
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; and
| | | | - Alan Baird
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Brendan J. Loftus
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; and
| | - Alexander C. O. Evans
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; and
| | | |
Collapse
|
144
|
Funkenstein B, Krol E, Esterin E, Kim YS. Structural and functional characterizations of activin type 2B receptor (acvr2b) ortholog from the marine fish, gilthead sea bream, Sparus aurata: evidence for gene duplication of acvr2b in fish. J Mol Endocrinol 2012; 49:175-92. [PMID: 22911153 DOI: 10.1530/jme-12-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myostatin (MSTN), a negative regulator of muscle growth and a member of the transforming growth factor-β superfamily, can bind the two activin type 2 receptors (ACVR2). It has been previously shown that WT mice injected with ACVR2B extracellular domain (ACVR2B-ECD) had higher muscle mass. Likewise, fish larvae immersed in Pichia pastoris culture supernatant, containing goldfish Acvr2b-ECD, showed enhanced larval growth. However, it is not clear whether fish Mstn1 and Mstn2 signal through the same receptor and whether fish express more than one acvr2b gene. In the current study, three cDNAs encoding acvr2b (saacvr2b-1, saacvr2b-2a, and saacvr2b-2b) were cloned from gilthead sea bream. All three contain the short extracellular binding domain, a short transmembrane region, and a conserved catalytic domain of serine/threonine protein kinase. Bioinformatics analysis provided evidence for the existence of two acvr2b genes (acvr2b-1 and acvr2b-2) in several other fish species as well, probably as a result of gene or genome duplication. The two isoforms differ in their amino acid sequences. The direct inhibitory effect of Acvr2b-ECD on Mstn activity was tested in vitro. The saAcvr2b-1-ECD was expressed in the yeast P. pastoris. Evidence is provided for N-glycosylation of Acvr2b-1-ECD. The affinity-purified Acvr2b-1-ECD inhibited recombinant mouse/rat/human mature MSTN activity when determined in vitro using the CAGA-luciferase assay in A204 cells. A lower inhibitory activity was obtained when unprocessed purified, furin-digested, and activated saMstn1 was used. Results of this study demonstrate for the first time the existence of two acvr2b genes in fish. In addition, the study shows that bioactive fish Acvr2b-ECD can be produced from P. pastoris.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
145
|
Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N. Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation. Genome Med 2012. [PMID: 23181723 PMCID: PMC4064314 DOI: 10.1186/gm390] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Research Programme on Biomedical Informatics - GRIB. Universitat Pompeu Fabra - UPF, Hospital del Mar Medical Research Institute - IMIM. Parc de Recerca Biomèdica de Barcelona (PRBB). Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - Jordi Deu-Pons
- Research Programme on Biomedical Informatics - GRIB. Universitat Pompeu Fabra - UPF, Hospital del Mar Medical Research Institute - IMIM. Parc de Recerca Biomèdica de Barcelona (PRBB). Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - Nuria Lopez-Bigas
- Research Programme on Biomedical Informatics - GRIB. Universitat Pompeu Fabra - UPF, Hospital del Mar Medical Research Institute - IMIM. Parc de Recerca Biomèdica de Barcelona (PRBB). Dr. Aiguader, 88, E-08003 Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys, 23, E-08010, Barcelona, Spain
| |
Collapse
|
146
|
Tang YH, Han SP, Kassahn KS, Skarshewski A, Rothnagel JA, Smith R. Complex evolutionary relationships among four classes of modular RNA-binding splicing regulators in eukaryotes: the hnRNP, SR, ELAV-like and CELF proteins. J Mol Evol 2012. [PMID: 23179353 DOI: 10.1007/s00239-012-9533-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative RNA splicing in multicellular organisms is regulated by a large group of proteins of mainly unknown origin. To predict the functions of these proteins, classification of their domains at the sequence and structural level is necessary. We have focused on four groups of splicing regulators, the heterogeneous nuclear ribonucleoprotein (hnRNP), serine-arginine (SR), embryonic lethal, abnormal vision (ELAV)-like, and CUG-BP and ETR-like factor (CELF) proteins, that show increasing diversity among metazoa. Sequence and phylogenetic analyses were used to obtain a broader understanding of their evolutionary relationships. Surprisingly, when we characterised sequence similarities across full-length sequences and conserved domains of ten metazoan species, we found some hnRNPs were more closely related to SR, ELAV-like and CELF proteins than to other hnRNPs. Phylogenetic analyses and the distribution of the RRM domains suggest that these proteins diversified before the last common ancestor of the metazoans studied here through domain acquisition and duplication to create genes of mixed evolutionary origin. We propose that these proteins were derived independently rather than through the expansion of a single protein family. Our results highlight inconsistencies in the current classification system for these regulators, which does not adequately reflect their evolutionary relationships, and suggests that a domain-based classification scheme may have more utility.
