101
|
[Tumor vaccination-strategies and time points]. Internist (Berl) 2021; 62:991-997. [PMID: 34398265 DOI: 10.1007/s00108-021-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Immunotherapies have gained increasing importance in the treatment of cancer in recent years. This also includes tumor vaccines, which are used therapeutically to direct the immune system specifically against tumor cells. OBJECTIVES Different strategies of tumor vaccination, their current state of development, the optimal timing and possible combinations of cancer vaccines in the treatment of cancer are discussed. METHODS Scientific publications on various tumor vaccination strategies based on ongoing studies that are listed on clinicaltrials.gov are summarized. CONCLUSIONS For effective tumor vaccination, the selection of suitable tumor antigens present on the cell surface via human leukocyte antigen (HLA) molecules is essential. Suitable antigens should be present exclusively on tumor cells and able to induce a specific anti-tumor immune response, i.e. activate cytotoxic and T helper cells. For this purpose, neoepitopes derived from tumor-specific mutations or tumor-associated antigens (TAAs), which are present exclusively in tumor tissue due to altered gene expression or processing, can be used. For the application of the antigens, various strategies combined with suitable adjuvants are available, including peptide vaccines, DNA- or RNA-based vaccines, approaches with dendritic cells or whole tumor cell vaccines. Currently, numerous vaccination approaches as well as combination protocols are being evaluated in clinical trials with the aim to establish specific and low side effect immunotherapies to combat malignancies and enable long-term protection from disease recurrence via the induction of long-lasting antitumor immune responses.
Collapse
|
102
|
Abdul Rahman R, Lamarca A, Hubner RA, Valle JW, McNamara MG. The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153779. [PMID: 34359684 PMCID: PMC8345056 DOI: 10.3390/cancers13153779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancers. It is a difficult cancer to treat, and the complexity surrounding the pancreatic tumour is one of the contributing factors. The microbiome is the collection of microorganisms within an environment and its genetic material. They reside on body surfaces and most abundantly within the human gut in symbiotic balance with their human host. Disturbance in the balance can lead to many diseases, including cancers. Significant advances have been made in cancer treatment since the introduction of immunotherapy, and the microbiome may play a part in the outcome and survival of patients with cancer, especially those treated with immunotherapy. Immunotherapy use in pancreatic cancer remains challenging. This review will focus on the potential interaction of the microbiome with pancreas cancer and how this could be manipulated. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is projected to be the second most common cause of cancer-related death by 2030, with an overall 5-year survival rate between 7% and 9%. Despite recent advances in surgical, chemotherapy, and radiotherapy techniques, the outcome for patients with PDAC remains poor. Poor prognosis is multifactorial, including the likelihood of sub-clinical metastatic disease at presentation, late-stage at presentation, absence of early and reliable diagnostic biomarkers, and complex biology surrounding the extensive desmoplastic PDAC tumour micro-environment. Microbiota refers to all the microorganisms found in an environment, whereas microbiome is the collection of microbiota and their genome within an environment. These organisms reside on body surfaces and within mucosal layers, but are most abundantly found within the gut. The commensal microbiome resides in symbiosis in healthy individuals and contributes to nutritive, metabolic and immune-modulation to maintain normal health. Dysbiosis is the perturbation of the microbiome that can lead to a diseased state, including inflammatory bowel conditions and aetiology of cancer, such as colorectal and PDAC. Microbes have been linked to approximately 10% to 20% of human cancers, and they can induce carcinogenesis by affecting a number of the cancer hallmarks, such as promoting inflammation, avoiding immune destruction, and microbial metabolites can deregulate host genome stability preceding cancer development. Significant advances have been made in cancer treatment since the advent of immunotherapy. The microbiome signature has been linked to response to immunotherapy and survival in many solid tumours. However, progress with immunotherapy in PDAC has been challenging. Therefore, this review will focus on the available published evidence of the microbiome association with PDAC and explore its potential as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Rozana Abdul Rahman
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Juan W. Valle
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Correspondence:
| |
Collapse
|
103
|
Di Federico A, Tateo V, Parisi C, Formica F, Carloni R, Frega G, Rizzo A, Ricci D, Di Marco M, Palloni A, Brandi G. Hacking Pancreatic Cancer: Present and Future of Personalized Medicine. Pharmaceuticals (Basel) 2021; 14:677. [PMID: 34358103 PMCID: PMC8308563 DOI: 10.3390/ph14070677] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a recalcitrant disease characterized by high incidence and poor prognosis. The extremely complex genomic landscape of PC has a deep influence on cultivating a tumor microenvironment, resulting in the promotion of tumor growth, drug resistance, and immune escape mechanisms. Despite outstanding progress in personalized medicine achieved for many types of cancer, chemotherapy still represents the mainstay of treatment for PC. Olaparib was the first agent to demonstrate a significant benefit in a biomarker-selected population, opening the doors for a personalized approach. Despite the failure of a large number of studies testing targeted agents or immunotherapy to demonstrate benefits over standard chemotherapy regimens, some interesting agents, alone or in combination with other drugs, have achieved promising results. A wide spectrum of therapeutic strategies, including immune-checkpoint inhibitors tyrosine kinase inhibitors and agents targeting metabolic pathways or the tumor microenvironment, is currently under investigation. In this review, we aim to provide a comprehensive overview of the current landscape and future directions of personalized medicine for patients affected by PC.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Valentina Tateo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Claudia Parisi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Francesca Formica
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Riccardo Carloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giorgio Frega
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Dalia Ricci
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Mariacristina Di Marco
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Andrea Palloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giovanni Brandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
104
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
105
|
Lellouche L, Palmieri LJ, Dermine S, Brezault C, Chaussade S, Coriat R. Systemic therapy in metastatic pancreatic adenocarcinoma: current practice and perspectives. Ther Adv Med Oncol 2021; 13:17588359211018539. [PMID: 34285720 PMCID: PMC8264726 DOI: 10.1177/17588359211018539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Major breakthroughs have been achieved in the management of metastatic pancreatic ductal adenocarcinoma (PDAC) with FOLFIRINOX (5-fluorouracil + irinotecan + oxaliplatin) and gemcitabine plus nab-paclitaxel approved as a first-line therapy, although the prognosis is still poor. At progression, patients who maintain a good performance status (PS) can benefit from second-line chemotherapy. To address the concern of achieving tumor control while maintaining a good quality of life, maintenance therapy is a concept that has now emerged. After a FOLFIRINOX induction treatment, maintenance with 5-fluorouracil (5-FU) seems to offer a promising approach. Although not confirmed in large, prospective trials, gemcitabine alone as a maintenance therapy following induction treatment with gemcitabine plus nab-paclitaxel could be an option, while a small subset of patients with a germline mutation of breast cancer gene (BRCA) can benefit from the polyadenosine diphosphate-ribose polymerase (PARP) inhibitor olaparib. The rate of PDAC with molecular alterations that could lead to a specific therapy is up to 25%. The Food and Drug Administration (FDA) recently approved larotrectinib for patients with any tumors harboring a neurotrophic tyrosine receptor kinase (NTRK) gene fusion, and pembrolizumab for patients with a mismatch repair deficiency in a second-line setting, including PDAC. Research focused on targeted therapy and immunotherapy is active and could improve patients' outcomes in the near future.
