101
|
Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and Central Mechanisms of Persistent Orofacial Pain. Front Neurosci 2019; 13:1227. [PMID: 31798407 PMCID: PMC6863776 DOI: 10.3389/fnins.2019.01227] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroplastic changes in the neuronal networks involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1/C2) are considered the mechanisms underlying the ectopic orofacial hypersensitivity associated with trigeminal nerve injury or orofacial inflammation. It has been reported that peripheral nerve injury causes injury discharges in the TG neurons, and a barrage of action potentials is generated in TG neurons and conveyed to the Vc and C1/C2 after trigeminal nerve injury. Long after trigeminal nerve injury, various molecules are produced in the TG neurons, and these molecules are released from the soma of TG neurons and are transported to the central and peripheral terminals of TG neurons. These changes within the TG cause neuroplastic changes in TG neurons and they become sensitized. The neuronal activity of TG neurons is further accelerated, and Vc and C1/C2 neurons are also sensitized. In addition to this cascade, non-neuronal glial cells are also involved in the enhancement of the neuronal activity of TG, Vc, and C1/C2 neurons. Satellite glial cells and macrophages are activated in the TG after trigeminal nerve injury and orofacial inflammation. Microglial cells and astrocytes are also activated in the Vc and C1/C2 regions. It is considered that functional interaction between non-neuronal cells and neurons in the TG, Vc, and C1/C2 regions is a key mechanism involved in the enhancement of neuronal excitability after nerve injury or inflammation. In this article, the detailed mechanisms underlying ectopic orofacial hyperalgesia associated with trigeminal nerve injury and orofacial inflammation are addressed.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
102
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
103
|
Stover JD, Farhang N, Lawrence B, Bowles RD. Multiplex Epigenome Editing of Dorsal Root Ganglion Neuron Receptors Abolishes Redundant Interleukin 6, Tumor Necrosis Factor Alpha, and Interleukin 1β Signaling by the Degenerative Intervertebral Disc. Hum Gene Ther 2019; 30:1147-1160. [PMID: 31056946 PMCID: PMC6761584 DOI: 10.1089/hum.2019.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/27/2019] [Indexed: 01/07/2023] Open
Abstract
Back pain is the leading cause of disability worldwide and contributes to significant socioeconomic impacts. It has been hypothesized that the degenerative intervertebral disc (IVD) contributes to back pain by sensitizing nociceptive neurons innervating the IVD to stimuli that would not be painful to healthy patients. However, the inflammatory signaling networks mediating this sensitization remain poorly understood. A better understanding of the underlying mechanisms of degenerative IVD-induced changes in nociception is required to improve the understanding and treatment of back pain. Toward these ends, a novel in vitro model was developed to investigate degenerative IVD-induced changes in dorsal root ganglion (DRG) neuron activation by measuring DRG neuron activity following neuron seeding on human degenerative IVD tissue collected from patients undergoing surgical treatment for back pain. Lentiviral clustered regularly interspaced palindromic repeat (CRISPR) epigenome editing vectors were built to downregulate the inflammatory receptors TNFR1, IL1R1, and IL6st in DRG neurons in single- and multiplex. Multiplex CRISPR epigenome editing of inflammatory receptors demonstrated that degenerative IVD tissue drives thermal sensitization through the simultaneous and redundant signaling of interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and IL-1β. This work elucidates redundant signaling pathways in neuron interactions with the degenerative IVD and suggests the need for multiplex targeting of IL-6, TNF-α, and IL-1β for pain modulation in the degenerative IVD.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Robby D. Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
104
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
105
|
Liang YJ, Feng SY, Qi YP, Li K, Jin ZR, Jing HB, Liu LY, Cai J, Xing GG, Fu KY. Contribution of microglial reaction to increased nociceptive responses in high-fat-diet (HFD)-induced obesity in male mice. Brain Behav Immun 2019; 80:777-792. [PMID: 31108168 DOI: 10.1016/j.bbi.2019.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.
Collapse
Affiliation(s)
- Ya-Jing Liang
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shi-Yang Feng
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ya-Ping Qi
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Kai Li
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
106
|
Abstract
Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron-immune interactions enhance host protection from infection, but for other pathogens, neuron-immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.
Collapse
|
107
|
Liu Q, Chen W, Fan X, Wang J, Fu S, Cui S, Liao F, Cai J, Wang X, Huang Y, Su L, Zhong L, Yi M, Liu F, Wan Y. Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation. Exp Neurol 2019; 317:226-243. [DOI: 10.1016/j.expneurol.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
108
|
Morgan M, Nencini S, Thai J, Ivanusic JJ. TRPV1 activation alters the function of Aδ and C fiber sensory neurons that innervate bone. Bone 2019; 123:168-175. [PMID: 30936039 DOI: 10.1016/j.bone.2019.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022]
Abstract
The Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a non-selective cation channel that is activated by capsaicin, low pH and noxious heat. It has been suggested to have a pro-algesic role in a range of conditions that present with bone pain, but the mechanisms by which this occurs are not yet clear. In this study we aimed to determine if TRPV1 is expressed in Aδ and/or C fiber bone afferent neurons, and to explore its role in the activation and/or sensitization of bone afferent neurons to mechanical stimulation. A combination of retrograde tracing and immunohistochemistry was used to determine expression of TRPV1 in the soma of bone afferent neurons that innervate the rat tibial marrow cavity. A novel, in vivo, electrophysiological bone-nerve preparation, recently developed in our laboratory, was used to make recordings of the activity and sensitivity of bone afferent neurons in response to application of the TRPV1 agonist capsaicin to the marrow cavity. We found that a substantial proportion of bone afferent neurons express TRPV1. These include both small-diameter myelinated (neurofilament rich) and unmyelinated (neurofilament poor) neurons that are likely to be Aδ and C fiber neurons, respectively. Electrophysiological recordings revealed that application of capsaicin to the marrow cavity increased ongoing activity of C fiber, and to a lesser extent Aδ fiber, bone afferent neurons. Capsaicin also sensitized both Aδ and C fiber bone afferent neurons to mechanical stimulation. This evidence supports a role for TRPV1 in the pathogenesis of pain associated with bone pathology or disease.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia.
