101
|
Sugita S, Tahir P, Kinjo S. The effects of microbiome-targeted therapy on cognitive impairment and postoperative cognitive dysfunction-A systematic review. PLoS One 2023; 18:e0281049. [PMID: 36749772 PMCID: PMC9904456 DOI: 10.1371/journal.pone.0281049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut-brain axis involves bidirectional communication between the gut-microbiota and central nervous system. This study aimed to investigate whether probiotics and/or prebiotics, known as Microbiome-targeted Therapies (MTTs), improve cognition and prevent postoperative cognitive dysfunction (POCD). METHODS Relevant animal and human studies were identified using a systematic database search (PubMed, EMBASE, Cochrane Library, and Web of Science), focusing on the effects of MTTs on inflammation, perioperative and non-perioperative cognitive impairment. Screening and data extraction were conducted by two independent reviewers. The Risk of bias was assessed using the SYRCLE's risk of bias tool for animal studies. The revised Cochrane risk of bias tool (RoB 2) was used for human studies. RESULTS A total of 24 articles were selected; 16 of these involved animal studies, and 8 described studies in humans. In these papers, the use of MTTs consistently resulted in decreased inflammation in perioperative and non-perioperative settings. Out of 16 animal studies, 5 studies (2 associated with delirium and 3 studies related to POCD) were conducted in a perioperative setting. MTTs improved perioperative cognitive behavior and reduced inflammation in all 5 animal studies. Eleven animal studies were conducted in a non-perioperative setting. In all of these studies, MTTs showed improvement in learning and memory function. MTTs showed a positive effect on levels of pro-inflammatory cytokines and biomarkers related to cognitive function. Among the 8 human studies, only one study examined the effects of perioperative MTTs on cognitive function. This study showed a reduced incidence of POCD along with improved cognitive function. Of the remaining 7 studies, 6 suggested that MTTs improved behavioral test results and cognition in non-perioperative environments. One study failed to show any significant differences in memory, biomarkers of inflammation, or oxidative factors. CONCLUSION In the studies we examined, most showed that MTTs decrease inflammation by down-regulating inflammatory cytokines and oxidative stress in both perioperative and non-perioperative settings. In general, MTTs also seem to have a positive effect on cognition through neural, immune, endocrine, and metabolic pathways. However, these effects have not yet resulted in a consensus regarding preventative strategies or treatments. Based on these current research results, MTTs could be a potential new preventative strategy for cognitive impairment after surgery.
Collapse
Affiliation(s)
- Saiko Sugita
- Department of Anesthesiology, Nippon Medical School, Tama-Nagayama Hospital, Tokyo, Japan
| | - Peggy Tahir
- University of California San Francisco Library, University of California, San Francisco, San Francisco, California, United States of America
| | - Sakura Kinjo
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
102
|
Pan H, Chen X, Wang P, Peng J, Li J, Ding K. Effects of Nemacystus decipiens polysaccharide on mice with antibiotic associated diarrhea and colon inflammation. Food Funct 2023; 14:1627-1635. [PMID: 36688462 DOI: 10.1039/d1fo02813h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic associated diarrhea (AAD) is a common side effect of antibiotic therapy in which gut microbiota plays an important role in the disease. However, the function of gut microbiota in this disease is still not entirely clear. Polysaccharides have shown strong activity in shaping gut microbiota. Whether the polysaccharide can intervene with the microbiota to improve ADD has not been determined. In this study, we extract crude polysaccharides from Nemacystus decipiens (N. decipiens), a traditional Chinese medicine (TCM), named NDH0. The crude polysaccharide NDH0 might significantly relieve the symptom of mice with AAD, including a reduction in body weight, shortening of cecum index and the infiltration of inflammatory cells into the colon. NDH0-treated mice exhibited more abundant gut microbial diversity; significantly increased the abundance of Muribaculum, Lactobacillus, and Bifidobacterium and decreased the abundance of Enterobacter and Clostridioides at genus level. NDH0 treatment down-regulated the level of pro-inflammatory cytokines, including IL-1β and IL-6 in colon tissue. NDH0 protected the integrity of colon tissues and partially inactivated the related inflammation pathway by maintaining occludin and SH2-containing Inositol 5'-Phosphatase (SHIP). NDH0 could alleviate symptoms of diarrhea by modulating gut microbiota composition, improving intestinal integrity and reducing inflammation. The underlying protective mechanism was to reduce the abundance of opportunistic pathogens and maintain SHIP protein expression. Collectively, our results demonstrated the role of NDH0 as a potential intestinal protective agent in gut dysbiosis.
Collapse
Affiliation(s)
- Haoyu Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China.,Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Chen
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - PeiPei Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| | - Junfeng Peng
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Judong Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China.,Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Kan Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China.,Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
103
|
Liu Y, Zhang D, Ning Q, Wang J. Growth characteristics and metabonomics analysis of Lactobacillus rhamnosus GG in Ganoderma lucidum aqueous extract medium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
104
|
Lactobacillus rhamnosus GG Promotes Recovery of the Colon Barrier in Septic Mice through Accelerating ISCs Regeneration. Nutrients 2023; 15:nu15030672. [PMID: 36771378 PMCID: PMC9921111 DOI: 10.3390/nu15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery effects mediated by the ISCs are related to the gut microbiota. This research found that the survival rate of septic mice was improved with a Lactobacillus rhamnosus GG (LGG) treatment. Furthermore, an increased proliferation and decreased apoptosis in colon epithelial cells were observed in the LGG-treated septic mice. In vitro, we found that a LGG supernatant was effective in maintaining the colonoid morphology and proliferation under the damage of TNF-α. Both in the mice colon and the colonoid, the LGG-induced barrier repair process was accompanied by an increased expression of Lgr5+ and lysozyme+ cells. This may be attributed to the upregulation of the IL-17, retinol metabolism, NF-kappa B and the MAPK signaling pathways, among which, Tnfaip3 and Nfkbia could be used as two potential biomarkers for LGG in intestinal inflammation therapy. In conclusion, our finding suggests that LGG protects a sepsis-injured intestinal barrier by promoting ISCs regeneration, highlighting the protective mechanism of oral probiotic consumption in sepsis.
Collapse
|
105
|
Anglenius H, Mäkivuokko H, Ahonen I, Forssten SD, Wacklin P, Mättö J, Lahtinen S, Lehtoranta L, Ouwehand AC. In Vitro Screen of Lactobacilli Strains for Gastrointestinal and Vaginal Benefits. Microorganisms 2023; 11:microorganisms11020329. [PMID: 36838294 PMCID: PMC9967617 DOI: 10.3390/microorganisms11020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Traditional probiotics comprise mainly lactic acid bacteria that are safe for human use, tolerate acid and bile, and adhere to the epithelial lining and mucosal surfaces. In this study, one hundred commercial and non-commercial strains that were isolated from human feces or vaginal samples were tested with regards to overall growth in culture media, tolerance to acid and bile, hydrogen peroxide (H2O2) production, and adhesion to vaginal epithelial cells (VECs) and to blood group antigens. As a result, various of the tested lactobacilli strains were determined to be suitable for gastrointestinal or vaginal applications. Commercial strains grew better than the newly isolated strains, but tolerance to acid was a common property among all tested strains. Tolerance to bile varied considerably between the strains. Resistance to bile and acid correlated well, as did VEC adhesion and H2O2 production, but H2O2 production was not associated with resistance to bile or acid. Except for L. iners strains, vaginal isolates had better overall VEC adhesion and higher H2O2 production. Species- and strain-specific differences were evident for all parameters. Rank-ordered clustering with nine clusters was used to identify strains that were suitable for gastrointestinal or vaginal health, demonstrating that the categorization of strains for targeted health indications is possible based on the parameters that were measured in this study.