Collapse
Affiliation(s)
- Lisa Lellouche
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, APHP. Centre, Paris, France
- Faculté de Médecine Paris Centre, Université de Paris, Paris, France
| | - Lola-Jade Palmieri
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, APHP. Centre, 27 rue du faubourg St Jacques, Paris, 75014, France
- Faculté de Médecine Paris Centre, Université de Paris, Paris, 75006, France
| | - Solène Dermine
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, APHP. Centre, Paris, France
- Faculté de Médecine Paris Centre, Université de Paris, Paris, France
| | - Catherine Brezault
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, Paris, France
| | - Stanislas Chaussade
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, APHP. Centre, Paris, France
- Faculté de Médecine Paris Centre, Université de Paris, Paris, France
| | - Romain Coriat
- Gastroenterology and Digestive Oncology Department, Cochin Hospital, APHP. Centre, Paris, France
- Faculté de Médecine Paris Centre, Université de Paris, Paris, France
| |
Collapse
|
106
|
Burbach BJ, O'Flanagan SD, Shao Q, Young KM, Slaughter JR, Rollins MR, Street TJL, Granger VE, Beura LK, Azarin SM, Ramadhyani S, Forsyth BR, Bischof JC, Shimizu Y. Irreversible electroporation augments checkpoint immunotherapy in prostate cancer and promotes tumor antigen-specific tissue-resident memory CD8+ T cells. Nat Commun 2021; 12:3862. [PMID: 34162858 PMCID: PMC8222297 DOI: 10.1038/s41467-021-24132-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Memory CD8+ T cells populate non-lymphoid tissues (NLTs) following pathogen infection, but little is known about the establishment of endogenous tumor-specific tissue-resident memory T cells (TRM) during cancer immunotherapy. Using a transplantable mouse model of prostate carcinoma, here we report that tumor challenge leads to expansion of naïve neoantigen-specific CD8+ T cells and formation of a small population of non-recirculating TRM in several NLTs. Primary tumor destruction by irreversible electroporation (IRE), followed by anti-CTLA-4 immune checkpoint inhibitor (ICI), promotes robust expansion of tumor-specific CD8+ T cells in blood, tumor, and NLTs. Parabiosis studies confirm that TRM establishment following dual therapy is associated with tumor remission in a subset of cases and protection from subsequent tumor challenge. Addition of anti-PD-1 following dual IRE + anti-CTLA-4 treatment blocks tumor growth in non-responsive cases. This work indicates that focal tumor destruction using IRE combined with ICI is a potent in situ tumor vaccination strategy that generates protective tumor-specific TRM.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| | - Stephen D O'Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
| | - Qi Shao
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Katharine M Young
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Joseph R Slaughter
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Meagan R Rollins
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Boston Scientific Corporation, Maple Grove, MN, USA
| | - Tami Jo L Street
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Victoria E Granger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, USA
| | - Lalit K Beura
- Center for Immunology, University of Minnesota, Minneapolis, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Samira M Azarin
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | | | | | - John C Bischof
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
107
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|
108
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
109
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
110
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
111
|
Sharma N, Atolagbe OT, Ge Z, Allison JP. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med 2021; 218:212088. [PMID: 33974041 PMCID: PMC8117208 DOI: 10.1084/jem.20201811] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Immune receptors expressed on TAMs are intriguing targets for tumor immunotherapy. In this study, we found inhibitory receptor LILRB4 on a variety of intratumoral immune cell types in murine tumor models and human cancers, most prominently on TAMs. LILRB4, known as gp49B in mice, is a LILRB family receptor. Human and murine LILRB4 have two extracellular domains but differ in the number of intracellular ITIMs (three versus two). We observed a high correlation in LILRB4 expression with other immune inhibitory receptors. After tumor challenge, LILRB4−/− mice and mice treated with anti-LILRB4 antibody showed reduced tumor burden and increased survival. LILRB4−/− genotype or LILRB4 blockade increased tumor immune infiltrates and the effector (Teff) to regulatory (Treg) T cell ratio and modulated phenotypes of TAMs toward less suppressive, CD4+ T cells to Th1 effector, and CD8+ T cells to less exhausted. These findings reveal that LILRB4 strongly suppresses tumor immunity in TME and that alleviating that suppression provides antitumor efficacy.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX.,Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
112
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
113
|
Antibody therapy in pancreatic cancer: mAb-ye we're onto something? Biochim Biophys Acta Rev Cancer 2021; 1876:188557. [PMID: 33945846 DOI: 10.1016/j.bbcan.2021.188557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer remains an extremely deadly disease, with little improvement seen in treatment or outcomes over the last 40 years. Targeted monoclonal antibody therapy is one area that has been explored in attempts to tackle this disease. This review examines antibodies that have undergone clinical evaluation in pancreatic cancer. These antibodies target a wide variety of molecules, including tumour cell surface, stromal, immune and embryonic pathway targets. We discuss the therapeutic utility of these therapies both as monotherapeutics and in combination with other treatments such as chemotherapy. While antibody therapy for pancreatic cancer has yet to yield significant success, lessons learned from research thus far highlights future directions that may help overcome observed hurdles to yield clinically efficacious results.