| |
Collapse
|
109
|
Trier AM, Mack MR, Kim BS. The Neuroimmune Axis in Skin Sensation, Inflammation, and Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2829-2835. [PMID: 31061146 PMCID: PMC6563610 DOI: 10.4049/jimmunol.1801473] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Although connections between the immune and nervous systems have long been recognized, the precise mechanisms that underlie this relationship are just starting to be elucidated. Advances in sensory biology have unveiled novel mechanisms by which inflammatory cytokines promote itch and pain sensations to coordinate host-protective behavioral responses. Conversely, new evidence has emphasized the importance of immune cell regulation by sensory neurons. By focusing on itch biology and how it has been informed by the more established field of pain research, we highlight recent interdisciplinary studies that demonstrate how novel neuroimmune interactions underlie a diversity of sensory, inflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Anna M Trier
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Madison R Mack
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110;
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110; and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
110
|
Joint nociceptor nerve activity and pain in an animal model of acute gout and its modulation by intra-articular hyaluronan. Pain 2019; 159:739-748. [PMID: 29319609 PMCID: PMC5895116 DOI: 10.1097/j.pain.0000000000001137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is Available in the Text. Gouty pain nocifensive signs and enhanced joint nociceptor nerve activity in urate-injected rats develop in parallel and are decreased by intra-articular injection of hyaluronan. The mechanisms whereby deposition of monosodium urate (MSU) crystals in gout activates nociceptors to induce joint pain are incompletely understood. We tried to reproduce the signs of painful gouty arthritis, injecting into the knee joint of rats suspensions containing amorphous or triclinic, needle MSU crystals. The magnitude of MSU-induced inflammation and pain behavior signs were correlated with the changes in firing frequency of spontaneous and movement-evoked nerve impulse activity recorded in single knee joint nociceptor saphenous nerve fibers. Joint swelling, mechanical and cold allodynia, and hyperalgesia appeared 3 hours after joint injection of MSU crystals. In parallel, spontaneous and movement-evoked joint nociceptor impulse activity raised significantly. Solutions containing amorphous or needle-shaped MSU crystals had similar inflammatory and electrophysiological effects. Intra-articular injection of hyaluronan (HA, Synvisc), a high-MW glycosaminoglycan present in the synovial fluid with analgesic effects in osteoarthritis, significantly reduced MSU-induced behavioral signs of pain and decreased the enhanced joint nociceptor activity. Our results support the interpretation that pain and nociceptor activation are not triggered by direct mechanical stimulation of nociceptors by MSU crystals, but are primarily caused by the release of excitatory mediators by inflammatory cells activated by MSU crystals. Intra-articular HA decreased behavioral and electrophysiological signs of pain, possibly through its viscoelastic filtering effect on the mechanical forces acting over sensitized joint sensory endings and probably also by a direct interaction of HA molecules with the transducing channels expressed in joint nociceptor terminals.
Collapse
|
111
|
Epiregulin is released from intervertebral disks and induces spontaneous activity in pain pathways. Pain Rep 2019; 4:e718. [PMID: 31041419 PMCID: PMC6455685 DOI: 10.1097/pr9.0000000000000718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/24/2023] Open
Abstract
Introduction: Lumbar radicular pain after disk herniation is associated with local release of many inflammatory molecules from nucleus pulposus (NP) cells leaking out of the intervertebral disk. Here, we have used a rat model to investigate the role of epiregulin (EREG), a member of the epidermal growth factor (EGF) family, in this process. Methods: A protein immunoassay was chosen to confirm the release of EREG from the NP tissue. Single unit recordings were used to demonstrate the effect of recombinant EREG applied onto the dorsal nerve roots in vivo. Intracellular responses induced by recombinant EREG were studied in cultured dorsal root ganglion (DRG) cells by phosphoprotein assay. Changes in EGF receptor expression induced by NP in the DRG were examined by quantitative polymerase chain reaction. Results: The protein immunoassay showed that EREG was released from the NP tissue. Moreover, application of EREG onto the spinal dorsal nerve roots induced a decrease in the evoked responses, but an increase in spontaneous activity in the dorsal horn neurons. Interestingly, the EREG activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the DRG, a pathway previously linked to cellular growth, proliferation, and tissue regeneration. An NP-induced upregulation of the EGF receptor HER3 in the DRG was also revealed. Conclusion: Taken together, the present observations indicate that EREG may induce changes in the DRG and spontaneous activity in the pain pathways. We suggest that EREG signaling may be involved in the pathophysiological process leading to sensory deficits and neuropathic pain in patients after disk herniation.
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW Sensory nerves (SNs) richly innervate bone and are a component of bone microenvironment. Cancer metastasis in bone, which is under the control of the crosstalk with bone microenvironment, induces bone pain via excitation of SNs innervating bone. However, little is known whether excited SNs in turn affect bone metastasis. RECENT FINDINGS Cancer cells colonizing bone promote neo-neurogenesis of SNs and excite SNs via activation of the acid-sensing nociceptors by creating pathological acidosis in bone, evoking bone pain. Denervation of SNs or inhibition of SN excitation decreases bone pain and cancer progression and increases survival in preclinical models. Importantly, patients with cancers with increased SN innervation complain of cancer pain and show poor outcome. SNs establish the crosstalk with cancer cells to contribute to bone pain and cancer progression in bone. Blockade of SN excitation may have not only analgesic effects on bone pain but also anti-cancer actions on bone metastases.