Collapse
Affiliation(s)
- Heli Anglenius
- IFF Health and Biosciences, 02460 Kantvik, Finland
- Correspondence:
| | | | | | | | | | - Jaana Mättö
- Finnish Red Cross Blood Service, 00310 Helsinki, Finland
| | | | | | | |
Collapse
|
106
|
Van Holm W, Carvalho R, Delanghe L, Eilers T, Zayed N, Mermans F, Bernaerts K, Boon N, Claes I, Lebeer S, Teughels W. Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms. NPJ Biofilms Microbiomes 2023; 9:3. [PMID: 36681674 PMCID: PMC9867767 DOI: 10.1038/s41522-023-00370-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Several oral diseases are characterized by a shift within the oral microbiome towards a pathogenic, dysbiotic composition. Broad-spectrum antimicrobials are often part of patient care. However, because of the rising antibiotic resistance, alternatives are increasingly desirable. Alternatively, supplying beneficial species through probiotics is increasingly showing favorable results. Unfortunately, these probiotics are rarely evaluated comparatively. In this study, the in vitro effects of three known and three novel Lactobacillus strains, together with four novel Streptococcus salivarius strains were comparatively evaluated for antagonistic effects on proximal agar growth, antimicrobial properties of probiotic supernatant and the probiotic's effects on in vitro periodontal biofilms. Strain-specific effects were observed as differences in efficacy between genera and differences within genera. While some of the Lactobacillus candidates were able to reduce the periodontal pathobiont A. actinomycetemcomitans, the S. salivarius strains were not. However, the S. salivarius strains were more effective against periodontal pathobionts P. intermedia, P. gingivalis, and F. nucleatum. Vexingly, most of the Lactobacillus strains also negatively affected the prevalence of commensal species within the biofilms, while this was lower for S. salivarius strains. Both within lactobacilli and streptococci, some strains showed significantly more inhibition of the pathobionts, indicating the importance of proper strain selection. Additionally, some species showed reductions in non-target species, which can result in unexpected and unexplored effects on the whole microbiome.
Collapse
Affiliation(s)
- Wannes Van Holm
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Rita Carvalho
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lize Delanghe
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Naiera Zayed
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium ,grid.411775.10000 0004 0621 4712Faculty of Pharmacy, Menoufia University, Shibin el Kom, Egypt
| | - Fabian Mermans
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- grid.5596.f0000 0001 0668 7884Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Nico Boon
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | | | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wim Teughels
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
107
|
Hypoxia-Driven Changes in a Human Intestinal Organoid Model and the Protective Effects of Hydrolyzed Whey. Nutrients 2023; 15:nu15020393. [PMID: 36678267 PMCID: PMC9863820 DOI: 10.3390/nu15020393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In the current study, we aimed to investigate the effects of whey protein fractions with different degrees of enzymatic hydrolysis on the intestinal epithelium in health and disease with a novel 2D human intestinal organoid (HIO) monolayer model. In addition, we aimed to assess the anti-microbial activity and immune effects of the whey protein fractions. Human intestinal organoids were cultured from adult small intestines, and a model enabling apical administration of nutritional components during hypoxia-induced intestinal inflammation and normoxia (control) in crypt-like and villus-like HIO was established. Subsequently, the potential beneficial effects of whey protein isolate (WPI) and two whey protein hydrolysates with a 27.7% degree of hydrolysis (DH28) and a 50.9% degree of hydrolysis (DH51) were assessed. In addition, possible immune modulatory effects on human peripheral immune cells and anti-microbial activity on four microbial strains of the whey protein fractions were investigated. Exposure to DH28 prevented paracellular barrier loss of crypt-like HIO following hypoxia-induced intestinal inflammation with a concomitant decrease in hypoxia inducible factor 1 alpha (HIF1α) mRNA expression. WPI increased Treg numbers and Treg expression of cluster of differentiation 25 (CD25) and CD69 and reduced CD4+ T cell proliferation, whereas no anti-microbial effects were observed. The observed biological effects were differentially mediated by diverse whey protein fractions, indicating that (degree of) hydrolysis influences their biological effects. Moreover, these new insights may provide opportunities to improve immune tolerance and promote intestinal health.
Collapse
|
108
|
Schalich K, Rajagopala S, Das S, O’Connell R, Yan F. Intestinal epithelial cell-derived components regulate transcriptome of Lactobacillus rhamnosus GG. Front Microbiol 2023; 13:1051310. [PMID: 36687654 PMCID: PMC9846326 DOI: 10.3389/fmicb.2022.1051310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Intestinal epithelial cells (IECs) provide the frontline responses to the gut microbiota for maintaining intestinal homeostasis. Our previous work revealed that IEC-derived components promote the beneficial effects of a commensal and probiotic bacterium, Lactobacillus rhamnosus GG (LGG). This study aimed to elucidate the regulatory effects of IEC-derived components on LGG at the molecular level. Methods Differential gene expression in LGG cultured with IEC-derived components at the timepoint between the exponential and stationary phase was studied by RNA sequencing and functional analysis. Results The transcriptomic profile of LGG cultured with IEC-derived components was significantly different from that of control LGG, with 231 genes were significantly upregulated and 235 genes significantly down regulated (FDR <0.05). The Clusters of Orthologous Groups (COGs) and Gene Ontology (GO) analysis demonstrated that the predominant genes enriched by IEC-derived components are involved in nutrient acquisition, including transporters for amino acids, metals, and sugars, biosynthesis of amino acids, and in the biosynthesis of cell membrane and cell wall, including biosynthesis of fatty acid and lipoteichoic acid. In addition, genes associated with cell division and translation are upregulated by IEC-derived components. The outcome of the increased transcription of these genes is supported by the result that IEC-derived components significantly promoted LGG growth. The main repressed genes are associated with the metabolism of amino acids, purines, carbohydrates, glycerophospholipid, and transcription, which may reflect regulation of metabolic mechanisms in response to the availability of nutrients in bacteria. Discussion These results provide mechanistic insight into the interactions between the gut microbiota and the host.
Collapse
Affiliation(s)
- Kasey Schalich
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Seesandra Rajagopala
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ryan O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States,*Correspondence: Fang Yan,
| |
Collapse
|
109
|
Zhou KZ, Wu K, Deng LX, Hu M, Luo YX, Zhang LY. Probiotics to prevent necrotizing enterocolitis in very low birth weight infants: A network meta-analysis. Front Pediatr 2023; 11:1095368. [PMID: 36950176 PMCID: PMC10025406 DOI: 10.3389/fped.2023.1095368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 03/24/2023] Open
Abstract
Objective This study aims to review the evidence for the optimal regimen of probiotics for the prevention of necrotizing enterocolitis (NEC) in very low birth weight infants. Design Through searching PubMed, EMBASE, Cochrane Library, and Web of Science till September 30, 2022, only randomized controlled trials were included to evaluate the optimal regimen of probiotics for the prevention of NEC in very low birth weight infants. The methodological quality of the included studies was assessed by the Cochrane risk of bias assessment tool (RoB 2), and the collected data were analyzed accordingly using Stata software. Results Twenty-seven RCTs were included, and the total sample size used in the study was 529. The results of the network meta-analysis showed that Bovine lactoferrin + Lactobacillus rhamnosus GG (RR 0.03; 95% CI 0.00-0.35), Lactobacillus rhamnosus + Lactobacillus plantarum + Lactobacillus casei + Bifidobacterium lactis (RR 0.06; 95% CI 0.00-0.70), Bifidobacterium lactis + inulin (RR 0.16; 95% CI 0.03-0.91) were superior to the control group (Bifidobacterium lactis + Bifidobacterium longum) in reducing the incidence of NEC. The reduction in the incidence of NEC were as follows: Bovine lactoferrin + Lactobacillus rhamnosus GG (SUCRA 95.7%) > Lactobacillus rhamnosus + Lactobacillus plantarum + Lactobacillus casei + Bifidobacterium lactis (SUCRA 89.4%) > Bifidobacterium lactis + inulin (SUCRA 77.8%). Conclusions This network meta-analysis suggests that Lactobacillus rhamnosus GG combined with bovine lactoferrin maybe the most recommended regimen for the prevention of NEC in very low birth weight infants.
Collapse
|
110
|
Sankova MV, Nikolenko VN, Sankov SV, Sinelnikov MY. SARS-CoV-2 and microbiome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:279-337. [DOI: 10.1016/b978-0-443-18566-3.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
111
|
The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms 2022; 10:microorganisms10122518. [PMID: 36557771 PMCID: PMC9781324 DOI: 10.3390/microorganisms10122518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The skin is the largest organ in the human body and is colonized by a diverse microbiota that works in harmony to protect the skin. However, when skin damage occurs, the skin microbiota is also disrupted, and pathogens can invade the wound and cause infection. Probiotics or other beneficial microbes and their metabolites are one possible alternative treatment for combating skin pathogens via their antimicrobial effectiveness. The objective of our study was to evaluate the antimicrobial effect of seven multi-strain dietary supplements and eleven single-strain microbes that contain probiotics against 15 clinical wound pathogens using the agar spot assay, co-culturing assay, and agar well diffusion assay. We also conducted genera-specific and species-specific molecular methods to detect the DNA in the dietary supplements and single-strain beneficial microbes. We found that the multi-strain dietary supplements exhibited a statistically significant higher antagonistic effect against the challenge wound pathogens than the single-strain microbes and that lactobacilli-containing dietary supplements and single-strain microbes were significantly more efficient than the selected propionibacteria and bacilli. Differences in results between methods were also observed, possibly due to different mechanisms of action. Individual pathogens were susceptible to different dietary supplements or single-strain microbes. Perhaps an individual approach such as a 'probiogram' could be a possibility in the future as a method to find the most efficient targeted probiotic strains, cell-free supernatants, or neutralized cell-free supernatants that have the highest antagonistic effect against individual clinical wound pathogens.