Collapse
|
114
|
Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels. Biosci Rep 2021; 40:225827. [PMID: 32677676 PMCID: PMC7396420 DOI: 10.1042/bsr20200401] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide, and the mortality of patients with PDAC has not significantly decreased over the last few decades. Novel strategies exhibiting promising effects in preclinical or phase I/II clinical trials are often situated in an embarrassing condition owing to the disappointing results in phase III trials. The efficacy of the current therapeutic regimens is consistently compromised by the mechanisms of drug resistance at different levels, distinctly more intractable than several other solid tumours. In this review, the main mechanisms of drug resistance clinicians and investigators are dealing with during the exploitation and exploration of the anti-tumour effects of drugs in PDAC treatment are summarized. Corresponding measures to overcome these limitations are also discussed.
Collapse
|
115
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
116
|
Jiang P, Yang F, Zou C, Bao T, Wu M, Yang D, Bu S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging (Albany NY) 2021; 13:10396-10414. [PMID: 33819918 PMCID: PMC8064155 DOI: 10.18632/aging.202801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/03/2021] [Indexed: 04/18/2023]
Abstract
Ferroptosis is a regulated cell death nexus linking metabolism, redox biology and diseases including cancer. The aim of the present study was to identify a ferroptosis-related gene prognostic signature for pancreatic cancer (PCa) by systematic analysis of transcriptional profiles from Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Altogether 14 ferroptosis-relevant genes with potential prognostic values were identified, based on which a risk score formula was constructed. According to the risk scores, we classified the patients into a high- and a low-risk score group. It was verified in Gene Expression Omnibus (GEO) and ICGC (International Cancer Genome Consortium) datasets. The Kaplan-Meier survival curves demonstrated that patients with lower risk scores had significantly favorable overall survival (OS) (P < 0.0001). The area under the receiver operating curve (ROC) for 12, 18 and 24 months was about 0.8 in all patients. The result of immune status analysis revealed that the signature significantly associated with the immune infiltration and immune checkpoint blockade (ICB) proteins. In addition, we used quantitative real time PCR (q-rtPCR) and Human Protein Atlas (HPA) to validate the expression of the key genes. Collectively, the signature is valuable for survival prediction of PCa patients. As the signature also has relevance with the immune characteristics, it may help improve the efficacy of personalized immunotherapy.
Collapse
Affiliation(s)
- Peicheng Jiang
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Fudan University Huashan Hospital, Shanghai, China
| | - Caifeng Zou
- Department of Pancreatic Surgery, Fudan University Huashan Hospital, Shanghai, China
| | - Tianyuan Bao
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| | - Mengmeng Wu
- Department of Digestive Diseases, Fudan University Huashan Hospital, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases, Fudan University Huashan Hospital, Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China
| |
Collapse
|
117
|
Javadrashid D, Baghbanzadeh A, Derakhshani A, Leone P, Silvestris N, Racanelli V, Solimando AG, Baradaran B. Pancreatic Cancer Signaling Pathways, Genetic Alterations, and Tumor Microenvironment: The Barriers Affecting the Method of Treatment. Biomedicines 2021; 9:373. [PMID: 33918146 PMCID: PMC8067185 DOI: 10.3390/biomedicines9040373] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic alterations, especially the K-Ras mutation, carry the heaviest burden in the progression of pancreatic precursor lesions into pancreatic ductal adenocarcinoma (PDAC). The tumor microenvironment is one of the challenges that hinder the therapeutic approaches from functioning sufficiently and leads to the immune evasion of pancreatic malignant cells. Mastering the mechanisms of these two hallmarks of PDAC can help us in dealing with the obstacles in the way of treatment. In this review, we have analyzed the signaling pathways involved in PDAC development and the immune system's role in pancreatic cancer and immune checkpoint inhibition as next-generation therapeutic strategy. The direct targeting of the involved signaling molecules and the immune checkpoint molecules, along with a combination with conventional therapies, have reached the most promising results in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Patrizia Leone
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Vito Racanelli
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Antonio Giovanni Solimando
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
118
|
Brouwer TP, Vahrmeijer AL, de Miranda NFCC. Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cell Oncol (Dordr) 2021; 44:261-278. [PMID: 33710604 PMCID: PMC7985121 DOI: 10.1007/s13402-021-00587-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy has had a significant impact on the survival of a subset of patients with advanced cancers. It has been particularly effective in immunogenic cancer types that present large numbers of somatic mutations in their genomes. To date, all conventional immunotherapies have failed to produce significant clinical benefits for patients diagnosed with pancreatic cancer, probably due to its poor immunogenic properties, including low numbers of neoantigens and highly immune-suppressive microenvironments. CONCLUSIONS Herein, we discuss advances that have recently been made in cancer immunotherapy and the potential of this field to deliver effective treatment options for pancreatic cancer patients. Preclinical investigations, combining different types of therapies, highlight possibilities to enhance anti-tumor immunity and to generate meaningful clinical responses in pancreatic cancer patients. Results from completed and ongoing (pre)clinical trials are discussed.
Collapse
Affiliation(s)
- Thomas P Brouwer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC
| | | | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands, PO Box 9600, 2300 RC.