Collapse
Affiliation(s)
- Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthodontics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 3-18-15, Kuramotocho, Tokushima, Tokushima, 770-8504, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama, Okayama, 700-8525, Japan
| |
Collapse
|
113
|
Adamek P, Heles M, Palecek J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. Neuropharmacology 2018; 146:163-174. [PMID: 30471295 DOI: 10.1016/j.neuropharm.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Paclitaxel chemotherapy treatment often leads to neuropathic pain resistant to available analgesic treatments. Recently spinal Toll-like receptor 4 (TLR4) and the transient receptor potential cation channel subfamily V member 1 (TRPV1) were identified to be involved in the pro-nociceptive effect of paclitaxel. The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinases in this process, with the use of their antagonists (wortmannin, LY-294002, and staurosporine). The single paclitaxel administration (8 mg/kg i.p.) in mice induced robust mechanical allodynia measured as a reduced threshold to von Frey filament stimulation and generated reduced tachyphylaxis of capsaicin-evoked responses, recorded as changes in mEPSC frequency in patch-clamp recordings of dorsal horn neurons activity in vitro, for up to eight days. Paclitaxel application also induced increased Akt kinase phosphorylation in rat DRG neurons. All these paclitaxel-induced changes were prevented by the wortmannin in vivo pretreatment. Acute co-application of wortmannin or LY-294002 with paclitaxel in spinal cord slices also attenuated the paclitaxel effect on capsaicin-evoked responses. Staurosporine was effective in the acute in vitro experiments and on the first day after the paclitaxel treatment in vivo, but in contrast to wortmannin, it did not have a significant impact later. Our data suggest that the inhibition of PI3K signaling may help alleviate pathological pain syndromes in the paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Pavel Adamek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Mario Heles
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague, 128 44, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
114
|
Electroacupuncture Treatment Alleviates the Remifentanil-Induced Hyperalgesia by Regulating the Activities of the Ventral Posterior Lateral Nucleus of the Thalamus Neurons in Rats. Neural Plast 2018; 2018:6109723. [PMID: 30534151 PMCID: PMC6252233 DOI: 10.1155/2018/6109723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022] Open
Abstract
Mechanisms underlying remifentanil- (RF-) induced hyperalgesia, a phenomenon that is generally named as opioid-induced hyperalgesia (OIH), still remain elusive. The ventral posterior lateral nucleus (VPL) of the thalamus, a key relay station for the transmission of nociceptive information to the cerebral cortex, is activated by RF infusion. Electroacupuncture (EA) is an effective method for the treatment of pain. This study aimed to explore the role of VPL in the development of OIH and the effect of EA treatment on OIH in rats. RF was administered to rats via the tail vein for OIH induction. Paw withdrawal threshold (PWT) in response to mechanical stimuli and paw withdrawal latency (PWL) to thermal stimulation were tested in rats for the assessment of mechanical allodynia and thermal hyperalgesia, respectively. Spontaneous neuronal activity and local field potential (LFP) in VPL were recorded in freely moving rats using the in vivo multichannel recording technique. EA at 2 Hz frequency (pulse width 0.6 ms, 1-3 mA) was applied to the bilateral acupoints "Zusanli" (ST.36) and "Sanyinjiao" (SP.6) in rats. The results showed that both the PWT and PWL were significantly decreased after RF infusion to rats. Meanwhile, both the spontaneous neuronal firing rate and the theta band oscillation in VPL LFP were increased on day 3 post-RF infusion, indicating that the VPL may promote the development of RF-induced hyperalgesia by regulating the pain-related cortical activity. Moreover, 2 Hz-EA reversed the RF-induced decrease both in PWT and PWL of rats and also abrogated the RF-induced augmentation of the spontaneous neuronal activity and the power spectral density (PSD) of the theta band oscillation in VPL LFP. These results suggested that 2 Hz-EA attenuates the remifentanil-induced hyperalgesia via reducing the excitability of VPL neurons and the low-frequency (theta band) oscillation in VPL LFP.
Collapse
|
115
|
Leisengang S, Ott D, Murgott J, Gerstberger R, Rummel C, Roth J. Primary Cultures from Rat Dorsal Root Ganglia: Responses of Neurons and Glial Cells to Somatosensory or Inflammatory Stimulation. Neuroscience 2018; 394:1-13. [PMID: 30342197 DOI: 10.1016/j.neuroscience.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
Primary cultures of rat dorsal root ganglia (DRG) consist of neurons, satellite glial cells and a moderate number of macrophages. Measurements of increased intracellular calcium [Ca2+]i induced by stimuli, have revealed that about 70% of DRG neurons are capsaicin-responsive nociceptors, while 10% responded to cooling and or menthol (putative cold sensors). Cultivation of DRG in the presence of a moderate dose of lipopolysaccharide (LPS, 1 µg/ml) enhanced capsaicin-induced Ca2+ signals. We therefore investigated further properties of DRG primary cultures stimulated with 10 µg/ml LPS for a short period. Exposure to LPS for 2 h resulted in pronounced release of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) into the supernatants of DRG cultures, increased expression of both cytokines in the DRG cells and increased TNF immunoreactivity predominantly in macrophages. We further observed an accumulation of the inflammatory transcription factors NF-IL6 and STAT3 in the nuclei of LPS-exposed DRG neurons and macrophages. In the presence of the cytotoxic agent cisplatin (5 or 10 µg/ml), the number of macrophages was decreased significantly, the growth of satellite glial cells was markedly suppressed, but the vitality and stimulus-induced Ca2+ signals of DRG neurons were not impaired. Under these conditions the LPS-induced production and expression of TNF-α and IL-6 were blunted. Our data suggest a potential role for macrophages and satellite glial cells in the initiation of inflammatory processes that develop in sensory ganglia upon injury or exposure to pathogens.
Collapse
Affiliation(s)
- Stephan Leisengang
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Daniela Ott
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Jolanta Murgott
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Rüdiger Gerstberger
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Christoph Rummel
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany; Center for Mind, Brain and Behavior CMBB, Philipps-Universität of Marburg & Justus-Liebig-University of Giessen, Germany
| | - Joachim Roth
- Department of Veterinary-Physiology and -Biochemistry, Justus-Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany; Center for Mind, Brain and Behavior CMBB, Philipps-Universität of Marburg & Justus-Liebig-University of Giessen, Germany.
| |
Collapse
|
116
|
Yang Y, Li S, Jin ZR, Jing HB, Zhao HY, Liu BH, Liang YJ, Liu LY, Cai J, Wan Y, Xing GG. Decreased abundance of TRESK two-pore domain potassium channels in sensory neurons underlies the pain associated with bone metastasis. Sci Signal 2018; 11. [DOI: 10.1126/scisignal.aao5150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Bone metastasis–associated VEGF suppresses neuronal K
+
channels and increases pain in rats.
