101
|
Walker DS, Schafer WR. Distinct roles for innexin gap junctions and hemichannels in mechanosensation. eLife 2020; 9:e50597. [PMID: 31995033 PMCID: PMC7010410 DOI: 10.7554/elife.50597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanosensation is central to a wide range of functions, including tactile and pain perception, hearing, proprioception, and control of blood pressure, but identifying the molecules underlying mechanotransduction has proved challenging. In Caenorhabditis elegans, the avoidance response to gentle body touch is mediated by six touch receptor neurons (TRNs), and is dependent on MEC-4, a DEG/ENaC channel. We show that hemichannels containing the innexin protein UNC-7 are also essential for gentle touch in the TRNs, as well as harsh touch in both the TRNs and the PVD nociceptors. UNC-7 and MEC-4 do not colocalize, suggesting that their roles in mechanosensory transduction are independent. Heterologous expression of unc-7 in touch-insensitive chemosensory neurons confers ectopic touch sensitivity, indicating a specific role for UNC-7 hemichannels in mechanosensation. The unc-7 touch defect can be rescued by the homologous mouse gene Panx1 gene, thus, innexin/pannexin proteins may play broadly conserved roles in neuronal mechanotransduction.
Collapse
Affiliation(s)
- Denise S Walker
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
102
|
Mot AC, Coman C, Hadade N, Damian G, Silaghi-Dumitrescu R, Heering H. "Yellow" laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. PLoS One 2020; 15:e0225530. [PMID: 31961889 PMCID: PMC6974248 DOI: 10.1371/journal.pone.0225530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
Yellow laccases lack the typical blue type 1 Cu absorption band around 600 nm; however, multi-copper oxidases with laccase properties have been reported. We provide the first evidence that the yellow laccase isolated from Sclerotinia sclerotiorum is obtained from a blue form by covalent, but nevertheless reversible modification with a phenolic product. After separating the phenolics from the extracellular medium, a typical blue laccase is obtained. With ABTS as model substrate for this blue enzyme, a non-natural purple adduct is formed with a spectrum nearly identical to that of the 1:1 adduct of an ABTS radical and Tyr. This modification significantly increases the stability and substrate affinity of the enzyme, not by acting primarily as bound mediator, but by structural changes that also alters the type 1 Cu site. The HPLC-MS analyses of the ABTS adduct trypsin digests revealed a distinct tyrosine within a unique loop as site involved in the modification of the blue laccase form. Thus, S. sclerotiorum yellow laccase seems to be an intrinsically blue multi-copper oxidase that boosts its activity and stability with a radical-forming aromatic substrate. This particular case could, at least in part, explain the enigma of the yellow laccases.
Collapse
Affiliation(s)
- Augustin C. Mot
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Cristina Coman
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Niculina Hadade
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Hendrik Heering
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
103
|
Molecular Dynamics model of peptide-protein conjugation: case study of covalent complex between Sos1 peptide and N-terminal SH3 domain from Grb2. Sci Rep 2019; 9:20219. [PMID: 31882608 PMCID: PMC6934455 DOI: 10.1038/s41598-019-56078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
We have investigated covalent conjugation of VPPPVPPRRRX′ peptide (where X′ denotes Nε-chloroacetyl lysine) to N-terminal SH3 domain from adapter protein Grb2. Our experimental results confirmed that the peptide first binds to the SH3 domain noncovalently before establishing a covalent linkage through reaction of X′ with the target cysteine residue C32. We have also confirmed that this reaction involves a thiolate-anion form of C32 and follows the SN2 mechanism. For this system, we have developed a new MD-based protocol to model the formation of covalent conjugate. The simulation starts with the known coordinates of the noncovalent complex. When two reactive groups come into contact during the course of the simulation, the reaction is initiated. The reaction is modeled via gradual interpolation between the two sets of force field parameters that are representative of the noncovalent and covalent complexes. The simulation proceeds smoothly, with no appreciable perturbations to temperature, pressure or volume, and results in a high-quality MD model of the covalent complex. The validity of this model is confirmed using the experimental chemical shift data. The new MD-based approach offers a valuable tool to explore the mechanics of protein-peptide conjugation and build accurate models of covalent complexes.
Collapse
|
104
|
Xie L, Xie Z, Wang S, Deng X, Xie Z. Study of the activation of the PI3K/Akt pathway by the motif of σA and σNS proteins of avian reovirus. Innate Immun 2019; 26:312-318. [PMID: 31779497 PMCID: PMC7251792 DOI: 10.1177/1753425919890648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study was conducted to determine whether avian reovirus (ARV)
activates the phosphatidylinositol 3-kinase-dependent Akt (PI3K/Akt) pathway
according to the PXXP or YXXXM motifs of σA and σNS proteins. Gene splicing by
overlap extension PCR was used to change the PXXP or YXXXM motifs of the σA and
σNS genes. Plasmid constructs that contain mutant σA and σNS genes were
generated and transfected into Vero cells, and the expression levels of the
corresponding genes were quantified according to immunofluorescence and Western
blot analyses. The Akt phosphorylation (P-Akt) profile of the transfected Vero
cells was examined by flow cytometry and Western blot. The results showed that
the σA and σNS genes were expressed in the Vero cells, and P-Akt expression in
the σA mutant groups (amino acids 110–114 and 114–117) was markedly decreased.
The results indicated that the σA protein of ARV activates the PI3K/Akt pathway
via the PXXP motif. The results of this study reveal the mechanisms by which ARV
manipulates the cellular signal transduction pathways, which may provide new
ideas for novel drug targets.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Xianwen Deng
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| | - Zhiqin Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, PR China
| |
Collapse
|
105
|
Zhao T, Liu Y, Wang Z, He R, Xiang Zhang J, Xu F, Lei M, Deci MB, Nguyen J, Bianco PR. Super-resolution imaging reveals changes in Escherichia coli SSB localization in response to DNA damage. Genes Cells 2019; 24:814-826. [PMID: 31638317 DOI: 10.1111/gtc.12729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
The E. coli single-stranded DNA-binding protein (SSB) is essential to viability. It plays key roles in DNA metabolism where it binds to nascent single strands of DNA and to target proteins known as the SSB interactome. There are >2,000 tetramers of SSB per cell with 100-150 associated with the genome at any one time, either at DNA replication forks or at sites of repair. The remaining 1,900 tetramers could constantly diffuse throughout the cytosol or be associated with the inner membrane as observed for other DNA metabolic enzymes. To visualize SSB localization and to ascertain potential spatiotemporal changes in response to DNA damage, SSB-GFP chimeras were visualized using a novel, super-resolution microscope optimized for the study of prokaryotic cells. In the absence of DNA damage, SSB localizes to a small number of foci and the excess protein is associated with the inner membrane where it binds to the major phospholipids. Within five minutes following DNA damage, the vast majority of SSB disengages from the membrane and is found almost exclusively in the cell interior. Here, it is observed in a large number of foci, in discreet structures or, in diffuse form spread over the genome, thereby enabling repair events.