| |
Collapse
|
119
|
Liu X, Li Z, Wang Y. Advances in Targeted Therapy and Immunotherapy for Pancreatic Cancer. Adv Biol (Weinh) 2021; 5:e1900236. [PMID: 33729700 DOI: 10.1002/adbi.201900236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly aggressive malignancy with an overall 5-year survival rate of <6% due to therapeutic resistance and late-stage diagnosis. These statistics have not changed despite 50 years of research and therapeutic development. Pancreatic cancer is predicted to become the second leading cause of cancer mortality by the year 2030. Currently, the treatment options for pancreatic cancer are limited. This disease is usually diagnosed at a late stage, which prevents curative surgical resection. Chemotherapy is the most frequently used approach for pancreatic cancer treatment and has limited effects. In many other cancer types, targeted therapy and immunotherapy have made great progress and have been shown to be very promising prospects; these treatments also provide hope for pancreatic cancer. The need for research on targeted therapy and immunotherapy is pressing due to the poor prognosis of pancreatic cancer, and in recent years, there have been some breakthroughs for targeted therapy and immunotherapy in pancreatic cancer. This review summarizes the current preclinical and clinical studies of targeted therapy and immunotherapy for pancreatic cancer and ends by describing the challenges and outlook.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuexiang Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, SINH - Changzheng Hospital Joint Center for Translational Medicine, Institutes for Translational Medicine (CAS-SMMU), Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
120
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
121
|
Karimi A, Alilou S, Mirzaei HR. Adverse Events Following Administration of Anti-CTLA4 Antibody Ipilimumab. Front Oncol 2021; 11:624780. [PMID: 33767992 PMCID: PMC7985548 DOI: 10.3389/fonc.2021.624780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Ipilimumab, a monoclonal anti-CTLA4 antibody, paved the path for promising treatments, particularly in advanced forms of numerous cancers like melanoma. By blockading CTLA-4, ipilimumab can abolish the higher binding affinity of B7 for CTLA-4, setting CD28 free to act unlimited. This blockade can result in an amplified antitumor immune response, and thereby, boosting more effective tumor regression. However, this blockage can lead to diminished self-tolerance and yielding autoimmune complications. The current review aims to describe adverse events (AEs) following the administration of ipilimumab in different cancers as every benefit comes at a cost. We will also discuss AEs in two different categories, melanoma and non-melanoma, owing to the possible shining promises in treating non-melanoma cancers. As the melanoma settings are more studied than other cancers, it might even help predict the patterns related to the other types of cancers. This similarity also might help physicians to predict adverse events and correctly manage them in non-melanoma cancers using the extensive findings reported in the more-studied melanoma settings. Recognizing the adverse events is vital since most of the adverse events could be reverted while carefully implementing guidelines. Finally, we will also describe the observed effectiveness of ipilimumab in non-melanoma cancers. This effectiveness reveals the importance of understanding the profile of adverse events in this group, even though some have not received FDA approval yet. Further clinical trials and careful systematic reviews may be required to decipher the hidden aspects of therapies with ipilimumab and its related AEs.
Collapse
Affiliation(s)
- Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
122
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
123
|
Park RB, Jain S, Han H, Park J. Ocular surface disease associated with immune checkpoint inhibitor therapy. Ocul Surf 2021; 20:115-129. [PMID: 33610743 DOI: 10.1016/j.jtos.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Immune-related adverse events (irAEs) is a term used to describe the various toxicities associated with immune checkpoint inhibitor (ICI) use. As this class of cancer immunotherapy grows, the diversity of documented irAEs also continues to expand. Ocular toxicities secondary to ICI use are relatively rare, with dry eye and uveitis as the most frequently reported ocular side effects. This article specifically investigates the relationship between ocular surface disease and ICI therapy through a review of the existing literature. Dry eye disease (DED), conjunctivitis, and keratitis were the most commonly reported irAEs affecting the ocular surface across the 29 studies reviewed. Keratoplasty graft rejection was also described in two case reports. Our review of eight clinical trials found the incidence of DED, the most common ocular surface irAE, to range from 1 to 4%. Nearly all cases of ocular surface irAEs were graded as mild or moderate in severity and were often self-limited or controlled with conservative treatment. Duration of checkpoint inhibitor use prior to onset of ocular surface side effects varied widely, ranging from days to months. Ocular surface toxicities associated with checkpoint immunotherapy appear to be under-reported and under-investigated. Further work remains to be done to investigate the full breadth of ocular surface pathologies and the molecular mechanisms by which these toxicities occur.
Collapse
Affiliation(s)
- Royce B Park
- State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Sandeep Jain
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St. M/C 648, Chicago, IL, 60612, USA
| | - Hui Han
- State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Jennifer Park
- Department of Ophthalmology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA.
| |
Collapse
|
124
|
Targeted Therapies for Pancreatic Cancer: Overview of Current Treatments and New Opportunities for Personalized Oncology. Cancers (Basel) 2021; 13:cancers13040799. [PMID: 33672917 PMCID: PMC7918504 DOI: 10.3390/cancers13040799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, endothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do not behave uniformly and are able to escape therapy. The advance in technology of whole-genome sequencing has now provided the possibility of identifying every somatic mutation, copy-number change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In this review, we provide an overview of the current and emerging treatment strategies in pancreatic cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to stimulate new thoughts for clinical trials aimed at improving patient outcomes.
Collapse
|
125
|
Olsen HE, Lynn GM, Valdes PA, Cerecedo Lopez CD, Ishizuka AS, Arnaout O, Bi WL, Peruzzi PP, Chiocca EA, Friedman GK, Bernstock JD. Therapeutic cancer vaccines for pediatric malignancies: advances, challenges, and emerging technologies. Neurooncol Adv 2021; 3:vdab027. [PMID: 33860227 PMCID: PMC8034661 DOI: 10.1093/noajnl/vdab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after conventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of immunotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conventional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and vaccine platform optimization can be translated into clinical practice to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Hannah E Olsen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian D Cerecedo Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - W Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Avidea Technologies, Inc., Baltimore, Maryland, USA.,Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
126
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
127
|
Principe DR, Korc M, Kamath SD, Munshi HG, Rana A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett 2021; 504:1-14. [PMID: 33549709 DOI: 10.1016/j.canlet.2021.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/09/2023]
Abstract
Immunotherapy has revolutionized cancer treatment in the last decade, and strategies to re-activate cytotoxic immunity are now standard of care in several malignancies. Despite rapid advances in immunotherapy for most solid cancers, progress in immunotherapy against pancreatic ductal adenocarcinoma (PDAC) has been exceptionally difficult. This is true for several approaches, most notably immune checkpoint inhibitors (ICIs) and GM-CSF cell-based vaccines (GVAX). Though many immunotherapies have been explored in clinical trials, few have shown significant therapeutic efficacy. Further, many have shown high rates of serious adverse effects and dose-limiting toxicities, and to date, immunotherapy regimens have not been successfully implemented in PDAC. Here, we provide a comprehensive summary of the key clinical trials exploring immunotherapy in PDAC, followed by a brief discussion of emerging molecular mechanisms that may explain the relative failure of immunotherapy in pancreas cancer thus far.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
128
|