Collapse
|
112
|
Assessment of Potential Probiotic and Synbiotic Properties of Lactic Acid Bacteria Grown In Vitro with Starch-Based Soluble Corn Fiber or Inulin. Foods 2022; 11:foods11244020. [PMID: 36553762 PMCID: PMC9777968 DOI: 10.3390/foods11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
This research is aimed to search for suitable probiotic plus prebiotic combinations for food applications. Sixteen bacteria were tested for resistance to low pH, bile salts and antibiotics, and their adhesion to Caco-2 cells, in order to select potential probiotics. Then, two bacteria were selected to study short chain fatty acids production in a starch-based soluble corn fiber or inulin media. Lactiplantibacillus plantarum V3 and L. acidophilus La3 manifested the best probiotic features with a remarkable adhesion ability (23.9% and 17.3%, respectively). Structural differences between fibers have an impact on how each one is metabolized, both in their capacity of being easily fermented and in the short chain fatty acids profile obtained: L. acidophilus La3 in inulin fermentation yielded the highest total short chain fatty acids (85.7 mMol/L), and, in starch-based soluble corn fiber fermentation, yielded the highest butyric acid content (0.31 mMol/L). This study provides valuable information for future design of synbiotics for food applications.
Collapse
|
113
|
Zhang C, Cheng H, Han Y, Wa Y, Chen D, Guan C, Huang Y, Gu R. Transcriptome-phenotype matching analysis of how nitrogen sources influence Lacticaseibacillus rhamnosus tolerance to heat stress and oxidative stress. Microb Cell Fact 2022; 21:257. [PMID: 36510221 PMCID: PMC9746023 DOI: 10.1186/s12934-022-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Spray drying is the most cost-effective production method for lactic acid bacteria starters, but heat and oxidative stresses result in low survival rates. The heat stress and oxidative stress tolerance of Lacticaseibacillus rhamnosus cultured in tryptone-free MRS (NP-MRS) broth was much stronger than that in MRS or tryptone-free MRS broth supplemented with phenylalanine (Phe-MRS). Here, multiple transcriptome-phenotype matching was performed on cells cultured in NP-MRS, MRS and Phe-MRS broths to reveal the mechanism by which nitrogen sources influence L. rhamnosus tolerance to heat stress and oxidative stress. RESULTS Compared with cells cultured in NP-MRS broth, 83 overlapping differentially expressed genes (DEGs) were downregulated by either tryptone or phenylalanine. The overlapping DEGs were mainly classified into carbohydrate metabolism and membrane transport pathways, which are often repressed by glucose during carbon catabolite repression (CCR). In the presence of glucose, the heat stress or oxidative stress tolerance of L. rhamnosus hsryfm 1301 was not strengthened by supplementation with secondary carbohydrates. Replacing glucose with mannose, fructose or ribose improved the heat stress and oxidative stress tolerance of L. rhamnosus hsryfm 1301 (5 to 46-fold). CONCLUSIONS Alleviation of CCR might be a reason for the resistance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress in a low-nitrogen environment. The survival rate of L. rhamnosus during spray drying will hopefully be improved by relieving CCR. It is a new discovery that nitrogen sources influence CCR in L. rhamnosus.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.,Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, People's Republic of China
| | - Haohao Cheng
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Yuemei Han
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.,Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou, People's Republic of China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, 196 Huayang Xilu, Yangzhou, 225100, People's Republic of China. .,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, People's Republic of China.
| |
Collapse
|
114
|
Cheong YE, Kim J, Jin YS, Kim KH. Elucidation of the fucose metabolism of probiotic Lactobacillus rhamnosus GG by metabolomic and flux balance analyses. J Biotechnol 2022; 360:110-116. [PMID: 36336085 DOI: 10.1016/j.jbiotec.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotics because of its health benefits and safety. Fucose is among the most abundant hexoses in the human intestine, and LGG consumes fucose to produce energy or proliferate. However, no study has elucidated the metabolism by which LGG metabolizes fucose to produce energy, biomass, and extracellular metabolites. We used metabolomics and flux balance analysis to elucidate these mechanisms and highlight how they might affect the host. We found three different metabolic flux modes by which LGG anaerobically metabolizes fucose to produce energy and biomass. These metabolic flux modes differ from homolactic or heterolactic fermentation and account for the production of lactic acid, 1,2-propanediol, acetic acid, formic acid, and carbon dioxide as a result of fucose metabolism in LGG. We also used gas chromatography/time-of-flight mass spectrometry to identify a variety of short-chain fatty acids and organic acids secreted during fucose metabolism by LGG. Our study is the first to elucidate the unique fucose metabolism of LGG in anaerobic condition.
Collapse
Affiliation(s)
- Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jungyeon Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
115
|
Rückle X, Rühle J, Judd L, Hebel J, Dietz S, Poets CF, Gille C, Köstlin-Gille N. Different probiotic strains alter human cord blood monocyte responses. Pediatr Res 2022:10.1038/s41390-022-02400-5. [PMID: 36476746 DOI: 10.1038/s41390-022-02400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotics have a protective effect on various diseases. In neonatology, they are predominantly used to prevent necrotising enterocolitis (NEC), a severe inflammatory disease of the neonatal intestine. The mechanisms by which probiotics act are diverse; little is known about their direct effect on neonatal immune cells. METHODS In this study, we investigated the effect of probiotics on the functions of neonatal monocytes in an in vitro model using three different strains (Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA) and Bifidobacterium bifidum (BB)) and mononuclear cells isolated from cord blood. RESULTS We show that stimulation with LR induces proinflammatory effects in neonatal monocytes, such as increased expression of surface molecules involved in monocyte activation, increased production of pro-inflammatory and regulatory cytokines and increased production of reactive oxygen species (ROS). Similar effects were observed when monocytes were stimulated simultaneously with LPS. Stimulation with LA and BB alone or in combination also induced cytokine production in monocytes, with BB showing the least effects. CONCLUSIONS Our results suggest that probiotics increase the defence functions of neonatal monocytes and thus possibly favourably influence the newborn's ability to fight infections. IMPACT Probiotics induce a proinflammatory response in neonatal monocytes in vitro. This is a previously unknown mechanism of how probiotics modulate the immune response of newborns. Probiotic application to neonates may increase their ability to fight off infections.
Collapse
Affiliation(s)
- Xenia Rückle
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Jessica Rühle
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Leonie Judd
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Janine Hebel
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Stefanie Dietz
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Christian F Poets
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tübingen University Children's Hospital, Tübingen, Germany. .,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
116
|
Upadhaya SD, Kim IH. Maintenance of gut microbiome stability for optimum intestinal health in pigs - a review. J Anim Sci Biotechnol 2022; 13:140. [PMID: 36474259 PMCID: PMC9727896 DOI: 10.1186/s40104-022-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pigs are exposed to various challenges such as weaning, environmental stressors, unhealthy diet, diseases and infections during their lifetime which adversely affects the gut microbiome. The inability of the pig microbiome to return to the pre-challenge baseline may lead to dysbiosis resulting in the outbreak of diseases. Therefore, the maintenance of gut microbiome diversity, robustness and stability has been influential for optimum intestinal health after perturbations. Nowadays human and animal researches have focused on more holistic approaches to obtain a robust gut microbiota that provides protection against pathogens and improves the digestive physiology and the immune system. In this review, we present an overview of the swine gut microbiota, factors affecting the gut microbiome and the importance of microbial stability in promoting optimal intestinal health. Additionally, we discussed the current understanding of nutritional interventions using fibers and pre/probiotics supplementation as non-antibiotic alternatives to maintain microbiota resilience to replace diminished species.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| | - In Ho Kim
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| |
Collapse
|
117
|
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022; 10:microorganisms10122392. [PMID: 36557645 PMCID: PMC9781831 DOI: 10.3390/microorganisms10122392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Enteric viruses, including the rotavirus, norovirus, and adenoviruses, are the most common cause of acute gastroenteritis. The rotavirus disease is especially prevalent among children, and studies over the past decade have revealed complex interactions between rotaviruses and the gut microbiota. One way to treat and prevent dysbiosis is the use of probiotics as an antiviral agent. This review focuses on the latest scientific evidence on the antiviral properties of probiotics against rotavirus gastroenteric infections in children. A total of 19 studies exhibited a statistically significant antiviral effect of probiotics. The main probiotics that were effective were Saccharomyces cerevisiae var. boulardii, Lacticaseibacillus rhamnosus GG, and various multi-strain probiotics. The underlying mechanism of the probiotics against rotavirus gastroenteric infections in children included immune enhancement and modulation of intestinal microbiota leading to shortening of diarrhoea. However, several clinical studies also found no significant difference in the probiotic group compared to the placebo group even though well-known strains were used, thus showing the importance of correct dosage, duration of treatment, quality of probiotics and the possible influence of other factors, such as the production process of probiotics and the influence of immunisation on the effect of probiotics. Therefore, more robust, well-designed clinical studies addressing all factors are warranted.