Collapse
Affiliation(s)
- Tianyu Zhao
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zilin Wang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Xiang Zhang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming Lei
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Piero R Bianco
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
106
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
107
|
Kubyshkin V, Grage SL, Ulrich AS, Budisa N. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Phys Chem Chem Phys 2019; 21:22396-22408. [PMID: 31577299 DOI: 10.1039/c9cp02996f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II helices to hydrophobic mismatch is in some notable aspects different from α-helices. Finally, our results prove that the polyproline II helix is a competent structure for the construction of transmembrane peptide segments, despite the fact that no such motif has ever been reported in natural systems.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany and Institute of Organic Chemistry, KIT, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| |
Collapse
|
108
|
Sethuraman S, Rajendran K. Is Gum Arabic a Good Emulsifier Due to CH...π Interactions? How Urea Effectively Destabilizes the Hydrophobic CH...π Interactions in the Proteins of Gum Arabic than Amides and GuHCl? ACS OMEGA 2019; 4:16418-16428. [PMID: 31616820 PMCID: PMC6787882 DOI: 10.1021/acsomega.9b01980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 05/13/2023]
Abstract
The photophysical studies of gum arabic (GA) in the presence of urea, 1,3-dimethylurea (DMU), tetramethylurea (TMU), guanidine hydrochloride (GuHCl), formamide (FA), acetamide (AA), and dimethyl formamide (DMF) were carried out by monitoring the emission, three-dimensional emission contour, and time-correlated fluorescence lifetime techniques. On addition of only 1 × 10-3 M urea, 75.0% of the fluorescence of GA is quenched, while the same occurs in GuHCl at 3.0 M. FA quenched 50% of the fluorescence of GA at 5.0 M. However, DMU, TMU, AA, and DMF resulted in a fluorescence enhancement. The unusual fluorescence trends reveal the existence of CH...π interactions in the proteins of GA. The experimental results and the structural aspects of proteins in GA led us to propose that the aggregation of polyproline helices in GA, through several CH...π interactions, would have a major role to play in the emulsification mechanism of GA.
Collapse
Affiliation(s)
- Sowmiya Sethuraman
- Department of Chemistry, D.G. Vaishnav College, Autonomous (affiliated to the
University of Madras (Chennai)), 833, Periyar EVR Salai, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Kumaran Rajendran
- Department of Chemistry, D.G. Vaishnav College, Autonomous (affiliated to the
University of Madras (Chennai)), 833, Periyar EVR Salai, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| |
Collapse
|
109
|
Krichel C, Möckel C, Schillinger O, Huesgen PF, Sticht H, Strodel B, Weiergräber OH, Willbold D, Neudecker P. Solution structure of the autophagy-related protein LC3C reveals a polyproline II motif on a mobile tether with phosphorylation site. Sci Rep 2019; 9:14167. [PMID: 31578424 PMCID: PMC6775092 DOI: 10.1038/s41598-019-48155-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/26/2019] [Indexed: 11/09/2022] Open
Abstract
(Macro-)autophagy is a compartmental degradation pathway conserved from yeast to mammals. The yeast protein Atg8 mediates membrane tethering/hemifusion and cargo recruitment and is essential for autophagy. The human MAP1LC3/GABARAP family proteins show high sequence identity with Atg8, but MAP1LC3C is distinguished by a conspicuous amino-terminal extension with unknown functional significance. We have determined the high-resolution three-dimensional structure and measured the backbone dynamics of MAP1LC3C by NMR spectroscopy. From Ser18 to Ala120, MAP1LC3C forms an α-helix followed by the ubiquitin-like tertiary fold with two hydrophobic binding pockets used by MAP1LC3/GABARAP proteins to recognize targets presenting LC3-interacting regions (LIRs). Unlike other MAP1LC3/GABARAP proteins, the amino-terminal region of MAP1LC3C does not form a stable helix α1 but a "sticky arm" consisting of a polyproline II motif on a flexible linker. Ser18 at the interface between this linker and the structural core can be phosphorylated in vitro by protein kinase A, which causes additional conformational heterogeneity as monitored by NMR spectroscopy and molecular dynamics simulations, including changes in the LIR-binding interface. Based on these results we propose that the amino-terminal polyproline II motif mediates specific interactions with the microtubule cytoskeleton and that Ser18 phosphorylation modulates the interplay of MAP1LC3C with its various target proteins.
Collapse
Affiliation(s)
- Carsten Krichel
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina Möckel
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Oliver Schillinger
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Pitter F Huesgen
- ZEA-3 (Analytik), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Birgit Strodel
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Oliver H Weiergräber
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Philipp Neudecker
- ICS-6 (Strukturbiochemie) and JuStruct, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
110
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
111
|
Bukowski GS, Horness RE, Thielges MC. Involvement of Local, Rapid Conformational Dynamics in Binding of Flexible Recognition Motifs. J Phys Chem B 2019; 123:8387-8396. [PMID: 31535866 DOI: 10.1021/acs.jpcb.9b07036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexible protein sequences populate ensembles of rapidly interconverting states differentiated by small-scale fluctuations; however, elucidating whether and how the ensembles determine function experimentally is challenged by the combined high spatial and temporal resolution needed to capture the states. We used carbon-deuterium (C-D) bond vibrations incorporated as infrared probes to characterize with residue-specific detail the heterogeneity of states adopted by proline-rich (PR) sequences and assess their involvement in recognition of Src homology 3 domains. The C-D absorption envelopes provided evidence for two or three sub-populations at all proline residues. The changes in the subpopulations induced by binding generally reflected recognition by conformational selection but depended on the residue and the state of the ligand to illuminate distinct mechanisms among the PR ligands. Notably, the spectral data indicate that greater adaptability among the states is associated with reduced recognition specificity and that perturbation to the ensemble populations contributes to differences in binding entropy. Broadly, the study quantifies rapidly interconverting ensembles with residue-specific detail and implicates them in function.
Collapse
Affiliation(s)
- Gregory S Bukowski
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| |
Collapse
|
112
|
Matsushima N, Miyashita H, Tamaki S, Kretsinger RH. Polyproline II Helix as a Recognition Motif of Plant Peptide Hormones and Flagellin Peptide flg22. Protein Pept Lett 2019; 26:684-690. [DOI: 10.2174/0929866526666190408125441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Background:
Plant peptide hormones play a crucial role in plant growth and
development. A group of these peptide hormones are signaling peptides with 5 - 23 amino acids.
Flagellin peptide (flg22) also elicits an immune response in plants. The functions are expressed
through recognition of the peptide hormones and flg22. This recognition relies on membrane
localized receptor kinases with extracellular leucine rich repeats (LRR-RKs). The structures of
plant peptide hormones - AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22 complexed
with LRR domains of corresponding LRRRKs and co-receptors SERKs have been determined.