Wang B, Xu Z, Sunthamala N, Yaguchi T, Huang J, Kawakami Y, Gong Y, Tang H, Li S, Guo Y, Guo Y, Jinushi M. Combinatorial sympathetic and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockades inhibit the murine melanoma growth by targeting infiltrating T cells. Transl Cancer Res 2021; 10:899-913. [PMID: 35116419 PMCID: PMC8798308 DOI: 10.21037/tcr-20-2738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Background Failure of the proliferation and infiltration of tumor-specific T cells in tumor site has been considered as one of important reasons induce the inefficiencies of immune checkpoint therapies in advanced cancers. Therefore, we aimed to demonstrate how combinatorial sympathetic and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockade affects the tumor growth of melanoma-bearing mice and potential mechanisms. Methods Tumor growth was measured and the infiltrating immune cell populations were observed with flow cytometry in B16-F10 melanoma-bearing mice treated with combined sympathetic and immune checkpoint blockade, using anti-CTLA-4 antibodies. The expression of adrenergic receptors was investigated in human peripheral blood mononuclear cells and their subpopulations, and the proliferation of T cell subsets was detected when stimulated by norepinephrine and its antagonists. Results B16-F10 tumor growth was associated with infiltrating CD8+ T cells. Combinatorial sympathetic and CTLA-4 blockade inhibited tumor growth and enhanced CD8+ infiltration. Meanwhile, all β1, β2 and β3 adrenergic receptors were found to be expressed in human peripheral blood mononuclear cells, activated T cells, monocytes, and monocyte-induced dendritic cells. β2-adrenergic receptors were expressed in most CD4+ T cells with increased expression in activated CD8+ T cells. Moreover, norepinephrine was able to prevent CD4+ T cell proliferation and β2-adrenergic receptor antagonists could reverse the inhibition of CD4+, but not CD8+ cell proliferation. Conclusions We conclude that the combination of sympathetic and CTLA-4 inhibitors is more effective for inhibiting melanoma progression than a single treatment and might enhance the infiltration of T cells in the tumor site, offering a novel therapeutic approach for immune checkpoint targeting.
Collapse
Affiliation(s)
- Bin Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nuchsupha Sunthamala
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jin Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Masahisa Jinushi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
129
|
Abstract
Pancreatic cancer is a tumor with a high degree of malignancy, morbidity, and mortality. Immunotherapy is another important treatment for pancreatic cancer in addition to surgery and chemotherapy, but its application in pancreatic cancer is very limited, which is related to the unique biological behavior of pancreatic cancer and the tumor microenvironment. The immunosuppressive microenvironment of pancreatic cancer is highly heterogeneous and presents challenges for immunotherapy. The transformation of tumor immunosuppressive microenvironment contributes to the response to tumor immunotherapy, such that the tumor undergoes functional reprogramming to change from immunologically "cold" to immunologically "hot." In this review, we summarized the research and progress in immunotherapy for pancreatic cancer, including immune checkpoint inhibitors, vaccines, adoptive T cell therapy, oncolytic viruses, and immunomodulators, and suggest that individualized, combination, and precise therapy should be the main direction of future immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
130
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
131
|
Zheng L, Ding D, Edil BH, Judkins C, Durham JN, Thomas DL, Bever KM, Mo G, Solt SE, Hoare JA, Bhattacharya R, Zhu Q, Osipov A, Onner B, Purtell KA, Cai H, Parkinson R, Hacker-Prietz A, Herman JM, Le DT, Azad NS, De Jesus-Acosta AMC, Blair AB, Kim V, Soares KC, Manos L, Cameron JL, Makary MA, Weiss MJ, Schulick RD, He J, Wolfgang CL, Thompson ED, Anders RA, Sugar E, Jaffee EM, Laheru DA. Vaccine-Induced Intratumoral Lymphoid Aggregates Correlate with Survival Following Treatment with a Neoadjuvant and Adjuvant Vaccine in Patients with Resectable Pancreatic Adenocarcinoma. Clin Cancer Res 2020; 27:1278-1286. [PMID: 33277370 DOI: 10.1158/1078-0432.ccr-20-2974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX). PATIENTS AND METHODS Eighty-seven eligible patients with resectable PDAC were randomly assigned (1:1:1) to receive GVAX alone or in combination with two forms of low-dose cyclophosphamide. Resected tumors following neoadjuvant immunotherapy were assessed for the formation of tertiary lymphoid aggregates (TLA) in response to treatment. The clinical endpoints are disease-free survival (DFS) and overall survival (OS). RESULTS The neoadjuvant treatment with GVAX either alone or with two forms of low-dose cyclophosphamide is safe and feasible without adversely increasing the surgical complication rate. Patients in Arm A who received neoadjuvant and adjuvant GVAX alone had a trend toward longer median OS (35.0 months) than that (24.8 months) in the historical controls who received adjuvant GVAX alone. However, Arm C, who received low-dose oral cyclophosphamide in addition to GVAX, had a significantly shorter DFS than Arm A. When comparing patients with OS > 24 months to those with OS < 15 months, longer OS was found to be associated with higher density of intratumoral TLA. CONCLUSIONS It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ding Ding
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barish H Edil
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol Judkins
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer N Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine M Bever
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara E Solt
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica A Hoare
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raka Bhattacharya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katrina A Purtell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongyan Cai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy Hacker-Prietz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph M Herman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dung T Le
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilofer S Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ana M C De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex B Blair
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Kim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin C Soares
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lindsey Manos
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John L Cameron
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Makary
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Weiss
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard D Schulick
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery and Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Sugar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,School of Public Health, Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
132
|
Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors. J Control Release 2020; 330:1095-1105. [PMID: 33188827 DOI: 10.1016/j.jconrel.2020.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/27/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease, where even surgical resection and aggressive chemotherapy produce dismal outcomes. Immunotherapy is a promising alternative to conventional treatments, possessing the ability to elicit T cell-mediated killing of tumor cells and prevent disease recurrence. Immunotherapeutic approaches thus far have seen limited success in PDAC due to a poorly immunogenic and exceedingly immunosuppressive tumor microenvironment, which is enriched with dysfunctional and immunosuppressed antigen-presenting cells (APCs). We developed a highly potent immunostimulatory nanoparticle (immuno-NP) to activate and expand APCs in the tumor and induce local secretion of interferon β (IFNβ), which is a pro-inflammatory cytokine that plays a major role in APC recruitment. The effectiveness of the immuno-NP stems from its dual cargo of two synergistic immune modulators consisting of an agonist of the stimulator of interferon genes (STING) pathway and an agonist of the Toll-like receptor 4 (TLR4) pathway. We show the functional synergy of the dual-agonist cargo can be tweaked by adjusting the ratio of the two agonists loaded in the immuno-NP, leading to an increase in IFNβ production (11-fold) compared to any single agonist immuno-NP variant. Using the orthotopic murine Panc02 model of PDAC, we show that systemic administration allowed immuno-NPs to deposit into the perivascular regions of the tumor, which coincided with the APC-rich tumor areas leading to predominant uptake of immuno-NPs by APCs. The immuno-NPs were effectively taken up by a significant portion of dendritic cells in the tumor (>56%). This led to a significant expansion of APCs, resulting in an 11.5-fold increase of dendritic cells and infiltration of lymphocytes throughout the pancreatic tumor compared to untreated animals.