Collapse
Affiliation(s)
- Andrej Steyer
- National Laboratory of Health, Environment and Food, Division of Public Health Microbiology, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Dušanka Mičetić-Turk
- Department of Paediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Sabina Fijan
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
118
|
Lactobacillus rhamnosus GG protects against atherosclerosis by improving ketone body synthesis. Appl Microbiol Biotechnol 2022; 106:8233-8243. [PMID: 36385568 DOI: 10.1007/s00253-022-12265-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022]
Abstract
Atherosclerosis (AS) is a major cause of death and morbidity worldwide. There is an increasing amount of evidence that the gut microbiota plays an important role in disorders associated with lipid metabolism, such as AS, and alterations in the composition of the gut microbiota and its metabolic potential have been identified as contributing factors in the development of AS. Recently, probiotics have attracted great interest for their excellent cholesterol-lowering ability, their capacity to improve vascular endothelial function, and their participation in the remodeling of the intestinal flora to prevent AS. The incidental findings of our other study suggest that probiotic Lactobacillus rhamnosus GG may be associated with slowing the progression of AS. Thus, we delivered strain GG into mice by oral feeding and found that strain GG could effectively inhibit AS plaque generation. We analyzed the differences in gut microbiota composition and the peripheral blood metabolome in mice after oral feeding of strain GG by 16S DNA sequencing and untargeted metabolomics, respectively. The results showed that strain GG changed the composition of the gut microbiota in mice fed a high-fat diet; elevated the abundance of beneficial bacteria, such as Bilophila and Alistipes, and decreased the abundance of harmful bacteria, such as Deltaproteobacteria. The results of enrichment analysis of the gut microbiota and the peripheral blood metabolome both indicated that the antiatherosclerotic effect of strain GG might be associated with the biosynthesis pathway of ketone bodies. In addition, strain GG attenuated endothelial injury and elevated peripheral blood ketone body content in mice but did not significantly affect low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) content. In conclusion, our study provides new evidence that strain GG slows the progression of AS, which may be associated with its improvement of the gut microbiome and peripheral blood metabolome, its ability to increase the abundance of beneficial bacteria, and its participation in unsaturated fatty acid and ketone body synthesis and degradation. KEY POINTS: • L. rhamnosus GG attenuated endothelial injury and atherosclerotic plaque formation • L. rhamnosus GG elevated the abundance of beneficial bacteria • L. rhamnosus GG elevated peripheral blood ketone body content in mice.
Collapse
|
119
|
Zavaleta EB, Coavichi LL, Rodríguez LV, Andrade EF, García HS, Rascón Díaz M. Co-microencapsulation of Lactobacillus rhamnosus and krill oil by spray-drying. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Dehghani S, Edalatian Dovom MR, Yavarmanesh M, Sankian M. In vitro Evaluation of Potential Probiotic Characteristics and Survival of Human and Foodborne Lactic Acid Bacteria (Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum) in Mice Gastrointestinal Tract. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
121
|
Langa S, Peirotén Á, Curiel JA, Arqués JL, Landete JM. Promoters for the expression of food-grade selectable markers in lactic acid bacteria and bifidobacteria. Appl Microbiol Biotechnol 2022; 106:7845-7856. [PMID: 36307628 PMCID: PMC11618144 DOI: 10.1007/s00253-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
The genetic engineering of bacteria for food applications has biosafety requirements, including the use of non-antibiotic selectable markers. These can be gene-encoding bacteriocin immunity proteins, such as nisI and pedB, which require the use of promoters to ensure optimal expression. Our aim was to search for promoters for the expression of pediocin (pedB) and nisin (nisI) immunity genes, which could allow the selection of a wide variety of transformed lactic acid bacteria (LAB) and bifidobacteria strains. Eight promoters from LAB or bifidobacteria were initially studied using evoglow-Pp1 as the reporter gene in Lactococcus lactis NZ9000, resulting in the selection of P32, P3N, PTuR and PEF-P, which exhibited a strong constitutive expression. These promoters were further tested for the expression of the food-grade selectable markers pedB and nisI in agar diffusion assays with pediocin and nisin, respectively. The results obtained demonstrated that both the PTuR and PEF-P promoters allowed a good level of expression of nisI and pedB in the LAB and bifidobacteria strains tested. A suitable concentration of nisin or pediocin could be established for the selection of the strains transformed with vectors harbouring the combination of the selected promoters and markers nisI and pedB, and this was successfully applied to different strains of LAB and bifidobacteria. Therefore, PTuR and PEF-P promoters are excellent candidates for the expression of nisI and/or pedB as selectable markers in LAB and bifidobacteria, and they are suitable for use in food grade vectors to allow the selection of genetically engineered strains. KEY POINTS: • Food-grade vectors require non-antibiotic selectable markers such as pedB and nisI. • Eight promoters from LAB or bifidobacteria were initially tested in L. lactis NZ9000. • PTuR and PEF-P efficiently drove the expression of pedB and nisI in LAB and bifidobacteria.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain.
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| |
Collapse
|
122
|
Anderson RC. Can probiotics mitigate age-related neuroinflammation leading to improved cognitive outcomes? Front Nutr 2022; 9:1012076. [PMID: 36505245 PMCID: PMC9729724 DOI: 10.3389/fnut.2022.1012076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in brain structure and cognitive function are a natural part of aging; however, in some cases these changes are more severe resulting in mild cognitive impairment (MCI) or Alzheimer's disease (AD). Evidence is mounting to show that neuroinflammation is an underlying risk factor for neurodegenerative disease progression. Age-related neuroinflammation does not appear to occur in isolation and is part of increased systemic inflammation, which may in turn be triggered by changes in the gut associated with aging. These include an increase in gut permeability, which allows immune triggering compounds into the body, and alterations in gut microbiota composition leading to dysbiosis. It therefore follows that, treatments that can maintain healthy gut function may reduce inflammation and protect against, or improve, symptoms of age-associated neurodegeneration. The aim of this mini review was to evaluate whether probiotics could be used for this purpose. The analysis concluded that there is preliminary evidence to suggest that specific probiotics may improve cognitive function, particularly in those with MCI; however, this is not yet convincing and larger, multilocation, studies focus on the effects of probiotics alone are required. In addition, studies that combine assessment of cognition alongside analysis of inflammatory biomarkers and gut function are needed. Immense gains could be made to the quality of life of the aging population should the hypothesis be proven to be correct.
Collapse
|
123
|
Kang SJ, Jun JS, Hong KW. Transcriptome Analysis Reveals Immunomodulatory Effect of Spore-Displayed p75 on Human Intestinal Epithelial Caco-2 Cells. Int J Mol Sci 2022; 23:ijms232314519. [PMID: 36498846 PMCID: PMC9739243 DOI: 10.3390/ijms232314519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) can promote intestinal health by modulating the immune responses of the gastrointestinal tract. However, knowledge about the immunomodulatory action of LGG-derived soluble factors is limited. In our previous study, we have displayed LGG-derived p75 protein on the spore surface of Bacillus subtilis. The objective of this study was to determine the effect of spore-displayed p75 (CotG-p75) on immune system by investigating transcriptional response of Caco-2 cells stimulated by CotG-p75 through RNA-sequencing (RNA-seq). RNA-seq results showed that CotG-p75 mainly stimulated genes involved in biological processes, such as response to stimulus, immune regulation, and chemotaxis. KEGG pathway analysis suggested that many genes activated by CotG-p75 were involved in NF-ĸB signaling and chemokine signaling pathways. CotG-p75 increased cytokines and chemokines such as CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, CCL20, CCL22, and IL1B essential for the immune system. In particular, CotG-p75 increased the expression levels of NF-ĸB-related genes such as NFKBIA, TNFAIP3, BIRC3, NFKB2, and RELB involved in immune and inflammatory responses. This study provides genes and pathways involved in immune responses influenced by CotG-p75. These comprehensive transcriptome profiling could be used to elucidate the immunomodulatory action of CotG-p75.