However, their structures are well not analyzed and characterized in detail. The structures of PIP,
CEP, CIF, and HypSys are still unknown.
Objective:
Our motivation is to clarify structural features of these plant, small peptides and Flg22 in
their bound states.
Methods:
In this article, we performed secondary structure assignments and HELFIT analyses
(calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic
coordinates from the crystal structures of AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of
flg22. We also performed sequence analysis of the families of PIP, CEP, CIF, and HypSys in order
to predict their secondary structures.
Results:
Following AtPep1 with 23 residues adopts two left handed polyproline helices (PPIIs)
with six and four residues. IDA, IDL1, RGFs 1 - 2, and TDIF/CLE41 with 12 or 13 residues adopt
a four residue PPII; RGF3 adopts two PPIIs with four residues. Flg22 with 22 residues also adopts a
six residue PPII. The other peptide hormones – PIP, CEP, CIF, and HypSys – that are rich in
proline or hydroxyproline presumably prefer PPII.
Conclusion:
The present analysis indicates that PPII helix in the plant small peptide hormones and
in flg22 is crucial for recognition of the LRR domains in receptors.
Collapse
Affiliation(s)
| | | | | | - Robert H. Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
113
|
Wang HC, Huo YN, Lee WS. Folic acid prevents the progesterone-promoted proliferation and migration in breast cancer cell lines. Eur J Nutr 2019; 59:2333-2344. [PMID: 31502059 DOI: 10.1007/s00394-019-02077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE We previously demonstrated that progesterone (P4) interacted with folic acid (FA) and abolished the FA-reduced endothelial cell proliferation and migration. These findings led us to investigate whether FA can interfere with the P4-promoted breast cancer cell proliferation and migration. METHODS We conducted MTT and wound healing assay to evaluate cell proliferation and migration, respectively. Western blot analysis and immunoprecipitation were performed to examine the protein expression and protein-protein interaction, respectively. RESULTS We demonstrated that P4 promoted proliferation and migration of breast cancer cell lines (T47D, MCF-7, BT474, and BT483). However, co-treatment with P4 and FA together abolished these promotion effects. Treatment with P4 alone increased the formation of PR-cSrc complex and the phosphorylation of cSrc at tyrosine 416 (Tyr416). However, co-treatment with P4 and FA together increased the formations of cSrc-p140Cap, cSrc-Csk, and cSrc-p-Csk complex, and the phosphorylation of cSrc at tyrosine 527 (Tyr527). Co-treatment with P4 and FA together also abolished the activation of cSrc-mediated signaling pathways involved in the P4-promoted breast cancer cell proliferation and migration. CONCLUSIONS Co-treatment with FA and P4 together abolished the P4-promoted breast cancer cell proliferation and migration through decreasing the formation of PR-cSrc complex and increasing the formations of cSrc-p140Cap and cSrc-Csk complex, subsequently activating Csk, which in turn suppressed the phosphorylation of cSrc at Tyr416 and increased the phosphorylation of cSrc at Tyr527, hence inactivating the cSrc-mediated signaling pathways. The findings from this study might provide a new strategy for preventing the P4-promoted breast cancer progress.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
114
|
Halder T, Upadhyaya G, Roy S, Biswas R, Das A, Bagchi A, Agarwal T, Ray S. Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. PLANT MOLECULAR BIOLOGY 2019; 101:95-112. [PMID: 31236845 DOI: 10.1007/s11103-019-00894-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.
Collapse
Affiliation(s)
- Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Ria Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
115
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
116
|
Tao M, Pandey NK, Barnes R, Han S, Langen R. Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure 2019; 27:1570-1580.e4. [PMID: 31466833 DOI: 10.1016/j.str.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease is caused by a polyQ expansion in the first exon of huntingtin (Httex1). Membrane interaction of huntingtin is of physiological and pathological relevance. Using electron paramagnetic resonance and Overhauser dynamic nuclear polarization, we find that the N-terminal residues 3-13 of wild-type Httex1(Q25) form a membrane-bound, amphipathic α helix. This helix is positioned in the interfacial region, where it is sensitive to membrane curvature and electrostatic interactions with head-group charges. Residues 14-22, which contain the first five residues of the polyQ region, are in a transition region that remains in the interfacial region without taking up a stable, α-helical structure. The remaining C-terminal portion is solvent exposed. The phosphomimetic S13D/S16D mutations, which are known to protect from toxicity, inhibit membrane binding and attenuate membrane-mediated aggregation of mutant Httex1(Q46) due to electrostatic repulsion. Targeting the N-terminal membrane anchor using post-translational modifications or specific binders could be a potential means to reduce aggregation and toxicity in vivo.
Collapse
Affiliation(s)
- Meixin Tao
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nitin K Pandey
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Barnes
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
117
|
Rowińska-Żyrek M, Wiȩch A, Wa Tły J, Wieczorek R, Witkowska D, Ożyhar A, Orłowski M. Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from Aedes aegypti. Inorg Chem 2019; 58:11782-11792. [PMID: 31433630 DOI: 10.1021/acs.inorgchem.9b01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reproduction of the dominant vector of Zika and dengue diseases, Aedes aegypti mosquito, is controlled by an active heterodimer complex composed of the 20-hydroxyecdysone receptor (EcR) and ultraspiracle protein. Although A. aegypti EcR shares the structural and functional organization with other nuclear receptors, its C-terminus has an additional long F domain (AaFEcR). Recently, we showed that the full length AaFEcR is intrinsically disordered with the ability to specifically bind divalent metal ions. Here, we describe the details of the exhaustive structural and thermodynamic properties of Zn2+- and Cu2+-complexes with the AaFEcR domain, based on peptide models of its two putative metal binding sites (Ac-HGPHPHPHG-NH2 and Ac-QQLTPNQQQHQQQHSQLQQVHANGS-NH2). Unexpectedly, only in the presence of increasing concentrations of Cu2+ ions, the Ac-HGPHPHPHG-NH2 peptide gained a metal ion-induced poly-l-proline type II helical structure, which is unique for members of the family of nuclear receptors.
Collapse
Affiliation(s)
| | - Anna Wiȩch
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Joanna Wa Tły
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Robert Wieczorek
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Danuta Witkowska
- Public Higher Medical Professional School in Opole , Katowicka 68 , 45-060 Opole , Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| |
Collapse
|
118
|
PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway. Nat Commun 2019; 10:3185. [PMID: 31320625 PMCID: PMC6639383 DOI: 10.1038/s41467-019-11019-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress–mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress. Cancer cells utilise the unfolded protein response (UPR) to adapt to environmental and ER stress. Here, the authors show that the glycosidase II beta subunit, PRKSCH, protects cancer cells from ER stress, by interacting with IRE1α and activating the IRE1α-XBP1 branch of the UPR.