Collapse
|
133
|
Abstract
The rapid development of nanobiotechnology has enabled progress in therapeutic cancer vaccines. These vaccines stimulate the host innate immune response by tumor antigens followed by a cascading adaptive response against cancer. However, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. To date, a complicated tumor immunosuppressive environment and suboptimal design are the main obstacles for therapeutic cancer vaccines. The optimization of tumor antigens, vaccine delivery pathways, and proper adjuvants for innate immune response initiation, along with reprogramming of the tumor immunosuppressive environment, is essential for therapeutic cancer vaccines in triggering an adequate antitumor immune response. In this review, we aim to review the challenges in and strategies for enhancing the efficacy of therapeutic vaccines. We start with the summary of the available tumor antigens and their properties and then the optimal strategies for vaccine delivery. Subsequently, the vaccine adjuvants focused on the intrinsic adjuvant properties of nanostructures are further discussed. Finally, we summarize the combination strategies with therapeutic cancer vaccines and discuss their positive impact in cancer immunity.
Collapse
Affiliation(s)
- Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
134
|
Wang D, Hao H, Li X, Wang Z. The effect of intestinal flora on immune checkpoint inhibitors in tumor treatment: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1097. [PMID: 33145316 PMCID: PMC7575978 DOI: 10.21037/atm-20-4535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tremendous progress has been achieved in understanding of the interaction between tumor microenvironment and intestinal flora in the past decades. Immune checkpoint inhibitors (ICIs) are a promising treatment strategy for advanced tumors, most prominently cytotoxic T-lymphocyte-associated protein (CTLA-4) and programmed cell death protein-1 (PD-1), its major ligand PD-L1, its beneficial to part of the population and obtaining excellent clinical results. However, the majority of patients do not respond or develop early progressive disease. Reached consensus by experts currently believe that the intestinal flora plays an important role in the explanation of the limited therapeutic effect of ICIs, there are differences in the composition of intestinal flora between patients with good response and patients with poor response, cloned mice by fecal microbiota transplantation (FMT) proved that the mice with transplanted feces from patients with good response can reduce tumor volume and obtain a better progress free survival (PFS). Therefore, “beneficial bacteria” seem to be enriched in the intestinal flora of patients who are well-responsive to ICIs and can be potentially used as a marker and cancer immunotherapeutic adjuvant of ICIs. In this review, we aim to summarize some of the studies demonstrating intestinal flora on tumor immunotherapy through anti-PD1, anti-PD-L1, anti-CTLA-4 and discuss possible mechanisms of this effect.
Collapse
Affiliation(s)
- Dan Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - He Hao
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xing Li
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
135
|
Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2020; 1875:188461. [PMID: 33157162 DOI: 10.1016/j.bbcan.2020.188461] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a lethal disease with limited opportunity for resectable surgery as the first choice for cure due to its late diagnosis and early metastasis. The desmoplastic stroma and cellular genetic or epigenetic alterations of pancreatic cancer impose physical and biological barriers to effective therapies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Here, we review the current therapeutic options for pancreatic cancer, and underlying mechanisms and potential reversal of therapeutic resistance, a hallmark of this deadly disease.
Collapse
Affiliation(s)
- Sen Yu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chunyu Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ke-Ping Xie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital Affiliated to the South China University of Technology, School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
136
|
Sodergren MH, Mangal N, Wasan H, Sadanandam A, Balachandran VP, Jiao LR, Habib N. Immunological combination treatment holds the key to improving survival in pancreatic cancer. J Cancer Res Clin Oncol 2020; 146:2897-2911. [PMID: 32748119 PMCID: PMC7519893 DOI: 10.1007/s00432-020-03332-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Advances in surgery, peri-operative care and systemic chemotherapy have not significantly improved the prognosis of pancreatic cancer for several decades. Early clinical trials of immunotherapy have yielded disappointing results proposing other means by which the tumour microenvironment serves to decrease the immune response. Additionally, the emergence of various subtypes of pancreatic cancer has emerged as a factor for treatment responses with immunogenic subtypes carrying a better prognosis. Herein we discuss the reasons for the poor response to checkpoint inhibitors and outline a rationale why combination treatments are likely to be most effective. We review the therapies which could provide optimal synergistic effects to immunotherapy including chemotherapy, agents targeting the stroma, co-stimulatory molecules, vaccinations and methods of immunogenic tumour priming including radiofrequency ablation. Finally, we discuss reasons why peri-operative and in particular neoadjuvant combination treatments are likely to be most effective and should be considered for early clinical trials.