Collapse
|
124
|
The Mucus Binding Factor Is Not Necessary for Lacticaseibacillus rhamnosus CRL1505 to Exert Its Immunomodulatory Activities in Local and Distal Mucosal Sites. Int J Mol Sci 2022; 23:ijms232214357. [PMID: 36430834 PMCID: PMC9698997 DOI: 10.3390/ijms232214357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Both viable and non-viable orally administered Lacticaseibacillus rhamnosus CRL1505 modulate immunity in local (intestine) and distal (respiratory) mucosal sites. So, intestinal adhesion and colonization are not necessary for this probiotic strain to exert its immunomodulatory effects. In this work, a mucus-binding factor knockout CRL1505 strain (ΔmbfCRL1505) was obtained and the lack of binding ability to both intestinal epithelial cells and mucin was demonstrated in vitro. In addition, two sets of in vivo experiments in 6-week-old Balb/c mice were performed to evaluate ΔmbfCRL1505 immunomodulatory activities. (A) Orally administered ΔmbfCRL1505 prior to intraperitoneal injection of the Toll-like receptor 3 (TLR3) agonist poly(I:C) significantly reduced intraepithelial lymphocytes (CD3+NK1.1+CD8αα+) and pro-inflammatory mediators (TNF-α, IL-6 and IL-15) in the intestinal mucosa. (B) Orally administered ΔmbfCRL1505 prior to nasal stimulation with poly(I:C) significantly decreased the levels of the biochemical markers of lung tissue damage. In addition, reduced recruitment of neutrophils and levels of pro-inflammatory mediators (TNF-α, IL-6 and IL-8) as well as increased IFN-β and IFN-γ in the respiratory mucosa were observed in ΔmbfCRL1505-treated mice when compared to untreated control mice. The immunological changes induced by the ΔmbfCRL1505 strain were not different from those observed for the wild-type CRL1505 strain. Although it is generally accepted that the expression of adhesion factors is necessary for immunobiotics to induce their beneficial effects, it was demonstrated here that the mbf protein is not required for L. rhamnosus CRL1505 to exert its immunomodulatory activities in local and distal mucosal sites. These results are a step forward towards understanding the mechanisms involved in the immunomodulatory capabilities of L. rhamnosus CRL1505.
Collapse
|
125
|
Liu X, Lv X, Sun Y, Liu C, Wang R, Liu R, Ma Y, Li Q. Probiotic properties of Lacticaseibacillus rhamnosus grx10 revolved with complete genome. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
126
|
Li Y, Chen J, Sun D, Liu J, Wang Z, Li A. Lactobacillus GG regulates the Wnt/β-catenin pathway to reinforce intestinal barrier function and alleviate necrotizing enterocolitis. J Funct Foods 2022; 97:105243. [DOI: 10.1016/j.jff.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
127
|
Wu Y, Pei C, Wang X, Wang Y, Huang D, Shi S, Shen Z, Li S, He Y, Wang Z, Wang J. Probiotics ameliorates pulmonary inflammation via modulating gut microbiota and rectifying Th17/Treg imbalance in a rat model of PM2.5 induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114060. [PMID: 36115151 DOI: 10.1016/j.ecoenv.2022.114060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The imbalance of intestinal microbiota and inflammatory response is crucial in the development of lung injury induced by PM2.5. In recent years, probiotics have attracted great attention for their health benefits in inflammatory diseases and regulating intestinal balance, but their intricate mechanisms need further experiments to elucidate. In our research, a rat lung damage model induced by PM2.5 exposure in real environment was established to explore the protective properties of probiotics on PM2.5 exposure injury and its related mechanism. The results indicated that compared with the AF control group, rats in the PM2.5 group gained weight slowly, ate less and had yellow hair. The results of pathological and immunohistochemical examinations showed that the inflammatory infiltration of lung tissue was alleviated after probiotic treatment. The Lung function results also showed the improvement effects of probiotics administration. In addition, probiotics could promote the balance of Th17 and Treg cells, inhibit cytokines expression (TNF-α, IL-6, IL-1β, IL-17A), and increase the concentration of anti-inflammatory factors (IL-10, TGF-β). In addition, 16 S rRNA sequence analysis showed that probiotic treatment could reduce microbiota abundance and diversity, increase the abundance of possible beneficial bacteria, and decrease the abundance of bacteria associated with inflammation. In general, probiotic intervention was found to have preventive effects on the occurrence of PM2.5 induced pathological injury, and the mechanism was associate with to the inhibition of inflammatory response, regulation of Th17/Treg balance and maintenance of intestinal internal environment stability.
Collapse
Affiliation(s)
- Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu 611137, PR China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
128
|
Yang H, Qu Y, Gao Y, Sun S, Wu R, Wu J. Research Progress on the Correlation between the Intestinal Microbiota and Food Allergy. Foods 2022; 11:foods11182913. [PMID: 36141041 PMCID: PMC9498665 DOI: 10.3390/foods11182913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The increasing incidence of food allergy is becoming a substantial public health concern. Increasing evidence suggests that alterations in the composition of the intestinal microbiota play a part in the development of food allergy. Additionally, the application of probiotics to correct gut microbiota imbalances and regulate food allergy has become a research hotspot. However, the mechanism by which the gut microbiota regulates food allergy and the efficacy of probiotics are still in the preliminary exploration stage, and there are no clear and specific conclusions. The aim of this review is to provide information regarding the immune mechanism underlying food allergy, the correlation between the intestinal microbiota and food allergy, a detailed description of causation, and mechanisms by which the intestinal microbiota regulates food allergy. Subsequently, we highlight how probiotics modulate the gut microbiome–immune axis to alleviate food allergy. This study will contribute to the dovetailing of bacterial therapeutics with immune system in allergic individuals to prevent food allergy and ameliorate food allergy symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Rina Wu
- Correspondence: or ; Tel./Fax: +86-24-88487161
| | | |
Collapse
|
129
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|
130
|
Zhantlessova S, Savitskaya I, Kistaubayeva A, Ignatova L, Talipova A, Pogrebnjak A, Digel I. Advanced "Green" Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers (Basel) 2022; 14:3224. [PMID: 35956737 PMCID: PMC9371109 DOI: 10.3390/polym14153224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.
Collapse
Affiliation(s)
- Sirina Zhantlessova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Irina Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aida Kistaubayeva
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Ludmila Ignatova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aizhan Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, Ryms’koho-Korsakova St. 2, 40000 Sumy, Ukraine
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany
| |
Collapse
|
131
|
An Electrochemical Immunoassay for Lactobacillus rhamnosus GG Using Cu@Cu2O Nanoparticle-Embedded B, N, Co-doped Porous Carbon. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
132
|
Davachi SM, Dogan B, Khazdooz L, Zhang S, Khojastegi A, Fei Z, Sun H, Meletharayil G, Kapoor R, Simpson KW, Abbaspourrad A. Long-Term Lacticaseibacillus rhamnosus GG Storage at Ambient Temperature in Vegetable Oil: Viability and Functional Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9399-9411. [PMID: 35881537 DOI: 10.1021/acs.jafc.2c02953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vegetable oils with varying saturated fat levels were inoculated with Lacticaseibacillus rhamnosus GG (LGG), subjected to different heat treatments in the absence and presence of inulin and stored for 12 months at room temperature. After storage, the heat-treated probiotics actively grew to high concentrations after removal of the oils and reculturing. The bacterial samples, regardless of aerobic or anaerobic conditions and treatment methods, showed no changes in their growth behavior. The random amplified polymorphic DNA-polymerase chain reaction, antimicrobial, morphology, and motility tests also showed no major differences. Samples of LGG treated with a higher antioxidant content (Gal400) showed reduced inflammatory and anti-inflammatory properties. These findings have been confirmed by metabolite and genome sequencing studies, indicating that Gal400 showed lower concentrations and secretion percentages and the highest number of single nucleotide polymorphisms. We have shown proof of concept that LGG can be stored in oil with minimum impact on probiotic in vitro viability.