Collapse
Affiliation(s)
- Yue Yang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Hong-Yan Zhao
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Bo-Heng Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Ya-Jing Liang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China
- Second Affiliated Hospital of Xinxiang Medical University, Henan, China
| |
Collapse
|
117
|
Ding X, Yang W, Liu XD, Yang X, Wang HM, Tai J. Spinal SHP2 Contributes to Exaggerated Incisional Pain in Adult Rats Subjected to Neonatal and Adult Incisions via PI3K. Neuroscience 2018; 385:102-120. [PMID: 29909075 DOI: 10.1016/j.neuroscience.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022]
Abstract
Neonatal injury-induced exaggeration of pain hypersensitivity after adult trauma is a significant clinical challenge. However, the underlying mechanisms remain poorly understood. Growing evidence shows that spinal Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) contributes to chronic pain in adult rodents. Here we demonstrated that the phosphorylation and expression of SHP2 in synaptosomal fraction of the spinal dorsal horn are elevated in adult rats subjected to neonatal and adult incisions (nIN-IN), and the upregulation of SHP2 is highly correlated with pain hypersensitivity. Intrathecal blockade of SHP2 phosphorylation using a SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of SHP2 by intrathecal delivery of small interfering RNA (siRNA), ameliorates mechanical allodynia and heat hyperalgesia in nIN-IN rats. Moreover, the expression of phosphatidylinositol 3-kinase (PI3K) in the spinal dorsal horn is significantly increased in nIN-IN rats. Intrathecal application of PI3K inhibitor, LY294002 or wortmannin, alleviates pain hypersensitivity in nIN-IN rats. Additionally, intrathecal administration of NSC-87877 or SHP2 siRNA attenuates the upregulation of PI3K. Finally, no alternation of SHP2 phosphorylation in the dorsal root ganglion and dorsal root of nIN-IN rats as well as PI3K expression in the dorsal root of nIN-IN rats intrathecally treated with NSC-87877 or SHP2 siRNA is observed. These results suggest that the phosphorylation and expression of SHP2 in the spinal dorsal horn play vital roles in neonatal incision-induced exaggeration of adult incisional pain via PI3K. Thus, SHP2 and PI3K may serve as potential therapeutic targets for exaggerated incisional pain induced by neonatal and adult injuries.
Collapse
Affiliation(s)
- Xu Ding
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiao-Dan Liu
- Department of Pathology, Peking University, Beijing, China
| | - Xi Yang
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huan-Min Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
118
|
Serizawa K, Tomizawa-Shinohara H, Magi M, Yogo K, Matsumoto Y. Anti-IL-6 receptor antibody improves pain symptoms in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 319:71-79. [DOI: 10.1016/j.jneuroim.2018.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 02/04/2023]
|
119
|
Lee JH, Choi CS, Bae IH, Choi JK, Park YH, Park M. A novel, topical, nonsteroidal, TRPV1 antagonist, PAC-14028 cream improves skin barrier function and exerts anti-inflammatory action through modulating epidermal differentiation markers and suppressing Th2 cytokines in atopic dermatitis. J Dermatol Sci 2018; 91:S0923-1811(18)30204-4. [PMID: 29752146 DOI: 10.1016/j.jdermsci.2018.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although it is established that epidermal barrier disturbance and immune dysfunction resulting in IgE sensitization are critical factors in the development of cutaneous inflammation, the pathogenesis and targeted therapy of atopic dermatitis (AD)-specific pathways have still been unknown. OBJECTIVE Taking into account the fact that Th2 cytokines in AD have both unique and overlapping functions including increased epidermal thickening, inflammation, and decreased expressing of the barrier proteins keratinocyte differentiation, we sought to clarify our hypothesis that TRPV1 antagonist plays a critical role in skin barrier function and can be a therapeutic target for AD. METHODS AD-like dermatitis was induced in hairless mice by repeated oxazolone (Ox) challenges to hairless mice. The functional studies concerning skin barrier function, anti-inflammatory action, and molecular mechanism by TRPV1 antagonism were conducted by histopathological assays, ELISA, qPCR, western blotting, and skin blood flow measurement. RESULTS Topically administered TRPV1 antagonist, PAC-14028 (Asivatrep: C21H22F5N3O3S), improved AD-like dermatitis and skin barrier functions, and restored the expression of epidermal differentiation markers. In addition, the PAC-14028 cream significantly inhibited cutaneous inflammation by decreasing the expression of serum IgE, and the epidermal expression of IL-4, and IL-13 in Ox-AD mice. These results may provide a novel insight into the molecular mechanism of PAC-14028 cream involved in anti-inflammatory effects and skin barrier functions by suppressing the multiple signaling pathways including IL-4/-13-mediated activation of JAK/STAT, TRPV1, and neuropeptides. CONCLUSION PAC-14028 cream can be a potential therapeutic tool for the treatment of chronic inflammation and disrupted barrier function in patients with AD.
Collapse
Affiliation(s)
- Ji-Hae Lee
- Vital Beautie Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Chang Soon Choi
- Vital Beautie Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Il-Hong Bae
- Vital Beautie Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Jin Kyu Choi
- Medical Beauty QA Team, Aestura Corporation, Anseong, Republic of Korea
| | - Young-Ho Park
- Vital Beautie Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Miyoung Park
- Vital Beautie Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea.
| |
Collapse
|
120
|
Zhao H, Duan LJ, Sun QL, Gao YS, Yang YD, Tang XS, Zhao DY, Xiong Y, Hu ZG, Li CH, Chen SX, Liu T, Yu X. Identification of Key Pathways and Genes in L4 Dorsal Root Ganglion (DRG) After Sciatic Nerve Injury via Microarray Analysis. J INVEST SURG 2018; 33:172-180. [PMID: 29672183 DOI: 10.1080/08941939.2018.1452996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Peripheral nerve injury (PNI) has devastating consequences. Dorsal root ganglion as a pivotal locus participates in the process of neuropathic pain and nerve regeneration. In recent years, gene sequencing technology has seen rapid rise in the biomedicine field. So, we attempt to gain insight into in the mechanism of neuropathic pain and nerve regeneration in the transcriptional level and to explore novel genes through bioinformatics analysis. Methods: The gene expression profiles of GSE96051 were downloaded from GEO database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. Results: Our results showed that both IL-6 and Jun genes and the signaling pathway of MAPK, apoptosis, P53 present their vital modulatory role in nerve regeneration and neuropathic pain. Noteworthy, 13 hub genes associated with neuropathic pain and nerve regeneration, including Ccl12, Ppp1r15a, Cdkn1a, Atf3, Nts, Dusp1, Ccl7, Csf, Gadd45a, Serpine1, Timp1 were rarely reported in PubMed database, these genes may provide us the new orientation in experimental research and clinical study. Conclusions: Our results may provide more deep insight into the mechanism and a promising therapeutic target. The next step is to put our emphasis on an experiment level and to verify the novel genes from 13 hub genes.