Collapse
Affiliation(s)
- Yue Hang Tang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| | | | | | | | | | | |
Collapse
|
147
|
Zhou JB, Zhang T, Wang BF, Gao HZ, Xu X. Identification of a novel gene fusion RNF213‑SLC26A11 in chronic myeloid leukemia by RNA-Seq. Mol Med Rep 2012; 7:591-7. [PMID: 23151810 DOI: 10.3892/mmr.2012.1183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/25/2012] [Indexed: 11/05/2022] Open
Abstract
Chronic myeloid leukemia (CML) was the first hematological malignancy to be associated with a specific genetic lesion. The Philadelphia translocation, producing a BCR‑ABL hybrid oncogene, is the most common mechanism of CML development. However, in the present study, b3a2, b2a2 and ela2 fusion junctions of the breakpoint cluster region (BCR)-V-abl Abelson murine leukemia viral oncogene homolog 1 (ABL) gene were not detected in patients diagnosed with CML three and four years previously. RNA-Seq technology, with an average coverage of ~30‑fold, was used to detect gene fusion events in a patient with a 6-year history of CML, identified to be in the chronic phase of the disease. Using deFuse and TopHat‑fusion programs with improved filtering methods, we identified two reliable gene fusions in a blood sample obtained from the CML patient, including extremely low expression levels of the classic BCR‑ABL1 gene fusion. In addition, a novel gene fusion involving the ring finger protein 213 (RNF213)-solute carrier family 26, member 11 (SLC26A11) was identified and validated by reverse transcription polymerase chain reaction. Further bioinformatic analysis revealed that specific domains of SLC26A11 were damaged, which may affect the function of sulfate transportation of the normal gene. The present study demonstrated that, in specific cases, alternative gene fusions, besides BCR‑ABL, may be associated with the development of CML.
Collapse
Affiliation(s)
- Jian-Bo Zhou
- Department of Clinical Laboratories, Jiang Yin People's Hospital, Jiang Yin, Jiangsu 214400, P.R. China.
| | | | | | | | | |
Collapse
|
148
|
Fong JJ, Brown JM, Fujita MK, Boussau B. A phylogenomic approach to vertebrate phylogeny supports a turtle-archosaur affinity and a possible paraphyletic lissamphibia. PLoS One 2012; 7:e48990. [PMID: 23145043 PMCID: PMC3492174 DOI: 10.1371/journal.pone.0048990] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/03/2012] [Indexed: 01/18/2023] Open
Abstract
In resolving the vertebrate tree of life, two fundamental questions remain: 1) what is the phylogenetic position of turtles within amniotes, and 2) what are the relationships between the three major lissamphibian (extant amphibian) groups? These relationships have historically been difficult to resolve, with five different hypotheses proposed for turtle placement, and four proposed branching patterns within Lissamphibia. We compiled a large cDNA/EST dataset for vertebrates (75 genes for 129 taxa) to address these outstanding questions. Gene-specific phylogenetic analyses revealed a great deal of variation in preferred topology, resulting in topologically ambiguous conclusions from the combined dataset. Due to consistent preferences for the same divergent topologies across genes, we suspected systematic phylogenetic error as a cause of some variation. Accordingly, we developed and tested a novel statistical method that identifies sites that have a high probability of containing biased signal for a specific phylogenetic relationship. After removing putatively biased sites, support emerged for a sister relationship between turtles and either crocodilians or archosaurs, as well as for a caecilian-salamander sister relationship within Lissamphibia, with Lissamphibia potentially paraphyletic.