Collapse
|
119
|
Tseng CC, Zhang P, Lee AS. The COOH-Terminal Proline-Rich Region of GRP78 Is a Key Regulator of Its Cell Surface Expression and Viability of Tamoxifen-Resistant Breast Cancer Cells. Neoplasia 2019; 21:837-848. [PMID: 31306849 PMCID: PMC6629921 DOI: 10.1016/j.neo.2019.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translocation of 78-kDa glucose-regulated protein (GRP78) from endoplasmic reticulum (ER) to plasma membrane represents a paradigm shift beyond its traditional function as an ER chaperone protein. Cell surface GRP78 (csGRP78) exerts novel signaling functions, and mechanisms underlying its cell surface expression are just emerging. Acquired tamoxifen resistance of breast cancer cells is accompanied with elevated level of csGRP78. Therefore, the tamoxifen-resistant MCF7 breast cancer cells (MCF7-LR) represents a clinically relevant model to study mechanisms of csGRP78 expression. We discovered that a proline-rich region (PRR) containing three consecutive prolines close to the COOH-terminus of GRP78 is important for its ability to form a complex with the partner protein, CD44v, as demonstrated by in vitro glutathione S-transferase pull-down assay. Proline to alanine mutations at the PRR compromised GRP78 expression level on the cell surface as evidenced by purification of biotinylated cell surface proteins. Reconstitution of MCF7-LR cells with the PRR mutant after knockdown of endogenous GRP78 diminished the capacity of GRP78 to stimulate STAT3 activation. The enforced expression of a short peptide bearing the PRR region of GRP78 led to reduction of CD44v and Cyclin D1 protein levels as well as cell viability, accompanied with increase in apoptotic signaling including cleaved Caspase-3 and PARP. These findings suggest that the COOH-terminal PRR of GRP78 is critical for its interaction with CD44v as well as its cell surface expression, and enforced expression of the short peptide bearing the PRR region may provide a new approach to lower the viability of tamoxifen-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| | - Pu Zhang
- Department of Molecular Microbiology and Immunology, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90089, USA.
| |
Collapse
|
120
|
Coleman J, Jouannot O, Ramakrishnan SK, Zanetti MN, Wang J, Salpietro V, Houlden H, Rothman JE, Krishnakumar SS. PRRT2 Regulates Synaptic Fusion by Directly Modulating SNARE Complex Assembly. Cell Rep 2019; 22:820-831. [PMID: 29346777 PMCID: PMC5792450 DOI: 10.1016/j.celrep.2017.12.056] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in proline-rich transmembrane protein 2 (PRRT2) are associated with a range of paroxysmal neurological disorders. PRRT2 predominantly localizes to the pre-synaptic terminals and is believed to regulate neurotransmitter release. However, the mechanism of action is unclear. Here, we use reconstituted single vesicle and bulk fusion assays, combined with live cell imaging of single exocytotic events in PC12 cells and biophysical analysis, to delineate the physiological role of PRRT2. We report that PRRT2 selectively blocks the trans SNARE complex assembly and thus negatively regulates synaptic vesicle priming. This inhibition is actualized via weak interactions of the N-terminal proline-rich domain with the synaptic SNARE proteins. Furthermore, we demonstrate that paroxysmal dyskinesia-associated mutations in PRRT2 disrupt this SNARE-modulatory function and with efficiencies corresponding to the severity of the disease phenotype. Our findings provide insights into the molecular mechanisms through which loss-of-function mutations in PRRT2 result in paroxysmal neurological disorders.
Collapse
Affiliation(s)
- Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ouardane Jouannot
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish K Ramakrishnan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maria N Zanetti
- Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| | - Jing Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK.
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK.
| |
Collapse
|
121
|
Tan HL, Lim KK, Yang Q, Fan JS, Sayed AMM, Low LS, Ren B, Lim TK, Lin Q, Mok YK, Liou YC, Chen ES. Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Res 2019; 46:1167-1179. [PMID: 29194511 DOI: 10.1093/nar/gkx1180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Centromeric identity and chromosome segregation are determined by the precise centromeric targeting of CENP-A, the centromere-specific histone H3 variant. The significance of the amino-terminal domain (NTD) of CENP-A in this process remains unclear. Here, we assessed the functional significance of each residue within the NTD of CENP-A from Schizosaccharomyces pombe (SpCENP-A) and identified a proline-rich 'GRANT' (Genomic stability-Regulating site within CENP-A N-Terminus) motif that is important for CENP-A function. Through sequential mutagenesis, we show that GRANT proline residues are essential for coordinating SpCENP-A centromeric targeting. GRANT proline-15 (P15), in particular, undergoes cis-trans isomerization to regulate chromosome segregation fidelity, which appears to be carried out by two FK506-binding protein (FKBP) family prolyl cis-trans isomerases. Using proteomics analysis, we further identified the SpCENP-A-localizing chaperone Sim3 as a SpCENP-A NTD interacting protein that is dependent on GRANT proline residues. Ectopic expression of sim3+ complemented the chromosome segregation defect arising from the loss of these proline residues. Overall, cis-trans proline isomerization is a post-translational modification of the SpCENP-A NTD that confers precise propagation of centromeric integrity in fission yeast, presumably via targeting SpCENP-A to the centromere.
Collapse
Affiliation(s)
- Hwei Ling Tan
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Kim Kiat Lim
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | | | - Liy Sim Low
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Bingbing Ren
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, 117597 Singapore
- National University Health System (NUHS), Singapore, 119228 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore
| |
Collapse
|
122
|
Batkhishig D, Bilguun K, Enkhbayar P, Miyashita H, Kretsinger RH, Matsushima N. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors. Protein J 2019; 37:223-236. [PMID: 29651716 PMCID: PMC5976695 DOI: 10.1007/s10930-018-9767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 210648, Mongolia
| | - Khurelbaatar Bilguun
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Institute of Physics and Technology, Mongolian Academy of Sciences, Enkhtaivan avenue 54B, Ulaanbaatar, 210651, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.
| | - Hiroki Miyashita
- Hokubu Rinsho Co., Ltd, Sapporo, 060-0061, Japan.,Institute of Tandem Repeats, Sapporo, 004-0882, Japan
| | | | - Norio Matsushima
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia. .,Institute of Tandem Repeats, Sapporo, 004-0882, Japan. .,Sapporo Medical University, Sapporo, 060-8556, Japan.