Collapse
Affiliation(s)
- He Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Jun Duan
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Orthopedics, Bayannaoer City Hospital, Bayannaoer City, Inner Mongolia, China
| | - Qing-Ling Sun
- Department of Geriatric, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Shan Gao
- Department of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Dong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Sheng Tang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ding-Yan Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Xiong
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Guo Hu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuan-Hong Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Xue Chen
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
121
|
Remeniuk B, King T, Suktankhar D, Nippert A, Li N, Li F, Cheng K, Rice KC, Porreca F. Disease modifying actions of interleukin-6 blockade in a rat model of bone cancer pain. Pain 2018; 159:684-698. [PMID: 29300279 PMCID: PMC5911943 DOI: 10.1097/j.pain.0000000000001139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis of cancer to the skeleton represents a debilitating turning point in the lives of patients. Skeletal metastasis leads to moderate to severe ongoing pain along with bone remodeling that can result in fracture, events that dramatically diminish quality of life. Interleukin-6 (IL-6) levels are elevated in patients with metastatic breast cancer and are associated with a lower survival rate. We therefore determined the consequences of inhibition of IL-6 signaling using a novel small molecule antagonist, TB-2-081, on bone integrity, tumor progression, and pain in a rodent model of breast cancer. Rat MAT B III mammary adenocarcinoma cells were injected and sealed within the tibia of female Fischer rats. Growth of these cells within the rat tibia elicited increased IL-6 levels both within the bone exudate and in the plasma, produced ongoing pain and evoked hypersensitivity, and bone fracture that was observed by approximately day 12. Systemic TB-2-081 delivered by subcutaneous osmotic minipumps starting at tumor implantation prevented tumor-induced ongoing bone pain and evoked hypersensitivity without altering tumor growth. Remarkably, TB-2-081 infusion significantly reduced osteolytic and osteoblastic bone remodeling and time to fracture likely by decreasing osteoclastogenesis and associated increase in bone resorption. These findings indicate that blockade of IL-6 signaling may represent a viable, disease-modifying strategy to prevent tumor-induced bone remodeling allowing for stabilization of bone and decreased fractures as well as diminished ongoing pain that may improve quality of life of patients with skeletal metastases. Notably, anti-IL-6 antibodies are clinically available allowing for rapid testing of these possibilities in humans.
Collapse
Affiliation(s)
- Bethany Remeniuk
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Devki Suktankhar
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Amy Nippert
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Nancy Li
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Fuying Li
- Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Bethesda, MD, USA
| | - Kejun Cheng
- Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Bethesda, MD, USA
| | - Kenner C. Rice
- Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Bethesda, MD, USA
| | - Frank Porreca
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
122
|
Song Y, Gao L. The effect of acute dissociation on the electrophysiological properties of rat dorsal root ganglion neurons. Somatosens Mot Res 2018; 35:11-17. [PMID: 29471715 DOI: 10.1080/08990220.2018.1439000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The acutely dissociated neurons from the dorsal root ganglia (DRGs) are extensively used. The effects of acute dissociation on the properties of these neurons are, however, not clear. In this study, the action potentials (APs) were recorded from both acutely dissociated and in vivo identified DRG neurons with patch clamp and sharp electrode recording techniques, respectively. We found that acute dissociation slowed both the depolarizing and repolarizing rate of APs, and elongated the AP duration (APD). The lower recording temperature presented in the acutely dissociated neurons contributed to about 10% of these differences. The major contributor of these differences was possibly modulation of the mRNA expression especially those of the ion channels, as suggested by our observation that acute dissociation significantly reduced the mRNA abundance of Nav1.6-1.9. In conclusion, acute dissociation altered the electrophysiological properties of the DRG neurons; the disrupted gene-expression pattern may contribute to this effect.
Collapse
Affiliation(s)
- Yuanlong Song
- a Department of Physiology , School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,b Institutes of Brain Research , Huazhong University of Science and Technology , Wuhan , China
| | - Linlin Gao
- a Department of Physiology , School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,b Institutes of Brain Research , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
123
|
Wang Y, Feng C, He H, He J, Wang J, Li X, Wang S, Li W, Hou J, Liu T, Fang D, Xie SQ. Sensitization of TRPV1 receptors by TNF-α orchestrates the development of vincristine-induced pain. Oncol Lett 2018; 15:5013-5019. [PMID: 29552137 PMCID: PMC5840530 DOI: 10.3892/ol.2018.7986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Vincristine is one of the most common anticancer drugs clinically employed in the treatment of various malignancies. A major side effect associated with vincristine is the development of neuropathic pain, which is not readily relieved by available analgesics. Although efforts have been made to identify the pathogenesis of vincristine-induced neuropathic pain, the mechanisms underlying its pathogenesis have not been fully elucidated. In the present study, a neuropathic pain model was established in Sprague-Dawley rats by intraperitoneal injection of vincristine sulfate. The results demonstrated that vincristine administration induced the upregulation of transient receptor potential cation channel subfamily V member 1 (TRPV1) protein expression and current density in dorsal root ganglion (DRG) nociceptive neurons. Consistently, inhibition of TRPV1 with capsazepine alleviated vincristine-induced mechanical allodynia and thermal hyperalgesia in rats. Furthermore, vincristine administration induced the upregulation of tumor necrosis factor (TNF)-α production in DRGs, and inhibition of TNF-α synthesis with thalidomide in vivo reversed TRPV1 protein expression, as well as pain hypersensitivity induced by vincristine in rats. The present results suggested that TNF-α could sensitize TRPV1 by promoting its expression, thus leading to mechanical allodynia and thermal hyperalgesia in vincristine-treated rats. Taken together, these findings may enhance our understanding of the pathophysiological mechanisms underlying vincristine-induced pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Imaging, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Chenyang Feng
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Haoying He
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jinjin He
- Department of Clinic Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Song-Qiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
124
|
Pathan EM, Inman RD. Pain in spondyloarthritis: A neuro–immune interaction. Best Pract Res Clin Rheumatol 2017; 31:830-845. [DOI: 10.1016/j.berh.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/01/2018] [Indexed: 01/07/2023]
|
125
|
Ding CP, Guo YJ, Li HN, Wang JY, Zeng XY. Red nucleus interleukin-6 participates in the maintenance of neuropathic pain through JAK/STAT3 and ERK signaling pathways. Exp Neurol 2017; 300:212-221. [PMID: 29183675 DOI: 10.1016/j.expneurol.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
We previously reported that interleukin-6 (IL-6) in the red nucleus (RN) is up-regulated at 3weeks after spared nerve injury (SNI), and plays facilitated role in the later maintenance of neuropathic pain. The current study aimed to reveal the roles of different signaling pathways, including Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase/protein kinase B (PI3K/AKT), in RN IL-6-mediated pain modulation. In accord with the increase of IL-6 in the RN following SNI, the protein levels of phospho-STAT3 (p-STAT3), p-ERK and p-JNK were also up-regulated in the RN contralateral to the nerve injury side at 3weeks after SNI. The increases of p-STAT3 and p-ERK (but not p-JNK) were associated with IL-6 and could be blocked by anti-IL-6 antibody. Microinjection of JAK2 inhibitor AG490, ERK inhibitor PD98059 and also JNK inhibitor SP600125 into the RN significantly increased the paw withdrawal threshold (PWT) and alleviated SNI-induced mechanical allodynia. Further studies showed that microinjection of recombinant rat IL-6 (rrIL-6, 20ng) into the RN of normal rats significantly decreased the PWT of rats and increased the local protein levels of p-STAT3 and p-ERK, but not p-JNK. Pre-treatment with AG490 and PD98059 could prevent IL-6-induced mechanical allodynia. Whereas, p-p38 MAPK and p-AKT did not show any expression changes in the RN of rats with SNI or rats treated with rrIL-6. These results suggest that RN IL-6 participates in the later maintenance of SNI-induced neuropathic pain and plays facilitated role through activating JAK/STAT3 and ERK signaling pathways.