Collapse
Affiliation(s)
- Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Anahita Khojastegi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Rohit Kapoor
- National Dairy Council, 10255 W Higgins Rd, Rosemont, Illinois 60018, United States
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
133
|
Cheng J, Zhai J, Zhong W, Zhao J, Zhou L, Wang B. Lactobacillus rhamnosus GG Promotes Intestinal Vitamin D Absorption by Upregulating Vitamin D Transporters in Senile Osteoporosis. Calcif Tissue Int 2022; 111:162-170. [PMID: 35616697 DOI: 10.1007/s00223-022-00975-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Intestinal absorption of vitamin D is an important way to improve the vitamin D level in senile osteoporosis (SOP). There is a link between oral probiotics and vitamin D, but the mechanism is still unclear. We aimed to evaluate whether Lactobacillus rhamnosus GG culture supernatant (LCS) can affect cholecalciferol absorption, transport, and hydroxylation in SOP, and explore underlying mechanisms. In the study, specific-pathogen-free SAMP6 mice were randomly divided into an experimental group administered undiluted LCS and a control group administered normal drinking water. Furthermore, levels of cholecalciferol absorption were compared between Caco-2 cells cultured with varying concentrations of cholecalciferol and stimulated with LCS or de Man, Rogosa, and Sharpe (MRS) broth (control). Similarly, LCS-stimulated HepG2 cells were compared with MRS-stimulated HepG2 cells. Finally, protein levels of VD transporters in small intestine tissues and Caco-2 cells, as well as vitamin D-binding protein and 25-hydroxylase in liver tissues and HepG2 cells, were detected by western blot. The results showed that plasma concentrations of cholecalciferol and 25OHD3 were higher in mice of the LCS group compared with the control group, and these values were positively correlated. With the addition of LCS, cholecalciferol uptake was increased with 0.5 μM or 10 μM cholecalciferol in the medium. Protein levels of CD36 and NPC1L1 were higher in the LCS group compared with the control group, while SR-BI protein was decreased, both in vitro and in vivo. In conclusion, LCS can promotes intestinal absorption cholecalciferol by affecting protein levels of VD transporters and improves 25OHD3 levels in SOP.
Collapse
Affiliation(s)
- Jing Cheng
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthointernal, Tianjin Hospital, Tianjin, China
| | - Jianhua Zhai
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingwen Zhao
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| | - Bangmao Wang
- Gastroenterology Department, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
134
|
Ke A, Parreira VR, Farber JM, Goodridge L. Selection of a Potential Synbiotic against Cronobacter sakazakii. J Food Prot 2022; 85:1240-1248. [PMID: 35435968 DOI: 10.4315/jfp-22-048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/10/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cronobacter sakazakii is an opportunistic foodborne pathogen that can be fatal to infants; it is commonly associated with powdered infant formula due to contamination during manufacturing processes or during preparation in hospitals or homes. This project aimed to select a potential synbiotic, a combination of probiotic strains with a prebiotic product, to inhibit the growth of C. sakazakii in an in vitro dynamic infant gut model (Simulator of the Human Intestinal Microbial Ecosystem). A total of 16 lactic acid bacteria (LAB) were tested for their inhibitory properties against four different C. sakazakii strains by a zone of inhibition test. Lactobacillus and Pediococcus species were able to inhibit the growth (>15-mm inhibition zones) of all C. sakazakii strains tested, and only one strain from the two genera exhibited atypical resistance to tetracycline. All C. sakazakii strains and the selected LAB strains, which inhibited C. sakazakii and did not exhibit atypical antibiotic resistance, were grown in Luria-Bertani or de Man Rogosa Sharpe broth, respectively, containing 1% dextrose or 1% commercial prebiotic (w/v) to compare their ability to metabolize the prebiotic product. Overall, based on the growth inhibition of C. sakazakii, antibiotic susceptibility, and prebiotic metabolism, 6 of the 16 LAB were chosen to be part of a potential synbiotic. This study has provided valuable information that will help with the development of a synbiotic that can be used in powdered infant formula to reduce the potential for C. sakazakii-related illnesses in infants. HIGHLIGHTS
Collapse
Affiliation(s)
- Alfred Ke
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
135
|
Xavier-Santos D, Scharlack NK, Pena FDL, Antunes AEC. Effects of Lacticaseibacillus rhamnosus GG supplementation, via food and non-food matrices, on children's health promotion: A scoping review. Food Res Int 2022; 158:111518. [PMID: 35840226 DOI: 10.1016/j.foodres.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/04/2022]
Abstract
The literature considers children both a risk group for administering probiotic strains and one of the populations that can most benefit from it. Due to the health benefits associated to probiotic supplementation, this scope review sought to formulate a critical evaluation of how Lacticaseibacillus rhamnosus GG, carried in food and non-food matrices, and experimental design may affect the health promotion of infants and children. In this study, a literature search was conducted in three scientific databases: PubMed, Web of Science, and SciELO to retrieve research, published in English or Spanish, which administered L. rhamnosus GG to infants and children with any disease or in eutrophic condition. Three reviewers with an expert supervision screened 540 articles, published between 2001 and 2022, which were retrieved from the databases. The data extracted was compiled and shown in this scoping review. In total, was included, after criteria observation, 44 articles in this review. Intestinal disorders were the most frequent outcome in these studies (36.4%) and capsules, the most common vehicle for administering the probiotic strain (40.9%). Probiotic strain dose ranged from 105 to 1012 cfu/dose of L. rhamnosus GG and intervention length extended from one to more than 6 months. Food matrix showed health effects in 57.1% of the clinical trials and non-food matrix 46.7%, which indicates that the health-promoting effect of the probiotic GG strain may be equivalent between the two forms of delivery. However, the highly heterogeneous experimental designs prevent further analysis and a systematic review and meta-analysis is recommended to address just the outcomes of studies and achieve data homogeneity in order to determine which vehicle is the most suitable for health promoting.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Nayara Kastem Scharlack
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | - Fabíola de Lima Pena
- School of Applied Sciences (FCA), State University of Campinas, 300 Pedro Zaccaria St, 13484-350 Limeira, SP, Brazil
| | | |
Collapse
|
136
|
Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022; 13:929346. [PMID: 35910620 PMCID: PMC9330398 DOI: 10.3389/fmicb.2022.929346] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal barrier is a structure that prevents harmful substances, such as bacteria and endotoxins, from penetrating the intestinal wall and entering human tissues, organs, and microcirculation. It can separate colonizing microbes from systemic tissues and prevent the invasion of pathogenic bacteria. Pathological conditions such as shock, trauma, stress, and inflammation damage the intestinal barrier to varying degrees, aggravating the primary disease. Intestinal probiotics are a type of active microorganisms beneficial to the health of the host and an essential element of human health. Reportedly, intestinal probiotics can affect the renewal of intestinal epithelial cells, and also make cell connections closer, increase the production of tight junction proteins and mucins, promote the development of the immune system, regulate the release of intestinal antimicrobial peptides, compete with pathogenic bacteria for nutrients and living space, and interact with the host and intestinal commensal flora to restore the intestinal barrier. In this review, we provide a comprehensive overview of how intestinal probiotics restore the intestinal barrier to provide new ideas for treating intestinal injury-related diseases.
Collapse
Affiliation(s)
- Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
137
|
Rao K, Cuna A, Chavez-Bueno S, Menden H, Yu W, Ahmed I, Srinivasan P, Umar S, Sampath V. Effect of Various Preterm Infant Milk Formulas on NEC-Like Gut Injury in Mice. Front Pediatr 2022; 10:902798. [PMID: 35874567 PMCID: PMC9299064 DOI: 10.3389/fped.2022.902798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Formula feeding is an important risk factor for the development of necrotizing enterocolitis in preterm infants. The potential harmful effects of different preterm formulas on the developing intestinal tract remain incompletely understood. Here we demonstrate that feeding newborn mouse pups with various preterm formulas resulted in differing effects on intestinal inflammation, apoptosis, and activation of the pro-inflammatory transcription factor NFκB. 16S rRNA sequencing revealed that each preterm formula resulted in significant gut microbial alterations that were different from dam-fed controls. Formula feeding with EleCare and Similac Special Care caused greater intestinal injury compared to NeoSure. Pre-treatment with Lactobacillus rhamnosus GG ameliorated severity of intestinal injury from EleCare and Similac Special Care. Our findings indicate that not all preterm formulas are the same, and different formulations can have varying effects on intestinal inflammation, apoptosis, and microbiome composition.