| |
Collapse
|
123
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
124
|
Abaskharon RM, Mukherjee D, Gai F. 4-Oxoproline as a Site-Specific Infrared Probe: Application To Assess Proline Isomerization and Dimer Formation. J Phys Chem B 2019; 123:5079-5085. [PMID: 31135160 DOI: 10.1021/acs.jpcb.9b03766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its unique structure, proline plays important structural and functional roles in proteins. However, this special amino acid lacks an adequate vibrational mode that can be exploited to probe its local electrostatic and hydration status via infrared spectroscopy. Herein, we show that the C═O stretching vibration of a proline derivative, 4-oxoproline, is sensitive to local environment and hence can be used as a site-specific infrared probe. We further validate this notion by applying this unnatural amino acid to assess the thermodynamics of proline cis-trans isomerization in a peptide environment and examine the amino acid dimer formation in concentrated proline and glycine solutions.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Debopreeti Mukherjee
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Feng Gai
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
125
|
Barlow HR, Cleaver O. Building Blood Vessels-One Rho GTPase at a Time. Cells 2019; 8:cells8060545. [PMID: 31174284 PMCID: PMC6627795 DOI: 10.3390/cells8060545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Blood vessels are required for the survival of any organism larger than the oxygen diffusion limit. Blood vessel formation is a tightly regulated event and vessel growth or changes in permeability are linked to a number of diseases. Elucidating the cell biology of endothelial cells (ECs), which are the building blocks of blood vessels, is thus critical to our understanding of vascular biology and to the development of vascular-targeted disease treatments. Small GTPases of the Rho GTPase family are known to regulate several processes critical for EC growth and maintenance. In fact, many of the 21 Rho GTPases in mammals are known to regulate EC junctional remodeling, cell shape changes, and other processes. Rho GTPases are thus an attractive target for disease treatments, as they often have unique functions in specific vascular cell types. In fact, some Rho GTPases are even expressed with relative specificity in diseased vessels. Interestingly, many Rho GTPases are understudied in ECs, despite their known expression in either developing or mature vessels, suggesting an even greater wealth of knowledge yet to be gleaned from these complex signaling pathways. This review aims to provide an overview of Rho GTPase signaling contributions to EC vasculogenesis, angiogenesis, and mature vessel barrier function. A particular emphasis is placed on so-called "alternative" Rho GTPases, as they are largely understudied despite their likely important contributions to EC biology.
Collapse
Affiliation(s)
- Haley Rose Barlow
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
126
|
Conant CR, Fuller DR, El-Baba TJ, Zhang Z, Russell DH, Clemmer DE. Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:919-931. [PMID: 30980380 PMCID: PMC6824264 DOI: 10.1007/s13361-019-02159-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/02/2023]
Abstract
We report ion mobility spectrometry and mass spectrometry studies of the non-enzymatic step-by-step degradation of substance P (subP), an 11-residue neuropeptide, with the sequence Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2, in ethanol. At elevated solution temperatures (55 to 75 °C), several reactions are observed, including a protonation event, i.e., [subP+2H]2+ + H+ → [subP+3H]3+, that appears to be regulated by a configurational change and two sequential bond cleavages (the Pro2-Lys3 peptide bond is cleaved to form the smaller nonapeptide Lys3-Met11-NH2 [subP(3-11)], and subsequently, subP(3-11) is cleaved at the Pro4-Gln5 peptide bond to yield the heptapeptide Gln5-Met11-NH2 [subP(5-11)]). Each of the product peptides [subP(3-11) and subP(5-11)] is accompanied by a complementary diketopiperazine (DKP): cyclo-Arg1-Pro2 (cRP) for the first cleavage, and cyclo-Lys3-Pro4 (cKP) for the second. Insight about the mechanism of degradation is obtained by comparing kinetics calculations of trial model mechanisms with experimental data. The best model of our experimental data indicates that the initial cleavage of subP is regulated by a conformational change, likely a trans→cis isomerization of the Arg1-Pro2 peptide bond. The subP(3-11) product has a long lifetime (t1/2 ~ 30 h at 55 °C) and appears to transition through several structural intermediates prior to dissociation, suggesting that subP(3-11) is initially formed with a Lys3-trans-Pro4 peptide bond configuration and that slow trans→cis isomerization regulates the second bond cleavage event as well. From these data and our model mechanisms, we obtain transition state thermochemistry ranging from ΔH‡ = 41 to 85 kJ mol-1 and ΔS‡ = - 43 to - 157 J mol-1 K-1 for each step in the reaction. Graphical Abstract.
Collapse
Affiliation(s)
- Christopher R Conant
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Daniel R Fuller
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, IN, 47401, USA.
| |
Collapse
|
127
|
Li F, Wang L, Zhang Z, Li T, Feng J, Xu S, Zhang R, Guo D, Xue J. ZmSMR4, a novel cyclin-dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a key player in plant growth, development and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:120-131. [PMID: 30823990 DOI: 10.1016/j.plantsci.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 06/09/2023]
Abstract
Endoreduplication is a key cell cycle variant in the developing maize endosperm and has been associated with cell enlargement and dry matter accumulation. Therefore, identification of the key genes associated with endosperm development and endoreduplication would not only lay the groundwork for understanding the biological process of endoreduplication but also be important for maize breeding. Here, we identified 12 putative endoreduplication-related candidate genes as members of the Zea mays L. SIAMESE-RELATED (ZmSMR) gene family and denoted them ZmSMR1-ZmSMR12. Sequence analysis indicated that all the ZmSMR protein sequences exhibited modest sequence similarity to the SIAMESE gene from Arabidopsis. Further analyses suggested that most ZmSMR genes might be associated with the transition from mitosis to endoreduplication because the expression levels of most ZmSMR genes were upregulated in endosperm cells during the phase of switching to an endoreduplication cell cycle. Additionally, the ZmSMRs responded to various abiotic stresses at the transcriptional level. One member of the ZmSMR gene family, the ZmSMR4 (KY946768) gene, was isolated as the first maize endoreduplication-related gene and has been used to develop transgenic Arabidopsis plants. ZmSMR4 was localized to the nucleus and could interact with ZmCDKA and ZmCDKB. Moreover, ZmSMR4 was able to rescue the multicellular trichome phenotype of Arabidopsis sim mutants and enhanced the endoreduplication levels of transgenic Arabidopsis plants. Arabidopsis plants overexpressing ZmSMR4 not only displayed enhanced leaf margin serrations but also showed several interesting breeding phenotypes, such as early blossoming and fuller seeds. Taken together, our data suggest that the ZmSMR4 gene is plant-specific and functions as a key player in the signalling network that controls plant growth, development and responses to abiotic stress by regulating the transition between the mitotic cycle and endoreduplication.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Licheng Wang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Zhengquan Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ting Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jiaojiao Feng
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Shutu Xu
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Renhe Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Dongwei Guo
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| | - Jiquan Xue
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
128
|
Application of IR spectra of two successive isotope labeled residues to the evaluation of dihedral angles of polyproline II structure. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
129
|
Costamagna A, Rossi Sebastiano M, Natalini D, Simoni M, Valabrega G, Defilippi P, Visentin S, Ermondi G, Turco E, Caron G, Cabodi S. Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Sci Rep 2019; 9:3089. [PMID: 30816273 PMCID: PMC6395809 DOI: 10.1038/s41598-019-39510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/11/2019] [Indexed: 12/02/2022] Open