Collapse
Affiliation(s)
- Cui-Ping Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Jie Guo
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
126
|
Wei J, Li M, Wang D, Zhu H, Kong X, Wang S, Zhou YL, Ju Z, Xu GY, Jiang GQ. Overexpression of suppressor of cytokine signaling 3 in dorsal root ganglion attenuates cancer-induced pain in rats. Mol Pain 2017; 13:1744806916688901. [PMID: 28326931 PMCID: PMC5302175 DOI: 10.1177/1744806916688901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Cancer-induced pain (CIP) is one of the most severe types of chronic pain with which clinical treatment remains challenging and the involved mechanisms are largely unknown. Suppressor of cytokine signaling 3 (SOCS3) is an important intracellular protein and provides a classical negative feedback loop, thus involving in a wide variety of processes including inflammation and nociception. However, the role of SOCS3 pathway in CIP is poorly understood. The present study was designed to investigate the role of SOCS3 in dorsal root ganglion (DRG) in the development of CIP. Method CIP was established by injection of Walker 256 mammary gland tumor cells into the rat tibia canal. Whole-cell patch clamping and Western blotting were performed. Results Following the development of bone cancer, SOCS3 expression was significantly downregulated in rat DRGs at L2-L5 segments. Overexpression of SOCS3, using lentiviral-mediated production of SOCS3 at spinal cord level, drastically attenuated mechanical allodynia and body weight-bearing difference, but not thermal hyperalgesia in bone cancer rats. In addition, overexpression of SOCS3 reversed the hyperexcitability of DRG neurons innervating the tibia, and reduced abnormal expression of toll-like receptors 4 in the DRGs. Conclusions These results suggest that SOCS3 might be a key molecular involved in the development of complicated cancer pain and that overexpression of SOCS3 might be an important strategy for treatment for mechanical allodynia associated with bone cancer.
Collapse
Affiliation(s)
- Jinrong Wei
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Meng Li
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Dieyu Wang
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Hongyan Zhu
- 2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Xiangpeng Kong
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Shusheng Wang
- 2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - You-Lang Zhou
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Zhong Ju
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| | - Guang-Yin Xu
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China.,2 Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guo-Qin Jiang
- 1 Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, P.R. China
| |
Collapse
|
127
|
Li S, Cai J, Feng ZB, Jin ZR, Liu BH, Zhao HY, Jing HB, Wei TJ, Yang GN, Liu LY, Cui YJ, Xing GG. BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation. Neurochem Res 2017; 42:2712-2729. [DOI: 10.1007/s11064-017-2274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
128
|
Ivanusic JJ. Molecular Mechanisms That Contribute to Bone Marrow Pain. Front Neurol 2017; 8:458. [PMID: 28955292 PMCID: PMC5601959 DOI: 10.3389/fneur.2017.00458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Pain associated a bony pathology puts a significant burden on individuals, society, and the health-care systems worldwide. Pathology that involves the bone marrow activates sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely trigger for pain. This review presents our current understanding of how bone marrow nociceptors are influenced by noxious stimuli presented in pathology associated with bone marrow. A number of ion channels and receptors are emerging as important modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor (NGF) sequestration has been trialed for the management of inflammatory bone pain (osteoarthritis), and there is significant evidence for interaction of NGF with bone marrow nociceptors. Activation of transient receptor potential cation channel subfamily V member 1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense changes to tissue pH in the bone marrow microenvironment and could be targeted to treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated ion channel that has recently been reported to be expressed by most myelinated bone marrow nociceptors and might be a target for treatments directed against mechanically induced bone pain. These ion channels and receptors could be useful targets for the development of peripherally acting drugs to treat pain of bony origin.
Collapse
Affiliation(s)
- Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
129
|
Stover JD, Farhang N, Berrett KC, Gertz J, Lawrence B, Bowles RD. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation. Mol Ther 2017; 25:2014-2027. [PMID: 28676344 PMCID: PMC5589089 DOI: 10.1016/j.ymthe.2017.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy.
Collapse
Affiliation(s)
- Joshua D Stover
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Niloofar Farhang
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Hunstman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robby D Bowles
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
130
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
131
|
Yu Y, Huang X, Di Y, Qu L, Fan N. Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep 2017; 7:5707. [PMID: 28720830 PMCID: PMC5515923 DOI: 10.1038/s41598-017-05954-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state that often accompanies tissue damage, inflammation or injury of the nervous system. However the underlying molecular mechanisms still remain unclear. Here, we showed that CXCL12 and CXCR4 were upregulated in the dorsal root ganglion (DRG) after chronic compression of DRG (CCD), and some CXCR4 immunopositive neurons were also immunopositive for the nociceptive neuronal markers IB4, TRPV1, CGRP, and substance P. The incidence and amplitude of CXCL12-induced Ca2+ response in primary sensory neurons from CCD mice was significantly increased compared to those from control animals. CXCL12 depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2X rheobase in neurons from CCD mice. The mechanical and thermal hypernociception after CCD was attenuated by administration of a CXCR4 antagonist AMD3100. These findings suggest that CXCL12/CXCR4 signaling contributes to hypernociception after CCD, and targeting CXCL12/CXCR4 signaling pathway may alleviate neuropathic pain.