Collapse
Affiliation(s)
- M H Sodergren
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK.
| | - N Mangal
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - H Wasan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - A Sadanandam
- Division of Molecular Pathology, Institute for Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - V P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, USA
| | - L R Jiao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - N Habib
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| |
Collapse
|
137
|
Jou J, Harrington KJ, Zocca MB, Ehrnrooth E, Cohen EEW. The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clin Cancer Res 2020; 27:689-703. [PMID: 33122346 DOI: 10.1158/1078-0432.ccr-20-0245] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic cancer vaccines, an exciting development in cancer immunotherapy, share the goal of creating and amplifying tumor-specific T-cell responses, but significant obstacles still remain to their success. Here, we briefly outline the principles underlying cancer vaccine therapy with a focus on novel vaccine platforms and antigens, underscoring the renewed optimism. Numerous strategies have been investigated to overcome immunosuppressive mechanisms of the tumor microenvironment (TME) and counteract tumor escape, including improving antigen selection, refining delivery platforms, and use of combination therapies. Several new cancer vaccine platforms and antigen targets are under development. In an effort to amplify tumor-specific T-cell responses, a heterologous prime-boost antigen delivery strategy is increasingly used for virus-based vaccines. Viruses have also been engineered to express targeted antigens and immunomodulatory molecules simultaneously, to favorably modify the TME. Nanoparticle systems have shown promise as delivery vectors for cancer vaccines in preclinical research. T-win is another platform targeting both tumor cells and the TME, using peptide-based vaccines that engage and activate T cells to target immunoregulatory molecules expressed on immunosuppressive and malignant cells. With the availability of next-generation sequencing, algorithms for neoantigen selection are emerging, and several bioinformatic platforms are available to select therapeutically relevant neoantigen targets for developing personalized therapies. However, more research is needed before the use of neoepitope prediction and personalized immunotherapy becomes commonplace. Taken together, the field of therapeutic cancer vaccines is fast evolving, with the promise of potential synergy with existing immunotherapies for long-term cancer treatment.
Collapse
Affiliation(s)
- Jessica Jou
- Moores Cancer Center, University of California, San Diego Health, La Jolla, California
| | - Kevin J Harrington
- The Institute of Cancer Research/Royal Marsden National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | | | | | - Ezra E W Cohen
- Moores Cancer Center, University of California, San Diego Health, La Jolla, California.
| |
Collapse
|
138
|
Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chin Med J (Engl) 2020; 133:2444-2455. [PMID: 32969861 PMCID: PMC7575183 DOI: 10.1097/cm9.0000000000001124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, the research of immune checkpoint inhibitors has made a great breakthrough in lung cancer treatment. Currently, a variety of immune checkpoint inhibitors have been applied into clinical practice, including antibodies targeting the programmed cell death-1, programmed cell death-ligand 1, and cytotoxic T-lymphocyte antigen 4, and so on. However, not all patients can benefit from the treatment. Abnormal antigen presentation, functional gene mutation, tumor microenvironment, and other factors can lead to primary or secondary resistance. In this paper, we reviewed the molecular mechanism of immune checkpoint inhibitor resistance and various combination strategies to overcome resistance, in order to expand the beneficial population and enable precision medicine.
Collapse
|
139
|
Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020; 10:568059. [PMID: 33194652 PMCID: PMC7606919 DOI: 10.3389/fonc.2020.568059] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has revolutionized lung cancer treatment in the past decade. By reactivating the host’s immune system, immunotherapy significantly prolongs survival in some advanced lung cancer patients. However, resistance to immunotherapy is frequent, which manifests as a lack of initial response or clinical benefit to therapy (primary resistance) or tumor progression after the initial period of response (acquired resistance). Overcoming immunotherapy resistance is challenging owing to the complex and dynamic interplay among malignant cells and the defense system. This review aims to discuss the mechanisms that drive immunotherapy resistance and the innovative strategies implemented to overcome it in lung cancer.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China
| |
Collapse
|
140
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
141
|
Seledtsov VI, von Delwig A. Clinically feasible and prospective immunotherapeutic interventions in multidirectional comprehensive treatment of cancer. Expert Opin Biol Ther 2020; 21:323-342. [PMID: 32981358 DOI: 10.1080/14712598.2021.1828338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The immune system is able to exert both tumor-destructive and tumor-protective functions. Immunotherapeutic technologies aim to enhance immune-based anti-tumor activity and (or) weaken tumor-protective immunity. AREAS COVERED Cancer vaccination, antibody (Ab)-mediated cytotoxicity, Ab-based checkpoint molecule inhibition, Ab-based immunostimulation, cytokine therapy, oncoviral therapy, drug-mediated immunostimulation, exovesicular therapy, anti-inflammatory therapy, neurohormonal immunorehabilitation, metabolic therapy, as well as adoptive cell immunotherapy, could be coherently used to synergize and amplify each other in achieving robust anti-cancer responses in cancer patients. Tumor-specific immunotherapy applied at early stages is capable of eliminating remaining tumor cells after surgery, thus preventing the development of minimal residual disease. Patients with advanced disease stages could benefit from combined immunotherapy, which would be aimed at providing tumor cell/mass dormancy. Traditional therapeutic anti-cancer interventions (chemoradiotherapy, hyperthermia, anti-hormonal therapy) could significantly enhance tumor sensitivity to anti-cancer immunotherapy. It is important that lower-dose (metronomic) chemotherapy regimens, which are well-tolerated by normal cells, could advance immune-mediated control over tumor growth. EXPERT OPINION We envisage that combined immunotherapy regimens in the context of traditional treatment could become the mainstream modality for treating cancers in all phases of the tumorigenesis. The effectiveness of the anti-cancer treatment could be monitored by the following blood parameters: C-reactive protein, lactate dehydrogenase, and neutrophil-to-lymphocyte ratio.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Center for Integral Immunotherapy, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia.,Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| | - Alexei von Delwig
- Department of Immunology, Innovita Research Company, Vilnius, Lithuania
| |
Collapse
|
142
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
143
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
144
|
Abstract
Worldwide, approximately half a million people are diagnosed with pancreatic cancer every year, with mortality rates of more than 90%. T cells within pancreatic tumors are generally infrequent and incapable of eliciting antitumor immunity. Thus, pancreatic cancer is considered an "immunologically cold" tumor. However, recent studies clearly show that when T-cell immunity in pancreatic cancer is sufficiently induced, T cells become effective weapons. This fact suggests that to improve pancreatic cancer patients' clinical outcomes, we need to unveil the complex immune biology of this disease. In this review, we discuss the elements of tumor immunogenicity in the specific context of pancreatic malignancy.
Collapse
|
145
|
Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020; 21:1152-1159. [PMID: 32807942 DOI: 10.1038/s41590-020-0761-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell-intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host-microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell- and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.