Abstract
The ErbB2 receptor tyrosine kinase is overexpressed in approximately 15–20% of breast tumors and associated with aggressive disease and poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration and proliferation in normal and pathological contexts. p130Cas overexpression in ErbB2 human breast cancer correlates with poor prognosis and metastasis formation. Recent data indicate that p130Cas association to ErbB2 protects ErbB2 from degradation, thus enhancing tumorigenesis. Therefore, inhibiting p130Cas/ErbB2 interaction might represent a new therapeutic strategy to target breast cancer. Here we demonstrate by performing Molecular Modeling, Molecular Dynamics, dot blot, ELISA and fluorescence quenching experiments, that p130Cas binds directly to ErbB2. Then, by structure-based virtual screening, we identified two potential inhibitors of p130Cas/ErbB2 interaction. Their experimental validation was performed in vitro and in ErbB2-positive breast cancer cellular models. The results highlight that both compounds interfere with p130Cas/ErbB2 binding and significantly affect cell proliferation and sensitivity to Trastuzumab. Overall, this study identifies p130Cas/ErbB2 complex as a potential breast cancer target revealing new therapeutic perspectives for protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matilde Simoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
130
|
Chang Q, Li YL, Zhao X. Total synthesis and cyclization strategy of samoamide A, a cytotoxic cyclic octapeptide rich in proline and phenlalanine isolated from marine cyanobacterium. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:171-177. [PMID: 29671350 DOI: 10.1080/10286020.2018.1450391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Samoamide A is a cyclic octapeptide rich in proline and phenylalanine residues isolated from an American Samoa marine cyanobacterium, which exhibits potent activity against H460 human non-small-cell lung cancer cells (IC50 of 1.1 μM). The first total synthesis of samoamide A was achieved by employing a strategy of a solid-phase peptide synthesis (SPPS) and a head-to-tail cyclization selecting free steric-hinrance connection sites. Then the final product was purified and identified. This strategy not only provides a basis in producing potent cytotoxic agents for drug discovery, but also provides a reference to the total synthesis of proline-rich peptides.
Collapse
Affiliation(s)
- Qi Chang
- a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering , Qingdao 266003 , China
- b Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Yu-Lei Li
- a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering , Qingdao 266003 , China
- b Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xia Zhao
- a Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering , Qingdao 266003 , China
- b Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
131
|
Fuller DR, Conant CR, El-Baba TJ, Zhang Z, Molloy KR, Zhang CS, Hales DA, Clemmer DE. Monitoring the stabilities of a mixture of peptides by mass-spectrometry-based techniques. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:73-81. [PMID: 30773926 PMCID: PMC7702224 DOI: 10.1177/1469066718798718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biomolecular degradation plays a key role in proteostasis. Typically, proteolytic enzymes degrade proteins into smaller peptides by breaking amino acid bonds between specific residues. Cleavage around proline residues is often missed and requires highly specific enzymes for peptide processing due to the cyclic proline side-chain. However, degradation can occur spontaneously (i.e. in the absence of enzymes). In this study, the influence of the first residue on the stability of a series of penultimate proline containing peptides, with the sequence Xaa-Pro-Gly-Gly (where Xaa is any amino acid), is investigated with mass spectrometry techniques. Peptides were incubated as mixtures at various solution temperatures (70℃ to 90℃) and were periodically sampled over the duration of the experiment. At elevated temperatures, we observe dissociation after the Xaa-Pro motif for all sequences, but at different rates. Transition state thermochemistry was obtained by studying the temperature-dependent kinetics and although all peptides show relatively small differences in the transition state free energies (∼95 kJ/mol), there is significant variability in the transition state entropy and enthalpy. This demonstrates that the side-chain of the first amino acid has a significant influence on the stability of the Xaa-Pro sequence. From these data, we demonstrate the ability to simultaneously measure the dissociation kinetics and relative transition state thermochemistries for a mixture of peptides, which vary only in the identity of the N-terminal amino acid.
Collapse
Affiliation(s)
- Daniel R Fuller
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Zhichao Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Connie S Zhang
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - David A Hales
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
132
|
New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet 2019; 138:125-140. [PMID: 30656449 DOI: 10.1007/s00439-019-01974-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022]
Abstract
Genetic anomalies are known to affect about 15% of infertile patients with azoospermia or severe oligozoospermia. Despite a throughout diagnostic work-up, in up to the 72% of the male partners of infertile couples, no etiological factor can be found; hence, the cause of infertility remains unclear. Recently, several novel genetic causes of spermatogenic failure (SPGF) have been described. The aim of this review was to collect all the available evidence of SPGF genetics, matching data from in-vitro and animal models with those in human beings to provide a comprehensive and updated overview of the genes capable of affecting spermatogenesis. By reviewing the literature, we provided a list of 60 candidate genes for SPGF. Their investigation by Next Generation Sequencing in large cohorts of patients with apparently idiopathic infertility would provide new interesting data about their racial- and ethnic-related prevalence in infertile patients, likely raising the diagnostic yields. We propose a phenotype-based approach to identify the genes to look for.
Collapse
|
133
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
134
|
Chen ZL, Gong BN, Wang QL, Xiao ZH, Deng C, Wang WQ, Li Y. Characterisation of amphioxus protein kinase C-δ/θ reveals a unique proto-V3 domain suggesting an evolutionary mechanism for PKC-θ unique V3. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1100-1107. [PMID: 30408601 DOI: 10.1016/j.fsi.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
A primitive adaptive immune system has recently been suggested to be present in a basal chordate amphioxus (Branchiostoma belcheri, Bb), making it an ideal model for studying the origin of adaptive immune. The novel protein kinase C isoform PKC-θ, but not its closest isoform PKC-δ, plays a critical role for mammalian T-cell activation via translocation to immunological synapse (IS) mediated by a unique PKC-θ V3 domain containing one PxxP motif. To understand the evolution of this unique PKC-θ V3 domain and the primitive adaptive immune system in amphioxus, we comparatively studied the orthologs of PKC-δ and -θ from amphioxus and other species. Phylogenetic analysis showed BbPKC-δ/θ to be the common ancestor of vertebrate PKC-δ and PKC-θ, with a V3 domain containing two PxxP motifs. One motif is conserved in both zebrafish and mammalian PKC-θ but is absent in PKC-δ V3 domain of these species, and has already emerged in drosophila PKC-δ. The other non-conserved motif emerged in BbPKC-δ/θ, and only retained in Danio rerio PKC-δ (DrPKC-δ) but lost in mammalian PKC-δ and -θ. Comparative analyses of the sequence and function of BbPKC-δ/θ, DrPKC-δ, DrPKC-θ and Homo sapiens PKC-θ (HsPKC-θ) in IS translocation and T-cell receptor (TCR)-induced NF-κB activation revealed that retention of the conserved PxxP motif and loss of the non-conserved PxxP motif in mammalian PKC-θ and loss of both PxxP motifs in mammalian PKC-δ accomplish the unique function of PKC-θ in T cells. Together, this study suggests an evolutionary mechanism for PKC-θ unique V3 and reveals BbPKC-δ/θ is the common ancestor of PKC-δ and -θ with a functional proto-V3 domain, supplying new evidence for the existence of primitive adaptive immune system in amphioxus.