Collapse
Affiliation(s)
- Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Xini Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Yuwei Di
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, 725N. Wolfe St., Baltimore, MD, 21205, USA
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China.
| |
Collapse
|
132
|
Cold stress-induced brain injury regulates TRPV1 channels and the PI3K/AKT signaling pathway. Brain Res 2017; 1670:201-207. [PMID: 28669718 DOI: 10.1016/j.brainres.2017.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/14/2017] [Accepted: 06/25/2017] [Indexed: 01/09/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that interacts with several intracellular proteins in vivo, including calmodulin and Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt). TRPV1 activation has been reported to exert neuroprotective effects. The aim of this study was to examine the impact of cold stress on the mouse brain and the underlying mechanisms of TRPV1 involvement. Adult male C57BL/6 mice were subjected to cold stress (4°C for 8h per day for 2weeks). The behavioral deficits of the mice were then measured using the Morris water maze. Expression levels of brain injury-related proteins and mRNA were measured by western blot, immunofluorescence or RT-PCR analysis. The mice displayed behavioral deficits, inflammation and changes in brain injury markers following cold stress. As expected, upregulated TRPV1 expression levels and changes in PI3K/Akt expression were found. The TRPV1 inhibitor reduced the levels of brain injury-related proteins and inflammation. These data suggest that cold stress can induce brain injury, possibly through TRPV1 activation and the PI3K/Akt signaling pathway. Suppression of inflammation by inhibition of TRPV1 and the PI3K/Akt pathway may be helpful to prevent cold stress-induced brain injury.
Collapse
|
133
|
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA. TRPs in Pain Sensation. Front Physiol 2017. [PMID: 28649203 PMCID: PMC5465271 DOI: 10.3389/fphys.2017.00392] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
According to the International Association for the Study of Pain (IASP) pain is characterized as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage". The TRP super-family, compressing up to 28 isoforms in mammals, mediates a myriad of physiological and pathophysiological processes, pain among them. TRP channel might be constituted by similar or different TRP subunits, which will result in the formation of homomeric or heteromeric channels with distinct properties and functions. In this review we will discuss about the function of TRPs in pain, focusing on TRP channles that participate in the transduction of noxious sensation, especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a large number of physical and chemical stimuli.
Collapse
Affiliation(s)
- Isaac Jardín
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José J López
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Raquel Diez
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José Sánchez-Collado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Carlos Cantonero
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Letizia Albarrán
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Pedro C Redondo
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Ginés M Salido
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Sevilla, University of SevilleSevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
134
|
Neuron-restrictive silencer factor-mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Pain 2017; 158:879-890. [PMID: 28415063 PMCID: PMC5402709 DOI: 10.1097/j.pain.0000000000000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor–induced downregulation of μ-opioid receptor is involved in the reduction of morphine analgesia in sarcoma-induced bone cancer pain. Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the μ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain. Using a sarcoma-inoculated murine model, pain behaviors that represent continuous or breakthrough pain were evaluated. Expression of NRSF in the dorsal root ganglion (DRG) and spinal dorsal horn was quantified at the transcriptional and translational levels, respectively. Additionally, chromatin immunoprecipitation assays were used to detect NRSF binding to the promoter of MOR. Furthermore, NRSF was genetically knocked out by antisense oligodeoxynucleotide, and the expression of MOR and the effect of morphine were subsequently analyzed. Our results indicated that in a sarcoma murine model, NRSF expression is upregulated in dorsal root ganglion neurons, and the expression of NRSF mRNA is significantly negatively correlated with MOR mRNA expression. Additionally, chromatin immunoprecipitation analysis revealed that NRSF binding to the neuron-restrictive silencer element within the promoter area of the MOR gene is promoted with a hypoacetylation state of histone H3 and H4. Furthermore, genetically knocking down NRSF with antisense oligodeoxynucleotide rescued the expression of MOR and potentiated the systemic morphine analgesia. The present results suggest that in sarcoma-induced bone cancer pain, NRSF-induced downregulation of MOR is involved in the reduction of morphine analgesia. Epigenetically, up-regulation of MOR could substantially improve the effect of system delivery of morphine.
Collapse
|
135
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
136
|
Fukuyama T, Ganchingco JR, Bäumer W. Demonstration of rebound phenomenon following abrupt withdrawal of the JAK1 inhibitor oclacitinib. Eur J Pharmacol 2017; 794:20-26. [DOI: 10.1016/j.ejphar.2016.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
|
137
|
Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol 2016; 38:5-19. [PMID: 27793571 DOI: 10.1016/j.it.2016.10.001] [Citation(s) in RCA: 665] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Nociceptor sensory neurons protect organisms from danger by eliciting pain and driving avoidance. Pain also accompanies many types of inflammation and injury. It is increasingly clear that active crosstalk occurs between nociceptor neurons and the immune system to regulate pain, host defense, and inflammatory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In turn, nociceptor neurons release neuropeptides and neurotransmitters from nerve terminals that regulate vascular, innate, and adaptive immune cell responses. Therefore, the dialog between nociceptor neurons and the immune system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat chronic pain and inflammatory diseases.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA; Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR 10011, Brazil
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
138
|
Zhang MJ, Liu Y, Hu ZC, Zhou Y, Pi Y, Guo L, Wang X, Chen X, Li JC, Zhang LL. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension. Histochem Cell Biol 2016; 147:511-521. [DOI: 10.1007/s00418-016-1512-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 01/11/2023]
|
139
|
Ding CP, Xue YS, Yu J, Guo YJ, Zeng XY, Wang JY. The Red Nucleus Interleukin-6 Participates in the Maintenance of Neuropathic Pain Induced by Spared Nerve Injury. Neurochem Res 2016; 41:3042-3051. [DOI: 10.1007/s11064-016-2023-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
|
140
|
Xiao Y, Chen X, Zhang PA, Xu Q, Zheng H, Xu GY. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Sci Rep 2016; 6:29026. [PMID: 27364923 PMCID: PMC4929564 DOI: 10.1038/srep29026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/14/2016] [Indexed: 12/27/2022] Open
Abstract
The central mechanisms of visceral hypersensitivity remain largely unknown. It's reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Ying Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoqi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou 45000, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Qiya Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Hang Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
141
|
Hu X, Adebiyi MG, Luo J, Sun K, Le TTT, Zhang Y, Wu H, Zhao S, Karmouty-Quintana H, Liu H, Huang A, Wen YE, Zaika OL, Mamenko M, Pochynyuk OM, Kellems RE, Eltzschig HK, Blackburn MR, Walters ET, Huang D, Hu H, Xia Y. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Rep 2016; 16:106-119. [PMID: 27320922 DOI: 10.1016/j.celrep.2016.05.080] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/22/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada(-/-) mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund's adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.