Collapse
|
146
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
147
|
Nsingwane Z, Candy G, Devar J, Omoshoro-Jones J, Smith M, Nweke E. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects. Mol Biol Rep 2020; 47:6269-6280. [PMID: 32661873 DOI: 10.1007/s11033-020-05648-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human malignancies with a dismal prognosis. During PDAC progression, the immune response is affected as cancer cells evade detection and elimination. Recently, there have been advances in the treatment of PDAC using immunotherapy, although a lot more work is yet to be done. In this review, we discuss these advances, challenges and potentials. We focus on existing and potential immune targets for PDAC, drugs used to target them, and some clinical trials conducted so far with them. Finally, novel targets in the tumour microenvironment such as stromal cells and other potential future areas to explore including bacterial therapy and the use of neoantigens in immunotherapy are highlighted.
Collapse
Affiliation(s)
- Zanele Nsingwane
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
148
|
Tsujikawa T, Crocenzi T, Durham JN, Sugar EA, Wu AA, Onners B, Nauroth JM, Anders RA, Fertig EJ, Laheru DA, Reiss K, Vonderheide RH, Ko AH, Tempero MA, Fisher GA, Considine M, Danilova L, Brockstedt DG, Coussens LM, Jaffee EM, Le DT. Evaluation of Cyclophosphamide/GVAX Pancreas Followed by Listeria-Mesothelin (CRS-207) with or without Nivolumab in Patients with Pancreatic Cancer. Clin Cancer Res 2020; 26:3578-3588. [PMID: 32273276 PMCID: PMC7727397 DOI: 10.1158/1078-0432.ccr-19-3978] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/23/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Two studies in previously treated metastatic pancreatic cancer have been completed combining GVAX pancreas vaccine (GM-CSF-secreting allogeneic pancreatic tumor cells) with cyclophosphamide (Cy) and CRS-207 (live, attenuated Listeria monocytogenes-expressing mesothelin). In the current study, we compared Cy/GVAX followed by CRS-207 with (Arm A) or without nivolumab (Arm B). PATIENTS AND METHODS Patients with pancreatic adenocarcinoma who received one prior therapy for metastatic disease and RECIST measurable disease were randomized 1:1 to receive treatment on Arm A or Arm B. The primary objective was to compare overall survival (OS) between the arms. Additional objectives included assessment of progression-free survival, safety, tumor responses, CA19-9 responses, and immunologic correlates. RESULTS Ninety-three patients were treated (Arm A, 51; Arm B, 42). The median OS in Arms A and B were 5.9 [95% confidence interval (CI), 4.7-8.6] and 6.1 (95% CI, 3.5-7.0) months, respectively, with an HR of 0.86 (95% CI, 0.55-1.34). Objective responses were seen in 3 patients using immune-related response criteria (4%, 2/51, Arm A; 2%, 1/42, Arm B). The grade ≥3 related adverse event rate, whereas higher in Arm A (35.3% vs. 11.9%) was manageable. Changes in the microenvironment, including increase in CD8+ T cells and a decrease in CD68+ myeloid cells, were observed in long-term survivors in Arm A only. CONCLUSIONS Although the study did not meet its primary endpoint of improvement in OS of Arm A over Arm B, the OS was comparable with standard therapy. Objective responses and immunologic changes in the tumor microenvironment were evident.
Collapse
Affiliation(s)
| | - Todd Crocenzi
- Providence Portland Medical Center, Portland, Oregon
| | - Jennifer N Durham
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Elizabeth A Sugar
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Annie A Wu
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Beth Onners
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Julie M Nauroth
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert A Anders
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Daniel A Laheru
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Kim Reiss
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew H Ko
- University of California San Francisco, San Francisco, California
| | | | | | - Michael Considine
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
149
|
Wu AA, Bever KM, Ho WJ, Fertig EJ, Niu N, Zheng L, Parkinson RM, Durham JN, Onners B, Ferguson AK, Wilt C, Ko AH, Wang-Gillam A, Laheru DA, Anders RA, Thompson ED, Sugar EA, Jaffee EM, Le DT. A Phase II Study of Allogeneic GM-CSF-Transfected Pancreatic Tumor Vaccine (GVAX) with Ipilimumab as Maintenance Treatment for Metastatic Pancreatic Cancer. Clin Cancer Res 2020; 26:5129-5139. [PMID: 32591464 DOI: 10.1158/1078-0432.ccr-20-1025] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE This phase II study tested granulocyte-macrophage colony-stimulating factor (GM-CSF)-allogeneic pancreatic tumor cells (GVAX) and ipilimumab in metastatic pancreatic ductal adenocarcinoma (PDA) in the maintenance setting. PATIENTS AND METHODS Patients with PDA who were treated with front-line chemotherapy consisting of 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) in the metastatic setting and had ongoing response or stable disease after 8-12 doses were eligible. Patients were randomized 1:1 to treatment with GVAX and ipilimumab given every 3 weeks for four doses then every 8 weeks (Arm A) or to FOLFIRINOX continuation (Arm B). The primary objective was to compare overall survival (OS) between the two arms. RESULTS Eighty-two patients were included in the final analysis (Arm A: 40; Arm B: 42). The study was stopped for futility after interim analysis. Median OS was 9.38 months [95% confidence interval (CI), 5.0-12.2] for Arm A and 14.7 months (95% CI, 11.6-20.0) for Arm B (HR, 1.75; P = 0.019). Using immune-related response criteria, two partial responses (5.7%) were observed in Arm A and four (13.8%) in Arm B. GVAX + ipilimumab promoted T-cell differentiation into effector memory phenotypes both in the periphery and in the tumor microenvironment and increased M1 macrophages in the tumor. CONCLUSIONS GVAX and ipilimumab maintenance therapy did not improve OS over continuation of chemotherapy and resulted in a numerically inferior survival in metastatic PDA. However, clinical responses and biological effects on immune cells were observed. Further study of novel combinations in the maintenance treatment of metastatic PDA is feasible.
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine M Bever
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nan Niu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rose M Parkinson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer N Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onners
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna K Ferguson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cara Wilt
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew H Ko
- Department of Medicine, Division of Hematology/Oncology, UCSF Helen Diller Family Comprehensive Cancer Center at University of California, San Francisco, California
| | - Andrea Wang-Gillam
- Department of Internal Medicine, Division of Oncology at Washington University School of Medicine, St. Louis, Missouri
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Sugar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dung T Le
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreas Cancer Clinical Research and Patient Care, and The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
150
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|