Collapse
Affiliation(s)
- Zhi-Long Chen
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Bei-Ni Gong
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qi-Long Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhi-Hui Xiao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chong Deng
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wen-Qian Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
135
|
Huang KY, Horng JC. Impacts of the Terminal Charged Residues on Polyproline Conformation. J Phys Chem B 2018; 123:138-147. [DOI: 10.1021/acs.jpcb.8b10864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
136
|
Bukowski GS, Thielges MC. Residue-Specific Conformational Heterogeneity of Proline-Rich Sequences Uncovered via Infrared Spectroscopy. Anal Chem 2018; 90:14355-14362. [PMID: 30462480 DOI: 10.1021/acs.analchem.8b03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational heterogeneity is critical to understanding protein function but challenging to quantify. Experimental approaches that can provide sufficient temporal and spatial resolution to measure even rapidly interconverting states at specific locations in proteins are needed to fully elucidate the contribution of conformational heterogeneity and dynamics to function. Infrared spectroscopy in combination with the introduction of carbon deuterium bonds, which provide frequency-resolved probes of their environments, can uncover rapidly interconverting states with residue-specific detail. Using this approach, we quantify conformational heterogeneity of proline-rich peptides associated with different proline backbone conformations, as well as reveal their dependence on the sequence context.
Collapse
Affiliation(s)
- Gregory S Bukowski
- Department of Chemistry , Indiana University , 800 East Kirkwood , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Department of Chemistry , Indiana University , 800 East Kirkwood , Bloomington , Indiana 47405 , United States
| |
Collapse
|
137
|
Xing Z, Ma WK, Tran EJ. The DDX5/Dbp2 subfamily of DEAD-box RNA helicases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1519. [PMID: 30506978 DOI: 10.1002/wrna.1519] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023]
Abstract
The mammalian DEAD-box RNA helicase DDX5, its paralog DDX17, and their orthologs in Saccharomyces cerevisiae and Drosophila melanogaster, namely Dbp2 and Rm62, define a subfamily of DEAD-box proteins. Members from this subfamily share highly conserved protein sequences and cellular functions. They are involved in multiple steps of RNA metabolism including mRNA processing, microRNA processing, ribosome biogenesis, RNA decay, and regulation of long noncoding RNA activities. The DDX5/Dbp2 subfamily is also implicated in transcription regulation, cellular signaling pathways, and energy metabolism. One emerging theme underlying the diverse cellular functions is that the DDX5/Dbp2 subfamily of DEAD-box helicases act as chaperones for complexes formed by RNA molecules and proteins (RNP) in vivo. This RNP chaperone activity governs the functions of various RNA species through their lifetime. Importantly, mammalian DDX5 and DDX17 are involved in cancer progression when overexpressed through alteration of transcription and signaling pathways, meaning that they are possible targets for cancer therapy. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Wai Kit Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
138
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
139
|
Total synthesis and modification of proline-rich cyclopeptides Phakellistatins 17 and 18 isolated from marine sponge. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
140
|
Li H, Zhu J, He M, Luo Q, Liu F, Chen R. Marek's Disease Virus Activates the PI3K/Akt Pathway Through Interaction of Its Protein Meq With the P85 Subunit of PI3K to Promote Viral Replication. Front Microbiol 2018; 9:2547. [PMID: 30405592 PMCID: PMC6206265 DOI: 10.3389/fmicb.2018.02547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022] Open
Abstract
It is known that viruses can active the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in host cells to support cell survival and viral replication; however, the role of PI3K/Akt signaling in the pathogenic mechanisms induced by Marek’s disease virus (MDV) which causes a neoplastic Marek’s disease in poultry, remains unknown. In this study, we showed that MDV activated the PI3K/Akt pathway in chicken embryo fibroblasts (CEFs) at the early phase of infection, whereas treatment with a PI3K inhibitor LY294002 prior to MDV infection decreased viral replication and DNA synthesis. Flow cytometry analysis showed that inhibition of the PI3K/Akt pathway could significantly increase apoptosis in MDV-infected host cells, indicating that activation of PI3K/Akt signaling could facilitate viral replication through support of cell survival during infection. Evaluation of the underlying molecular mechanism by co-immunoprecipitation and laser confocal microscopy revealed that a viral protein Meq interacted with both p85α and p85β regulatory subunits of PI3K and could induce PI3K/Akt signaling in Meq-overexpressing chicken fibroblasts. Our results showed, for the first time, that MDV activated PI3K/Akt signaling in host cells through interaction of its Meq protein with the regulatory p85 subunit of PI3K to delay cell apoptosis and promote viral replication. This study provides clues for further studies of the molecular mechanisms underlying MDV infection and pathogenicity for the host.
Collapse
Affiliation(s)
- Huimin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaojiao Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Minyi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiong Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
141
|
Tanaka M, Ichinose S, Shintani T, Gomi K. Nuclear export-dependent degradation of the carbon catabolite repressor CreA is regulated by a region located near the C-terminus in Aspergillus oryzae. Mol Microbiol 2018; 110:176-190. [PMID: 29995996 DOI: 10.1111/mmi.14072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
Carbon catabolite repression (CCR) is regulated by the C2 H2 -type transcription factor CreA/Cre1 in filamentous fungi including Aspergillus oryzae. We investigated the stability and subcellular localization of CreA in A. oryzae. The abundance of FLAG-tagged CreA (FLAG-CreA) was dramatically reduced after incubation in maltose and xylose, which stimulated the export of CreA from the nucleus to the cytoplasm. Mutation of a putative nuclear export signal resulted in nuclear retention and significant stabilization of CreA. These results suggest that CreA is rapidly degraded in the cytoplasm after export from the nucleus. The FLAG-CreA protein level was reduced by disruption of creB and creC, which encode the deubiquitinating enzyme complex involved in CCR. In contrast, FLAG-CreA stability was not affected by disruption of creD which encodes an arrestin-like protein required for CCR relief. Deletion of the last 40 C-terminal amino acids resulted in remarkable stabilization and increased abundance of FLAG-CreA, whereas deletion of the last 20 C-terminal amino acids had no apparent effect on CreA stability. This result suggests that the 20 amino acid region located between positions 390 and 409 of CreA is critical for the rapid degradation of CreA.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Sakurako Ichinose
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Takahiro Shintani
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Katsuya Gomi
- Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| |
Collapse
|
142
|
Guo L, Xie W, Liu Y, Yang Z, Yang X, Xia J, Wang S, Wu Q, Zhang Y. Identification and characterization of doublesex in Bemisia tabaci. INSECT MOLECULAR BIOLOGY 2018; 27:620-632. [PMID: 29660189 DOI: 10.1111/imb.12494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bemisia tabaci (Gennadius) is an important agricultural pest with a worldwide distribution. Although B. tabaci is known to have a unique haplodiploid reproductive strategy, its sex determination mechanism is largely unknown. In this study, we cloned the full-length sequence of B. tabaci doublesex (Btdsx) and found that Btdsx has 28 splicing isoforms. We found two new splicing isoforms of transformer 2 (Bttra2), which encode two proteins. We also confirmed that both genes lack sex-specific splicing isoforms. Real-time quantitative PCR analysis showed that the expression of Btdsx and Bttra2 is higher in males than in females. RNA interference of Bttra2 affected the expression of Btdsx and vice versa. Furthermore, silencing of Bttra2 or Btdsx caused malformation of the male genitalia (anal style). It did not affect the female phenotype, but reduced the expression of vitellogenin gene in females. These results indicate that Btdsx is associated with sex determination in B. tabaci and that Btdsx and Bttra2 affect each other and are important for male genitalia formation. In addition to increasing our understanding of the roles of dsx and tra2 in the sex determination of B. tabaci, the results will be useful for studies of sex determination in other haplodiploid species.