Collapse
Affiliation(s)
- Xia Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Anesthesiology, Third XiangYa Hospital, Central South University, Hunan 440851, China
| | - Morayo G Adebiyi
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jialie Luo
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Thanh-Thuy T Le
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hongyu Wu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Shushan Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Aji Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yuan Edward Wen
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Oleg L Zaika
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Mykola Mamenko
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Oleh M Pochynyuk
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Colorado, Aurora, CO 80045, USA
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Edgar T Walters
- Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Dong Huang
- Department of Anesthesiology, Third XiangYa Hospital, Central South University, Hunan 440851, China
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| |
Collapse
|
142
|
Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, Ye DW, Tian YK. Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation 2016; 13:141. [PMID: 27267059 PMCID: PMC4897919 DOI: 10.1186/s12974-016-0607-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/01/2016] [Indexed: 02/08/2023] Open
Abstract
Interleukin-6 is an inflammatory cytokine with wide-ranging biological effects. It has been widely demonstrated that neuroinflammation plays a critical role in the development of pathological pain. Recently, various pathological pain models have shown elevated expression levels of interleukin-6 and its receptor in the spinal cord and dorsal root ganglia. Additionally, the administration of interleukin-6 could cause mechanical allodynia and thermal hyperalgesia, and an intrathecal injection of anti-interleukin-6 neutralizing antibody alleviated these pain-related behaviors. These studies indicated a pivotal role of interleukin-6 in pathological pain. In this review, we summarize the recent progress in understanding the roles and mechanisms of interleukin-6 in mediating pathological pain associated with bone cancer, peripheral nerve injury, spinal cord injury, chemotherapy-induced peripheral neuropathy, complete Freund’s adjuvant injection, and carrageenan injection. Understanding and regulating interleukin-6 could be an interesting lead to novel therapeutic strategies for pathological pain.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Heng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shu-Ping Chen
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology and Key Laboratory of Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Allahverdi Shahveranov
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
143
|
Nencini S, Ivanusic JJ. The Physiology of Bone Pain. How Much Do We Really Know? Front Physiol 2016; 7:157. [PMID: 27199772 PMCID: PMC4844598 DOI: 10.3389/fphys.2016.00157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
Pain is associated with most bony pathologies. Clinical and experimental observations suggest that bone pain can be derived from noxious stimulation of the periosteum or bone marrow. Sensory neurons are known to innervate the periosteum and marrow cavity, and most of these have a morphology and molecular phenotype consistent with a role in nociception. However, little is known about the physiology of these neurons, and therefore information about mechanisms that generate and maintain bone pain is lacking. The periosteum has received greater attention relative to the bone marrow, reflecting the easier access of the periosteum for experimental assessment. With the electrophysiological preparations used, investigators have been able to record from single periosteal units in isolation, and there is a lot of information available about how they respond to different stimuli, including those that are noxious. In contrast, preparations used to study sensory neurons that innervate the bone marrow have been limited to recording multi-unit activity in whole nerves, and whilst they clearly report responses to noxious stimulation, it is not possible to define responses for single sensory neurons that innervate the bone marrow. There is only limited evidence that peripheral sensory neurons that innervate bone can be sensitized or that they can be activated by multiple stimulus types, and at present this only exists in part for periosteal units. In the central nervous system, it is clear that spinal dorsal horn neurons can be activated by noxious stimuli applied to bone. Some can be sensitized under pathological conditions and may contribute in part to secondary or referred pain associated with bony pathology. Activity related to stimulation of sensory nerves that innervate bone has also been reported in neurons of the spinoparabrachial pathway and the somatosensory cortices, both known for roles in coding information about pain. Whilst these provide some clues as to the way information about bone pain is centrally coded, they need to be expanded to further our understanding of other central territories involved. There is a lot more to learn about the physiology of peripheral sensory neurons that innervate bone and their central projections.
Collapse
Affiliation(s)
- Sara Nencini
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
144
|
Alves CJ, Neto E, Sousa DM, Leitão L, Vasconcelos DM, Ribeiro-Silva M, Alencastre IS, Lamghari M. Fracture pain-Traveling unknown pathways. Bone 2016; 85:107-14. [PMID: 26851411 DOI: 10.1016/j.bone.2016.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022]
Abstract
An increase of fracture incidence is expected for the next decades, mostly due to the undeniable increase of osteoporotic fractures, associated with the rapid population ageing. The rise in sports-related fractures affecting the young and active population also contributes to this increased fracture incidence, and further amplifies the economical burden of fractures. Fracture often results in severe pain, which is a primary symptom to be treated, not only to guarantee individual's wellbeing, but also because an efficient management of fracture pain is mandatory to ensure proper bone healing. Here, we review the available data on bone innervation and its response to fracture, and discuss putative mechanisms of fracture pain signaling. In addition, the common therapeutic approaches to treat fracture pain are discussed. Although there is still much to learn, research in fracture pain has allowed an initial insight into the mechanisms involved. During the inflammatory response to fracture, several mediators are released and will putatively activate and sensitize primary sensory neurons, in parallel, intense nerve sprouting that occurs in the fracture callus area is also suggested to be involved in pain signaling. The establishment of hyperalgesia and allodynia after fracture indicates the development of peripheral and central sensitization, still, the underlying mechanisms are largely unknown. A major concern during the treatment of fracture pain needs to be the preservation of proper bone healing. However, the most common therapeutic agents, NSAIDS and opiates, can cause significant side effects that include fracture repair impairment. The understanding of the mechanisms of fracture pain signaling will allow the development of mechanisms-based therapies to effectively and safely manage fracture pain.
Collapse
Affiliation(s)
- Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Faculdade de Medicina, Universidade do Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel M Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel Ribeiro-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Faculdade de Medicina, Universidade do Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês S Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
145
|
SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State. Mol Neurobiol 2016; 54:2763-2775. [PMID: 27011380 DOI: 10.1007/s12035-016-9875-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.
Collapse
|