Collapse
Affiliation(s)
- Karishma Rao
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Alain Cuna
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Susana Chavez-Bueno
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
- Division of Infectious Disease, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Heather Menden
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Wei Yu
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Ishfaq Ahmed
- Department of Biology, Kansas City Kansas Community College, Kansas City, KS, United States
| | - Pugazhendhi Srinivasan
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
138
|
AI-2/LuxS Quorum Sensing System Promotes Biofilm Formation of Lactobacillus rhamnosus GG and Enhances the Resistance to Enterotoxigenic Escherichia coli in Germ-Free Zebrafish. Microbiol Spectr 2022; 10:e0061022. [PMID: 35700135 PMCID: PMC9430243 DOI: 10.1128/spectrum.00610-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The LuxS enzyme plays a key role in both quorum sensing (QS) and the regulation of bacterial growth. It catalyzes the production of autoinducer-2 (AI-2) signaling molecule, which is a component of the methyl cycle and methionine metabolism. This study aimed at investigating the differences between the Lactobacillus rhamnosus GG (LGG) wild-type strain (WT) and its luxS mutant (ΔluxS) during biofilm formation and when resisting to inflammation caused by Enterotoxigenic Escherichia coli (ETEC) in germ-free zebrafish. Our results suggest that in the absence of luxS when LGG was knocked out, biofilm formation, extracellular polysaccharide secretion and adhesion were all compromised. Addition of synthetic AI-2 indeed rescued, at least partially, the deficiencies observed in the mutant strain. The colonizing and immunomodulatory function in WT versus ΔluxS mutants were further studied in a germ-free zebrafish model. The concentration of AI-2 signaling molecules decreased sharply in zebrafish infected with the ΔluxS. At the same time, compared with the ΔluxS, the wild-type strain could colonize the germ-free zebrafish more effectively. Our transcriptome results suggest that genes involved in immunity, signal transduction, and cell adhesion were downregulated in zebrafish infected with ΔluxS and WT. In the WT, the immune system of germ-free zebrafish was activated more effectively through the MAPK and NF-κB pathway, and its ability to fight the infection against ETEC was increased. Together, our results demonstrate that the AI-2/LuxS system plays an important role in biofilm formation to improve LGG and alleviate inflammation caused by ETEC in germ-free zebrafish. IMPORTANCELactobacillus rhamnosus GG is a widely used probiotic to improve host intestinal health, promote growth, reduce diarrhea, and modulate immunity. In recent years, the bacterial quorum sensing system has attracted much attention; however, there has not been much research on the effect of the LuxS/AI-2 quorum sensing system of Lactobacillus on bacteriostasis, microbial ecology balance, and immune regulation in intestine. In this study, we used germ-free zebrafish as an animal model to compare the differences between wild-type and luxS mutant strains. We showed how AI-2/LuxS QS affects the release of AI-2 and how QS regulates the colonization, EPS synthesis and biofilm formation of LGG. This study provides an idea for the targeted regulation of animal intestinal health with probiotics by controlling bacteria quorum sensing system.
Collapse
|
139
|
Luo D, Luo M, Wang H, Liu X, Yang M, Tian F, Qin S, Liu J. Protective Effects of Lactobacillus rhamnosus Peptides Against DSS-Induced Inflammatory and Oxidative Damages in Human Colonic Epithelial Cells Through NF-κB/Nrf2/HO-1 Signaling Pathway. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
140
|
Jin H, Riaz Rajoka MS, Xu X, Liao N, Pang B, Yan L, Liu G, Sun H, Jiang C, Shao D, Barba FJ, Shi J. Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119062. [PMID: 35231537 DOI: 10.1016/j.envpol.2022.119062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Collapse
Affiliation(s)
- Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Hui Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China; School of Hospitality Management, Guilin Tourism University, 26 Liangfeng Road, Yanshan District, Guilin City, Guangxi Province, 541006, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Fo-rensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100, València, Spain
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China.
| |
Collapse
|
141
|
Sbehat M, Altamimi M, Sabbah M, Mauriello G. Layer-by-Layer Coating of Single-Cell Lacticaseibacillus rhamnosus to Increase Viability Under Simulated Gastrointestinal Conditions and Use in Film Formation. Front Microbiol 2022; 13:838416. [PMID: 35602083 PMCID: PMC9115559 DOI: 10.3389/fmicb.2022.838416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics and prebiotics are widely used as functional food ingredients. Viability of probiotics in the food matrix and further in the digestive system is still a challenge for the food industry. Different approaches were used to enhance the viability of probiotics including microencapsulation and layer-by-layer cell coating. The of aim of this study was to evaluate the viability of coated Lacticaseibacillus rhamnosus using a layer-by-layer (LbL) technique with black seed protein (BSP) extracted from Nigella sativa defatted seeds cakes (NsDSC), as a coating material, with alginate, inulin, or glucomannan, separately, and the final number of coating layers was 3. The viable cell counts of the plain and coated L. rhamnosus were determined under sequential simulated gastric fluid (SGF) for 120 min and simulated intestinal fluid (SIF) for 180 min. Additionally, the viability after exposure to 37, 45, and 55°C for 30 min was also determined. Generally, the survivability of coated L. rhamnosus showed significant (p ≤ 0.05) improvement (<4, 3, and 1.5 logs reduction for glucomannan, alginate and inulin, respectively) compared with plain cells (∼6.7 log reduction) under sequential exposure to SGF and SIF. Moreover, the cells coated with BSP and inulin showed the best protection for L. rhamnosus under high temperatures. Edible films prepared with pectin with LbL-coated cells showed significantly higher values in their tensile strength (TS) of 50% and elongation at the break (EB) of 32.5% than pectin without LbL-coated cells. The LbL technique showed a significant protection of probiotic cells and potential use in food application.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
142
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
143
|
Trukhan DI. Disorders of intestinal microbiocenosis: expanding the application of probiotics. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:132-143. [DOI: 10.21518/2079-701x-2022-16-7-132-143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The problem of interaction between a person and the intestinal microbiome is surrounded by many secrets and mysteries. The bacterial flora of the gastrointestinal tract has a local and systemic effect not only on the digestive system, but also on the entire body as a whole. Numerous studies have proved the pathogenetic relationship of the state of the intestinal biocenosis not only with diseases of the gastrointestinal tract, but also with pathological processes from other organs and systems of the body. In terms of its role in maintaining homeostasis, the intestinal microflora is not inferior to any other vital organ. In the presented review, the current aspects of the terminology and clinic of disorders of intestinal microbiocenosis are considered. Probiotics occupy an important place in the complex therapy of intestinal microbiocenosis disorders and the corresponding clinical manifestations. The review considers the main mechanisms of probiotic / host interaction, non-immunological and immunological effects of probiotics and the requirements for them, the main directions of use of representatives of the normal microflora Bifidobacterium and Lactobacillus. The data of meta-analyzes and systematic reviews, testifying to the expansion of indications for the appointment of probiotics, are considered the possibilities of probiotics in the complex therapy of Helicobacter pylori infection, syndrome of increased epithelial intestinal permeability, and the prevention of respiratory infections.The review concludes with the results of a search in the PubMed database on the possibility of using probiotics in the prevention and treatment of a new coronavirus infection COVID-19. The availability of modern, effective and safe probiotics in the arsenal of a practical doctor (primarily a general practitioner and general practitioner), and their use, contributes to the optimization of drug therapy not only in gastroenterological patients, but also in patients with other somatic pathologies, including those with new coronavirus infection COVID-19.
Collapse
|
144
|
Variability of Genetic Characters Associated with Probiotic Functions in Lacticaseibacillus Species. Microorganisms 2022; 10:microorganisms10051023. [PMID: 35630465 PMCID: PMC9145642 DOI: 10.3390/microorganisms10051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the intra-species distribution of genetic characteristics that favor the persistence in the gastrointestinal tract (GIT) and host interaction of bacteria belonging to species of the Lacticaseibacillus genus. These bacterial species comprise commercial probiotics with the widest use among consumers and strains naturally occurring in GIT and in fermented food. Since little is known about the distribution of genetic traits for adhesion capacity, polysaccharide production, biofilm formation, and utilization of substrates critically important for survival in GIT, which influence probiotic characteristics, a list of genetic determinants possibly involved in such functions was created by a search for specific genes involved in the above aspects in the genome of the extensively characterized probiotic L. rhamnosus GG. Eighty-two gene loci were retrieved and their presence and variability in other Lacticaseibacillus spp. genomes were assessed by alignment with the publicly available fully annotated genome sequences of L. casei, L. paracasei, L. rhamnosus, and L. zeae. Forty-nine of these genes were found to be absent in some strains or species. The remaining genes were conserved and covered almost all the functions considered, indicating that all strains of the genus may exert some probiotic effects. Among the variable loci, a taurine utilization operon and a α-L-fucosidase were examined for the presence/absence in 26 strains isolated from infant feces by PCR-based tests. Results were variable among the isolates, though their common origin indicated the capacity to survive in the intestinal niche. This study indicated that the capacity to exert probiotic actions of Lacticaseibacillus spp. depends on a conserved set of genes but variable genetic factors, whose role is only in part elucidated, are more numerous and can explain the enhanced probiotic characteristics for some strains. The selection of the most promising probiotic candidates to be used in food is feasible by analyzing the presence/absence of a set of variable traits.