Collapse
Affiliation(s)
- L Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
143
|
Rasputin a decade on and more promiscuous than ever? A review of G3BPs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:360-370. [PMID: 30595162 PMCID: PMC7114234 DOI: 10.1016/j.bbamcr.2018.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BPs, also known as Rasputin) are a family of RNA binding proteins that regulate gene expression in response to environmental stresses by controlling mRNA stability and translation. G3BPs appear to facilitate this activity through their role in stress granules for which they are considered a core component, however, it should be noted that not all stress granules contain G3BPs and this appears to be contextual depending on the environmental stress and the cell type. Although the role of G3BPs in stress granules appears to be one of its major roles, data also strongly suggests that they interact with mRNAs outside of stress granules to regulate gene expression. G3BPs have been implicated in several diseases including cancer progression, invasion, and metastasis as well as virus survival. There is now a body of evidence that suggests targeting of G3BPs could be explored as a form of cancer therapeutic. This review discusses the important discoveries and advancements made in the field of G3BPs biology over the last two decades including their roles in RNA stability, translational control of cellular transcripts, stress granule formation, cancer progression and its interactions with viruses during infection. An emerging theme for G3BPs is their ability to regulate gene expression in response to environmental stimuli, disease progression and virus infection making it an intriguing target for disease therapies. Triage of many cellular mRNA occurs via stress granules in a G3BP-dependant manner. G3BPs control intra cellular responses to viral infection. Transcript stability, degradation and translation are controlled by G3BPs. G3BPs can control cancer progression.
Collapse
|
144
|
Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. J Biol Chem 2018; 293:13553-13565. [PMID: 29980598 PMCID: PMC6120190 DOI: 10.1074/jbc.ra117.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a β-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Collapse
Affiliation(s)
| | - Stefanie L Kall
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | | | | | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Brian K Kay
- From the Departments of Biological Sciences and
| |
Collapse
|
145
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
146
|
Comparative sequence and structural analysis of Indian orf viruses based on major envelope immuno-dominant protein (F1L), an homologue of pox viral p35/H3 protein. Gene 2018; 663:72-82. [DOI: 10.1016/j.gene.2018.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
|
147
|
Fujisawa I, Kitamura Y, Kato R, Aoki K. Crystal structures of resorcin[4]arene and pyrogallol[4]arene complexes with proline: A model for proline recognition through C H···π interaction. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
148
|
Hofman GJ, Ottoy E, Light ME, Kieffer B, Kuprov I, Martins JC, Sinnaeve D, Linclau B. Minimising conformational bias in fluoroprolines through vicinal difluorination. Chem Commun (Camb) 2018; 54:5118-5121. [PMID: 29717724 DOI: 10.1039/c8cc01493k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monofluorination at the proline 4-position results in conformational effects, which is exploited for a range of applications. However, this conformational distortion is a hindrance when the natural proline conformation is important. Here we introduce (3S,4R)-3,4-difluoroproline, in which the individual fluorine atoms instil opposite conformational effects, as a suitable probe for fluorine NMR studies.
Collapse
Affiliation(s)
- Gert-Jan Hofman
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Georgiev H, Ravens I, Papadogianni G, Bernhardt G. Coming of Age: CD96 Emerges as Modulator of Immune Responses. Front Immunol 2018; 9:1072. [PMID: 29868026 PMCID: PMC5966540 DOI: 10.3389/fimmu.2018.01072] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
CD96 represents a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD96 is expressed mainly by cells of hematopoietic origin, in particular on T and NK cells. Upon interaction with CD155 present on target cells, CD96 was found to inhibit mouse NK cells, and absence of this interaction either by blocking with antibody or knockout of CD96 showed profound beneficial effects in containment of tumors and metastatic spread in murine model systems. However, our knowledge regarding CD96 functions remains fragmentary. In this review, we will discuss structural features of CD96 and their putative impact on function as well as some unresolved issues such as a potential activation that may be conferred by human but not mouse CD96. This is of importance for translation into human cancer therapy. We will also address CD96 activities in the context of the immune regulatory network that consists of CD155, CD96, CD226, and TIGIT.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
150
|
A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00701-17. [PMID: 29555699 DOI: 10.1128/jb.00701-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/10/2018] [Indexed: 12/28/2022] Open
Abstract
The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of group A Streptococcus (GAS; Streptococcus pyogenes). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor lysozyme. In this work, we show that deletion of a small gene, spy49_0414c, abolished both phenotypes in response to pheromone signaling. The gene encodes a small, positively charged, secreted protein, referred to as StcA. Analysis of recombinant StcA showed that it can directly interact with GAS cell wall preparations containing phosphodiester-linked carbohydrate polymers but not with preparations devoid of them. Immunofluorescence microscopy detected antibody against StcA bound to the surface of paraformaldehyde-fixed wild-type cells. Expression of StcA in bacterial culture induced a shift in the electrostatic potential of the bacterial cell surface, which became more positively charged. These results suggest that StcA promotes phenotypes by way of ionic interactions with the GAS cell wall, most likely with negatively charged cell wall-associated polysaccharides.IMPORTANCE This study focuses on a small protein, StcA, that is expressed and secreted under induction of Rgg2/3 QS, ionically associating with negatively charged domains on the cell surface. These data present a novel mechanism of resistance to the host factor lysozyme by GAS and have implications in the relevance of this circuit in the interaction between the bacterium and the human host that is mediated by the bacterial cell surface.
Collapse
|