Collapse
Affiliation(s)
- Jonathan J Fong
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.
| | | | | | | |
Collapse
|
149
|
Dolled-Filhart MP, Lordemann A, Dahl W, Haraksingh RR, Ou-Yang CW, Lin JCH. Personalizing rare disease research: how genomics is revolutionizing the diagnosis and treatment of rare disease. Per Med 2012; 9:805-819. [DOI: 10.2217/pme.12.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A decade after the complete sequencing of the human genome, combined with recent advances in throughput and sequencing costs, the genetics of rare diseases has entered a new era. There has now been an explosion in the identification and mapping of rare diseases, with over 10,000 exomes having been sequenced to date. This article surveys the progress and development of technologies to understand rare disease; it provides a historical overview of traditional techniques such as karyotyping and homozygosity mapping, reviews current methods of whole-exome and -genome sequencing, and provides a future perspective on upcoming developments such as targeted drugs and gene therapy. This article will discuss the implications of these methods for rare disease research, along with a discussion of the success stories that provide great hope and optimism for patients and scientists alike.
Collapse
Affiliation(s)
| | - Amanda Lordemann
- Rare Genomics Institute, 4100 Forest Park Avenue, Suite 204, St Louis, MO 63108, USA
- Washington University School of Medicine in St Louis, Genome Technology Access Center (GTAC), Genomics & Pathology Services (GPS), Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - William Dahl
- Rare Genomics Institute, 4100 Forest Park Avenue, Suite 204, St Louis, MO 63108, USA
- Washington University School of Medicine in St Louis, Genome Technology Access Center (GTAC), Genomics & Pathology Services (GPS), Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Rajini Rani Haraksingh
- Rare Genomics Institute, 4100 Forest Park Avenue, Suite 204, St Louis, MO 63108, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chih-Wen Ou-Yang
- Rare Genomics Institute, 4100 Forest Park Avenue, Suite 204, St Louis, MO 63108, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jimmy Cheng-Ho Lin
- Rare Genomics Institute, 4100 Forest Park Avenue, Suite 204, St Louis, MO 63108, USA
- Washington University School of Medicine in St Louis, Genome Technology Access Center (GTAC), Genomics & Pathology Services (GPS), Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
150
|
Lopes da Fonseca T, Correia A, Hasselaar W, van der Linde HC, Willemsen R, Outeiro TF. The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Brain Res Bull 2012; 90:118-26. [PMID: 23123961 DOI: 10.1016/j.brainresbull.2012.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/16/2012] [Accepted: 09/30/2012] [Indexed: 11/28/2022]
Abstract
ATP13A2 is a lysosome-specific transmembrane ATPase protein of unknown function. This protein was initially linked to Kufor-Rakeb syndrome where it is absent or mutated. More recently, point mutations in ATP13A2 were linked to familial cases of Parkinson's disease. Zebrafish is commonly used as a vertebrate model for the study of different neurodegenerative diseases and has homologues of several Parkinson's disease associated proteins. Here, we describe for the first time the zebrafish homologue of human ATP13A2, demonstrating the homology between the protein sequences, which supports a conserved biological role. Furthermore, the spatial pattern of protein expression was studied and the lethality of the knockdown of ATP13A2 suggests it plays a crucial role during embryonic development. Our findings bring new insight into the biology of ATP13A2 and open novel opportunities for its study using zebrafish as a model organism.
Collapse
|