Collapse
|
145
|
Jeng HS, Yan TR. Lactiplantibacillus plantarum E51 protects against Clostridioides difficile-induced damages on Caco-2 intestinal barrier functions. Arch Microbiol 2022; 204:290. [PMID: 35503482 PMCID: PMC9064860 DOI: 10.1007/s00203-022-02837-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Clostridioides difficile (C. difficile) infection is associated with high morbidity and mortality. This study aimed to evaluate the protective effect of Lactiplantibacillus plantarum E51 (L. plantarum E51) on C. difficile infection using the Caco-2 monolayer in vitro model. Caco-2 cells were infected with C. difficile in the presence/absence of L. plantarum E51 or Lacticaseibacillus rhamnosus GG (LGG). Caco-2 intestinal barrier functions, such as monolayer integrity, IL-8 secretion, and tight junction protein expression, were quantified to investigate the extent to which L. plantarum E51 protected against C. difficile infection in vitro. Furthermore, inhibition of C. difficile adhesion to Caco-2 cells by L. plantarum E51 was explored using competition, exclusion, and displacement assays. The results indicated that L. plantarum E51 inhibited C. difficile growth, ameliorated C. difficile-caused decrease in transepithelial/ transendothelial electrical resistance, attenuated C. difficile-induced IL8 secretion, and upregulated claudin-1 protein expression that was inhibited by C. difficile. Moreover, L. plantarum E51 suppressed C. difficile adhesion to Caco-2 cells. In conclusion, these findings demonstrated that L. plantarum E51 substantially protected against C. difficile-induced damages on intestinal barrier functions in Caco-2 cells. The probiotic potential of L. plantarum E51 against C. difficile infection warrants further investigation.
Collapse
Affiliation(s)
- Huey-Sheng Jeng
- Department of Chemical Engineering and Biotechnology, Institute of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei, 10452, Taiwan
- Department of Urology, Zhong-Xing Branch, Taipei City Hospital, Taipei, 10341, Taiwan
| | - Tsong-Rong Yan
- Department of Chemical Engineering and Biotechnology, Institute of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei, 10452, Taiwan.
| |
Collapse
|
146
|
Usaga J, Barahona D, Arroyo L, Esquivel P. Probiotics survival and betalains stability in purple pitaya (Hylocereus sp.) juice. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
147
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
148
|
Zawistowska-Rojek A, Kośmider A, Stępień K, Tyski S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol 2022; 204:285. [PMID: 35478049 PMCID: PMC9046290 DOI: 10.1007/s00203-022-02889-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
The adhesion and aggregation are characteristic attributes of probiotic strains belonging to Lactobacillaceae genus. Due to these properties the host organisms can avoid colonisation of the intestinal tract by enteropathogenic bacteria. The presented research includes a comparison of the properties of various strains belonging to different Lactobacillaceae species and isolated from different sources The aim of this study was to investigate the ability of Lactocaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Lactobacillus strains (L. acidophilus, L. gasseri, L. ultunensis) from probiotic products and clinical specimens to direct and competitive adherence to Caco-2 and HT-29 cell lines. Furthermore, the ability of lactobacilli and enteropathogenic bacteria, E. coli, E. faecalis, and S. Typhimurium, to auto- and co-aggregation was also investigated. The results showed that all tested strains adhered to Caco-2 and HT-29 cell lines. Though, the factor of adhesion depended on the species and origin of the strain. L. rhamnosus strains showed a lowest degree of adherence as compared to L. plantarum and Lactobacillus sp. strains. On the other side both, L. rhamnosus and L. acidophilus strains reduced the pathogenic bacteria in competition adherence test most effectively. All tested lactobacilli strains were characterised by auto- and co-aggregation abilities, to various degrees. The properties of Lactobacillaceae strains analysed in this study, like adhesion abilities, competitive adherence, auto- and co-aggregation, may affect the prevention of colonisation and elimination of pathogenic bacteria in gastrointestinal tract.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland. .,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Anita Kośmider
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.,Department of Cancer Biology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
149
|
Phillippi DT, Daniel S, Nguyen KN, Penaredondo BA, Lund AK. Probiotics Function as Immunomodulators in the Intestine in C57Bl/6 Male Mice Exposed to Inhaled Diesel Exhaust Particles on a High-Fat Diet. Cells 2022; 11:cells11091445. [PMID: 35563751 PMCID: PMC9101602 DOI: 10.3390/cells11091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Epidemiological studies reveal a correlation between air pollution exposure and gastrointestinal (GI) diseases, yet few studies have investigated the role of inhaled particulate matter on intestinal integrity in conjunction with a high-fat (HF) diet. Additionally, there is currently limited information on probiotics in mitigating air-pollutant responses in the intestines. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) and a HF diet can alter intestinal integrity and inflammation, which can be attenuated with probiotics. 4-6-w-old male C57Bl/6 mice on a HF diet (45% kcal fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg of DEP suspended in 35 µL of 0.9% sterile saline or sterile saline (CON) only twice a week for 4 w. A subset of mice was treated with 0.3 g/day of Winclove Ecologic® barrier probiotics (PRO) in drinking water throughout the duration of the study. Our results show that DEP exposure ± probiotics resulted in increased goblet cells and mucin (MUC)-2 expression, as determined by AB/PAS staining. Immunofluorescent quantification and/or RT-qPCR showed that DEP exposure increases claudin-3, occludin, zona occludens (ZO)-1, matrix metalloproteinase (MMP)-9, and toll-like receptor (TLR)-4, and decreases tumor necrosis factor (TNF)-α and interleukin (IL)-10 expression compared to CON. DEP exposure + probiotics increases expression of claudin-3, occludin, ZO-1, TNF-α, and IL-10 and decreases MMP-9 and TLR-4 compared to CON + PRO in the small intestine. Collectively, these results show that DEP exposure alters intestinal integrity and inflammation in conjunction with a HF diet. Probiotics proved fundamental in understanding the role of the microbiome in protecting and altering inflammatory responses in the intestines following exposure to inhaled DEP.
Collapse
Affiliation(s)
| | | | | | | | - Amie K. Lund
- Correspondence: ; Tel.: +1-(940)-369-8946; Fax: +1-(940)-565-4297
| |
Collapse
|
150
|
Tenea GN, Gonzalez GL, Moreno JL. Probiotic Characteristics and Antimicrobial Potential of a Native Bacillus subtilis Strain Fa17.2 Rescued from Wild Bromelia sp. Flowers. Microorganisms 2022; 10:microorganisms10050860. [PMID: 35630306 PMCID: PMC9145066 DOI: 10.3390/microorganisms10050860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
In the present study, we identified the Bacillus subtilis strain annotated Fa17.2 isolated from Bromelia flower inflorescences collected from the subtropical humid mesothermal region, Santo Domingo de Los Tsachilas Province, Ecuador. The probiotic capacity and antimicrobial potential against four foodborne pathogens were assessed. The cell culture of Fa17.2 is highly resistant to synthetic gastric acid (pH 2.5, 3.0, and 3.5), bile salts (0.3%), tolerating different sodium chloride concentrations (1, 3, and 5%), and growth conditions (15 °C and 45 °C), suggesting its potential probiotic features. The isolate showed no antibiotic resistance and was considered safe as no hemolysis was detected on sheep blood agar. The optimum medium for bacterial growth and the release of antimicrobial compounds was MRS with 10% glucose. The active components released in the neutralized crude extract (NCE) were insensitive to organic solvents, surfactants, and nonproteolytic enzymes and sensitive to proteolytic enzymes suggesting their proteinaceous nature. The antimicrobial activity was enhanced by heat and maintained active over a wide range of pH (2.0–8.0). Moreover, the crude extract (CE) showed inhibitory activity against several Gram-negative and Gram-positive bacteria. The molecular weight of partially purified precipitated bacteriocin-like substances (BLISs) was about 14 kDa in 20% Tricine-SDS-PAGE. The CE obtained from Fa17.2 inhibits the growth of four foodborne pathogens, Staphylococcus aureus, Escherichia coli, Kosaconia cowanii, and Shigella dysenteriae, which implies its potential as an antimicrobial producer strain.
Collapse
|